FINAL Site Inspection Report Army Aviation Support Facility Windsor Locks, Connecticut

Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide

January 2022

Prepared for:

Army National Guard Bureau 111 S. George Mason Drive Arlington, VA 22204

UNCLASSIFIED

THIS PAGE INTENTIONALLY BLANK

Table of Contents

Execut	xecutive SummaryES			
1.	Introduction	1-1		
	1.1 Project Authorization	1-1		
	1.2 SI Purpose	1-1		
2.	Facility Background	2-1		
	2.1 Facility Location and Description	2-1		
	2.2 Facility Environmental Setting	2-1		
	2.2.1 Geology	2-1		
	2.2.2 Hydrogeology	2-2		
	2.2.3 Hydrology	2-2		
	2.2.4 Climate	2-3		
	2.2.5 Current and Future Land Use	2-3		
	2.2.6 Sensitive Habitat and Threatened/ Endangered Species			
	2.3 History of PFAS Use	2-4		
3.	Summary of Areas of Interest	3-1		
	3.1 AOI 1	3-1		
	3.1.1 Wash Rack	3-1		
	3.1.2 Building 152	3-1		
4.	Project Data Quality Objectives	4-1		
	4.1 Problem Statement	4-1		
	4.2 Goals of the Study	4-2		
	4.3 Information Inputs			
	4.4 Study Boundaries	4-2		
	4.5 Analytical Approach	4-2		
	4.6 Data Usability Assessment	4-3		
	4.6.1 Precision	4-3		
	4.6.2 Accuracy	4-4		
	4.6.3 Representativeness	4-5		
	4.6.4 Comparability	4-6		
	4.6.5 Completeness	4-6		
	4.6.6 Sensitivity	4-6		
5.	Site Inspection Activities			
	5.1 Pre-Investigation Activities	5-1		
	5.1.1 Technical Project Planning	5-1		
	5.1.2 Utility Clearance			
	5.1.3 Source Water and PFAS Sampling Equipment Acceptability	5-2		
	5.2 Soil Borings and Soil Sampling			
	5.3 Temporary Well Installation and Groundwater Grab Sampling	5-3		
	5.4 Synoptic Water Level Measurements			
	5.5 Surveying	5-4		
	5.6 Investigation-Derived Waste			
	5.7 Laboratory Analytical Methods			
	5.8 Deviations from SI QAPP Addendum			
6.	Site Inspection Results			
	6.1 Screening Levels			
	-			

	6.2 Soil Physicochemical Analyses	6-2
	6.3 AOI 1	6-2
	6.3.1 AOI 1 Soil Analytical Results	6-2
	6.3.2 AOI 1 Groundwater Analytical Results	6-3
	6.3.3 AOI 1 Conclusions	6-4
7.	Exposure Pathways	7-1
	7.1 Soil Exposure Pathway	7-1
	7.1.1 AOI 1	7-1
	7.2 Groundwater Exposure Pathway	7-2
	7.2.1 AOI 1	7-2
	7.3 Surface Water and Sediment Exposure Pathway	7-2
	7.3.1 AOI 1	7-2
8.	Summary and Outcome	8-1
	8.1 SI Activities	8-1
	8.2 SI Goals Evaluation	8-1
	8.3 Outcome	8-3
9.	References	9-1

Appendices

Appendix A	Data Validation Reports
------------	-------------------------

- Appendix B Field Documentation
 - B1. Log of Daily Notice of Field Activities
 - B2. Sampling Forms
 - **B3.** Nonconformance and Corrective Action Reports
 - B4. Survey Data
 - B5. Investigation-Derived Waste Polygons
- Appendix C Photographic Log
- Appendix D TPP Meeting Minutes
- Appendix E Boring Logs
- Appendix F Analytical Results
- Appendix G Laboratory Reports

Figures

- Figure 2-1 Facility Location
- Figure 2-2 Facility Topography
- Figure 2-3 Groundwater Features
- Figure 2-4 Surface Water Features
- Figure 2-5 Groundwater Elevations, April 2021
- Figure 3-1 Areas of Interest
- Figure 5-1 Site Inspection Sample Locations
- Figure 6-1 PFOS Detections in Soil
- Figure 6-2 PFOA Detections in Soil
- Figure 6-3 PFBS Detections in Soil
- Figure 6-4 PFOA, PFOS, and PFBS Detections in Groundwater
- Figure 7-1 Conceptual Site Model, AOI 1

Tables

- Table ES-1
 Screening Levels (Soil and Groundwater)
- Table ES-2
 Summary of Site Inspection Findings
- Table ES-3
 Site Inspection Recommendations
- Table 5-1Site Inspection Samples by Medium
- Table 5-2Soil Boring Depths, Temporary Well Screen Intervals, and Groundwater
Elevations
- Table 6-1Screening Levels (Soil and Groundwater)
- Table 6-2
 PFAS Detections in Surface Soil
- Table 6-3
 PFAS Detections in Shallow Subsurface Soil
- Table 6-4 PFAS Detections in Groundwater
- Table 8-1
 Summary of Site Inspection Findings
- Table 8-2
 Site Inspection Recommendations

Acronyms and Abbreviations

6:2 FTS	6:2 Fluorotelomer sulfonic acid
8:2 FTS	8:2 Fluorotelomer sulfonic acid
µg/kg	micrograms per kilogram
°C	degrees Celsius
°F	degrees Fahrenheit
%	percent
AASF	Army Aviation Support Facility
AECOM	AECOM Technical Services, Inc.
AFFF	aqueous film forming foam
AOI	Area of Interest
ARNG	Army National Guard
AST	above-ground storage tank
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CoC	chain of custody
CSM	conceptual site model
CTANG	Connecticut Air National Guard
CTARNG	Connecticut Army National Guard
CTDEEP	Connecticut Department of Energy and Environmental Protection
DA	Department of the Army
DO	dissolved oxygen
DoD	Department of Defense
DPT	direct push technology
DQI	data quality indicator
DQO	data quality objective
DUA	data usability assessment
EDR™	Environmental Data Resources, Inc.™
EIS	extraction internal standards
ELAP	Environmental Laboratory Accreditation Program
FedEx	Federal Express
ERB	equipment rinsate blank
FRB	field reagent blank
FTA	Fire Training Area
HA	Health Advisory
HDPE	high-density polyethylene
IDW	investigation-derived waste
IIS	Injection internal standards
ITRC	Interstate Technology Regulatory Council
LC/MS/MS	liquid chromatography with tandem mass spectrometry
LCS	laboratory control spike
LCSD	laboratory control spike duplicate
LOD	limit of detection
LOQ	limit of quantitation

MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
NELAP	National Environmental Laboratory Accreditation Program
NEtFOSAA	N-ethyl perfluorooctanesulfonamidoacetic acid
ng/L	nanograms per liter
NOAA	National Oceanic and Atmospheric Administration
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
ORP	oxidation-reduction potential
OSD	Office of the Secretary of Defense
OWS	oil-water separator
PA	Preliminary Assessment
PFAS	per- and polyfluoroalkyl substances
PFBA	perfluorobutyrate
PFBS	perfluorobutanesulfonic acid
PFCs	perfluorinated compounds
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUdA	perfluoroundecanoic acid
PID	photoionization detector
PQAPP	Programmatic UFP-QAPP
PVC	polyvinyl chloride
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
QSM	Quality Systems Manual
RI	Remedial Investigation
RPD	relative percent differences
SI	Site Inspection
SL	screening level
SOP	standard operating procedure
TCRA	Time Critical Removal Action
TOC	total organic carbon
TPP	Technical Project Planning
UCMR 3	Third Unregulated Contaminant Monitoring Rule
UFP	Uniform Federal Policy

US	United States
USACE	United States Army Corps of Engineers
USCS	Unified Soil Classification System
USEPA	United States Environmental Protection Agency
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
WLRC	Windsor Locks Readiness Center

Executive Summary

The Army National Guard (ARNG) G9 is performing Preliminary Assessments (PAs) and Site Inspections (SIs) at per- and polyfluoroalkyl substances (PFAS)-impacted sites at ARNG facilities nationwide. The objective of the SI at each facility is to identify whether there has been a release to the environment from the Areas of Interest (AOIs) identified in the PA and determine the presence or absence of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorobutanesulfonic acid (PFBS) at or above screening levels (SLs). An SI was completed at Windsor Locks Army Aviation Support Facility (AASF; also referred to as the "facility") in Windsor Locks, Connecticut.

The Windsor Locks AASF occupies 37.9 acres along Route 75, adjacent to Bradley International Airport, in Windsor Locks, Connecticut. The facility primarily operates as a helicopter operations center and fuel station where minor helicopter repairs and servicing are performed (Legette, Brashears & Graham, Inc., 2015). The facility includes two maintenance hangars with attached office space, the Windsor Locks Readiness Center (WLRC) building, two storage buildings, a maintenance shop, and a fenced-in motor pool that includes bermed parking areas for trucks used to refuel helicopters.

During the PA for PFAS, two potential PFAS release areas were identified: the Wash Rack and Building 152 (south hangar) (AECOM, 2020). PFAS-containing aqueous film-forming foam (AFFF) may have been released during fire training activities at the Wash Rack or from the discharge of mobile fire extinguishers to floor drains in Building 152. The potential PFAS release areas were grouped into one AOI, AOI 1, which was investigated during the SI. Building 152 and the adjacent Building 200 (north hangar) are both equipped with fire suppression systems that utilize AFFF. One additional area, the Hazardous Waste Storage Area, was observed during the PA because two 5-gallon buckets of AFFF were stored there. No known PFAS releases have occurred at Building 200 or the Hazardous Waste Storage Area; therefore, they were not identified as part of the AOI during the PA or the SI. However, the SI sampling program covered the majority of the facility's footprint and borings were located downgradient of these storage and use areas as a conservative measure. The SI field activities were conducted from 26 to 29 April 2021 and included the collection of soil and groundwater samples.

To fulfill the project Data Quality Objectives (DQOs) set forth in the approved SI Quality Assurance Project Plan (QAPP) Addendum (AECOM, 2021a), samples were collected and analyzed for a subset of 18 PFAS by liquid chromatography with tandem mass spectrometry compliant with Quality Systems Manual 5.3 Table B-15. The 18 PFAS analyzed as part of the ARNG SI program are specified in **Section 5.9** of this Report.

The Department of Defense (DoD) has adopted a policy to retain facilities in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process based on riskbased SLs for soil and groundwater, as described in a memorandum from the Office of the Secretary of Defense (OSD) dated 15 September 2021 (Assistant Secretary of Defense, 2021). The ARNG program under which this SI was performed follows this DoD policy. Should the maximum site concentration for sampled media exceed the SLs established in the OSD memorandum, and there is a potential release that is likely attributable to ARNG activities, the AOI will proceed to a Remedial Investigation (RI), the next phase under CERCLA. The SLs established in the OSD memorandum apply to three compounds: PFOA, PFOS, and PFBS, for both soil and groundwater. The SLs were calculated using the United States Environmental Protection Agency (USEPA) Office of Superfund Sites On-Line Calculator, which was updated on 8 April 2021 based on the release of the final Human Health Toxicity Values for PFBS (USEPA, 2021).

Additionally, the USEPA issued drinking water lifetime Health Advisories (HAs) for PFOA and PFOS in May 2016 (USEPA 2016a; USEPA, 2016b). The USEPA HAs may also be used as SLs

for groundwater samples collected at the facility boundary where off-facility drinking water wells are present downgradient; the SLs are presented on **Table ES-1** below. All other results presented in this report are considered informational in nature and serve as an indication as to whether soil and groundwater contain or do not contain the 18 PFAS analyzed within the boundaries of the facility.

Sample chemical analytical concentrations were compared against the project SLs, as described in **Table ES-1**. A summary of the results of the SI data relative to the SLs is as follows:

- PFOA and PFOS in groundwater at AOI 1 exceeded the individual SLs of 40 nanograms per liter (ng/L) at both potential PFAS release areas, Wash Rack (AOI01-02) and Building 152 (AOI01-04), and in groundwater at upgradient and downgradient locations at the facility. The maximum concentrations of PFOA and PFOS were 298 ng/L (at location AOI01-03) and 581 ng/L (at location AOI01-08), respectively. Based on the results of the SI, further evaluation of AOI 1 is warranted in the RI.
- PFOA, PFOS, and PFBS were detected in soil at AOI 1, indicating a release of PFAScontaining materials occurred; however, the detected concentrations were several orders of magnitude lower than the soil SLs.

Table ES-2 summarizes the SI results for soil and groundwater. Based on the conceptual site models (CSMs) developed and revised in light of the SI findings, there is potential for exposure to drinking water receptors at the facility; however, it is unclear if DoD activities at the facility have contributed to PFOA, PFOS, and PFBS concentrations in groundwater.

Table ES-3 summarizes the rationale used to determine if an AOI should be considered for further investigation under CERCLA and undergo an RI. Based on the results of this SI, further evaluation is warranted in the RI for AOI 1.

Analyte	Residential (Soil) (µg/kg) ^{a,b} 0-2 feet bgs	Industrial/ Commercial Composite Worker (Soil) (µg/kg) ^{a,b} 2-15 feet bgs	Tap Water (Groundwater) (ng/L) ^{a,b}	USEPA HA (Groundwater representative of Drinking Water) (ng/L) ^{c,d}
PFOA	130	1,600	40	70
PFOS	130	1,600	40	70
PFBS	1,900	25,000	600	-

Table ES-1: Screening Levels (Soil and Groundwater)

Notes:

a.) Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater and Soil using United States Environmental Protection Agency's (USEPA's) Regional Screening Level Calculator. Hazard Quotient (HQ) = 0.1. 15 October 2019.

b.) USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ = 0.1. 8 April 2021.

c.) USEPA. 2016a. Drinking Water Health Advisory (HA) for Perfluorooctanoic Acid (PFOA). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. USEPA Document Number: 822-R-16-005. May 2016. / USEPA. 2016b. Drinking Water HA for Perfluorooctane Sulfonic Acid (PFOS). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. USEPA Document Number: 822-R-16-004. May 2016.

d.) USEPA HAs apply to the PFOA and PFOS concentrations individually or combined.

Table ES-2: Summary of Site Inspection Findings

AOI	Potential PFAS Release Area	Soil – Source Area	Groundwater – Source Area	Groundwater – Facility Boundary	
1	Wash Rack	0			
1	Building 152	lacksquare			
Legend: N/A = Not applicable = detected; exceedance of the screening levels					
= detected; no exceedance of the screening levels					

O = not detected

Table ES-3: Site Inspection Recommendations

ΑΟΙ	Description	Rationale	Future Action
1	Wash Rack, Building 152	Exceedances of SLs in groundwater at source areas. No exceedances of SLs in soil.	Proceed to RI

THIS PAGE INTENTIONALLY BLANK

1. Introduction

1.1 Project Authorization

The Army National Guard (ARNG) G9 is the lead agency in performing Preliminary Assessments (PAs) and Site Inspections (SIs) for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) at Impacted Sites, ARNG Installations, Nationwide. This work is supported by the United States (US) Army Corps of Engineers (USACE) Baltimore District and their contractor, AECOM Technical Services, Inc. (AECOM), under Contract Number W912DR-12-D-0014, Task Order W912DR17F0192, issued 11 August 2017. The ARNG performed this SI at the Windsor Locks Army Aviation Support Facility (AASF) in Windsor Locks, Connecticut. The Windsor Locks AASF is also referred to as the "facility" throughout this document.

The SI project elements were performed in compliance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA; US Environmental Protection Agency [USEPA], 1980), as amended, the National Oil and Hazardous Substances Pollution Contingency Plan (40 Code of Federal Regulations Part 300; USEPA, 1994), and in compliance with US Department of the Army (DA) requirements and guidance for field investigations including specific requirements for sampling for PFOA, PFOS, and perfluorobutanesulfonic acid (PFBS), and the group of related compounds known in the industry as per- and polyfluoroalkyl substances (PFAS). The term PFAS is used throughout this report to encompass all PFAS chemicals being evaluated, including PFOA, PFOS, and PFBS, which are the key components of the suspected releases being evaluated, and the other 15 related compounds listed in the task order.

1.2 SI Purpose

A PA was performed at Windsor Locks AASF (AECOM, 2020) that identified two potential PFAS release areas at the facility, which were grouped into one Area of Interest (AOI). The objective of the SI is to identify whether there has been a release to the environment from the AOIs and determine the presence or absence of PFOA, PFOS, and PFBS at or above screening levels (SLs).

As stated in the *Federal Facilities Remedial Site Inspection Summary Guide* (USEPA, 2005), an SI has five goals:

- 1. Develop information to potentially eliminate a release from further consideration because it is determined that it poses no significant threat to human health or the environment;
- 2. Determine the potential need for a removal action;
- 3. Collect or develop data to evaluate potential release;
- **4.** Collect data to better characterize the release for more effective and rapid initiation of a Remedial Investigation (RI), if determined necessary; and
- **5.** Collect data to determine whether the release is more than likely the result of activities associated with the Department of Defense (DoD).

In addition to the USEPA-identified goals of an SI, the ARNG SI also identifies whether there are potential off-facility PFAS sources.

THIS PAGE INTENTIONALLY BLANK

2. Facility Background

2.1 Facility Location and Description

The Windsor Locks AASF occupies 37.9 acres that consist primarily of two maintenance hangars with attached office space, the Windsor Locks Readiness Center (WLRC) building, two storage buildings, a maintenance shop, and a fenced-in motor pool that includes bermed parking areas for trucks used to refuel helicopters. The facility also contains a hazardous waste storage area, above-ground storage tanks (ASTs), a pump house, water tower, emergency diesel generators, and a civilian parking lot. The facility is located on Route 75, adjacent to Bradley International Airport, in Windsor Locks, Connecticut (**Figure 2-1**). The facility primarily operates as a helicopter operations center and fuel station where minor helicopter repairs and servicing are performed (Legette, Brashears & Graham, Inc., 2015).

Bradley International Airport was acquired by the Federal government in the 1940s as a military reservation and deeded to the State of Connecticut in 1948 as surplus property. Between 1949 and 1955, various legal agreements were executed to provide for use of the field by reserve components of the Armed Forces, primarily the US Air Force and Connecticut Air National Guard (CTANG). In September 1986, the parcel was transferred from the CTANG to the Connecticut ARNG (CTARNG). The transfer of the property from CTANG to CTARNG included numerous buildings as well as the wash rack, airport apron, taxiway, and boundary fence. The title to land and buildings operated by the CTARNG was listed in the name of the State of Connecticut, Department of Aeronautics, and was leased to the US Government until 2002 (Engineering Technologies Associates, Inc., 1994). The Secretary of the Army granted the State of Connecticut a license to use and occupy for training and support of the CTARNG, effective 1 September 2010 (under License # DACA33-3-11-032). The lease remains on a year to year basis up to 31 October 2055.

2.2 Facility Environmental Setting

Windsor Locks AASF is located within the Connecticut Valley Lowlands physiographic region of the state (Engineering Technologies Associates, Inc., 1994). The topography of the facility is generally level, sloping slightly to the northwest (**Figure 2-2**). A drainage swale originates along the northwestern edge of the facility and continues northwest, off-facility, to an intermittent stream called Spencer Brook.

2.2.1 Geology

Windsor Locks AASF lies within the Connecticut Valley Lowlands and is underlain by gently sloping sand, silt, and gravel. Fine sand and silt are located beneath the ground surface. Surficial material at the facility is mapped as stratified drift and deltaic deposits overlying till with clay (Colton, 1960). Historical excavation reports noted a clay layer at depths ranging from 3 to 10 feet below ground surface (bgs). Bedrock beneath the facility is mapped as the Portland Arkose (**Figure 2-3**), which is described as a reddish-brown siltstone and sandstone (Schnabel and Eric, 1964). Depth to bedrock is estimated to be 100 to 150 feet bgs (Handman, 1973). Approximately 70 percent (%) of the soil underlying the facility is classified as made land, i.e., fill material. The underlying soil consists of Ninegrat Fine Sandy Loam, Poquonock Loamy Sand, Windsor Loamy Fine Sand, Agawan Fine Sand, Scantic Silt Loam, and Whatley Loam. These soils range from sand to silty clay loams with moderate to rapid permeability (SCS, 1962).

Soil borings completed during the SI found poorly graded and well-graded sand as the dominant lithology of the unconsolidated sediments below the Windsor Locks AASF; the borings were completed at depths between 10 and 15 feet bgs. Isolated layers of clay to silty sand were also

observed in the boring logs, at thicknesses ranging from a few inches to 3.5 feet. Many of the logs also reported varying percentages of gravel included in the sand packages. These observations are consistent with the understood fill material and glaciofluvial depositional environment.

2.2.2 Hydrogeology

The groundwater beneath the site is classified by the Connecticut Department of Energy and Environmental Protection (CTDEEP) as "GA". Groundwater classified as GA is defined as groundwater with the area existing of private water-supply wells or an area with the potential to provide water to public or private water supply wells. The CTDEEP presumes that groundwater in such an area is, at a minimum, suitable for drinking or other domestic uses without treatment. The designated uses for Class GA groundwater are as existing private and potential public or private supplies of water suitable for drinking without treatment and as base flow for hydraulically connected surface water bodies (CTDEEP, 2002). Groundwater features at the facility are shown on **Figure 2-3**. There are currently no potable water wells on the facility.

A 2018 Environmental Data Resources, Inc.[™] (EDR[™]) Report indicated that no drinking water supply wells are present within a 1-mile radius of the facility (AECOM, 2019). Using additional online resources, wells were researched to a 4-mile radius of the facility. The state of Connecticut does not have an online well database. According to the US Geological Survey (USGS) National Water Information System Mapper, no active wells exist within a 4-mile radius of the facility; however, 93 inactive USGS monitoring wells were identified within a 4-mile radius of the facility (USGS, 2019). Although no other active wells were listed within 4 miles of the facility, agricultural areas exist to the north/northwest, and it is possible that unlisted groundwater wells may exist in this area.

Windsor Locks AASF receives its potable water from the Connecticut Water Company. The Connecticut Water Company serves East Granby and Windsor Locks in addition to numerous other Connecticut towns and cities (Amec Foster Wheeler Environment & Infrastructure, Inc., 2018). According to the 2017 Water Quality Report for the Connecticut Water Northern Western Water System (serving Windsor Locks), the water supply source for Windsor Locks is the Metropolitan District (MDC), a non-profit municipal corporation that provides potable water and sewerage services (MDC, 2019). The MDC water supply source consists of a system of reservoirs that includes the Barkhamsted Reservoir and the Nepaug Reservoir (MDC, 2019). The two reservoirs are approximately 14 miles and 16 miles west of the Windsor Locks AASF, respectively. Available Third Unregulated Contaminant Monitoring Rule (UCMR 3) data for Connecticut does not indicate that PFAS have been detected in either of the aforementioned MDC surface water reservoirs (USEPA, 2017a).

Depths to water measured in April 2021 during the SI ranged from 3.37 to 8.11 feet bgs. Groundwater elevation contours from the SI are presented on **Figure 2-5** and indicate groundwater flow direction is towards the drainage swale on both the western and eastern portions of the facility. West of the drainage swale, groundwater flow is generally to the northeast across the facility towards the drainage swale, while east of the drainage swale, groundwater flow is to the west-southwest back toward the drainage swale. Hydraulic conductivity values measured during a 2008 Phase III Investigation ranged from 0.5 to 33 feet per day (Fuss & O'Neil, 2008).

2.2.3 Hydrology

The nearest surface water body to the facility is Spencer Brook, which is located approximately 300 feet northwest of the facility at its closest point (**Figure 2-4**). Spencer Brook is not classified by the State of Connecticut, and it is therefore assumed to be a Class A surface water body. Class A surface water bodies support the following designated uses: potential drinking water supply, fish and wildlife habitat, recreational use, agricultural, industrial supply and other legitimate uses, including navigation (CTDEEP, 2002).

Windsor Locks AASF is drained by Spencer Brook, an intermittent stream that discharges to Stoney Brook, a perennial stream 6,300 feet downstream of the facility. Stoney Brook discharges into the Connecticut River 5.3 miles further downstream. The average flow of the Connecticut River measured at State Route 190 is 16,640 cubic feet per second. The average flow rate of Stoney Brook is 20.4 cubic feet per second, based on the period 1981 to 1992 at the South Grand Street stream gage.

The western portion of the facility is drained by a stormwater detention system and a surface swale to the west of the parking apron. This system drains the tank farm area and the parking apron, as well as areas off-facility. The eastern portion of the facility is drained by a separate stormwater detention system and a drainage swale to the east of Building 200. The stormwater detention system east of Building 152 originates on State of Connecticut property. The western and eastern drainage features converge in the northern portion of the facility, from where the drainage is routed into a concrete swale to the north of the facility and subsequently to Spencer Brook.

The Windsor Locks AASF facilities discharge stormwater runoff associated with industrial activities into surface waters under state permits. The facility is also permitted to discharge water associated with the wash rack's grit separator and the AASF oil-water separator (OWS) and floor drain system into sanitary sewers.

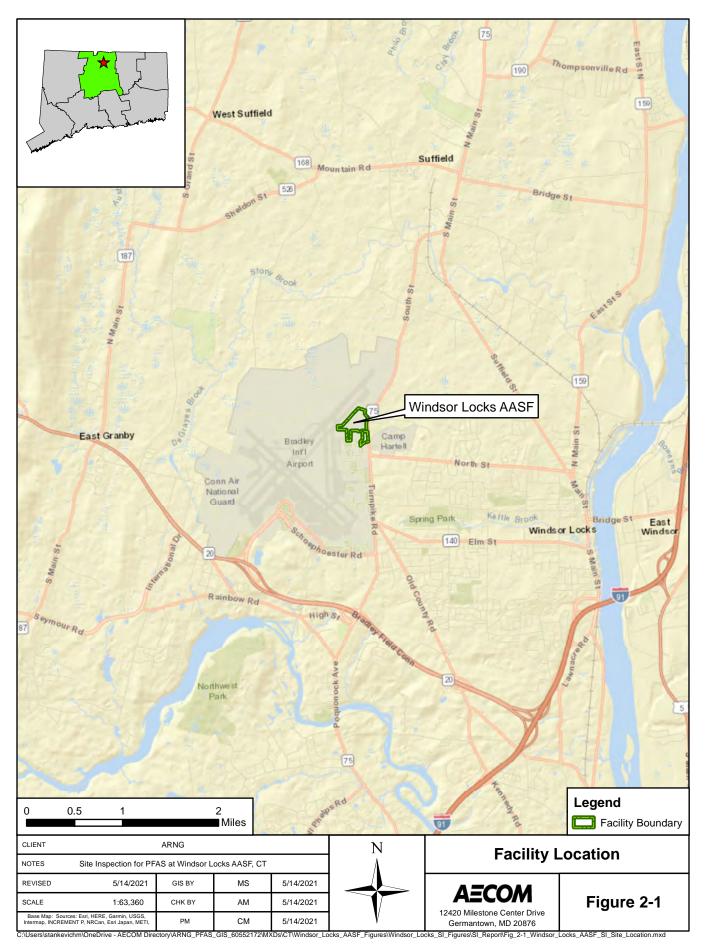
2.2.4 Climate

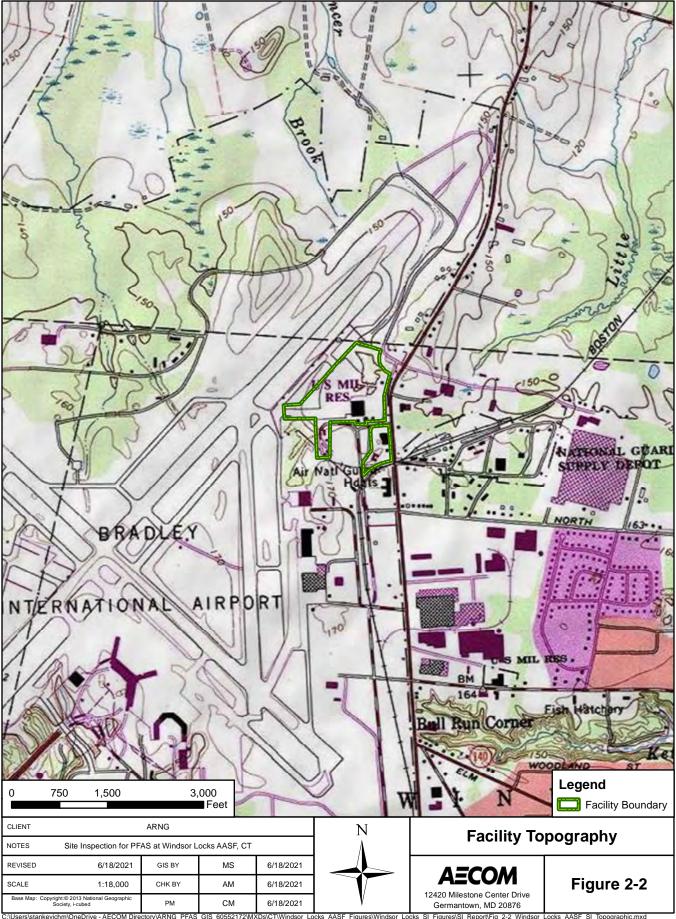
Data from Hartford Bradley International Airport, Connecticut indicate that the annual average temperature between 1981 and 2010 was 50.6 degrees Fahrenheit (°F) (National Oceanic and Atmospheric Administration [NOAA], 2018). The warmest months are July and August, with normal daily average temperatures of 73.6 °F and 71.9 °F, respectively. January is the coldest month, with an average temperature of 26.1 °F. Average annual precipitation measured from 1981 to 2010 at the airport was 45.85 inches. Rainfall is heaviest during the months of May through July, averaging approximately 4.3 inches per month; January and February are the driest months. Average monthly precipitation ranges from 2.89 inches in February to 4.37 inches in October (NOAA, 2018).

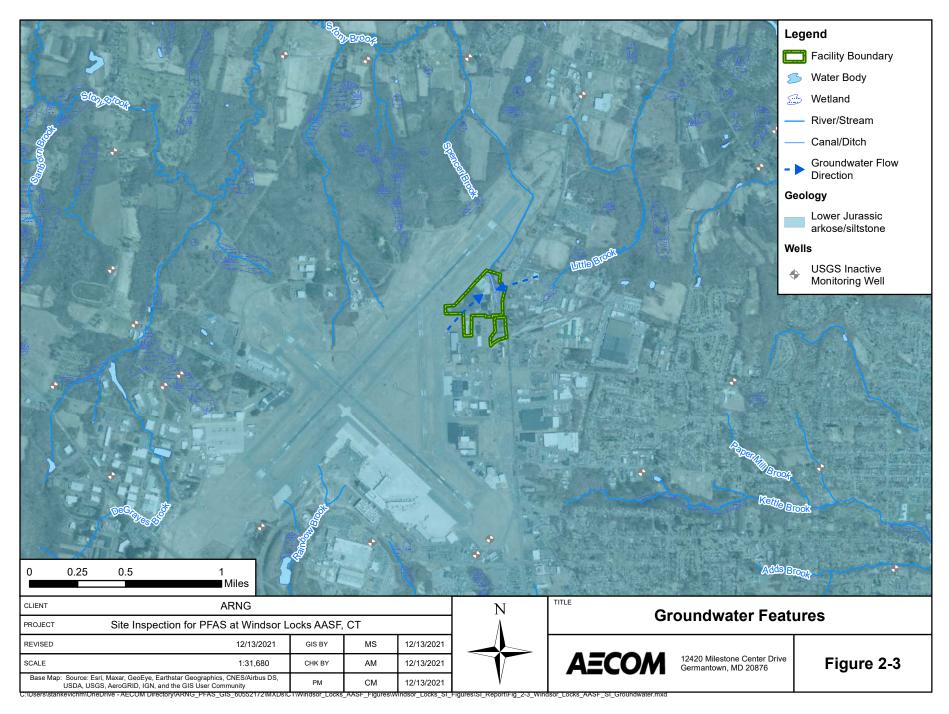
2.2.5 Current and Future Land Use

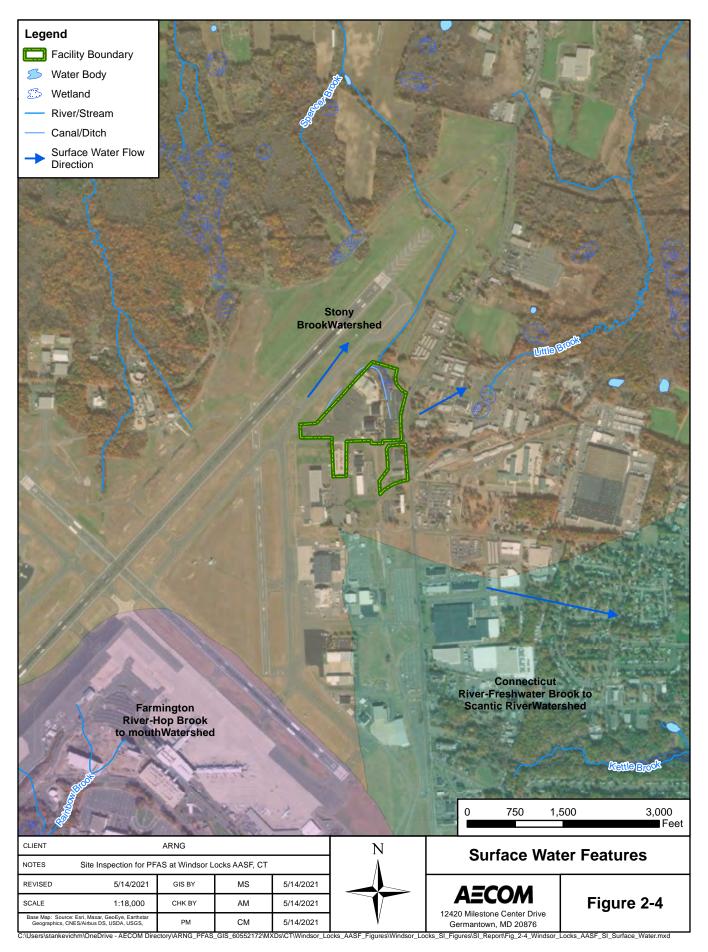
Windsor Locks AASF is an operations center used by the CTARNG for the routine maintenance and minor repair on military helicopters and fixed-wing aircraft. A bulk fuel facility has been operating at the Windsor Locks AASF since the early 1970s. The facility includes two maintenance hangars with attached office space, the WLRC building, two storage buildings, a maintenance shop, a fenced-in motor pool that includes bermed parking areas fuel trucks, a hazardous waste storage area, ASTs, a pump house, water tower, emergency diesel generators, and a civilian parking lot. Future use of the Windsor Locks AASF is anticipated to remain the same.

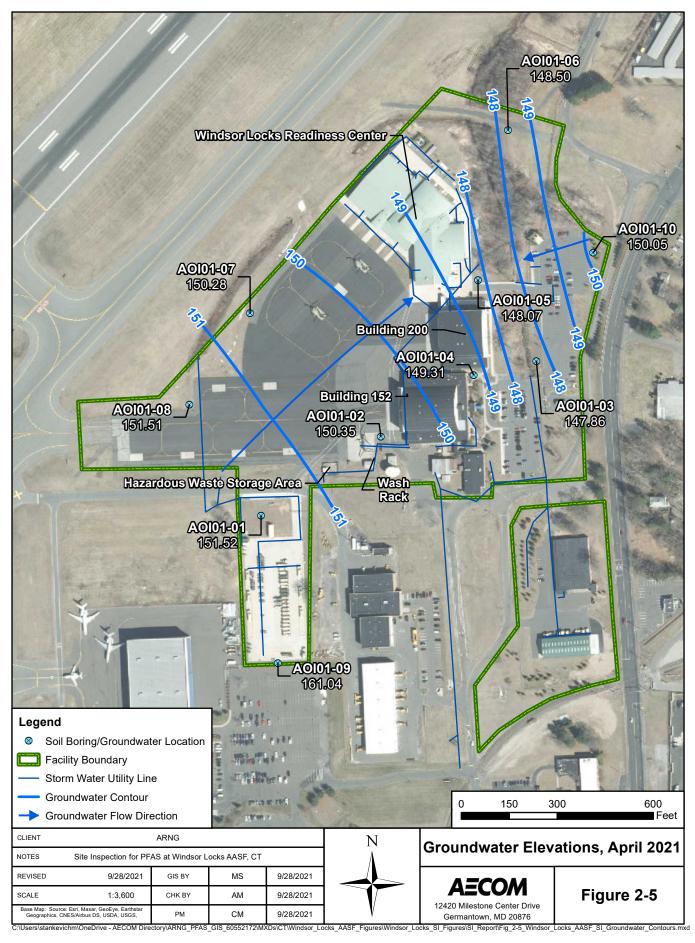
2.2.6 Sensitive Habitat and Threatened/ Endangered Species


The following birds, plants, mammals, and reptiles are federally endangered, threatened, proposed, and/ or are listed as candidate species in Hartford County, Connecticut (US Fish and Wildlife Service [USFWS], 2021).


- **Insects:** Monarch butterfly, *Danaus plexippus* (candidate); Cobblestone tiger beetle, *Cicindela marginipennis* (resolved taxon)
- **Mammals**: Northern long-eared bat, *Myotis septentrionalis* (threatened)
- Clams: Dwarf wedgemussel, Alasmidonta heterodon (endangered)


• Flowering plants: Small whorled pogonia, Isotria medeoloides (threatened)


2.3 History of PFAS Use


Two potential PFAS release areas were identified during the PA at the Windsor Locks AASF, where aqueous film forming foam (AFFF) may have been used or released historically (AECOM, 2020). Windsor Locks AASF includes two maintenance hangars: Building 200 (north hangar) and Building 152 (south hangar). Both hangars are equipped with fire suppression systems that utilize AFFF. Although there are no documented releases from the fire suppression systems, AFFF may have been released at the facility during fire training activities. Notably, between 2003 and 2015, AFFF was used to extinguish controlled burns at the Wash Rack during fire training, and mobile fire extinguishers containing AFFF were discharged to the floor drains in Building 152. These two potential PFAS release areas were grouped into one AOI based on proximity to one another and presumed groundwater flow. One additional area, the Hazardous Waste Storage Area, was observed during the PA because two 5-gallon buckets of AFFF were stored there. No known PFAS releases have occurred at Building 200 or the Hazardous Waste Storage Area; therefore, they were not identified as part of the AOI during the PA or the SI. However, the SI sampling program covered the majority of the facility's footprint and borings were located downgradient of these storage and use areas as a conservative measure. A description of AOI 1 is presented in Section 3.

THIS PAGE INTENTIONALLY BLANK

Summary of Areas of Interest 3.

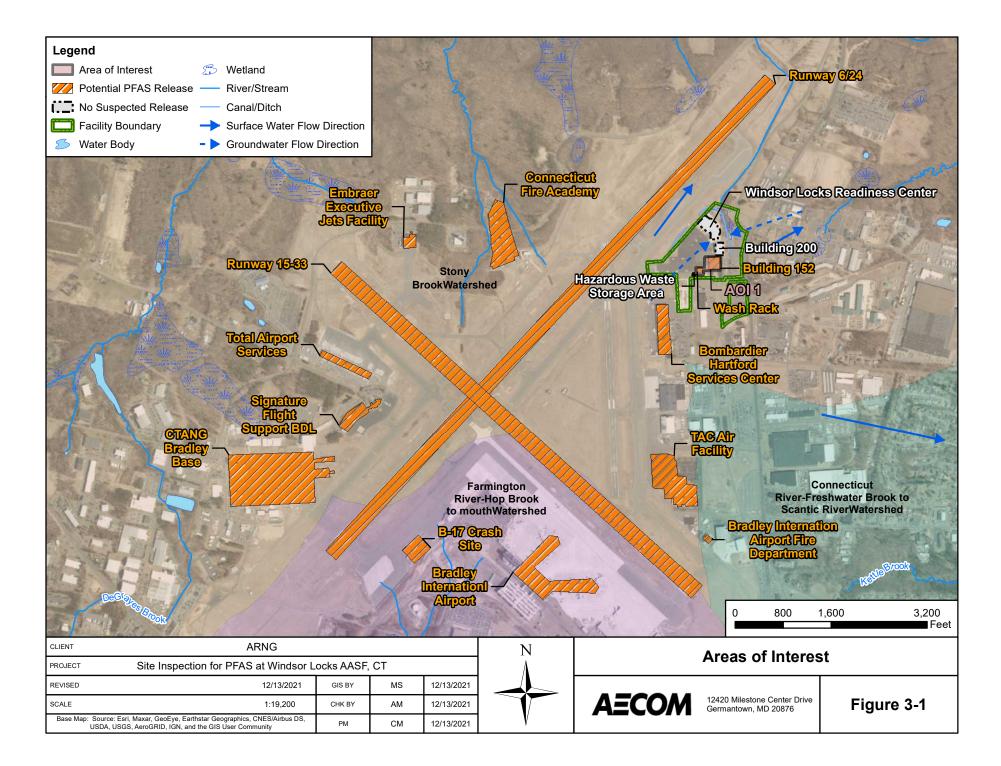
Based on the PA findings, two potential PFAS release areas, the Wash Rack and Building 152, were identified at Windsor Locks AASF and grouped into one AOI (AECOM, 2020). The potential PFAS release areas are shown on **Figure 3-1**, and a summary of the AOI is presented below.

3.1 AOI 1

AOI 1 consists of two potential PFAS release areas, as described below.

3.1.1 Wash Rack

The Wash Rack at Windsor Locks AASF is located west of Building 152 (south hangar), near the southern boundary of the CTARNG Windsor Locks AASF property. The geographic coordinates of the Wash Rack are approximately 41°56'38.5"N and 72°40'26.7"W. During fire training events at the Wash Rack, a pan containing flammable liquid was ignited in the center of the Wash Rack, and mobile fire extinguishers containing AFFF were discharged to put out the flames. Between six and ten mobile extinguishers containing 30 gallons of an AFFF/water dilution would be used per training exercise. Formal training records were not kept. The AFFF product used during training events is unknown; however, Tri-Max[™] -40 °F AFFF solution and 3M AFFF Type 3 (3%) have been stored at the facility in 5-gallon buckets and are believed to have been used during exercises. Training exercises at the Wash Rack that resulted in the discharge of AFFF are expected to have occurred once per year between 2003 and 2015, according to personnel interviews. Additionally, the facility Avionics Small Shops Chief stated that a fire training demonstration performed by the Connecticut Fire Academy (or their vendor/supplier) occurred at the Wash Rack within the last 5 years. No other information regarding this event was available during the PA. The Windsor Locks AASF Fire Marshall confirmed via correspondence after the site visit that fire training exercises since August 2015 have been conducted solely at the nearby off-facility Connecticut Fire Academy (AECOM, 2020).


The Wash Rack is a slightly depressed concrete platform approximately 80 feet long by 80 feet wide with a catch basin at the center of the depression. Discharge from the catch basin currently flows to a below-grade stormwater detention system when the Wash Rack is not in use. If the Wash Rack is being used to wash aircrafts, then discharge is diverted via a valve to an underground 2,500-gallon OWS and then to municipal sanitary sewers. AFFF released during known fire training events at the Wash Rack would have been discharged to the sanitary sewer system via the Wash Rack; however, the recent installation of a valve to divert stormwater runoff through the Wash Rack to the stormwater detention system may result in residual PFAS reaching stormwater outfalls. The stormwater detention system discharges to wetlands in the northeastern portion of the facility, and water eventually flows to Spencer Brook.

3.1.2 Building 152

Building 152, the south hangar at Windsor Locks AASF, is located on the south side of and adjacent to Building 200, the north hangar. The approximate geographic coordinates of Building 152 are 41°56'39.6"N and 72°40'23.6"W. Building 152 is equipped with a fire suppression system that uses National Foam Aer-o-lite 3% AFFF. The AFFF that supplies the fire suppression system is stored in a 900-gallon tank in the AFFF Tank Storage Room located between the north and south hangars. The fire suppression system was installed in 1997 and is serviced quarterly by the contractor Fire Protection Team. The fire suppression system is also sampled annually to assure the appropriate AFFF product concentration is adequate. Annual suppression system testing uses only water, and CTARNG staff indicated that an AFFF release has never occurred as a result of suppression system testing. No incidents resulting in an AFFF release have occurred in the AFFF Tank Storage Room, and no known releases of PFAS have occurred from the fire suppression 3-1 AECOM

system. Handheld dry chemical fire extinguishers are also stored in the room for use in the event of an emergency.

Mobile fire extinguishers that contained AFFF were discharged to the floor drains in Building 152 between 2003 and 2015, though less frequently than fire training events at the Wash Rack. Information sources conflicted on whether AFFF discharges occurred to floor drains in Building 152; however, discharge events have been conservatively presumed to have occurred, based on the statements of some personnel. Discharges of AFFF to the Building 152 floor drains were not documented. Based on information gathered during the PA, between six and ten mobile extinguishers containing 30 gallons of an AFFF/water dilution would be used per training exercise. The AFFF product used during training events is unknown; however, Tri-Max[™] -40°F AFFF solution and 3M AFFF Type 3 (3%) have been stored at the facility in 5-gallon buckets and are believed to have been used during exercises. Floor drains in Building 152 connect underground to a 2,500-gallon OWS south of the hangar, which discharges to municipal sanitary sewers (AECOM, 2020).

Site Inspection Report Army Aviation Support Facility, Windsor Locks, Connecticut

THIS PAGE INTENTIONALLY BLANK

4. **Project Data Quality Objectives**

Project Data Quality Objectives (DQOs) are qualitative and quantitative statements that specify the quality of data and define the level of certainty required to support project decision-making process. The specific DQOs established for this facility are described below. These DQOs were developed in accordance with the USEPA's seven-step iterative process (USEPA, 2006).

4.1 Problem Statement

The following problem statement was developed during project planning:

The presence of PFAS, which may pose a risk to human health or the environment, in environmental media at the facility is currently unknown. PFAS are classified as emerging environmental contaminants that are garnering increasing regulatory interest due to their potential risks to human health and the environment. The regulatory framework for managing PFAS at both the federal and state level continues to evolve.

The DoD has adopted a policy to retain facilities in the CERCLA process based on risk-based SLs for soil and groundwater, as described in a memorandum from the Office of the Secretary of Defense (OSD) dated 15 October 2019 (Assistant Secretary of Defense, 2019). The ARNG program under which this SI was performed follows this DoD policy. Should the maximum site concentration for sampled media exceed the SLs established in the OSD memorandum, the AOI will proceed to the next phase under CERCLA. The SLs established in the OSD memorandum apply to three compounds: PFOS, PFOA, and PFBS. The SLs were calculated using the USEPA Office of Superfund Sites On-Line Calculator, which was updated on 8 April 2021 based on the release of the final Human Health Toxicity Values for PFBS (USEPA, 2021).

Additionally, the USEPA issued drinking water lifetime Health Advisories (HAs) for PFOA and PFOS in May 2016 (USEPA 2016a; USEPA, 2016b). The USEPA HAs may also be used as SLs for groundwater samples collected at the facility boundary where off-facility drinking water wells are present downgradient. The SLs are presented in **Section 6.1** of this Report.

The following quotes from the DA policy documents form the basis for this project (DA, 2016; DA, 2018):

- "The Army will research and identify locations where PFOS- and/or PFOA-containing products, such as AFFF, are known or suspected to have been used. Installations shall coordinate with installation/facility fire response or training offices to identify AFFF use or storage locations. The Army will consider FTAs, AFFF storage locations, hangars/buildings with AFFF suppression systems, fire equipment maintenance areas, and areas where emergency response operations required AFFF use as possible source areas. In addition, metal plating operations, which used certain PFOS-containing mist suppressants, shall be considered possible source areas."
- "Based on a review of site records...determine whether a CERCLA PA is appropriate for identifying PFOS/PFOA release sites. If the PA determines a PFOS/PFOA release may have occurred, a CERCLA SI shall be conducted to determine presence/absence of contamination."
- "Identify sites where perfluorinated compounds are known or suspected to have been released, with the priority being those sites within 20 miles of the public systems that tested above USEPA HA levels." (USEPA, 2016a; USEPA, 2016b).

4.2 Goals of the Study

The following goals were established for this SI:

- 1. Determine the presence or absence of PFOA, PFOS, and PFBS at or above SLs.
- **2.** Develop information to potentially eliminate a release from further consideration because it is determined that it poses no significant threat to human health or the environment.
- **3.** Determine the potential need for a Time Critical Removal Action (TCRA) (applies to drinking water only). The primary actions that will be considered include provision of alternative water supplies or wellhead treatment.
- **4.** Collect data to better characterize the release areas for more effective and rapid initiation of a RI (if determined necessary).
- **5.** If PFOA, PFOS, and PFBS are determined to be present, aim to evaluate whether the concentrations can be attributed to on-facility or off-facility sources that were identified within 4 miles of the installation as part of the PA (e.g., fire stations, major manufacturers, other DoD facilities).
- **6.** Determine whether a potentially complete pathway exists between the source and potential receptors and whether ARNG is the likely source of the contamination.

4.3 Information Inputs

Primary information inputs included:

- The PA for Windsor Locks AASF (AECOM, 2020);
- Analytical data from soil and groundwater samples collected as part of this SI in accordance with the site-specific Uniform Federal Policy (UFP)-Quality Assurance Project Plan (QAPP) Addendum (AECOM, 2021a); and
- Field data collected during the SI, including groundwater elevation and water quality parameters measured at the time of sampling.

4.4 Study Boundaries

The scope of the SI was bounded by the property limits of the facility (**Figure 2-2**). Off-facility sampling was not included in the scope of this SI. If future off-facility sampling is required, the proper stakeholders will be notified, and necessary rights of entry will be obtained by ARNG with property owner(s).

4.5 Analytical Approach

Samples were analyzed by Pace Analytical Gulf Coast, accredited under the DoD Environmental Laboratory Accreditation Program (ELAP; Accreditation Number 74960) and the National Environmental Laboratory Accreditation Program (NELAP; Certificate Number 01955). Data were compared to applicable SLs and decision rules as defined in the SI QAPP Addendum (AECOM, 2021a). These rules governed response actions based on the results of the SI sampling effort.

The decision rules described in the **Worksheet #11** of the SI QAPP Addendum identify actions based on the following:

Groundwater:

- Is there a human receptor within 4 miles of the facility?
- What is the concentration of PFOA, PFOS, and PFBS at the potential release areas?
- What is the concentration of PFOA, PFOS, and PFBS at the facility boundary upgradient and downgradient of the potential release areas?
- What does the conceptual site model (CSM) suggest in terms of source, pathway and receptor?

Soil:

- What is the concentration of PFOA, PFOS, and PFBS in shallow surface soil (0 to 2 feet bgs)?
- What is the concentration of PFOA, PFOS, and PFBS in deep soil (i.e., capillary fringe)?
- What does the CSM suggest in terms of source, pathway, and receptor?

Soil and groundwater samples were collected from each of the potential release areas. Groundwater was encountered at approximately 3.37 to 8.11 feet bgs.

4.6 Data Usability Assessment

The Data Usability Assessment (DUA) is an evaluation at the conclusion of data collection activities that uses the results of both data verification and validation in the context of the overall project decisions or objectives. Using both quantitative and qualitative methods, the assessment determines whether project execution and the resulting data have met the facility-specific DQOs. Both sampling and analytical activities are considered to assess whether the collected data are of the right type, quality, and quantity to support the decision-making (DoD, 2019a; DoD, 2019b; USEPA, 2017b).

Data Quality Indicators (DQIs) (Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity) are important components in assessing data usability. These DQIs were evaluated in the subsequent sections and demonstrate that the data presented in this SI report are of high quality. Although the SI data are considered reliable, some degree of uncertainty can be associated with the data collected. Specific factors that may contribute to the uncertainty of the data evaluation are described below. The Data Validation Report (**Appendix A**) presents explanations for all qualified data in greater detail.

4.6.1 Precision

Precision is the degree of agreement among repeated measurements of the same characteristic on the same sample or on separate samples collected as close as possible in time and place. Field sampling precision is measured with the field duplicate relative percent differences (RPD); laboratory precision is measured with calibration verification, internal standard recoveries, and laboratory control spike (LCS) and matrix spike (MS) duplicate RPD.

Extraction internal standards (EIS) were added by the laboratory during sample extraction to measure relative responses of target analytes and used to correct for bias associated with matrix interferences and sample preparation efficiencies, injection volume variances, mass spectrometry ionization efficiencies, and other associated preparation and analytical anomalies. Several EIS area counts were outside of quality control (QC) limits. The associated field sample results were qualified due to low recoveries and were qualified as estimated with a high bias while non-detects

were qualified "UJ". The field sample results are considered usable as qualified as estimated values.

Injection internal standards (IIS) were added by the laboratory after sample extraction and prior to analysis as a requirement of DoD QSM 5.3 to measure relative responses of target analytes. Even though not required, the IIS are still added to the sample after extraction as an additional QC measure. The IIS percent recoveries were within the established precision limits presented in the SI QAPP Addendum (AECOM, 2021a).

LCS/LCS duplicate (LCSD) pairs were prepared by addition of known concentrations of each analyte in a matrix-free media known to be free of target analytes. LCS/LCSD pairs were analyzed for every analytical batch to demonstrate the ability of the laboratory to detect similar concentrations of a known quantity in matrix-free media. The LCS/LCSD samples were within the project established precision limits presented in the QAPP Addendum (AECOM, 2021a).

MS/MS duplicate (MSD) samples were prepared, analyzed, and reported for all preparation batches. MS/MSD samples demonstrated that the analytical system was in control for the matrix being tested, with one exception. MS/MSD samples were submitted to the laboratory for analysis at a rate of 5%. The MS/MSD samples were within the project established precision limits presented in the SI QAPP Addendum (AECOM, 2021a).

Field duplicate samples were collected at a rate of 10% to assess the overall sampling and measurement precision for this sampling effort. The field duplicate samples were analyzed for PFAS and general chemistry parameters. The field duplicate samples were within the project established precision limits presented in the SI QAPP Addendum (AECOM, 2021a), with limited exceptions. One field duplicate pair displayed a positive result for perfluoroheptanoic acid (PFHpA) and a non-detect result for perfluorononanoic acid (PFNA) in the parent sample, while the associated field duplicate displayed a non-detect result for PFHpA and a positive result for PFNA. The field duplicate pair results were qualified as estimated and are considered usable as qualified.

4.6.2 Accuracy

Accuracy is a measure of confidence in a measurement. The smaller the difference between the measurement of a parameter and its "true" or expected value, the more accurate the measurement. The more precise or reproducible the result, the more reliable or accurate the result. Accuracy is measured through percent recoveries in the LCS/LCSD, MS/MSD, and surrogates.

LCS/LCSD samples were prepared by addition of known concentrations of each analyte in a matrix-free media known to be free of target analytes. LCS/LCSD samples were analyzed for every analytical batch and demonstrated that the analytical system was in control during sample preparation and analysis. The LCS/LCSD samples were within the project established accuracy limits presented in the QAPP Addendum (AECOM, 2021a).

MS/MSD samples were prepared, analyzed, and reported at a rate of 5%. MS/MSD samples demonstrated that the analytical system was in control for the matrix being tested, with several exceptions. Parent samples AOI01-10-SB-03-05 and AOI01-08-00-02 displayed MS/MSD percent recoveries outside the QC limits for several analytes. The field sample results associated with the high recoveries were qualified as estimated with a potential high bias and are considered usable as qualified.

Calibration verifications were performed routinely to ensure that instrument responses for all calibrated analytes were within established QC criteria. The calibration verifications performed during the laboratory analyses were within the project established precision limits presented in the QAPP Addendum (AECOM, 2021a).

4.6.3 Representativeness

Representativeness qualitatively expresses the degree to which data accurately reflect site conditions. Factors that affect the representativeness of analytical data include appropriate sample population definitions, proper sample collection and preservation techniques, analytical holding times, use of standard analytical methods, and determination of matrix or analyte interferences.

Relating to the use of standard analytical methods, the laboratory followed the method as established in PFAS by liquid chromatography with tandem mass spectrometry (LC/MS/MS) compliant with Quality Systems Manual (QSM) 5.3 Table B-15, including the specific preparation requirements (i.e., ENVI-Carb or equivalent used), mass calibration, and spectra. Additionally, the ion transitions identified in Table B-15 were monitored, standards that contained both branch and linear isomers were used, when available, and isotopically labeled standards were used for quantitation.

Field QC samples were collected to assess the representativeness of the data collected. Field duplicates were collected at a rate of 10% for all field samples, while MS/MSD samples were collected at a rate of 5%. All preservation techniques were followed by the field staff, and all technical and analytical holding times were met by the laboratory. The laboratory used approved standard methods in accordance with the QAPP Addendum (AECOM, 2021a) for all analyses.

Instrument blanks and method blanks were prepared by the laboratory in each batch as a negative control. Several laboratory and method blanks displayed concentrations for target analytes greater than the detection limits including PFBA, PFBS, PFOS, and perfluorohexanesulfonic acid (PFHxS). The associated investigative field samples that displayed positive results at levels approximate to the blank detections were qualified as likely false positives and are considered usable as qualified.

One field reagent blank (FRB) was collected during the SI. Additionally, multiple equipment rinsate blanks (ERBs) were collected for soil samples. Several ERBs displayed detections for PFOS greater than the detection limit. The associated investigative field samples were either non-detect or were positive and displayed concentrations significantly greater than the blank detections. After review of the field documentation, it was determined that an ERB was not collected for the surface soil samples collected via hand auger. A conservative approach was taken to treat detections in the surface soil samples collected via hand auger as true positives because the field investigation had concluded and collecting an ERB retroactively would not have measured the decontamination efficiency as experienced a the project site. Additionally, this approach was taken because the potential of false positives at low concentrations was relatively low (no soil sample was qualified due to any aqueous blank during this investigation). This deviation from the SI QAPP Addendum is noted in **Section 5.8** of this report and is also documented in a Nonconformance and Corrective Action Report (**Appendix B3**).

A sample of the water used for decontamination of the drill rig was collected in advance of the field effort. The drill rig decontamination sample displayed detections for PFBA, perfluorohexanoic acid (PFHxA), PFOS, and PFOA. The associated investigative field samples were either non-detect or were positive and displayed concentrations significantly greater than the blank detections.

Field samples were extracted and analyzed within the appropriate holding time in order to qualitatively express the degree to which data accurately reflect site conditions with no exceptions. Overall, the data are usable for evaluating the presence or absence of PFAS at the facility. Sufficient usable data were obtained to meet the objectives of the SI.

4.6.4 Comparability

Comparability is the extent to which data from one study can be compared directly to either past data from the current project or data from another study. Using standardized sampling and analytical methods, units of reporting, and site selection procedures help ensure comparability. Standard field sampling and typical laboratory protocols were used during the SI and are considered comparable to ongoing investigations.

4.6.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount of data expected under normal conditions. The laboratory provided data meeting system QC acceptance criteria for all samples tested. Project completeness was determined by evaluating the planned versus actual quantities of data. Percent completeness per parameter is as follows and reflects the exclusion of "X" flagged data, if applicable:

- PFAS in groundwater by LC/MS/MS compliant with QSM 5.3 Table B-15 at 100%
- PFAS in soil by LC/MS/MS compliant with QSM 5.3 Table B-15 at 100%
- pH in soil by USEPA Method 9045D at 100%
- Total organic carbon (TOC) by USEPA Method 9060 at 100%

At some boring locations, only two soil samples could be collected due to the shallow depth to groundwater. This is described further in **Section 5.2**.

4.6.6 Sensitivity

Sensitivity is the capability of a test method or instrument to discriminate between measurement responses representing different levels (e.g., concentrations) of a variable of interest. Examples of QC measures for determining sensitivity include laboratory fortified blanks, a method detection limit (MDL) study, and calibration standards at the limit of quantitation (LOQ). In order to meet the needs of the data users, project data must meet the measurement performance criteria for sensitivity and project LOQs specified in the QAPP Addendum (AECOM, 2021a). Although two instrument sensitivity checks displayed high percent recoveries for perfluorotridecanoic acid (PFTrDA) and perfluorooctanesulfonamidoacetic acid (NEtFOSAA), no field sample results were associated with the PFTrDA exceedance, and the field sample results associated with the NEtFOSAA exceedance were all non-detect; therefore, these anomalies had no impact on the data. The laboratory provided the requested MDL studies and provided applicable calibration standards at the LOQ. In order to achieve the DQOs for sensitivity outlined in the QAPP Addendum (AECOM, 2021a), the laboratory reported all field sample results at the lowest possible dilution. Additionally, any analytes detected below the LOQ and above the MDL were reported and qualified "J" as estimated values by the laboratory.

5. Site Inspection Activities

This section describes the environmental investigation and sampling activities that occurred as part of the SI. The SI sampling approach was based on the findings of the PA and implemented in accordance with the following approved documents:

- Final Preliminary Assessment Report, Windsor Locks Army Aviation Support Facility, Connecticut dated February 2020 (AECOM, 2020);
- Final Site Inspection Programmatic Uniform Federal Policy-Quality Assurance Project Plan dated March 2018 (AECOM, 2018a);
- Final Site Inspection Uniform Federal Policy-Quality Assurance Project Plan Addendum, Army Aviation Support Facility, Windsor Locks, Connecticut dated March 2021 (AECOM, 2021a);
- Final Programmatic Accident Prevention Plan dated July 2018 (AECOM, 2018b); and
- Final Site Safety and Health Plan, Army Aviation Support Facility, Windsor Locks, Connecticut dated April 2021 (AECOM, 2021b).

The SI field activities were conducted from 26 to 29 April 2021 and consisted of utility clearance, direct push boring, soil sample collection, temporary monitoring well installation, grab groundwater sample collection, and land surveying. Field activities were conducted in accordance with the SI QAPP Addendum (AECOM, 2021a), except as noted in **Section 5.8**.

The following samples were collected during the SI and analyzed for a subset of 18 PFAS by LC/MS/MS compliant with QSM 5.3 Table B-15 to fulfill the project DQOs:

- 26 soil samples from 10 boring locations;
- 10 grab groundwater samples from 10 temporary well locations; and
- 18 quality assurance (QA) samples.

Figure 5-1 provides the sample locations for all media across the facility. **Table 5-1** presents the list of samples collected for each media. Field documentation is provided in **Appendix B**. A Log of Daily Notice of Field Activity was completed throughout the SI field activities, which is provided in **Appendix B1**. Sampling forms are provided in **Appendix B2**, a Nonconformance and Corrective Action Report is provided in **Appendix B3**, land survey data are provided in **Appendix B4**, and investigation-derived waste (IDW) polygons are provided in **Appendix B5**. Additionally, a photographic log of field activities is provided in **Appendix C**.

5.1 Pre-Investigation Activities

In preparation for the SI field activities, project team members participated in Technical Project Planning (TPP) meetings, performed utility clearance, and sampled decontamination source water. Details for each of these activities are presented below.

5.1.1 Technical Project Planning

The USACE TPP Process, Engineer Manual (EM) 200-1-2 (USACE, 2016) defines four phases to project planning: 1.) defining the project phase; 2.) determining data needs; 3.) developing data collection strategies; and 4.) finalizing the data collection plan. The process encourages stakeholder involvement in the SI, beginning with defining overall project objectives, including quantitative and qualitative DQOs, and formulating a sampling approach to address the AOIs identified in the PA.

A combined TPP Meeting 1 and 2 was held on 21 December 2020, prior to SI field activities. The combined TPP Meeting 1 and 2 was conducted in general accordance with EM 200-1-2. The stakeholders for this SI include the ARNG, CTARNG, USACE, CTDEEP, and representatives familiar with the facility, the regulations, and the community. Stakeholders were provided the opportunity to make comments on the technical sampling approach and methods at the combined TPP Meeting 1 and 2. The outcome of the combined TPP Meeting 1 and 2 was memorialized in the SI QAPP Addendum (AECOM, 2021a), and meeting minutes are included in **Appendix D**.

A TPP Meeting 3 will be held after the field event to discuss the results of the SI. Future TPP meetings will provide an opportunity to discuss the results and findings, and future actions, where warranted.

5.1.2 Utility Clearance

AECOM's drilling subcontractor, Cascade Technical Services, LLC. placed a ticket with the "Call Before You Dig" Connecticut utility clearance provider to notify them of intrusive work on 16 April 2021. However, because the AASF is a private facility, the participating "Call Before You Dig" locators did not clear utilities at the entire facility. Therefore, AECOM contracted Underground Surveying, LLC., a private utility location service, to perform utility clearance. Underground Surveying, LLC. performed utility clearance of the proposed boring locations on 26 April 2021 with input from the AECOM field team and Windsor Locks AASF facility staff. General locating services and ground-penetrating radar were used to complete the clearance. Additionally, the first 5 feet of each boring were pre-cleared using a hand auger to verify utility clearance in shallow subsurface where utilities would typically be encountered.

5.1.3 Source Water and PFAS Sampling Equipment Acceptability

The potable water source used for decontamination of drilling equipment was confirmed to be acceptable for use in a PFAS investigation prior to the start of field activities. A sample from a potable water source at Windsor Locks AASF was collected on 26 March 2021, prior to mobilization, and analyzed for PFAS by LC/MS/MS compliant with QSM 5.3 Table B-15. The results of the decontamination water sample are provided in **Appendix F**. A discussion of the results is presented in **Section 4.6.3**.

Materials that were used within the sampling zone were confirmed as acceptable for use in the PFAS sampling environment. The checklist of acceptable materials for use in the PFAS sampling environment was provided in the Standard Operating Procedures (SOPs) appendix to the SI QAPP Addendum (AECOM, 2021a). Prior to the start of field work each day, a PFAS Sampling Checklist was completed as an additional layer of control. The checklist served as a daily reminder to each field team member regarding the allowable materials within the sampling environment.

5.2 Soil Borings and Soil Sampling

Soil samples were collected via direct push technology (DPT), in accordance with the SI QAPP Addendum (AECOM, 2021a). A GeoProbe[®] 7822DT dual-tube sampling system was used to collect continuous soil cores to the target depth. A hand auger was used to collect soil from the top 5 feet of the boring, in accordance with AECOM utility clearance procedures. The soil boring locations are shown on **Figure 5-1**, and depths are provided **Table 5-1**.

In general, three discrete soil samples were collected from the vadose zone for chemical analysis from each soil boring: one surface soil sample (0 to 2 feet bgs), one subsurface soil sample approximately 2 feet above the groundwater table, and one subsurface soil sample at the midpoint between the surface and the groundwater table. In borings where groundwater was encountered at 6 feet bgs or shallower, only two soil samples were collected per boring, in

accordance with the QAPP Addendum (AECOM, 2021a). Specifically, only two soil samples were collected at locations AOI01-01, AOI01-02, AOI01-04, and AOI01-06 for this reason.

The soil cores were continuously logged for lithological descriptions by a field geologist using the Unified Soil Classification System (USCS). A photoionization detector (PID) was used to screen the breathing zone during boring activities as part of personal safety requirements. Observations and measurements were recorded on sampling forms (**Appendix B2**) and in a non-treated field logbook (i.e., composition notebook). Depth interval, recovery thickness, PID concentrations, moisture, relative density, color (using a Munsell soil color chart), and texture (using the USCS) were recorded. The boring logs are provided in **Appendix E**.

Soil borings completed during the SI found poorly graded and well-graded sand as the dominant lithology of the unconsolidated sediments below the Windsor Locks AASF. The borings were completed at depths between 10 and 15 feet bgs. Isolated layers of clay to silty sand were also observed in the boring logs, at thicknesses ranging from a few inches to 3.5 feet. Many of the logs also reported varying percentages of gravel included in the sand packages. These observations are consistent with the understood fill material and glaciofluvial depositional environment.

Each soil sample was collected into laboratory-supplied PFAS-free high-density polyethylene (HDPE) bottles and labeled using a PFAS-free marker or pen. Samples were packaged on ice and transported via Federal Express (FedEx) under standard chain of custody (CoC) procedures to the laboratory and analyzed for PFAS (LC/MS/MS compliant with QSM 5.3 Table B-15), TOC (USEPA Method 9060A), and pH (USEPA Method 9045D), in accordance with the SI QAPP Addendum (AECOM, 2021a).

Field duplicate samples were collected at a rate of 10% and analyzed for the same parameters as the accompanying samples. MS/MSDs were collected at a rate of 5% and analyzed for the same parameters as the accompanying samples. In instances when non-dedicated sampling equipment was used, such as a hand auger for the shallow soil samples, ERBs were collected at a rate of 5% and analyzed for the same parameters as the soil samples. As stated previously, after review of the field documentation, it was determined that an ERB was not collected for the surface soil samples collected via hand auger. This deviation from the SI QAPP Addendum is noted in **Section 5.8** of this report and is also documented in a Nonconformance and Corrective Action Report (**Appendix B3**). ERBs were collected from the DPT shoe in accordance with the QAPP. A temperature blank was placed in each cooler to ensure that samples were preserved at or below 6 degrees Celsius (°C) during shipment.

DPT borings were converted to temporary wells, which were subsequently abandoned in accordance with the SI QAPP Addendum (AECOM, 2021a) using bentonite chips at completion of sampling activities. Borings were installed in grass areas to avoid disturbing concrete or asphalt surfaces.

5.3 Temporary Well Installation and Groundwater Grab Sampling

Temporary wells were installed using a GeoProbe® 7822DT dual-tube sampling system. Once the borehole was advanced to the desired depth, wherever conditions allowed, a temporary well was constructed of a 5-foot section of 1-inch Schedule 40 poly-vinyl chloride (PVC) screen with sufficient casing to reach ground surface. New PVC pipe and screen were used to avoid cross contamination between locations. The screen intervals for the temporary wells are provided in **Table 5-2**.

The temporary wells were allowed to recharge after installation before collection of groundwater samples. After the recharge period, groundwater samples were collected using a peristaltic pump with PFAS-free HDPE tubing. Each sample was collected into laboratory-supplied PFAS-free HDPE bottles and labeled using a PFAS-free marker or pen. The temporary wells were purged at a rate determined in the field to reduce turbidity and draw down prior to sampling. Water quality

parameters (e.g., temperature, specific conductance, pH, dissolved oxygen [DO], and oxidationreduction potential [ORP]) were measured using a water quality meter and recorded on the field sampling form (**Appendix B2**) after each grab sample was collected. Additionally, a subsample of each groundwater sample was collected in a separate container, and a shaker test was completed to identify if there was any foaming. No foaming was noted in any of the groundwater samples.

Each sample was collected into laboratory-supplied PFAS-free HDPE bottles and labeled using a PFAS-free marker or pen. Samples were packaged on ice and transported via FedEx under standard CoC procedures to the laboratory and analyzed for PFAS by LC/MS/MS compliant with QSM 5.3 Table B-15 in accordance with the SI QAPP Addendum (AECOM, 2021a).

Field duplicate samples were collected at a rate of 10% and analyzed for the same parameters as the accompanying samples. MS/MSDs were collected at a rate of 5% and analyzed for the same parameters as the accompanying samples. One FRB was collected in accordance with the PQAPP (AECOM, 2018a). A temperature blank was placed in each cooler to ensure that samples were preserved at or below 6°C during shipment.

Temporary wells were abandoned in accordance with the SI QAPP Addendum (AECOM, 2021a) by removing the PVC and backfilling the hole with bentonite chips. Temporary wells were installed in grass areas to avoid disturbing concrete or asphalt.

5.4 Synoptic Water Level Measurements

Groundwater gauging was performed prior to temporary well sampling. Groundwater elevation measurements were collected from the 10 new temporary monitoring wells. Water level measurements were taken from the northern side of the well casing. A groundwater flow contour map is provided in **Figure 2-5**. Groundwater elevation data are provided in **Table 5-2**.

5.5 Surveying

The northern side of each well casing was surveyed by Connecticut-licensed land surveyors following guidelines provided in the SOPs provided in the SI QAPP Addendum (AECOM, 2021a). Survey data from the newly installed wells on the facility were collected on 29 April 2021, in the applicable Universal Transverse Mercator zone projection, with World Geodetic System 84 datum (horizontal) and North American Vertical Datum 1988 (vertical). The surveyed well data are provided in **Appendix B4**.

5.6 Investigation-Derived Waste

As of the date of this report, the disposal of PFAS IDW is not regulated federally. PFAS IDW generated during the SI is considered non-hazardous waste and was managed in accordance with the SI QAPP Addendum (AECOM, 2021a) and with the DA Guidance for Addressing Releases of PFAS, Q18 (DA, 2018).

Soil IDW (i.e., soil cuttings) generated during the SI activities were left in place at the point of the source. The soil cuttings were distributed on the ground surface on the downgradient side of the boring, with the exception of the IDW from AOI01-05, which was placed on the downgradient side of AOI01-10 at the request of the facility. Additionally, IDW from AOI01-04 was placed approximately 80 feet east of the boring at the request of the facility. The soil IDW was not sampled and assumes the PFAS characteristics of the associated soil samples collected from that source location.

Liquid IDW generated during SI activities (i.e. purge water, development water, and decontamination fluids) were discharged directly to the ground surface slightly downgradient of

the source. The liquid IDW was not sampled and assumes the PFAS characteristics of the associated groundwater samples collected from that source location.

Geographic coordinates were collected using a global positioning system around each location where IDW was placed (i.e., an IDW polygon). The IDW polygons are displayed on the figure in **Appendix B5**. Other solids such as spent personal protective equipment, plastic sheeting, tubing, rope, unused monitoring well construction materials, and other environmental media generated during the field activities were disposed of at a licensed solid waste landfill.

5.7 Laboratory Analytical Methods

Samples were analyzed for a subset of 18 PFAS by LC/MS/MS compliant with QSM 5.3 Table B-15 at Pace Analytical Gulf Coast in Baton Rouge, Louisiana, a DoD ELAP and NELAP certified laboratory. The 18 PFAS analyzed as part of the ARNG SI program include the following:

- 6:2 fluorotelomer sulfonic acid (6:2 FTS)
- 8:2 fluorotelomer sulfonic acid (8:2 FTS)
- N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)
- N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)
- Perfluorobutyrate (PFBA)
- Perfluorobutanesulfonic acid (PFBS)
- Perfluorodecanoic acid (PFDA)
- Perfluorododecanoic acid (PFDoA)

- Perfluoroheptanoic acid (PFHpA)
- Perfluorohexanoic acid (PFHxA)
- Perfluorohexanesulfonic acid (PFHxS)
- Perfluorononanoic acid (PFNA)
- Perfluorooctanoic acid (PFOA)
- Perfluorooctanesulfonic acid (PFOS)
- Perfluoropentanoic acid (PFPeA)
- Perfluorotetradecanoic acid (PFTeDA)
- Perfluorotridecanoic acid (PFTrDA)
- Perfluoroundecanoic acid (PFUdA)

Soil samples were also analyzed for TOC using USEPA Method 9060A and pH by USEPA Method 9045D.

5.8 Deviations from SI QAPP Addendum

One deviation from the SI QAPP Addendum was identified during review of the field documentation. The deviation is noted below and is documented in a Nonconformance and Corrective Action Report (**Appendix B3**):

 Upon review of field documentation, it was discovered that an ERB was not collected from the hand auger used to collect the surface soil samples (0 to 2 feet below ground surface) during the field effort. As a result, the data validation took conservative approach when considering the hand auger samples by assuming all results are true positives. Additional details are provided in the DUA presented in **Section 4.6** of this SI Report.

THIS PAGE INTENTIONALLY BLANK

Table 5-1Site Inspection Samples by MediumSite Inspection Report, Windsor Locks AASF, Connecticut

						<u> </u>	
			5.3	٦ آ	Ê	Grain Size (ASTM D-422)	
			φ 2	TOC (USEPA Method 9060A)	pH (USEPA Method 9045D)	4	
			PFAS by LC/MS/MS compliant with QSM Table B-15	06	06		
			NS/I	p	p	N L	
			it M	, ho	, h	AS	
			5 KC	/let	Vet	-) ə	
	0		by L(liant \ B-15	4	4	iz	
	Sample		S t Plia	P/	Le la	Su	
	Collection	Sample Depth	PFAS compl Table	TOC (USE	ᅮᄨ	ai	
Sample Identification	Date/Time	(feet bgs)	PF cc Ta	Ъ Г	a D	ы	Comments
Soil Samples							
AOI01-01-SB-00-02	4/27/2021 12:45	0 - 2	х				
AOI01-01-SB-05-07	4/27/2021 12:50	5 - 7	х				
AOI01-02-SB-00-02	4/27/2021 10:35	0 - 2	х				
AOI01-02-SB-04-06	4/27/2021 11:00	4 - 6	X				
AOI01-03-SB-00-02	4/29/2021 8:00	0 - 2	X				
AOI01-03-SB-03-05	4/29/2021 8:05	3 - 5	X				
AOI01-03-SB-05-05	4/29/2021 8:00	5 - 7	X				
AOI01-03-3B-05-07 AOI01-04-SB-00-02	4/29/2021 8:10	0 - 2	X				
AOI01-04-SB-00-02 AOI01-04-SB-03-05		3 - 5					
	4/29/2021 9:00		Х				
AOI01-05-SB-00-02	4/28/2021 12:20	0 - 2	Х	X	X		
AOI01-05-SB-00-02-D	4/28/2021 12:20	0 - 2		Х	Х		FD
AOI01-05-SB-02-04	4/28/2021 12:23	2 - 4	Х				
AOI01-05-SB-04-06	4/28/2021 12:25	4 - 6	х				
AOI01-06-SB-00-02	4/28/2021 9:40	0 - 2	х				
AOI01-06-SB-03-05	4/28/2021 10:00	3 - 5	х				
AOI01-07-SB-00-02	4/28/2021 8:45	0 - 2	х				
AOI01-07-SB-00-02-D	4/28/2021 8:45	0 - 2	х				FD
AOI01-07-SB-02-04	4/28/2021 8:50	2 - 4	х				
AOI01-07-SB-04-06	4/28/2021 8:55	4 - 6	х				
AOI01-08-SB-00-02	4/28/2021 7:50	0 - 2	х				
AOI01-08-SB-00-02-MS	4/28/2021 7:50	0 - 2	х				MS
AOI01-08-SB-00-02-MSD	4/28/2021 7:50	0 - 2	х				MSD
AOI01-08-SB-02-04	4/28/2021 7:55	2 - 4	х				
AOI01-08-SB-04-06	4/28/2021 8:00	4 - 6	х				
AOI01-09-SB-00-02	4/27/2021 14:00	0 - 2	х				
AOI01-09-SB-00-02-D	4/27/2021 14:00	0 - 2	X				FD
AOI01-09-SB-05-07	4/27/2021 14:10	5 - 7	X				. 2
AOI01-09-SB-08-10	4/27/2021 14:11	8 - 10	X				
AOI01-10-SB-00-02	4/28/2021 14:05	0 - 2	X	х	х		
AOI01-10-SB-00-02-D	4/28/2021 14:05	0-2	X	^	^		FD
A0101-10-SB-00-02-D	4/28/2021 14:05	0-2	×	~	~		MS
A0101-10-SB-00-02-MSD	4/28/2021 14:05	0 - 2		X	X		MSD
		-		Х	Х		INISU
AOI01-10-SB-03-05	4/28/2021 14:10	3 - 5	X				MC
AOI01-10-SB-03-05-MS	4/28/2021 14:10	3 - 5	Х				MS
AOI01-10-SB-03-05-MSD	4/28/2021 14:10	3 - 5	Х				MSD
Groundwater Samples							
AOI01-01-GW	4/27/2021 15:25	NA	Х				
AOI01-02-GW	4/28/2021 8:50	NA	Х				
AOI01-03-GW	4/29/2021 10:05	NA	Х				
AOI01-03-GW-D	4/29/2021 10:05	NA	Х				FD
AOI01-04-GW	4/29/2021 11:30	NA	Х				
AOI01-05-GW	4/28/2021 14:35	NA	Х				
AOI01-06-GW	4/28/2021 12:45	NA	X				
AOI01-07-GW	4/28/2021 11:40	NA	X				
AOI01-08-GW	4/28/2021 10:10	NA	x				
A0I01-09-GW	4/27/2021 16:20	NA	x				
A0101-10-GW	4/29/2021 8:20	NA	X				
A0101-10-GW-MS	4/29/2021 8:20	NA	X				MS
AOI01-10-GW-MSD	4/29/2021 8:20	NA					MSD
	4/23/2021 0:20	NA	Х				עטאו

Table 5-1 Site Inspection Samples by Medium Site Inspection Report, Windsor Locks AASF, Connecticut

Sample Identification	Sample Collection Date/Time	Sample Depth (feet bgs)	PFAS by LC/MS/MS compliant with QSM 5.3 Table B-15	TOC (USEPA Method 9060A)	pH (USEPA Method 9045D)	Grain Size (ASTM D-422)	Comments
Quality Control Samples							
WL-FRB-01	4/29/2021 7:50	NA	Х				
WL-ERB-01	4/28/2021 13:25	NA	х				from DPT shoe
WL-ERB-02	4/28/2021 14:30	NA	х				from DPT shoe
WL-ERB-03	4/29/2021 9:00	NA	х				from DPT shoe
WL-ERB-04	4/29/2021 10:00	NA	х				from DPT shoe

Notes:

ASTM = American Society for Testing and Materials

bgs = below ground surface

ERB = equipment rinsate blank

FD = field duplicate

FRB = field reagent blank

LC/MS/MS = Liquid Chromatography Mass Spectrometry

MS/MSD = matrix spike/ matrix spike duplicate

PFAS = per- and polyfluoroalkyl substances

QSM = Quality Systems Manual

TOC = total organic carbon

USEPA = United States Environmental Protection Agency

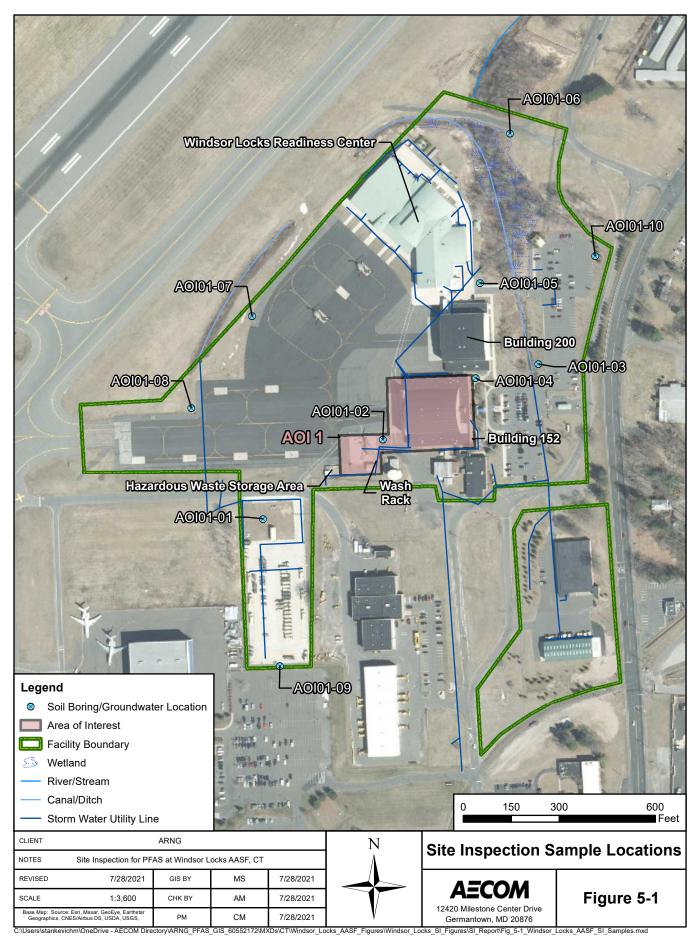
Table 5-2

Soil Boring Depths, Temporary Well Screen Intervals, and Groundwater Elevations Site Inspection Report, Windsor Locks AASF, Connecticut

Area of Interest	Boring Location	Soil Boring Depth (feet bgs)	Temporary Well Screen Interval (feet bgs)	Top of Casing Elevation (feet NAVD88)	Ground Surface Elevation (feet NAVD88)	Depth to Water (feet btoc)	Depth to Water (feet bgs)	Groundwater Elevation (feet NAVD88)
	AOI01-01	12	7 - 12	161.21	158.06	9.69	6.54	151.52
	AOI01-02	15	6.5 - 11.5 ¹	157.95	153.72	7.60	3.37	150.35
	AOI01-03	15	7 - 12 ¹	153.58	152.95	5.72	5.09	147.86
	AOI01-04	10	5 - 10	153.60	153.11	4.29	3.80	149.31
1	AOI01-05	15	6 - 11 ¹	152.80	152.20	4.73	4.13	148.07
•	AOI01-06	10	5 - 10	152.55	152.05	4.05	3.55	148.50
	AOI01-07	12	6 - 11 ¹	160.71	156.20	10.43	5.92	150.28
	AOI01-08	15	6 - 11 ¹	161.85	157.32	10.34	5.81	151.51
	AOI01-09	15	10 - 15	171.38	169.15	10.34	8.11	161.04
	AOI01-10	10	5 - 10	155.55	155.05	5.50	5.00	150.05

Notes:

¹ Temporary well screen set above total depth to capture groundwater interface


bgs = below ground surface

btoc = below top of casing

NA = not applicable

NAVD88 = North American Vertical Datum 1988

THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

6. Site Inspection Results

This section presents the analytical results of the SI. The SLs used in this evaluation are presented in **Section 6.1**. A discussion of the results for AOI 1 is provided in **Section 6.3**. **Table 6-2** through **Table 6-5** present PFAS results for samples with detections in soil and groundwater; only constituents detected in one or more samples are included. Tables that contain all results are provided in **Appendix F**, and the laboratory reports are provided in **Appendix G**.

6.1 Screening Levels

The DoD has adopted a policy to retain facilities in the CERCLA process based on risk-based SLs for soil and groundwater, as described in a memorandum from the OSD dated 15 October 2019 (Assistant Secretary of Defense, 2019). The ARNG program under which this SI was performed follows this DoD policy. Should the maximum site concentration for sampled media exceed the SLs established in the OSD memorandum, the AOI will proceed to the next phase under CERCLA. The SLs established in the OSD memorandum apply to three compounds: PFOS, PFOA, and PFBS. The SLs were calculated using the USEPA Office of Superfund Sites On-Line Calculator, which was updated on 8 April 2021 based on the release of the final Human Health Toxicity Values for PFBS (USEPA, 2021).

Additionally, the USEPA issued drinking water lifetime HAs for PFOA and PFOS in May 2016 (USEPA 2016a; USEPA, 2016b). The USEPA HAs may also be used as SLs for groundwater samples collected at the facility boundary where off-facility drinking water wells are present downgradient. The SLs are presented on **Table 6-1** below. All other results presented in this report are considered informational in nature and serve as an indication as to whether soil and groundwater contain or do not contain PFAS within the boundaries of the facility.

Analyte	Residential (Soil) (µg/kg) ^{a,b} 0-2 feet bgs	Industrial/ Commercial Composite Worker (Soil) (µg/kg) ^{a,b} 2-15 feet bgs	Tap Water (Groundwater) (ng/L) ^{a,b}	USEPA HA (Groundwater representative of Drinking Water) (ng/L) ^{c,d}
PFOA	130	1,600	40	70
PFOS	130	1,600	40	70
PFBS	1,900	25,000	600	-

Table 6-1: Screening Levels (Soil and Groundwater)

Notes:

 Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater and Soil using United States Environmental Protection Agency's (USEPA's) Regional Screening Level Calculator. Hazard Quotient (HQ) = 0.1. 15 October 2019.

b.) USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ = 0.1.8 April 2021.

c.) USEPA. 2016a. Drinking Water HA for Perfluorooctanoic Acid (PFOA). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. USEPA Document Number: 822-R-16-005. May 2016. / USEPA. 2016b. Drinking Water HA for Perfluorooctane Sulfonic Acid (PFOS). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. USEPA Document Number: 822-R-16-004. May 2016.

d.) USEPA HAs apply to the PFOA and PFOS concentrations individually or combined.

The data in the subsequent sections are compared against the SLs presented in **Table 6-1**. The SLs for groundwater are based on direct ingestion. The SLs for soil are based on incidental ingestion and are applied to the depth intervals reasonably anticipated to be encountered by the receptors identified at the facility: the residential scenario is applied to surface soil results (0 to 2 feet bgs), and the industrial/commercial worker scenario is applied to shallow subsurface soil

results (2 to 15 feet bgs). The SLs are not applied to deep subsurface soil results (>15 feet bgs) because 15 feet is the anticipated limit of construction activities.

6.2 Soil Physicochemical Analyses

To provide basic soil parameter information, soil samples were analyzed for TOC and pH, which are important for evaluating transport through the soil medium. **Appendix F** contains the results of the TOC and pH sampling.

The data collected in this investigation will be used in subsequent investigations, where appropriate, to assess fate and transport of PFAS contaminants. According to the Interstate Technology Regulatory Council (ITRC), several important PFAS partitioning mechanisms include hydrophobic and lipophobic effects, electrostatic interactions, and interfacial behaviors. At relevant environmental pH values, certain PFAS are present as organic anions and are therefore relatively mobile in groundwater (Xiao et al., 2015), but tend to associate with the organic carbon fraction that may be present in soil or sediment (Higgins and Luthy, 2006; Guelfo and Higgins, 2013). When sufficient organic carbon is present, organic carbon normalized distribution coefficients (K_{oc} values) can help in evaluating transport potential, though other geochemical factors (for example, pH and presence of polyvalent cations) may also affect PFAS sorption to solid phases (ITRC, 2018).

6.3 AOI 1

This section presents the analytical results for soil and groundwater in comparison to SLs for AOI 1, which includes two potential PFAS release areas: the Wash Rack and Building 152. The detected compounds in soil and groundwater are summarized on **Table 6-2** through **Table 6-4**. The detections of PFOA, PFOS, and PFBS in soil and groundwater are presented on **Figure 6-1** through **Figure 6-4**.

6.3.1 AOI 1 Soil Analytical Results

PFOA, PFOS, and PFBS did not exceed the SLs in soil at any sample locations at the facility. **Figure 6-1** through **Figure 6-3** present detections in soil for PFOA, PFOS, and PFBS. **Table 6-2** through **Table 6-4** summarize the detected compounds in soil.

During the SI, soil samples were collected from the surface soil (0 to 2 feet bgs) and shallow subsurface soil (2 to 10 feet bgs) at depths above the groundwater table. PFOA was detected in surface soil at three of the ten (10) locations, at concentrations ranging from 0.155 J micrograms per kilogram (μ g/kg) to 0.200 J μ g/kg. The maximum detection of PFOA in surface soil occurred at AOI01-09, which is located along the southern facility boundary and is considered upgradient of the two potential PFAS release areas (Wash Rack and Building 152). PFOA was detected in shallow subsurface soil at four of the ten (10) locations, at concentrations ranging from 0.106 J+ μ g/kg to 0.491 J μ g/kg. The maximum detection of PFOA in shallow subsurface soil occurred at AOI01-03 (5 to 7 feet bgs), which is located to the east of the drainage swale along the edge of the facility parking lot.

PFOS was detected in surface soil at all 10 locations, at concentrations ranging from 0.445 J μ g/kg to 4.28 J+ μ g/kg. PFOS was also detected in shallow subsurface soil at nine of the ten (10) locations (in at least one sample), at concentrations ranging from 0.169 J μ g/kg to 41.5 μ g/kg. The maximum detections of PFOS in both surface soil and shallow subsurface soil (2 to 4 feet bgs) occurred at AOI01-08, which corresponds to the location of the maximum detection of PFOS in groundwater (see **Section 6.3.2**). AOI01-08 is located on the western side of the facility's tarmac. No potential PFAS release areas were identified during the PA in the immediate vicinity of this sample location. It was noted during the TPP 1&2 (21 December 2020) that there were six to ten (10) mobile units periodically parked in various spots on the flight deck beside flight AECOM

machines (helicopters/planes); however, there were no documented discharges from mobile units onto the flight deck.

PFBS was detected in surface soil at three of the ten (10) locations, at concentrations ranging from 0.139 J μ g/kg to 0.177 J μ g/kg. PFBS was detected in shallow subsurface soil at two of the ten (10) locations, at concentrations ranging from 0.117 J μ g/kg to 0.162 J μ g/kg. The maximum detections of PFBS in both surface soil and shallow subsurface soil occurred at AOI01-01, which is located in the southern portion of the facility upgradient of the identified potential PFAS release areas.

At location AOI01-02, which was located immediately downgradient of the Wash Rack potential PFAS release area, PFOS was detected in surface and shallow subsurface soil (3.82 µg/kg and 1.89 µg/kg, respectively), and PFBS was detected in surface soil (0.163 J µg/kg). At location AOI01-04, which was located immediately downgradient of the Building 152 potential PFAS release area, PFOS was detected in surface and shallow subsurface soil (2.60 µg/kg and 0.310 J+µg/kg). The detections of PFOS and PFBS at these locations indicate there was likely a release of PFAS-containing materials at both the Wash Rack and Building 152 potential release areas; however, the detections were several orders of magnitude below the SLs.

6.3.2 AOI 1 Groundwater Analytical Results

PFOA and PFOS in groundwater exceeded the individual SLs of 40 nanograms per liter (ng/L) at both potential PFAS release areas, Wash Rack (AOI01-02) and Building 152 (AOI01-04). Additionally, PFOA and PFOS in groundwater exceeded the SLs at upgradient location AOI01-01, located in the southern portion of the facility, and at location AOI01-03, located to the east of the drainage swale along the edge of the facility parking lot. PFOA in groundwater also exceeded the SL at AOI01-05, located on the northern side of Building 200, near the stormwater outfall that connects to drains from both Building 152 and 200. PFOS in groundwater exceeded the SL at upgradient locations AOI01-07, AOI01-08, and AOI01-09 along the western and southern facility boundaries. PFBS did not exceed the SL at AOI 1. **Figure 6-4** presents the ranges of detections of PFOA, PFOS, and PFBS in groundwater. **Table 6-4** summarizes the detected compounds in groundwater.

PFOA was detected in groundwater at all 10 locations across AOI 1, at concentrations ranging from 5.45 ng/L to 298 ng/L. The detected concentrations of PFOA exceeded the OSD SL of 40 ng/L at five locations (AOI01-01 through AOI01-05) and the USEPA HA of 70 ng/L at three locations (AOI01-03 through AOI01-05). The maximum detection of PFOA occurred at AOI01-03-GW, which is located to the east of the drainage swale along the edge of the facility parking lot. No potential PFAS release areas were identified during the PA in the immediate vicinity of this sample location. Although a common fire training activity is to discharge mobile fire extinguisher units along the edges of parking lots, there were no documented discharges from mobile units in the facility parking lot during the PA or SI planning phase. Additionally, the stormwater outfall where the stormwater detention system flows into the eastern drainage swale is located approximately 50 feet southwest of AOI01-03.

Alternatively, based on the groundwater elevations collected during the SI (**Figure 2-5**), groundwater flow east of the drainage swale is towards the drainage swale (to the westsouthwest); therefore, there is also the potential that the detected concentrations of PFOA, PFOS, and PFBS at AOI01-03 may be flowing onto the facility from an unidentified upgradient, offsite source to the east of the facility. Potential offsite, adjacent sources identified in the PA Report (AECOM, 2020) and SI QAPP Addendum (AECOM, 2021a) are shown on **Figure 3-1**. No potential offsite, adjacent sources have been identified to the east of the facility at the time of this report. PFOS was detected in groundwater at nine of the ten (10) locations, at concentrations ranging from 8.93 ng/L to 581 ng/L. The detected concentrations of PFOS exceeded the OSD SL of 40 ng/L at seven locations (all locations except AOI01-05, AOI01-06, and AOI01-10) and the USEPA HA of 70 ng/L at six locations (all locations except AOI01-05, AOI01-06, AOI01-07, and AOI01-10). The maximum detection of PFOS in groundwater occurred at AOI01-08-GW, which is located on the western side of the facility's tarmac. As described above in **Section 6.3.1**, no potential PFAS release areas were identified during the PA in the immediate vicinity of this sample location; however, it was noted during the TPP 1&2 (21 December 2020) that there were six to ten (10) mobile units periodically parked in various spots on the flight deck beside flight machines (helicopters/planes). There were no documented discharges from mobile units onto the flight deck. Based on the groundwater elevations collected during the SI (**Figure 2-5**), groundwater flow west of the drainage swale is generally to the northeast towards the drainage swale; therefore, there is also the potential that PFOA, PFOS, and PFBS may be flowing onto the facility from an upgradient, offsite source to the west of the facility (**Figure 3-1**).

PFBS was detected in groundwater at nine of the ten (10) locations, at concentrations below the OSD SL of 600 ng/L. The detected concentrations of PFBS ranged from 1.33 J ng/L to 51.3 ng/L. Similar to the results of PFOA in groundwater, the maximum detection of PFBS occurred at AOI01-03-GW, which is located to the east of the drainage swale, as described above.

At location AOI01-02, which was located immediately downgradient of the Wash Rack potential PFAS release area, PFOA and PFOS were detected at concentrations exceeding the SLs (40.5 ng/L and 94.2 ng/L, respectively). PFBS was detected at a concentration below SLs (4.15 ng/L). At location AOI01-04, which was located immediately downgradient of the Building 152 potential PFAS release area, PFOA and PFOS were detected at concentrations exceeding the SLs (71.8 ng/L and 408 ng/L, respectively). PFBS was detected at a concentration below SLs (19.4 ng/L). Based on the results of the SI for groundwater at these locations, in combination with the detections in soil, it is likely that releases occurred at the Wash Rack and Building 152 release areas. However, based on the exceedances of PFOA and PFOS in groundwater at locations along the facility boundary (AOI01-07, AOI01-08, and AOI01-09), there is also the potential that releases from off-facility, adjacent sources could be migrating onto the facility.

6.3.3 AOI 1 Conclusions

Based on the results of the SI, PFOA, PFOS, and PFBS were detected in soil at AOI 1, indicating there was likely a release of PFAS-containing materials; however, the detected concentrations were several orders of magnitude lower than the soil SLs. PFOA and PFOS in groundwater exceeded the individual SLs of 40 ng/L at both potential PFAS release areas, Wash Rack (AOI01-02) and Building 152 (AOI01-04); at AOI01-01, located in the southern portion of the facility; and at AOI01-03, located east of the drainage swale along the edge of the facility parking lot. PFOA in groundwater also exceeded the SL at AOI01-05, on the north side of Building 200. PFOS in groundwater also exceeded the SL at upgradient locations AOI01-07, AOI01-08, and AOI01-09 along the western and southern facility boundaries. PFBS was detected in groundwater at concentrations below the SL. Based on the results of the SI, it is likely that releases occurred on the facility property. However, based on the exceedances along the upgradient facility boundary, it is also likely that releases from off-facility, adjacent sources are migrating onto the facility. Due to the exceedances of the SLs for PFOA and PFOS in groundwater, further evaluation of AOI 1 is warranted.

Table 6-2 PFAS Detections in Surface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest										AO	101									
	Sample ID	AOI01-01	-SB-00-02	AOI01-0	2-SB-00-02	AOI01-03	3-SB-00-02	AOI01-04	4-SB-00-02	AOI01-05	5-SB-00-02	AOI01-06	S-SB-00-02	AOI01-07	-SB-00-02	AOI01-07-	SB-00-02-D	AOI01-08	-SB-00-02	AOI01-09	9-SB-00-02
	Sample Date	04/27	/2021	04/2	7/2021	04/2	9/2021	04/2	9/2021	04/28	3/2021	04/28	3/2021	04/28	3/2021	04/28	3/2021	04/28	3/2021	04/2	7/2021
	Depth	0 -	2 ft	0	- 2 ft	0 -	- 2 ft	0	- 2 ft	0 -	·2 ft	0 -	· 2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	- 2 ft
Analyte	OSD Screening Level ^{a,b}	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMSM		SM 5.3 Tab	ole B-15 (ud	a/ka)																	
6:2 FTS	-	ND		0.149	J	ND		ND		ND		ND		ND		ND		ND		ND	
8:2 FTS	-	ND		0.197	J	ND		ND		ND		ND		ND		ND		ND		ND	
NEtFOSAA	-	ND		ND		0.039	J+	ND		ND		ND		ND		ND		ND		ND	
PFBA	-	0.054	J	0.089	J	0.093	J	0.048	J	ND		0.235	J	0.096	J	0.069	J	0.109	J	0.258	J
PFBS	1900	0.177	J	0.163	J	ND		ND		ND		ND		ND		ND		ND		0.139	J
PFDA	-	ND		0.432	J	0.366	J	0.076	J	ND		0.116	J	0.183	J	0.116	J	0.082	J	0.098	J
PFDoA	-	ND		0.561	J	0.134	J	0.029	J	0.092	J	0.023	J	0.023	J	0.022	J	0.046	J	0.038	J
PFHpA	-	ND		0.045	J	0.031	J	ND		ND		0.100	J	0.026	J	0.026	J	0.049	J	0.086	J
PFHxA	-	0.026	J	0.096	J	0.127	J	ND		ND		0.121	J	ND		ND		0.087	J	0.183	J
PFHxS	-	0.127	J	0.576	J	0.856	J	0.412	J	0.110	J	ND		0.068	J	0.059	J	0.217	J	0.318	J
PFNA	-	ND		0.145	J	0.135	J	0.043	J	ND		0.120	J	0.114	J	0.070	J	0.039	J	0.161	J
PFOA	130	ND		ND		ND		ND		ND		0.173	J	ND		ND		0.155	J	0.200	J
PFOS	130	1.01	J	3.82		2.86		2.60		0.515	J	0.445	J	0.970	J	1.18		4.28	J+	2.17	
PFPeA	-	ND		0.124	J	0.087	J	0.047	J	ND		0.189	J	0.031	J	0.031	J	0.098	J	0.180	J
PFTeDA	-	ND		0.211	J	0.054	J	ND		0.063	J	ND		ND		ND		ND		ND	
PFTrDA	-	ND		3.16		1.56		ND		0.313	J	0.082	J	0.035	J	0.035		0.067	J	0.147	J
PFUnDA	-	0.032	J	5.05		1.51		0.053	J	0.451	J	0.051	J	0.076	J	0.055	J	0.282	J	0.170	J

Grey Fill Detected concentration exceeded OSD Screening Levels

References

A sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations	
6.2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NETEOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
PERA	perfluorobutanoic acid
PEBS	perfluorobutanesulfonic acid
PEDA	perfluorodecanoic acid
PEDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PEOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid
Acronyms and Abbreviatio	ns.
AASF	Army Aviation Support Facility
AQI	Area of Interest
D	duplicate
ft	feet
HQ	hazard quotient
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
ND	analyte not detected above the LOD
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	interpreted qualifier
SB	soil boring
USEPA	United States Environmental Protection Agency
µg/kg	micrograms per kilogram

not applicable

Table 6-2 PFAS Detections in Surface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest			AC	0101			
	Sample ID	AOI01-09-9	SB-00-02-D	AOI01-10	-SB-00-02	AOI01-10-	SB-00-02-D	
	Sample Date	04/27	/2021	04/28	/2021	04/28	8/2021	
	Depth	0 -	2 ft	0 -	2 ft	0 - 2 ft		
Analyte	OSD Screening Level ^{a,b}	Result	Qual	Result	Qual	Result	Qual	
Soil, PFAS by LCMSMS		SM 5.3 Tab	ole B-15 (µg	/kg)				
6:2 FTS	-	ND		ND		ND		
8:2 FTS	-	ND		ND		ND		
NEtFOSAA	-	ND		ND		ND		
PFBA	-	0.149	J	0.065	J	0.058	J	
PFBS	1900	0.137	J	ND		ND		
PFDA	-	0.070	J	0.324	J	0.290	J	
PFDoA	-	0.027	J	0.099	J	0.102	J	
PFHpA	-	0.056	J	0.023	J	ND	UJ	
PFHxA	-	0.108	J	0.080	J	0.068	J	
PFHxS	-	0.261	J	0.377	J	0.311	J	
PFNA	-	0.111	J	ND	UJ	0.053	J	
PFOA	130	0.139	J	ND		ND		
PFOS	130	1.77		2.00		1.79		
PFPeA	-	0.107	J	0.044	J	0.035	J	
PFTeDA	-	ND		0.039	J	0.032	J	
PFTrDA	-	0.124	J	0.475	J	0.509	J	
PFUnDA	-	0.120	J	1.27		1.30		

Grey Fill Detected concentration exceeded OSD Screening Levels

References

A sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviation	<u>15</u>
6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid
Acronyms and Abbrev	iations
AASF	Army Aviation Support Facility
AOI	Area of Interest
D	duplicate
ft	feet
HQ	hazard quotient
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
ND	analyte not detected above the LOD
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	interpreted qualifier
SB	soil boring
USEPA	United States Environmental Protection Agency
µg/kg	micrograms per kilogram

not applicable

Table 6-3 PFAS Detections in Shallow Subsurface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest										AO	001									
	Sample ID	AOI01-01	-SB-05-07	AOI01-02	2-SB-04-06	AOI01-03	S-SB-03-05	AOI01-0	3-SB-05-07	AOI01-04	-SB-03-05	AOI01-05	5-SB-02-04	AOI01-05	-SB-04-06	AOI01-06	S-SB-03-05	AOI01-07	-SB-02-04	AOI01-07	7-SB-04-06
	Sample Date	04/27	//2021	04/2	7/2021	04/29	9/2021	04/2	9/2021	04/2	9/2021	04/28	3/2021	04/28	3/2021	04/28	3/2021	04/28	8/2021	04/28	8/2021
	Depth	5 -	7 ft	4	- 6 ft	3 -	- 5 ft	5	- 7 ft	3 -	- 5 ft	2 -	- 4 ft	4 -	6 ft	3 -	- 5 ft	2 -	4 ft	4 -	- 6 ft
Analyte	OSD Screening Level ^{a,b}	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMSM	S compliant with Q	SM 5.3 Tal	ole B-15 (µ	g/kg)																	
6:2 FTS	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
8:2 FTS	-	ND		0.070	J	ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	-	0.045	J	0.061	J	0.055	J	0.141	J	ND		ND		ND		ND		ND		ND	
PFBS	25000	0.162	J	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFDA	-	ND		0.675	J	0.346	J	0.230	J	ND		ND		ND		ND		ND		ND	
PFDoA	-	ND		ND		0.115	J	0.047	J	ND		0.032	J	ND		ND		ND		ND	
PFHpA	-	ND		0.064	J	0.181	J	0.093	J	ND		ND		ND		ND		ND		ND	
PFHxA	-	ND		0.077	J	0.316	J	0.530	J	ND		ND		ND		0.039	J	ND		ND	
PFHxS	-	ND		0.148	J	4.86		7.56		0.129	J	0.058	J	ND		ND		ND		ND	
PFNA	-	ND		0.150	J	0.169	J	0.170	J	ND		0.023	J	ND		ND		ND		ND	
PFOA	1600	ND		ND		0.278	J	0.491	J	ND		ND		ND		ND		ND		ND	
PFOS	1600	0.582	J	1.89		5.07		6.19		0.310	J+	0.196	J	0.300	J	ND		0.169	J	0.299	J
PFPeA	-	ND		0.066	J	0.055	J	0.096	J	ND		0.023	J	ND		ND		ND		ND	
PFTeDA	-	ND		ND	UJ	0.034	J	ND		ND		0.022	J	ND		ND		ND		ND	
PFTrDA	-	ND		ND	UJ	1.42		0.539	J	ND		0.098	J	ND		ND		ND		ND	
PFUnDA	-	ND		1.35		8.02		3.31		ND		0.162	J	ND		ND		ND		ND	

Grey Fill

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soll using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on industrial/commercial composite worker scenario for incidental ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AASF	Army Aviation Support Facility
AOI	Area of Interest
ft	feet
HQ	hazard quotient
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
ND	analyte not detected above the LOD
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	interpreted qualifier
SB	soil boring
USEPA	United States Environmental Protection Agency
µg/kg	micrograms per kilogram
	not applicable

Table 6-3 PFAS Detections in Shallow Subsurface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest					AC	0101				
	Sample ID	AOI01-08	3-SB-02-04	AOI01-08	3-SB-04-06	AOI01-09	-SB-05-07	AOI01-09	-SB-08-10	AOI01-10	-SB-03-05
	Sample Date	04/2	3/2021	04/2	8/2021	04/27	7/2021	04/27	7/2021	04/28	3/2021
	Depth	2 -	- 4 ft	4 -	- 6 ft	5 -	7 ft	8 -	10 ft	3 - 5 ft	
Analyte	OSD Screening Level ^{a,b}	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMSMS	compliant with Q	SM 5.3 Ta	ble B-15 (µç	g/kg)							
6:2 FTS	-	ND		0.214	J	ND		ND		ND	
8:2 FTS	-	ND		ND		ND		ND		ND	
PFBA	-	ND		ND		ND		ND		0.066	J
PFBS	25000	ND		ND		0.117	J	0.145	J	ND	
PFDA	-	0.057	J	ND		ND		ND		ND	
PFDoA	-	ND		ND		ND		ND		ND	
PFHpA	-	0.030	J	ND		ND		ND		0.033	J
PFHxA	-	ND		0.119	J	0.035	J	ND		0.089	J
PFHxS	-	0.061	J	ND		0.039	J	0.081	J	0.297	J+
PFNA	-	0.164	J	ND		0.026	J	ND		0.141	J
PFOA	1600	0.285	J	ND		ND		ND		0.106	J+
PFOS	1600	41.5		ND		0.441	J	ND		0.795	J
PFPeA	-	0.027	J	ND		ND		ND		0.043	J
PFTeDA	-	ND		ND		ND		ND		ND	
PFTrDA	-	ND		ND		ND		ND		ND	
PFUnDA	-	ND		ND		ND		ND		ND	

Grey Fill

Detected concentration exceeded OSD Screening Levels

References

A sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on industrial/commercial composite worker scenario for incidental ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AASF	Army Aviation Support Facility
AOI	Area of Interest
ft	feet
HQ	hazard quotient
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
ND	analyte not detected above the LOD
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	interpreted qualifier
SB	soil boring
USEPA	United States Environmental Protection Agency
µg/kg	micrograms per kilogram
	not applicable

Table 6-4 PFAS Detections in Groundwater Site Inspection Report, Windsor Locks AASF, Connecticut

		Area of Interest									AC	0101								
		Sample ID	AOI01-	-01-GW	AOI01-	-02-GW	AOI01-	-03-GW	AOI01-0)3-GW-D	AOI01	-04-GW	AOI01	-05-GW	AOI01	-06-GW	AOI01-	-07-GW	AOI01-	-08-GW
		Sample Date	04/27	/2021	04/28	/2021	04/29	/2021	04/29	9/2021	04/29	9/2021	04/28	3/2021	04/28	3/2021	04/28	/2021	04/28	8/2021
Analyte	OSD Screening Level ^{a,b}	USEPA HA °	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Water, PFAS by LCMSM	IS compliant with	QSM 5.3 Table E	3-15 (ng/L)																	
6:2 FTS	-	-	9.38		534		6.77		6.06		64.4		4.46		ND		ND		ND	
8:2 FTS	-	-	10.4		16.9		12.6		10.7		48.2		ND		ND		ND		ND	
NMeFOSAA	-	-	ND		ND		2.69	J	2.17	J	1.000	J	ND		ND		ND		ND	
PFBA	-	-	29.6		58.1		21.9		22.0		24.6		ND		ND		ND		ND	
PFBS	600	-	8.75		4.15		51.3		46.5		19.4		15.4		1.65	J	ND		1.33	J
PFDA	-	-	7.66		1.78	J	3.81	J	3.26	J	3.42	J	1.12	J	ND		ND		ND	
PFHpA	-	-	55.4		57.0		16.3		15.0		35.9		9.78		4.74		2.65	J	5.64	
PFHxA	-	-	92.3		169		345		320		95.2		70.9		7.58		3.09		12.9	
PFHxS	-	-	252		127		1830		1350		306		169		13.1		7.07		66.8	
PFNA	-	-	290		32.3		49.7		45.1		97.5		14.7		2.03	J	3.61	J	4.42	
PFOA	40	70	57.3		40.5		298		275		71.8		87.2		7.85		5.45		10.8	
PFOS	40	70	138		94.2		125		115		408		ND		8.93		52.6		581	
PFPeA	-	-	88.5		263		45.0		41.8		82.6		23.0		4.72		2.52	J	9.87	
PFUnDA	-	-	223		ND		52.3		44.7		9.74		ND		ND		ND		ND	
Total PFOA+PFOS	-	70	195.3		134.7		423		390		479.8		87.2		16.78		58.05		591.8	

Grey Fill

Detected concentration exceeded OSD Screening Levels Bold Font Detected concentration exceeded USEPA HA Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level	
Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.	

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

c. USEPA, 2016. Drinking Water Health Advisory for PFOA. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 22-R-16-005. May 2016. (EPA. 2016.) This Water Health Advisory for PFOS. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20400. EPA Document Number. 822-R-16-004. May 2016.

Interpreted Qualifiers

J = Estimated concentration

Chemical Abbreviations

Chemical Abbreviations	
6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFUnDA	perfluoro-n-undecanoic acid

Acronyms and Abbreviations

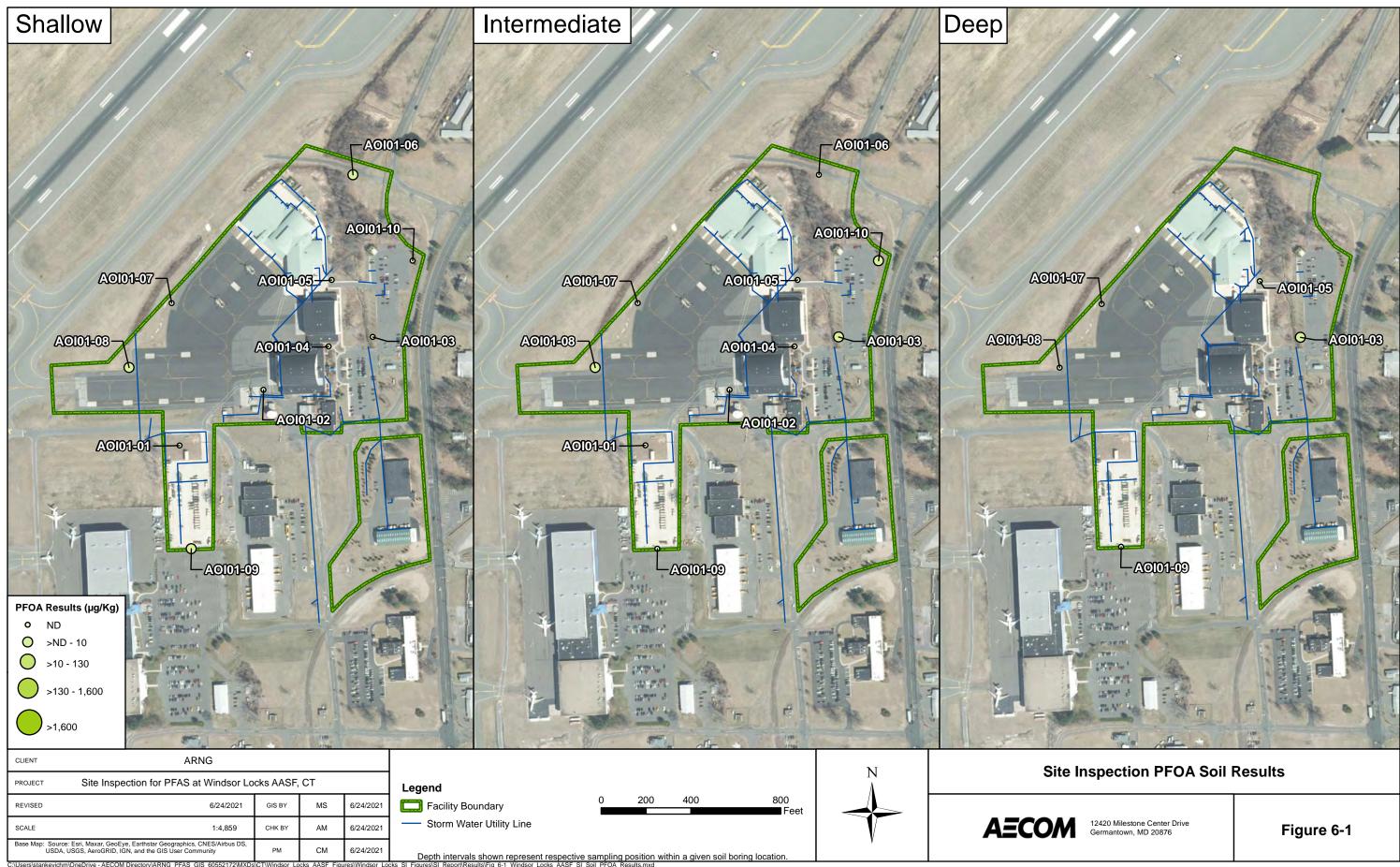
AASF	Army Aviation Support Facility
AOI	Area of Interest
D	duplicate
GW	groundwater
HA	health advisory
HQ	hazard quotient
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
ND	analyte not detected above the LOD
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	interpreted qualifier
USEPA	United States Environmental Protection Agency
ng/L	nanogram per liter
-	not applicable

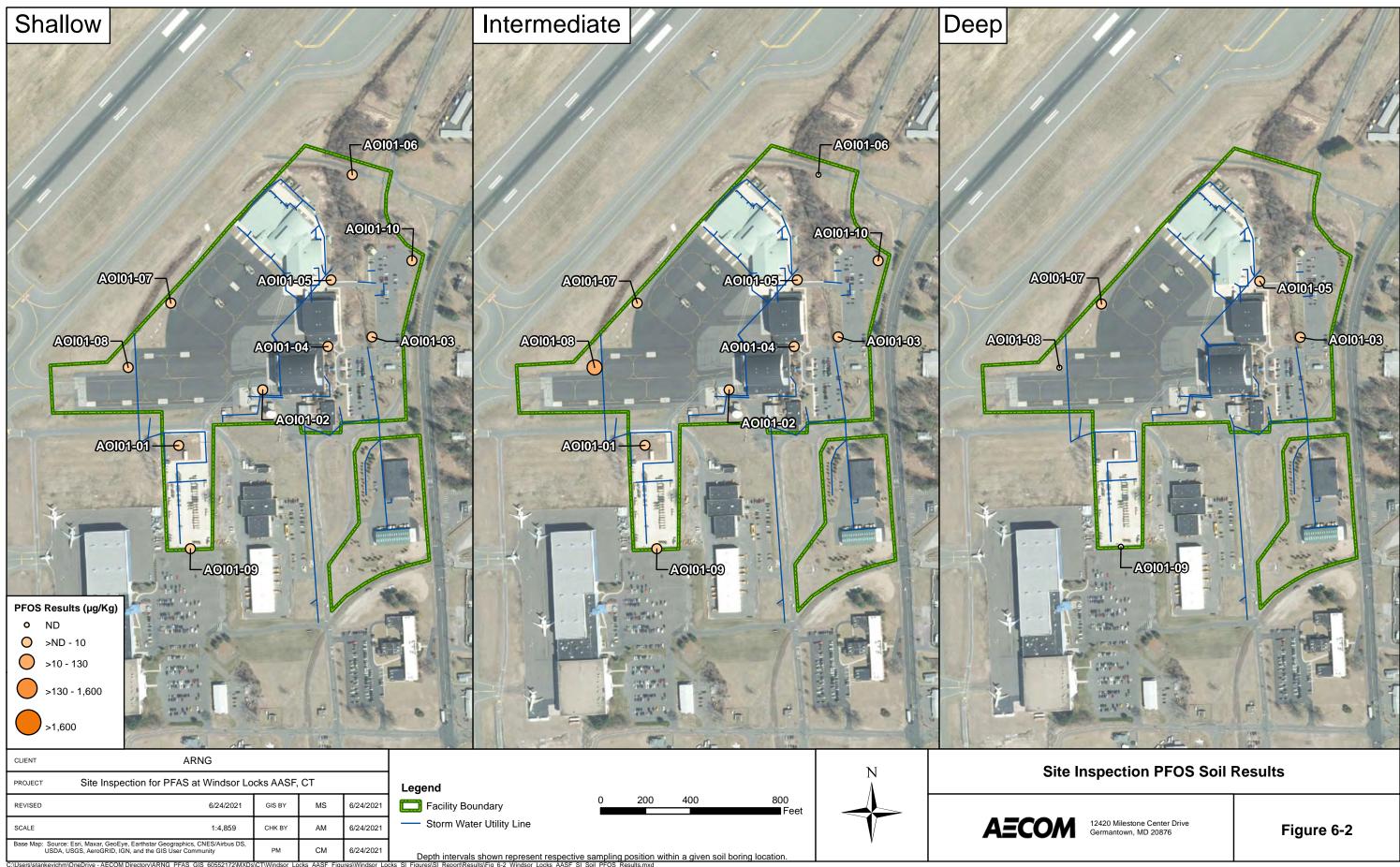
Table 6-4 PFAS Detections in Groundwater Site Inspection Report, Windsor Locks AASF, Connecticut

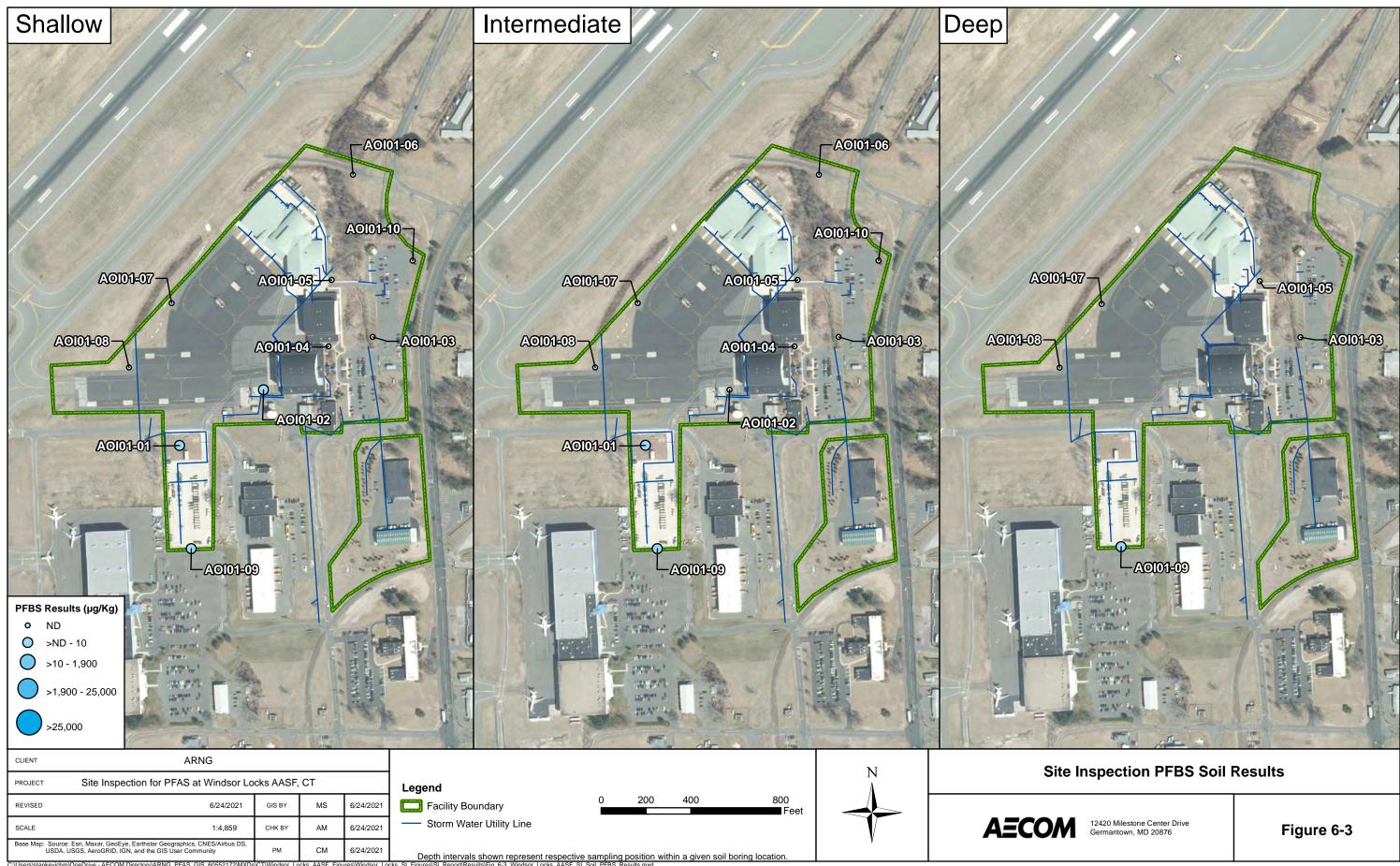
		Area of Interest		A	OI01	
		Sample ID	AOI01-	09-GW	AOI01	-10-GW
		Sample Date	04/27	/2021	04/2	9/2021
Analyte	OSD Screening Level ^{a,b}	USEPA HA °	Result	Qual	Result	Qual
Water, PFAS by LCMSM	S compliant with	QSM 5.3 Table E	3-15 (ng/L)			
6:2 FTS	-	-	ND		ND	
8:2 FTS	-	-	ND		ND	
NMeFOSAA	-	-	ND		ND	
PFBA	-	-	15.9		ND	
PFBS	600	-	5.16		3.21	J
PFDA	-	-	ND		ND	
PFHpA	-	-	10.5		3.42	J
PFHxA	-	-	39.5		8.28	
PFHxS	-	-	161		60.6	
PFNA	-	-	4.25		ND	
PFOA	40	70	24.6		11.5	
PFOS	40	70	399		9.88	
PFPeA	-	-	11.2		3.37	J
PFUnDA	-	-	ND		ND	
Total PFOA+PFOS	-	70	423.6		21.38	

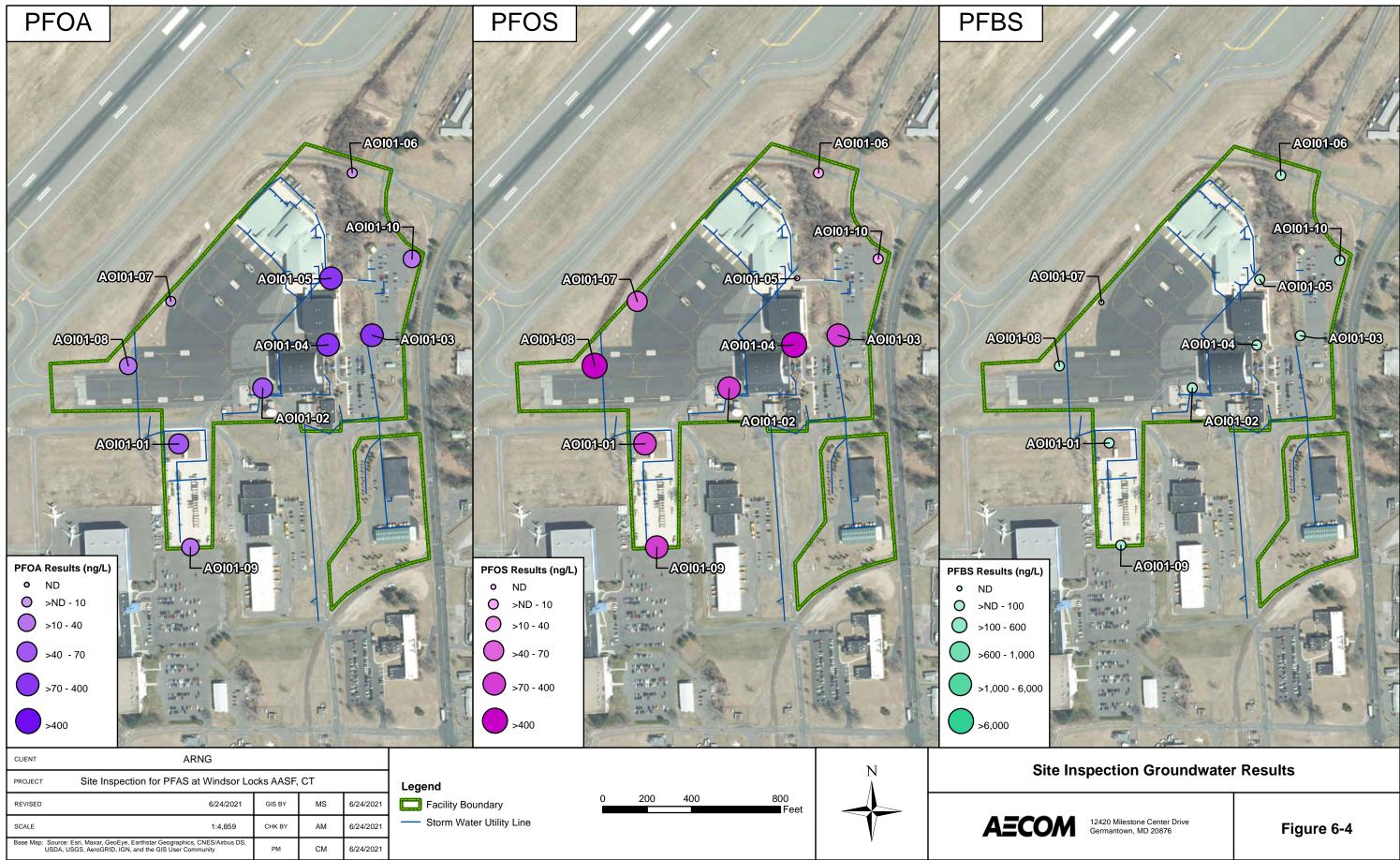
Grey Fill Detected concentration exceeded OSD Screening Levels

Bold Font Detected concentration exceeded USEPA HA Screening Levels


References a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.


b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021. c. USEPA, 2016. Drinking Water Health Advisory for PFOA. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-005. May 2016. JEPA. 2016. Drinking Water Health Advisory for PFOS. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-004. May 2016.


Interpreted Qualifiers J = Estimated concentration


Chemical Abbreviati	ons
6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFUnDA	perfluoro-n-undecanoic acid
Acronyms and Abbre	eviations
AASE	Army Aviation Support Facility
AQI	Area of Interest
D	duplicate

AOI	Area of Interest
D	duplicate
GW	groundwater
HA	health advisory
HQ	hazard quotient
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
ND	analyte not detected above the LOD
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	interpreted qualifier
USEPA	United States Environmental Protection Agency
ng/L	nanogram per liter
	not applicable

AECOM Directory\ARNG PEAS AASE Vindsor Locks SI Figures/SI Report/Results/Fig 6-4 Windsor Locks AASF SI GW F

7. Exposure Pathways

The CSM for AOI 1, revised based on the SI findings, is presented on **Figure 7-1**. The CSM presents the current understanding of the site conditions with respect to known and suspected sources, potential transport mechanisms and migration pathways, and potentially exposed human receptors. A human exposure pathway is considered potentially complete when the following conditions are present:

- 1. Contaminant source;
- 2. Environmental fate and transport;
- 3. Exposure point;
- **4.** Exposure route; and
- **5.** Potentially exposed populations.

If any of these elements are missing, the pathway is incomplete. The CSM figure uses an empty circle symbol to represent an incomplete exposure pathway. Areas with an incomplete pathway generally warrant no further action. However, the pathway is considered potentially complete if PFOA, PFOS, or PFBS are detected, in which case the CSM figure uses a half-filled circle symbol to represent a potentially complete exposure pathway. Additionally, a completely filled circle symbol is used to indicate when a potentially complete exposure pathway has detections of PFOA, PFOS, or PFBS above the SLs. Areas with an identified potentially complete pathway may warrant further investigation.

In general, the potential routes of exposure to PFAS are ingestion and inhalation. Human exposure via the dermal contact pathway may occur, and current risk practice suggests it is an insignificant pathway compared to ingestion; however, exposure data for dermal pathways are sparse and continue to be the subject of PFAS toxicological study. The receptors evaluated are consistent with those listed in USEPA guidance for risk screening (USEPA, 2001). Receptors at the facility include site workers (e.g., facility staff and visiting soldiers), construction workers, trespassers, residents outside the facility boundary, and recreational users outside of the facility boundary.

7.1 Soil Exposure Pathway

The SI results for PFOA, PFOS, and PFBS in soil were used to determine whether a potentially complete pathway exists between the source and potential receptors at AOI 1 based on the aforementioned criteria.

7.1.1 AOI 1

Between 2003 and 2015, AFFF may have been released at AOI 1 during fire training activities. AFFF was used to extinguish controlled burns at the Wash Rack during fire training. Additionally, mobile fire extinguishers containing AFFF were discharged to the floor drains in Building 152. PFOA, PFOS, and PFBS were detected in soil at AOI 1 and confirm the release of PFAS to soil.

Based on the results of the SI, ground-disturbing activities could potentially result in site worker, construction worker, or trespasser exposure to PFOA, PFOS, and PFBS via inhalation of dust. Additionally, off-facility residents and recreational users may potentially be exposed to PFOA, PFOS, and PFBS via inhalation of dust caused by on-facility ground disturbing activities. Ground-disturbing activities could also potentially result in site worker, construction worker, or trespasser exposure via ingestion of surface soil. Lasty, ground-disturbing activities could also potentially result in construction worker exposure to PFOA, PFOS, and PFBS in subsurface soil via ingestion.

Construction activities were observed to be occurring near the facility's access control point at the time of the SI field work. The CSM is presented on **Figure 7-1**.

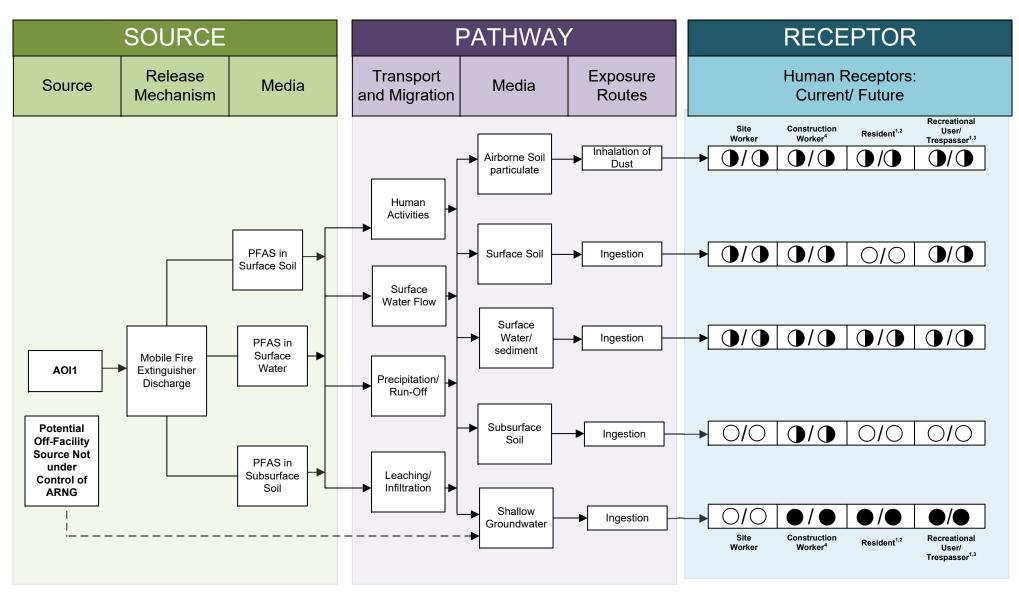
7.2 Groundwater Exposure Pathway

The SI results for PFOA, PFOS, and PFBS in groundwater were used to determine whether a potentially complete pathway exists between the source and potential receptors at AOI 1 based on the aforementioned criteria.

7.2.1 AOI 1

PFOA and PFOS in groundwater exceeded the individual SLs of 40 ng/L at both potential PFAS release areas, Wash Rack (AOI01-02) and Building 152 (AOI01-04); at AOI01-01, located in the southern portion of the facility upgradient of the identified potential release areas; and at AOI01-03, located east of the drainage swale along the edge of the facility parking lot. Additionally, PFOA in groundwater exceeded the SL at AOI01-05, on the north side of Building 200, and PFOS in groundwater exceeded the SL at upgradient locations AOI01-07, AOI01-08, and AOI01-09 along the western and southern facility boundaries.

It is unknown whether offsite potable wells are located downgradient of AOI 1; therefore, the ingestion exposure pathway for off-facility residents and off-facility recreational users is considered potentially complete. Windsor Locks AASF receives its potable water from the Connecticut Water Company. Therefore, the ingestion exposure pathway for site workers and trespassers is considered incomplete. Depths to water measured in April 2021 during the SI ranged from 3.37 to 8.11 feet bgs. Therefore, groundwater may be encountered during construction activities and the ingestion exposure pathway for construction workers is considered potentially complete. Construction activities were observed to be occurring near the facility's access control point at the time of the SI field work. The CSM is presented on **Figure 7-1**.


7.3 Surface Water and Sediment Exposure Pathway

Surface water and sediment samples were not collected as part of the SI at AOI 1; therefore, the SI results for PFOA, PFOS, and PFBS in soil and groundwater, in combination with knowledge of the fate and transport properties of PFAS, were used to determine whether a potentially complete pathway exists between the source and potential receptors.

7.3.1 AOI 1

PFAS are water soluble and can migrate readily from soil to surface water via leaching and runoff. Because PFOA, PFOS, and PFBS were detected in soil and groundwater at AOI 1, it is possible that those compounds may have migrated from soil and groundwater to the wetlands in the northeast of the facility via groundwater discharge, surface water runoff, or the stormwater detention system that outfalls to the drainage swales on the eastern and western portions of the property. Therefore, the surface water and sediment ingestion exposure pathway for site workers, construction workers, or trespassers is considered potentially complete.

Windsor Locks AASF is drained to drainage swales on the eastern and western portions of the property that are routed via a culvert to Spencer Brook, an intermittent stream that discharges to Stoney Brook. Stoney Brook subsequently discharges into the Connecticut River further downstream. Due to potential recreational use of Spencer Brook, the surface water and sediment ingestion exposure pathway for off-facility residents and recreational users is also considered potentially complete.

LEGEND

NOTES

Flow-Chart Stops

Flow-Chart Continues

Partial / Possible Flow

) Incomplete Pathway

Potentially Complete Pathway

Potentially Complete Pathway

with Exceedance of SL

1. The resident and recreational users refer to off-site receptors.

2. Inhalation of dust for off-site receptors is likely insignificant.

3. Human consumption of fish potentially affected by PFAS is possible.

4. Active construction within AOI 1 was

occurring as of the date of SI field work..

Figure 7-1 Conceptual Site Model, AOI 1 Windsor Locks AASF

7-

Site Inspection Report Army Aviation Support Facility, Windsor Locks, Connecticut

THIS PAGE INTENTIONALLY BLANK

8. Summary and Outcome

This section summarizes SI activities and findings. The most significant findings are summarized in this section and are reproduced directly or abstracted from information contained in this report. The outcome provides general and comparative interpretations of the findings relative to the SLs.

8.1 SI Activities

The SI field activities were conducted from 26 to 29 April 2021 and consisted of utility clearance, direct push boring, soil sample collection, temporary monitoring well installation, grab groundwater sample collection, and land surveying. Field activities were conducted in accordance with the SI QAPP Addendum (AECOM, 2021a), except as previously noted in **Section 5.8**.

To fulfill the project DQOs set forth in the approved SI QAPP Addendum (AECOM, 2021a), samples were collected and analyzed for a subset of PFAS by LC/MS/MS compliant with QSM 5.3 Table B-15 as follows. The 18 PFAS analyzed as part of the ARNG SI program are specified in **Section 5.7** of this Report.

- 26 soil samples from 10 boring locations;
- 10 grab groundwater samples from 10 temporary well locations; and
- 18 QA samples.

The information gathered during this investigation was used to determine if PFOA, PFOS, and/or PFBS were present at or above SLs. Additionally, the CSMs were refined to assess whether a potentially complete pathway exists between the source and potential receptors for potential exposure to PFOA, PFOS, and PFBS at the AOIs, which are described in **Section 7**.

8.2 SI Goals Evaluation

As described in **Section 4.2**, the SI activities were designed to achieve six main goals or DQOs. This section describes the SI goals and the conclusions that can be made for each based on the data collected during this investigation.

1. Determine the presence or absence of PFOA, PFOS, and PFBS at or above SLs.

PFOA, PFOS, and PFBS were detected at the facility in soil and groundwater. PFOA, PFOS, and PFBS were detected both at the source areas, as well as at the upgradient facility boundary and the downgradient facility boundary, between the potential PFAS release areas and potential drinking water receptors. PFOA and PFOS in groundwater exceeded the individual SLs of 40 ng/L at both potential PFAS release areas, Wash Rack (AOI01-02) and Building 152 (AOI01-04); at AOI01-01, located in the southern portion of the facility upgradient of the identified potential release areas; and at AOI01-03, located east of the drainage swale along the edge of the facility parking lot. Additionally, PFOA in groundwater exceeded the SL at AOI01-05, on the north side of Building 200, and PFOS in groundwater exceeded the SL at upgradient locations AOI01-07, AOI01-08, and AOI01-09 along the western and southern facility boundaries. PFOA, PFOS, and PFBS were detected in soil at AOI 1, indicating there was likely a release of PFAS-containing materials; however, the detected concentrations were several orders of magnitude lower than the soil SLs.

2. Develop information to potentially eliminate a release from further consideration because it is determined that it poses no significant threat to human health or the environment.

No potential PFAS release areas were removed from further consideration based on the groundwater and soil data collected during the SI. PFOA and PFOS were detected in groundwater above the SLs at both of the potential PFAS release areas (Wash Rack and Building 152); therefore, they may pose a threat to human health or the environment.

3. Determine the potential need for a TCRA (applies to drinking water only). The primary actions that will be considered include provision of alternative water supplies or wellhead treatment.

Based on the data collected during this SI, there is a potentially complete pathway between the detections of PFOA and PFOS above SLs at Windsor Locks AASF and potential downgradient offsite drinking water receptors. Windsor Locks AASF receives its potable water from the Connecticut Water Company, but it is unknown whether private potable wells exist downgradient of the facility. Using online resources, wells were researched to a 4-mile radius of the facility; however, the state of Connecticut does not have an online well database. Agricultural areas exist to the north-northwest of the facility and it is possible that unlisted groundwater wells may exist in this area. Therefore, the drinking water pathway is considered potentially complete.

4. Collect data to better characterize the release areas for more effective and rapid initiation of a RI (if determined necessary).

The geological data collected as part of the SI indicate a highly permeable and conductive environment, with soils dominated by sand (ranging from well to poorly graded) with thin interbedded lenses of gravel, silt, and clay. These observations are consistent with the glaciofluvial deposits of the surrounding area. Given the shallow depth of the borings, it is difficult to determine how the surficial geology impacts the nature and extent of PFAS. However, the borings confirmed an unconfined shallow aquifer exists approximately 3.37 to 8.11 feet bgs. Groundwater flow direction at the facility is generally towards the drainage swale on the eastern portion of the facility. West of the eastern drainage swale, groundwater flow is generally to the northeast across the facility towards the drainage swale, while east of the drainage swale, groundwater flow is to the west-southwest back toward the drainage swale. Groundwater is potentially in communication with the drainage swale, which ultimately discharges to Spencer Brook. The limited amount of fine-grained material (silt and clay) observed in the shallow borings indicates the shallow aquifer is likely transmissive. These geologic and hydrogeologic observations will inform the development of the technical approach for the RI.

5. If PFOA, PFOS, and PFBS are determined to be present, aim to evaluate whether the concentrations can be attributed to on-facility or off-facility sources that were identified within 4 miles of the installation as part of the PA (e.g., fire stations, major manufacturers, other DoD facilities)

Based upon the evaluation of groundwater and soil results in comparison to SLs, in combination with the groundwater flow direction analysis, the results of the SI indicate that the sources of detected concentrations of PFOA, PFOS, and PFBS at AOI 1 (the Wash Rack and Building 152) are possibly attributable to ARNG activities. However, based on the exceedances of PFOA and PFOS in groundwater along the upgradient facility boundary (both east and west), it is possible that potential releases from off-facility, adjacent sources are migrating onto the facility. Known potential offsite, adjacent sources at the Bradley International Airport were identified in the PA Report (AECOM, 2020) and SI QAPP Addendum (AECOM, 2021a) and are shown on **Figure 3-1**.

6. Determine whether a potentially complete pathway exists between the source and potential receptors and whether ARNG is the likely source of the contamination.

Detections of PFOA, PFOS, and PFBS in soil at the Wash Rack and Building 152 release areas and at the upgradient and downgradient facility boundaries indicate there is a potentially complete exposure pathway between the source and site workers, construction workers, trespassers, and off-facility recreational users and residents. The SL exceedances of PFOA and PFOS in surficial groundwater indicate there is a potentially complete exposure pathway between the source and construction workers, trespassers, and off-facility recreational users and residents. It is not known at this time whether releases on ARNG property are likely the primary source of the contamination in groundwater.

8.3 Outcome

Based on the CSMs developed and revised in light of the SI findings, there is potential for exposure to drinking water receptors from AOI 1 from sources on the facility resulting from historical DoD activities. Sample analytical concentrations collected during the SI were compared against the project SLs for PFOA, PFOS, and PFBS in soil and groundwater, as described in **Table 6-1**. The following bullets summarize the SI results:

- PFOA and PFOS in groundwater at AOI 1 exceeded the individual SLs of 40 ng/L at both potential PFAS release areas, Wash Rack (AOI01-02) and Building 152 (AOI01-04), and in groundwater at upgradient and downgradient locations at the facility. The maximum concentrations of PFOA and PFOS were 298 ng/L (at location AOI01-03) and 581 ng/L (at location AOI01-08), respectively. Based on the results of the SI, further evaluation of AOI 1 is warranted in the RI.
- PFOA, PFOS, and PFBS were detected in soil at AOI 1, indicating a release of PFAScontaining materials occurred; however, the detected concentrations were several orders of magnitude lower than the soil SLs.

Table 8-1 summarizes the SI results for soil and groundwater. Based on the CSMs developed and revised in light of the SI findings, there is potential for exposure to drinking water receptors caused by DoD activities at the facility.

Table 8-2 summarizes the rationale used to determine if an AOI should be considered for further investigation under CERCLA and undergo an RI. Based on the results of this SI, further evaluation is warranted in the RI for AOI 1.

ΑΟΙ	Potential PFAS Release Area	Soil – Source Area	Groundwater – Source Area	Groundwater – Facility Boundary
1	Wash Rack			
1	Building 152			

Table 8-1: Summary of Site Inspection Findings

Legend:

N/A = Not applicable

= detected; exceedance of the screening levels

) = not detected

AOI	Description	Rationale	Future Action
1	Wash Rack, Building 152	Exceedances of SLs in groundwater at source areas. No exceedances of SLs in soil.	Proceed to RI

Table 8-2: Site Inspection Recommendations

9. References

- AECOM. 2018a. Final Site Inspection Programmatic Uniform Federal Policy-Quality Assurance Project Plan, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/ W912DR17F0192. 9 March.
- AECOM. 2018b. Final Programmatic Accident Prevention Plan, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/W912DR17F0192. July.
- AECOM. 2020. Final Preliminary Assessment Report, Windsor Locks Army Aviation Support Facility, Connecticut. February.
- AECOM. 2021a. Final Site Inspection Uniform Federal Policy-Quality Assurance Project Plan Addendum, Army Aviation Support Facility, Windsor Locks, Connecticut, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide. March.
- AECOM. 2021b. Final Site Safety and Health Plan, Army Aviation Support Facility, Windsor Locks, Connecticut, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide. April.
- Amec Foster Wheeler Environment & Infrastructure, Inc. 2018. *Final Report, FY16 Phase 1 Regional Site Inspections for Perfluorinated Compounds, Connecticut Air National Guard 103rd Airlift Wing, Bradley Air National Guard Base, East Granby, Connecticut.* February 5, 2018.
- Assistant Secretary of Defense. 2019. *Investigation Per- and Polyfluoroalkyl Substances within the Department of Defense Cleanup Program*. United States Department of Defense. 15 October.
- Colton, R.B. 1960. Surficial Geology of the Windsor Locks Quadrangle; United States Department of the Interior, U.S. Geological Survey, Map GQ-137.
- CTDEEP. 2002. Water Quality Standards and Classifications.
- DA. 2016. Army Guidance to Address Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) Contamination. August.
- DA. 2018. Army Guidance for Addressing Releases of Per- and Polyfluoroalkyl Substances. 4 September.
- DoD. 2019a. Department of Defense (DoD), Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3.
- DoD. 2019b. *General Data Validation Guidelines. Environmental Data Quality Workgroup*. 4 November.
- Engineering Technologies Associates, Inc. 1994. *Preliminary Assessment of the Federally-owned National Guard Facilities at Bradley Field, Windsor Locks, Connecticut.* July.
- Fuss & O'Neil. 2008. Corrective Action Plan, Connecticut Army National Guard Army Aviation Support Facility Tank Fuel Farm Area, Bradley International Airport, Route 75, Windsor Locks, Connecticut. November.

- Handman, E.H. 1973. *Depth to Bedrock, Windsor Locks Quadrangle*. United States Department of the Interior, U.S. Geological Survey, Miscellaneous Field Studies Map MF-450A.
- Guelfo, J.L. and Higgins, C.P. 2013. Subsurface transport potential of perfluoroalkyl acids ad aqueous film-forming foam (AFFF)-impacted sites. Environmental Science and Technology 47(9): 4164-71.
- Higgins, C.P., and Luthy, R.G. 2006. *Sorption of perfluorinated surfactants on sediments*. Environmental Science and Technology 40 (23): 7251-7256.
- ITRC. 2018. Environmental Fate ant Transport for Per- and Polyfluoroalkyl Substances. March.
- Legette, Brashears & Graham, Inc. 2015. Spill Prevention Control and Countermeasures Plan, Connecticut Army National Guard Army Aviation Support Facility, Bradley International Airport, Windsor Locks, Connecticut. November 2015.
- MDC. 2019. *The Metropolitan District, Hartford, Connecticut: Water Supply*. Accessed 26 February 2019 at <u>https://themdc.org/what-we-do/drinking-water/water-supply</u>.
- NOAA. 2018. 1981-2010 Climate Normals for Windsor Locks, CT, US. Accessed 2 December 2018 at http://www.ncdc.noaa.gov/cdo-web/datatools/normals.
- Schnabel, R.W. and Eric, J.H. 1964. *Bedrock Geologic Map of the Windsor Locks Quadrangle, Hartford County, Connecticut*; United States Department of the Interior, U.S. Geological Survey, Geologic Quadrangle Map GQ-388.
- SCS. 1962. *Soil Survey, Hartford County, Connecticut*. U.S. Department of Agriculture in Cooperation with the Connecticut Agricultural Experiment Station and Storrs Agriculture Experiment Station.
- USACE. 2016. Technical Project Planning Process, EM-200-1-2. 26 February.
- USEPA. 1980. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).
- USEPA. 1994. *National Oil and Hazardous Substances Pollution Contingency Plan (Final Rule)*. 40 CFR Part 300; 59 Federal Register 47384. September.
- USEPA. 2001. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments). December.
- USEPA. 2005. Federal Facilities Remedial Site Inspection Summary Guide.
- USEPA. 2006. *Guidance on Systematic Planning using the Data Quality Objectives Process.* February.
- USEPA. 2016a. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. US USEPA Document Number: 822-R-16-005. May 2016.
- USEPA. 2016b. *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water (4304T).* Health and Ecological Criteria Division, Washington, DC 20460. US USEPA Document Number: 822-R-16-004. May 2016.
- USEPA. 2017a. UCMR 3 (2013-2015) Occurrence Data by State. Occurrence Data for the Unregulated Contaminant Monitoring Rule. Accessed 9 July 2019 at <u>https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule</u>. January.

- USEPA. 2017b. *National Functional Guidelines for Organic Superfund Data Review*. OLEM 9355.0-136, EPA-540-R-2017-002. Office of Superfund Remediation and Technology Innovation. January.
- USFWS. 2021. Species by County Report, County: Hartford, Connecticut. Environmental Conservation Online System. Accessed 24 May 2021 at https://ecos.fws.gov/ecp/report/species-listings-by-current-range-county?fips=09003.
- USEPA. 2021. *Technical Fact Sheet: Toxicity Assessment for PFBS.* <u>https://www.epa.gov/pfas/learn-about-human-health-toxicity-assessment-pfbs</u>. 8 April.
- USGS. 2019. National Water Information System: Mapper. Accessed 23 May 2020 at https://maps.waterdata.usgs.gov/mapper/index.html.
- Xiao, F., Simcik, M. F., Halbach, T. R., and Gulliver, J. S. 2015, *Perfluorooctane sulfonate (PFOS)* and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure. Water Research 72: 64-74.

THIS PAGE INTENTIONALLY BLANK

Appendix A Data Validation Reports

THIS PAGE INTENTIONALLY BLANK

DATA VALIDATION REPORT - Level III Review

	221032903 + 50411	Per- and Polyfluorinated A						
SDG No.:	221032903 + 30411	Analysis:	Substances					
Laboratory:	Pace Gulf Coast	Project:	Windsor Locks					
Reviewer:	Tyler Bryant	Date:	June 15 th , 2021					

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines* (NFG) *for Superfund Organic Methods Data Review*, EPA-540-R-20-005, November 2020, and Department of Defense (DoD) Data Validation Guidelines Module 3 QSM Table B-15, May 2020. Modifications reflect the level of review requested, the specifications of the project specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None.

Minor

Anomalies:

During the PFAS analysis, the following field and laboratory blanks displayed concentrations for target analytes greater than the detection limit:

Blank	Date	Time	Batch	Analyte	Concentration	Units
				PFBA	2.80	
WL-DECON-01RE	1/E/2021	1005	707851	PFHxA	1.61	
WL-DECON-UTRE	4/5/2021	1805	101851	PFOS	0.875	
				PFOA	1.13	
WL-ERB-02	5/26/2021	0759	712118	PFOS	13.6	
WL-ERB-01	5/26/2021	0858	712118	PFOS	20.7	
22100401A_11	4/1/2021	1436	707996	PFBA	1.56	
2210510A_12	5/10/2021	1536	711161	PFBA	1.03	
2210510A_12	5/10/2021	1536	711477	PFBA	1.03	ng/l
2210508A_02	5/8/2021	1745	710724	PFBA	1.25	ng/L
2210503A_9	5/3/2021	1723	710901	PFBA	1.24	
2210507B_03	5/7/2021	1729	710901	PFBA	1.23	
2210510A_12	5/10/2021	1536	711273	PFBA	1.03	
2210510A_12	5/10/2021	1536	711722	PFBA	1.03	
2210503A_9	5/3/2021	1723	710369	PFBA	1.24	
2210505A_03	5/5/2021	1050	710369	PFBA	1.25	
MB2162464RE	4/5/2021	1659	707851	PFBA	1.97	
MB2183139	5/8/2021	1858	710724	PFOS	0.830	
MB2184338	5/15/2021	1428	711275	PFBS	0.041	
MD2104240	E/14/2021	0545	711075	PFBS	0.035	
MB2184340	5/16/2021	0545	711275	PFHxA	0.023	µg/Kg
MB2183946	5/17/2021	2024	711477	PFBS	0.023	
IVIDZ 103940	5/17/2021	2024	/114//	PFOS	0.071	

The positive field sample results that were greater than 5X the concentration detected in the blanks required no data qualifying action, while positive results less than 5X the blank concentration were qualified U,bl. When appropriate, the concentration detected was elevated to the limit of detection (LOD) or the quantitation limits were elevated to the concentrations detected when concentrations were greater than the LOD. The

following instrument sensitivity checks displayed percent recoveries greater than the upper quality control (QC) limit of 130%:

Blank	Date	Time	Batch	Analyte	Recovery (%)
2210405A_14	4/5/2021	1323	707851	PFTrDA	137
2210515A_68	5/16/2021	0454	711275	NEtFOSAA	143

PFTrDA was not a target analyte in the associated batch; no data qualifying action was required. The field sample results associated with the ISC exceedance in batch 711275 were all non-detect; no data qualifying action was required. The following EIS displayed area counts outside the QC limits of 50%-150%:

Field Sample	EIS	Associated Target Compound(s)	Area Count (%)
AOI01-02-SB-04-06	M ₂ PFTA	PFTeDA, PFTrDA	44
AOI01-03-SB-00-02	D ₅ -NEtFOSAA	NEtFOSAA	48
AOI01-04-SB-03-05	M ₈ PFOS	PFOS	22
AOI01-08-SB-00-02	M ₃ 8:2 FTS	8:2 FTS	152
MB2184338	M₃PFHxS	PFHxS	45

Several QC samples displayed EIS percent recoveries outside QC limits; no data qualifying actions are required based on QC sample EIS anomalies. The non-detect field sample results associated with the high bias required no data qualifying action. The positive field sample results associated with the low recoveries were qualified J+,i, while non-detect results were qualified UJ,i. The following MS/MSDs displayed percent recoveries greater than the upper QC limits:

Parent	QC	Analyte	Upper QC	MS Recovery	MSD
Sample	Batch	Analyte	Limit (%)	(%)	Recovery (%)
AOI01-10-	711275	PFHxS	130	484	600
SB-03-05	/112/3	PFOA	133	651	778
AOI01-08-	711722	PFOS	136	158	219
SB-00-02	712509	PFOS	136	106	148

The field sample results associated with the high biases were positive and were qualified J+,m. The field duplicate pair associated with parent sample AOI01-10-SB-00-02 displayed imprecise duplicate results. The parent sample displayed a positive result for PFHpA and a non-detect results for PFNA. The associated field duplicate displayed a non-detect result for PFHpA and a positive result for PFNA. The non-detect results were qualified UJ,fd, while the positive results were qualified J,fd. Field samples AOI01-10-SB-03-05 and AOI01-08-SB-00-02 were re-extracted and re-analyzed outside of holding time due to high matrix spike (MS/MSD) recoveries and extraction internal standards (EIS) failures, respectively. The positive re-extracted results were qualified J,h, while non-detect results were qualified UJ,h. Both sets of data have been reported; the data reviewer recommends the initial results be maintained in the data set.

The technical holding time for the pH analysis is 'immediate'. The field sample results associated with the expired holding times were qualified J,h.

Correctable Anomalies:

None.

Comments: The laboratory did not receive the grain size sample AOI01-05-SB-06-08. On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all

quality control criteria reviewed were within acceptable limits. All data are usable, as qualified, for their intended purposed based on the quality control data reviewed.

Signed:

Tyler Bryant

Windsor Locks										
		Laboratory:		Pace Gu	lf Coast					
loh.	60552172	SDG#:	2	21032903	8 + 50411					
Sample ID	Client ID	Sample Type	Sample Date	Matrix	PFAS - QSM B-15	+ JOT Hq				
22103290301	WL-DECON-01	Decon Water	3/26/2021	Water	X	рп				
22105041101	AOI-01-SB-00-02	Field Sample	4/27/2021	Soil	X					
22105041101	AOI01-01-SB-05-07	Field Sample	4/27/2021	Soil	X					
22105041102	AOI01-01-SB-00-02	Field Sample	4/27/2021	Soil	X					
22105041104	A0I01-02-SB-04-06	Field Sample	4/27/2021	Soil	X					
22105041105	AOI01-02-SB-04-00 AOI01-03-SB-00-02	Field Sample	4/29/2021	Soil	X					
22105041106	AOI01-03-SB-03-05	Field Sample	4/29/2021	Soil	X					
22105041100	AOI01-03-SB-05-03	Field Sample	4/29/2021	Soil	X					
22105041107	AOI01-03-SB-03-07 AOI01-04-SB-00-02	Field Sample	4/29/2021	Soil	X					
22105041108	AOI01-04-SB-03-02	Field Sample	4/29/2021	Soil	X					
22105041109	WL-FRB-01	Field Rinse Blank	4/29/2021	Aqueous	X					
22105041110	AOI01-05-SB-00-02	Field Sample	4/29/2021	Soil	X	Х				
22105041111	AOI01-05-SB-00-02 AOI01-05-SB-00-02-D	Field Duplicate	4/28/2021	Soil	^	X				
22105041112	AOI01-05-SB-02-04	Field Sample	4/28/2021	Soil	Х	^				
22105041113	AOI01-05-SB-02-04	Field Sample	4/28/2021	Soil	X					
22105041114	AOI01-05-3B-04-00 AOI01-06-SB-00-02		4/28/2021	Soil	X					
22105041118		Field Sample		Soil	Х					
	AOI01-06-SB-03-05	Field Sample	4/28/2021	Soil	X					
22105041118	AOI01-07-SB-00-02	Field Sample	4/28/2021		X					
22105041119	AOI01-07-SB-00-02-D	Field Duplicate	4/28/2021	Soil	X					
22105041120	AOI01-07-SB-02-04	Field Sample	4/28/2021	Soil	X					
22105041121	AOI01-07-SB-04-06	Field Sample	4/28/2021	Soil						
22105041122	AOI01-08-SB-00-02	Field Sample	4/28/2021	Soil	X					
22105041158		Field Sample	4/28/2021	Soil	X					
22105041125	AOI01-08-SB-02-04	Field Sample	4/28/2021	Soil	X					
22105041126	AOI01-08-SB-04-06	Field Sample	4/28/2021	Soil	X					
22105041127	AOI01-09-SB-00-02	Field Sample	4/27/2021	Soil	X					
22105041128	AOI01-09-SB-00-02-D	Field Duplicate	4/27/2021	Soil	X					
22105041129	AOI10-09-SB-05-07	Field Sample	4/27/2021	Soil	X					
22105041130	AOI01-09-SB-08-10	Field Sample	4/27/2021	Soil	X	V				
22105041131	AOI01-10-SB-00-02	Field Sample	4/28/2021	Soil	X	Х				
22105041132	AOI01-10-SB-00-02-D	Field Duplicate	4/28/2021	Soil	X					
22105041135	AOI01-10-SB-03-05	Field Sample	4/28/2021	Soil	X					
22105041155		Field Sample	4/28/2021	Soil	X					
22105041138	AOI01-01-GW	Field Sample	4/27/2021	Water	X					
22105041139	AOI01-02-GW	Field Sample	4/28/2021	Water	X					
22105041140	AOI01-03-GW	Field Sample	4/29/2021	Water	X					
22105041141	AOI01-04-GW	Field Sample	4/29/2021	Water	X					
22105041142	AOI01-03-GW-D	Field Duplicate	4/29/2021	Water	X					
22105041143	AOI01-05-GW	Field Sample	4/28/2021	Water	X					
22105041144	AOI01-06-GW	Field Sample	4/28/2021	Water	X					
22105041145	AOI01-07-GW	Field Sample	4/28/2021	Water	X					
22105041146	AOI01-08-GW	Field Sample	4/27/2021	Water	X					
22105041147	AOI01-09-GW	Field Sample	4/29/2021	Water	X					
22105041148	AOI01-10-GW	Field Sample	4/29/2021	Water	X					
22105041151	WL-ERB-02	Equipment Blank	4/28/2021	Aqueous	X					
22105041152	WL-ERB-03	Equipment Blank	4/29/2021	Aqueous	X					
22105041153	WL-ERB-04	Equipment Blank	4/29/2021	Aqueous	X					
22105041154	WL-ERB-01	Equipment Blank	4/28/2021	Aqueous	Х					

Client Sar	nple ID:			AOI01-05-SB- 00-02	AOI01-05-SB- 00-02-D					
Date Sa	ampled:			4/28/21	4/28/21					
	Unite	100		Sample	Duplicate	RPD	Dolta	4x LOQ	Pass/	Match
	Units LOQ 5x LOQ		Conc	Conc	(%)	Della	4X LUQ	Fail	Watch	
General Chemistry										
рН	SU	1.00	5.0	7.68	7.94	3.3%	0.26	4.00	Pass	Pass
TOC	mg/Kg	250	1250	11700	10300	12.7%	1400	1000	Pass	Pass
				0 50%						

Control limit

[sample]>5xLOQ use 50% [sample]<5xLOQ use Delta<4xLOQ

	Client Sample ID: Date Sampled:				AOI01-07-SB- / 00-02 4/28/21		AOI01-07-SB- 00-02-D 4/28/21					
	Units	LOQ	5x LOQ	Sampl Conc		Duplica Conc		RPD (%)	Delta	4x LOQ	Pass/ Fail	Match
Perfluorinate	ed Alkyl	Subst	ances									
6:2 FTS	µg/Kg	1.09	5.45	0.219	U	0.218	U	0.5%	0.0010	4.36	Pass	Pass
8:2 FTS	µg/Kg	1.09	5.45	0.109	U	0.109	U	0.0%	0.0	4.36	Pass	Pass
NEtFOSAA	µg/Kg	1.09	5.45	0.109	U	0.109	U	0.0%	0.0	4.36	Pass	Pass
NMeFOSAA	µg/Kg	1.09	5.45	0.055	U	0.054	U	1.8%	0.0010	4.36	Pass	Pass
PFBA	µg/Kg	1.09	5.45	0.096	J	0.069	J	32.7%	0.027	4.36	Pass	Pass
PFBS	µg/Kg	1.09	5.45	0.109	U	0.054	U	67.5%	0.055	4.36	Pass	Pass
PFDA	µg/Kg	1.09	5.45	0.183	J	0.116	J	44.8%	0.067	4.36	Pass	Pass
PFDOA	µg/Kg	1.09	5.45	0.023	J	0.022	J	4.4%	0.0010	4.36	Pass	Pass
PFHpA	µg/Kg	1.09	5.45	0.026	J	0.026	J	0.0%	0.0	4.36	Pass	Pass
PFHxA	µg/Kg	1.09	5.45	0.046	J	0.040	J	14.0%	0.0060	4.36	Pass	Pass
PFHxS	µg/Kg	1.09	5.45	0.068	J	0.059	J	14.2%	0.0090	4.36	Pass	Pass
PFNA	µg/Kg	1.09	5.45	0.114	J	0.070	J	47.8%	0.044	4.36	Pass	Pass
PFOA	µg/Kg	1.09	5.45	0.219	U	0.218	U	0.5%	0.0010	4.36	Pass	Pass
PFOS	µg/Kg	1.09	5.45	0.970	J	1.18		19.5%	0.21	4.36	Pass	Pass
PFPeA	µg/Kg	1.09	5.45	0.031	J	0.031	J	0.0%	0.0	4.36	Pass	Pass
PFTeDA	µg/Kg	1.09	5.45	0.055	U	0.054	U	1.8%	0.0010	4.36	Pass	Pass
PFTrDA	µg/Kg	1.09	5.45	0.035	J	0.035	J	0.0%	0.0	4.36	Pass	Pass
PFUnDA	µg/Kg	1.09	5.45	0.076	J	0.055	J	32.1%	0.021	4.36	Pass	Pass

Control limit [sample]>5xLOQ use 50% [sample]<5xLOQ use Delta<4xLOQ

Client Sam Date Sar		AOI01-09-SB- 00-02 4/27/21		00-02-D 4/27/21								
	Units	LOQ	5x LOQ	Sampl Conc		Duplica Conc		RPD (%)	Delta	4x LOQ	Pass/ Fail	Match
Perfluorinated Alkyl Substances												
6:2 FTS	ng/L	1.14	5.70	0.229	U	0.226	U	1.3%	0.0030	4.56	Pass	Pass
8:2 FTS	ng/L	1.14	5.70	0.114	U	0.113	U	0.9%	0.0010	4.56	Pass	Pass
NEtFOSAA	ng/L	1.14	5.70	0.114	U	0.113	U	0.9%	0.0010	4.56	Pass	Pass
NMeFOSAA	ng/L	1.14	5.70	0.057	U	0.113	U	65.9%	0.056	4.56	Pass	Pass
PFBA	ng/L	1.14	5.70	0.258	J	0.149	J	53.6%	0.11	4.56	Pass	Pass
PFBS	ng/L	1.14	5.70	0.139	J	0.137	J	1.4%	0.0020	4.56	Pass	Pass
PFDA	ng/L	1.14	5.70	0.098	J	0.070	J	33.3%	0.028	4.56	Pass	Pass
PFDOA	ng/L	1.14	5.70	0.038	J	0.027	J	33.8%	0.011	4.56	Pass	Pass
PFHpA	ng/L	1.14	5.70	0.086	J	0.056	J	42.3%	0.030	4.56	Pass	Pass
PFHxA	ng/L	1.14	5.70	0.183	J	0.108	J	51.5%	0.075	4.56	Pass	Pass
PFHxS	ng/L	1.14	5.70	0.318	J	0.261	J	19.7%	0.057	4.56	Pass	Pass
PFNA	ng/L	1.14	5.70	0.161	J	0.111	J	36.8%	0.050	4.56	Pass	Pass
PFOA	ng/L	1.14	5.70	0.200	J	0.139	J	36.0%	0.061	4.56	Pass	Pass
PFOS	ng/L	1.14	5.70	2.17		1.77		20.3%	0.40	4.56	Pass	Pass
PFPeA	ng/L	1.14	5.70	0.180	J	0.107	J	50.9%	0.073	4.56	Pass	Pass
PFTeDA	ng/L	1.14	5.70	0.057	U	0.057	U	0.0%	0.0	4.56	Pass	Pass
PFTrDA	ng/L	1.14	5.70	0.147	J	0.124	J	17.0%	0.023	4.56	Pass	Pass
PFUnDA	ng/L	1.14	5.70	0.170	J	0.120	J	34.5%	0.050	4.56	Pass	Pass

Control limit

[sample]>5xLOQ use 50% [sample]<5xLOQ use Delta<4xLOQ

Client Sample ID: Date Sampled:				AOI01-10-SB- AOI01-10-SB- 00-02 00-02-D 4/28/21 4/28/21								
	Units	LOQ	5x LOQ	Sampl Conc	е	Duplica Conc		% RPD	Delta	4x LOQ	Pass/ Fail	Match
Perfluorinate	ed Alkyl	Subst	ances									
6:2 FTS	µg/Kg	1.08	5.40	0.217	U	0.218	U	0.5%	0.0010	4.32	Pass	Pass
8:2 FTS	µg/Kg	1.08	5.40	0.108	U	0.109	U	0.9%	0.0010	4.32	Pass	Pass
NEtFOSAA	µg/Kg	1.08	5.40	0.108	U	0.109	U	0.9%	0.0010	4.3	Pass	Pass
NMeFOSAA	µg/Kg	1.08	5.40	0.054	U	0.054	U	0.0%	0.0	4.3	Pass	Pass
PFBA	µg/Kg	1.08	5.40	0.065	J	0.058	J	11.4%	0.0070	4.32	Pass	Pass
PFBS	µg/Kg	1.08	5.40	0.054	U	0.054	U	0.0%	0.0	4.32	Pass	Pass
PFDA	µg/Kg	1.08	5.40	0.324	J	0.290	J	11.1%	0.034	4.32	Pass	Pass
PFDOA	µg/Kg	1.08	5.40	0.099	J	0.102	J	3.0%	0.0030	4.32	Pass	Pass
PFHpA	µg/Kg	1.08	5.40	0.023	J	0.054	U	80.5%	0.031	4.32	Pass	Fail
PFHxA	µg/Kg	1.08	5.40	0.080	J	0.068	J	16.2%	0.012	4.32	Pass	Pass
PFHxS	µg/Kg	1.08	5.40	0.377	J	0.311	J	19.2%	0.066	4.32	Pass	Pass
PFNA	µg/Kg	1.08	5.40	0.054	U	0.053	J	1.9%	0.0010	4.32	Pass	Fail
PFOA	µg/Kg	1.08	5.40	0.217	U	0.218	U	0.5%	0.0010	4.32	Pass	Pass
PFOS	µg/Kg	1.08	5.40	2.00		1.79		11.1%	0.21	4.32	Pass	Pass
PFPeA	µg/Kg	1.08	5.40	0.044	J	0.035	J	22.8%	0.0090	4.32	Pass	Pass
PFTeDA	µg/Kg	1.08	5.40	0.039	J	0.032	J	19.7%	0.0070	4.32	Pass	Pass
PFTrDA	µg/Kg	1.08	5.40	0.475	J	0.509	J	6.9%	0.034	4.32	Pass	Pass
PFUnDA	µg/Kg	1.08	5.40	1.27		1.30		2.3%	0.030	4.32	Pass	Pass

Control limit

[sample]>5xLOQ use 50% [sample]<5xLOQ use Delta<4xLOQ

	Client Sample ID: Date Sampled:			AOI01-03-GW AOI01-03- GW-D 4/29/21 4/29/21)						
	Units	LOQ	5x LOQ	Sampl Conc		Duplica Conc		% RPD	Delta	2x LOQ	Pass/ Fail	Match
Perfluorinate	ed Alkyl	Subst	ances									
6:2 FTS	µg/Kg	4.00	20.0	6.77		3.06		75.5%	3.71	8.00	Pass	Pass
8:2 FTS	µg/Kg	4.00	20.0	12.6		10.7		16.3%	1.90	8.00	Pass	Pass
NEtFOSAA	µg/Kg	8.00	40.0	4.00	U	4.00	U	0.0%	0.0	16.0	Pass	Pass
NMeFOSAA	µg/Kg	8.00	40.0	2.69	J	2.17	J	21.4%	0.52	16.0	Pass	Pass
PFBA	µg/Kg	4.00	20.0	21.9		22.0		0.5%	0.10	8.00	Pass	Pass
PFBS	µg/Kg	4.00	20.0	51.3		46.5		9.8%	4.80	8.00	Pass	Pass
PFDA	µg/Kg	4.00	20.0	3.81	J	3.26	J	15.6%	0.55	8.00	Pass	Pass
PFDOA	µg/Kg	4.00	20.0	2.00	U	2.00	U	0.0%	0.0	8.00	Pass	Pass
PFHpA	µg/Kg	4.00	20.0	16.3		15		8.3%	1.30	8.00	Pass	Pass
PFHxA	µg/Kg	4.00	20.0	345		320		7.5%	25.0	8.00	Pass	Pass
PFHxS	µg/Kg	4.00	20.0	1830		1350		30.2%	480	8.00	Pass	Pass
PFNA	µg/Kg	4.00	20.0	49.7		45.1		9.7%	4.60	8.00	Pass	Pass
PFOA	µg/Kg	4.00	20.0	298		275		8.0%	23.0	8.00	Pass	Pass
PFOS	µg/Kg	4.00	20.0	125		115		8.3%	10.0	8.00	Pass	Pass
PFPeA	µg/Kg	4.00	20.0	45.0		41.8		7.4%	3.20	8.00	Pass	Pass
PFTeDA	µg/Kg	4.00	20.0	2.00	U	2.00	U	0.0%	0.0	8.00	Pass	Pass
PFTrDA	µg/Kg	4.00	20.0	2.00	U	2.00	U	0.0%	0.0	8.00	Pass	Pass
PFUnDA	µg/Kg	4.00	20.0	52.3		44.7		15.7%	7.60	8.00	Pass	Pass

Control limit [sample]>5xLOQ use 35% [sample]<5xLOQ use Delta<2xLOQ

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221032903			Client Sample ID:	WL-DECON-0	IRE				
Collect Date:	03/26/21	Time: 0835		GCAL Sample ID:	22103290301R	22103290301RE				
Matrix:	Water % Mois	% Moisture: NA		Instrument ID:	QQQ2					
Sample Amt:	125 mL			Lab File ID:	2210405A_32.0	d				
Injection Vol.:	1.0		(µL)	GC Column:	ACC-C18-30M	iD	2.1	(mm)		
Prep Final Vol.:	1000		(µL)	Dilution Factor:	1	Analyst:	MRA			
Prep Date:				Analysis Date:	04/05/21	Time:	1805			
Prep Batch:	707127			Analytical Batch:	707851					
Prep Method:	PFAS ID QSM B15	Prep		Analytical Method:	PFAS Isotope I	Dilution QS	M B15			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	2.00	U	0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	2.00	U	0.900	2.00	4.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	2.80	J	0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	2.00	U	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	2.00	U	0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	(1.61)	J	0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	0.875	J	0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	(1.13)	J	0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221032903	Client Sample ID:	WL-DECON-01
Collect Date:	03/26/21 Time: 0835	GCAL Sample ID:	22103290301
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ1
Sample Amt:	125 mL	Lab File ID:	22100401A_63.d
Injection Vol.:	1.0 (µL) GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL) Dilution Factor:	1 Analyst: MRA
Prep Date:		Analysis Date:	04/02/21 Time: 0323
Prep Batch:	707127	Analytical Batch:	707996
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	4.00	104	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-85-9	Perfluoroheptanoic acid	2.00	U	0.480	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	υ	0.990	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411				Client Sample ID:	AOI01-01-SB-0	0-02		
Collect Date:	04/27/21	_ Time:	1245		GCAL Sample ID:	22105041101			
Matrix:	Solid % M	Moisture:	6.3		Instrument ID:	QQQ3			
Sample Amt:	5.02 g				Lab File ID:	2210517A_45a	.d		
Injection Vol.:	1.0			(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000			(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/10/21				Analysis Date:	05/18/21	Time:	0329	
Prep Batch:	710742		_		Analytical Batch:	711477			
Prep Method:	PFAS ID QSM B	15 Prep			Analytical Method:	PFAS Isotope I	Dilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.213	U	0.064	0.213	1.06
39108-34-4	8:2 Fluorotelomersulfonic acid	0.106	U	0.032	0.106	1.06
2991-50-6	NEtFOSAA	0.106	U	0.032	0.106	1.06
2355-31-9	NMeFOSAA	0.053	U	0.021	0.053	1.06
375-73-5	Perfluorobutanesulfonic acid	0.177	J	0.021	0.053	1.06
375-22-4	Perfluorobutanoic acid	0.054	J	0.043	0.106	1.06
335-76-2	Perfluorodecanoic acid	0.106	U	0.043	0.106	1.06
307-55-1	Perfluorododecanoic acid	0.053	U	0.021	0.053	1.06
375-85-9	Perfluoroheptanoic acid	0.053	U	0.021	0.053	1.06
355-46-4	Perfluorohexanesulfonic acid	0.127	J	0.032	0.106	1.06
307-24-4	Perfluorohexanoic acid	0.026	J	0.021	0.053	1.06
375-95-1	Perfluorononanoic acid	0.053	U	0.021	0.053	1.06
1763-23-1	Perfluorooctanesulfonic acid	1.01	J	0.053	0.213	1.06
335-67-1	Perfluorooctanoic acid	0.213	U	0.085	0.213	1.06
2706-90-3	Perfluoropentanoic acid	0.053	U	0.021	0.053	1.06
376-06-7	Perfluorotetradecanoic acid	0.053	U	0.021	0.053	1.06
72629-94-8	Perfluorotridecanoic acid	0.106	U	0.032	0.106	1.06
2058-94-8	Perfluoroundecanoic acid	0.032	J	0.021	0.053	1.06

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-01-SB-05-	-07		
Collect Date:	04/27/21 Time: 12	50	GCAL Sample ID:	22105041102			
Matrix:	Solid % Moisture: 5.5		Instrument ID:	QQQ3			
Sample Amt:	<u>5 g</u>		Lab File ID:	2210517A_46.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	DI ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1A	Analyst:	RXJ	
Prep Date:	05/10/21		Analysis Date:	05/18/21	Time:	0344	
Prep Batch:	710742		Analytical Batch:	711477			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dil	ution QSN	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.212	U	0.063	0.212	1.06
39108-34-4	8:2 Fluorotelomersulfonic acid	0.106	U	0.032	0.106	1.06
2991-50-6	NEtFOSAA	0.106	U	0.032	0.106	1.06
2355-31-9	NMeFOSAA	0.053	U	0.021	0.053	1.06
375-73-5	Perfluorobutanesulfonic acid	0.162	J	0.021	0.053	1.06
375-22-4	Perfluorobutanoic acid	0.045	J	0.042	0.106	1.06
335-76-2	Perfluorodecanoic acid	0.106	U	0.042	0.106	1.06
307-55-1	Perfluorododecanoic acid	0.053	U	0.021	0.053	1.06
375-85-9	Perfluoroheptanoic acid	0.053	U	0.021	0.053	1.06
355-46-4	Perfluorohexanesulfonic acid	0.106	U	0.032	0.106	1.06
307-24-4	Perfluorohexanoic acid	0.053	U	0.021	0.053	1.06
375-95-1	Perfluorononanoic acid	0.053	U	0.021	0.053	1.06
1763-23-1	Perfluorooctanesulfonic acid	0.582	J	0.053	0.212	1.06
335-67-1	Perfluorooctanoic acid	0.212	U	0.085	0.212	1.06
2706-90-3	Perfluoropentanoic acid	0.053	U	0.021	0.053	1.06
376-06-7	Perfluorotetradecanoic acid	0.053	U	0.021	0.053	1.06
72629-94-8	Perfluorotridecanoic acid	0.106	U	0.032	0.106	1.06
2058-94-8	Perfluoroundecanoic acid	0.053	U	0.021	0.053	1.06

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-02-SB-00-02	
Collect Date:	04/27/21 Time: 1035		GCAL Sample ID:	22105041103	
Matrix:	Solid % Moisture: 21.5		Instrument ID:	QQQ3	
Sample Amt:	5.01 g		Lab File ID:	2210517A_47.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	RXJ
Prep Date:	05/10/21		Analysis Date:	05/18/21 Time:	0359
Prep Batch:	710742		Analytical Batch:	711477	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	SM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.149	J	0.076	0.254	1.27
39108-34-4	8:2 Fluorotelomersulfonic acid	0.197	J	0.038	0.127	1.27
2991-50-6	NEtFOSAA	0.127	U	0.038	0.127	1.27
2355-31-9	NMeFOSAA	0.064	U	0.025	0.064	1.27
375-73-5	Perfluorobutanesulfonic acid	0.163	J	0.025	0.064	1.27
375-22-4	Perfluorobutanoic acid	0.089	J	0.051	0.127	1.27
335-76-2	Perfluorodecanoic acid	0.432	J	0.051	0.127	1.27
307-55-1	Perfluorododecanoic acid	0.561	J	0.025	0.064	1.27
375-85-9	Perfluoroheptanoic acid	0.045	J	0.025	0.064	1.27
355-46-4	Perfluorohexanesulfonic acid	0.576	J	0.038	0.127	1.27
307-24-4	Perfluorohexanoic acid	0.096	J	0.025	0.064	1.27
375-95-1	Perfluorononanoic acid	0.145	J	0.025	0.064	1.27
1763-23-1	Perfluorooctanesulfonic acid	3.82		0.064	0.254	1.27
335-67-1	Perfluorooctanoic acid	0.254	U	0.102	0.254	1.27
2706-90-3	Perfluoropentanoic acid	0.124	J	0.025	0.064	1.27
376-06-7	Perfluorotetradecanoic acid	0.211	J	0.025	0.064	1.27
72629-94-8	Perfluorotridecanoic acid	3.16		0.038	0.127	1.27
2058-94-8	Perfluoroundecanoic acid	5.05		0.025	0.064	1.27

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-02-SB-0	4-06		
Collect Date:	04/27/21 Time: 1100		GCAL Sample ID:	22105041104			
Matrix:	Solid % Moisture: 22.9		Instrument ID:	QQQ3			
Sample Amt:	5.03 g		Lab File ID:	2210517A_48.c	ł		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	-
Prep Date:	05/10/21		Analysis Date:	05/18/21	Time:	0413	
Prep Batch:	710742		Analytical Batch:	711477			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS isotope [Dilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.258	U	0.077	0.258	1.29
39108-34-4	8:2 Fluorotelomersulfonic acid	0.070	J	0.039	0.129	1.29
2991-50-6	NEtFOSAA	0.129	U	0.039	0.129	1.29
2355-31-9	NMeFOSAA	0.064	U	0.026	0.064	1.29
375-73-5	Perfluorobutanesulfonic acid	0.091	J	0.026	0.064	1.29
375-22-4	Perfluorobutanoic acid	0.061	J	0.052	0.129	1.29
335-76-2	Perfluorodecanoic acid	0.675	J	0.052	0.129	1.29
307-55-1	Perfluorododecanoic acid	0.064	U	0.026	0.064	1.29
375-85-9	Perfluoroheptanoic acid	0.064	J	0.026	0.064	1.29
355-46-4	Perfluorohexanesulfonic acid	0.148	J	0.039	0.129	1.29
307-24-4	Perfluorohexanoic acid	0.077	J	0.026	0.064	1.29
375-95-1	Perfluorononanoic acid	0.150	J	0.026	0.064	1.29
1763-23-1	Perfluorooctanesulfonic acid	1.89		0.064	0.258	1.29
335-67-1	Perfluorooctanoic acid	0.258	U	0.103	0.258	1.29
2706-90-3	Perfluoropentanoic acid	0.066	J	0.026	0.064	1.29
376-06-7	Perfluorotetradecanoic acid	0.064	U	0.026	0.064	1.29
72629-94-8	Perfluorotridecanoic acid	0.129	U	0.039	0.129	1.29
2058-94-8	Perfluoroundecanoic acid	1.35		0.026	0.064	1.29

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-03-SB-00-02
Collect Date:	04/29/21 Time: 0800	GCAL Sample ID:	22105041105
Matrix:	Solid % Moisture: 10.1	Instrument ID:	QQQ1
Sample Amt:	5.03 g	Lab File ID:	2210515A_22.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	<u>1000</u> (µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:	05/11/21	Analysis Date:	05/15/21 Time: 1537
Prep Batch:	710837	Analytical Batch:	711275
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.221	U	0.066	0.221	1.11
39108-34-4	8:2 Fluorotelomersulfonic acid	0.111	U	0.033	0.111	1.11
2355-31-9	NMeFOSAA	0.055	U	0.022	0.055	1.11
375-73-5	Perfluorobutanesulfonic acid	0.024	J	0.022	0.055	1.11
375-22-4	Perfluorobutanoic acid	0.093	J	0.044	0.111	1.11
335-76-2	Perfluorodecanoic acid	0.366	J	0.044	0.111	1.11
307-55-1	Perfluorododecanoic acid	0.134	J	0.022	0.055	1.11
375-85-9	Perfluoroheptanoic acid	0.031	J	0.022	0.055	1.11
307-24-4	Perfluorohexanoic acid	0.127	J	0.022	0.055	1.11
375-95-1	Perfluorononanoic acid	0.135	J	0.022	0.055	1.11
1763-23-1	Perfluorooctanesulfonic acid	2.86		0.055	0.221	1.11
335-67-1	Perfluorooctanoic acid	0.221	U	0.088	0.221	1.11
2706-90-3	Perfluoropentanoic acid	0.087	J	0.022	0.055	1.11
376-06-7	Perfluorotetradecanoic acid	0.054	J	0.022	0.055	1.11
72629-94-8	Perfluorotridecanoic acid	1.56		0.033	0.111	1.11
2058-94-8	Perfluoroundecanoic acid	1.51		0.022	0.055	1.11

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-03-SB-00-02RE
Collect Date:	04/29/21 Time: 0800		GCAL Sample ID:	22105041105RE
Matrix:	Solid % Moisture: 10.1		Instrument ID:	QQQ3
Sample Amt:	5.03 g		Lab File ID:	2210520A_46.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RX.j
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time: 0451
Prep Batch:	710837		Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	0.039	J	0.033	0.111	1.11
355-46-4	Perfluorohexanesulfonic acid	0.856	J	0.033	0.111	1.11

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-03-SB-0	3-05		
Collect Date:	04/29/21 Time:	0805	GCAL Sample ID:	22105041106			
Matrix:	Solid % Moisture:	10.5	Instrument ID:	QQQ1			
Sample Amt:	<u>5 g</u>		Lab File ID:	2210515A_23.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	1554	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS isotope D	Dilution QSI	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.223	U	0.067	0.223	1.12
39108-34-4	8:2 Fluorotelomersulfonic acid	0.112	U	0.034	0.112	1.12
2991-50-6	NEtFOSAA	0.112	U	0.034	0.112	1.12
2355-31-9	NMeFOSAA	0.056	U	0.022	0.056	1.12
375-73-5	Perfluorobutanesulfonic acid	0.059	J	0.022	0.056	1.12
375-22-4	Perfluorobutanoic acid	0.055	J	0.045	0.112	1.12
335-76-2	Perfluorodecanoic acid	0.346	J	0.045	0.112	1.12
307-55-1	Perfluorododecanoic acid	0.115	J	0.022	0.056	1.12
375-85-9	Perfluoroheptanoic acid	0.181	J	0.022	0.056	1.12
307-24-4	Perfluorohexanoic acid	0.316	J	0.022	0.056	1.12
375-95-1	Perfluorononanoic acid	0.169	J	0.022	0.056	1.12
1763-23-1	Perfluorooctanesulfonic acid	5.07		0.056	0.223	1.12
335-67-1	Perfluorooctanoic acid	0.278	J	0.089	0.223	1.12
2706-90-3	Perfluoropentanoic acid	0.055	J	0.022	0.056	1.12
376-06-7	Perfluorotetradecanoic acid	0.034	J	0.022	0.056	1.12
72629-94-8	Perfluorotridecanoic acid	1.42		0.034	0.112	1.12
2058-94-8	Perfluoroundecanoic acid	8.02		0.022	0.056	1.12

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-03-SB-03-05RE
Collect Date:	04/29/21 Time: 0805	GCAL Sample ID:	22105041106RE
Matrix:	Solid % Moisture: 10.5	Instrument ID:	QQQ3
Sample Amt:	<u>5 g</u>	Lab File ID:	2210520A_47.d
Injection Vol.:	<u>1.0</u> (μL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21	Analysis Date:	05/21/21 Time: 0505
Prep Batch:	710837	Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg		

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	4.86		0.034	0.112	1.12

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-03-SB-05-07	
Collect Date:	04/29/21 Time: 0	0810	GCAL Sample ID:	22105041107	
Matrix:	Solid % Moisture: 2	24.0	Instrument ID:	QQQ1	
Sample Amt:	5.05 g		Lab File ID:	2210515A_24.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time:	1611
Prep Batch:	710837		Analytical Batch:	711275	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	SM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.261	U	0.078	0.261	1.30
39108-34-4	8:2 Fluorotelomersulfonic acid	0.130	U	0.039	0.130	1.30
2991-50-6	NEtFOSAA	0.130	U	0.039	0.130	1.30
2355-31-9	NMeFOSAA	0.065	U	0.026	0.065	1.30
375-73-5	Perfluorobutanesulfonic acid	0.182	J	0.026	0.065	1.30
375-22-4	Perfluorobutanoic acid	0.141	J	0.052	0.130	1.30
335-76-2	Perfluorodecanoic acid	0.230	J	0.052	0.130	1.30
307-55-1	Perfluorododecanoic acid	0.047	J	0.026	0.065	1.30
375-85-9	Perfluoroheptanoic acid	0.093	J	0.026	0.065	1.30
307-24-4	Perfluorohexanoic acid	0.530	J	0.026	0.065	1.30
375-95-1	Perfluorononanoic acid	0.170	J	0.026	0.065	1.30
1763-23-1	Perfluorooctanesulfonic acid	6.19		0.065	0.261	1.30
335-67-1	Perfluorooctanoic acid	0.491	J	0.104	0.261	1.30
2706-90-3	Perfluoropentanoic acid	0.096	J	0.026	0.065	1.30
376-06-7	Perfluorotetradecanoic acid	0.065	U	0.026	0.065	1.30
72629-94-8	Perfluorotridecanoic acid	0.539	J	0.039	0.130	1.30
2058-94-8	Perfluoroundecanoic acid	3.31		0.026	0.065	1.30

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample	ID:	AOI01-03-SB-0	5-07RE		
Collect Date:	04/29/21 Time: 0810		GCAL Sample	ID:	22105041107R	=		
Matrix:	Solid % Moisture: 24.0		Instrument ID:		QQQ3			
Sample Amt:	5.05 g		Lab File ID:		2210520A_48.d			
Injection Vol.:	1.0	(µL)	GC Column:		ACC-C18-30M	D	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:		1	Analyst:	RXJ	
Prep Date:	05/11/21		Analysis Date:		05/21/21	Time:	0520	
Prep Batch:	710837		Analytical Batc	h:	711722			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Meth	od:	PFAS Isotope D	ilution QS	M B15	
CONCENTRATIO	ON UNITS: ug/kg							
CAS	ANALYTE		RESULT	Q	DL	LOL	0	LOQ
355-46-4	Perfluorohexanesulfonic acid		7.56		0.039	0.13	0	1.30

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-04-SB-00-02
Collect Date:	04/29/21 Time:	0855	GCAL Sample ID:	22105041108
Matrix:	Solid % Moisture:	6.2	Instrument ID:	QQQ1
Sample Amt:	5.05 g		Lab File ID:	2210515A_25.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time: 1629
Prep Batch:	710837		Analytical Batch:	711275
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.211	U	0.063	0.211	1.06
39108-34-4	8:2 Fluorotelomersulfonic acid	0.106	U	0.032	0.106	1.06
2991-50-6	NEtFOSAA	0.106	U	0.032	0.106	1.06
2355-31-9	NMeFOSAA	0.053	U	0.021	0.053	1.06
375-73-5	Perfluorobutanesulfonic acid	0.053	U	0.021	0.053	1.06
375-22-4	Perfluorobutanoic acid	0.048	J	0.042	0.106	1.06
335-76-2	Perfluorodecanoic acid	0.076	J	0.042	0.106	1.06
307-55-1	Perfluorododecanoic acid	0.029	J	0.021	0.053	1.06
375-85-9	Perfluoroheptanoic acid	0.053	U	0.021	0.053	1.06
307-24-4	Perfluorohexanoic acid	0.083	J	0.021	0.053	1.06
375-95-1	Perfluorononanoic acid	0.043	J	0.021	0.053	1.06
1763-23-1	Perfluorooctanesulfonic acid	2.60		0.053	0.211	1.06
335-67-1	Perfluorooctanoic acid	0.211	U	0.084	0.211	1.06
2706-90-3	Perfluoropentanoic acid	0.047	J	0.021	0.053	1.06
376-06-7	Perfluorotetradecanoic acid	0.053	U	0.021	0.053	1.06
72629-94-8	Perfluorotridecanoic acid	0.106	U	0.032	0.106	1.06
2058-94-8	Perfluoroundecanoic acid	0.053	J	0.021	0.053	1.06

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-04-SB-00-02RE	
Collect Date:	04/29/21 Time: 0855		GCAL Sample ID:	22105041108RE	
Matrix:	Solid % Moisture: 6.2		Instrument ID:	QQQ3	
Sample Amt:	5.05 g		Lab File ID:	2210520A_49.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	<u>2.1</u> (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	RXJ
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time:	0534
Prep Batch:	710837		Analytical Batch:	711722	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	M B15
CONCENTRATI	ON UNITS: ug/kg				

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.412	J	0.032	0.106	1.06

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-04-SB-03-05	
Collect Date:	04/29/21 Time: 0900		GCAL Sample ID:	22105041109	
Matrix:	Solid % Moisture: 12.5		Instrument ID:	QQQ1	
Sample Amt:	<u>5 g</u>		Lab File ID:	2210515A_26.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time:	1646
Prep Batch:	710837		Analytical Batch:	711275	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	M B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.229	U	0.069	0.229	1.14
39108-34-4	8:2 Fluorotelomersulfonic acid	0.114	U	0.034	0.114	1.14
2991-50-6	NEtFOSAA	0.114	Ŭ	0.034	0.114	1.14
2355-31-9	NMeFOSAA	0.057	U	0.023	0.057	1.14
375-73-5	Perfluorobutanesulfonic acid	0.057	U	0.023	0.057	1.14
375-22-4	Perfluorobutanoic acid	0.114	U	0.046	0.114	1.14
335-76-2	Perfluorodecanoic acid	0.114	U	0.046	0.114	1.14
307-55-1	Perfluorododecanoic acid	0.057	U	0.023	0.057	1.14
375-85-9	Perfluoroheptanoic acid	0.057	U	0.023	0.057	1.14
307-24-4	Perfluorohexanoic acid	0.057	U	0.023	0.057	1.14
375-95-1	Perfluorononanoic acid	0.057	U	0.023	0.057	1.14
335-67-1	Perfluorooctanoic acid	0.229	U	0.091	0.229	1.14
2706-90-3	Perfluoropentanoic acid	0.057	U	0.023	0.057	1.14
376-06-7	Perfluorotetradecanoic acid	0.057	U	0.023	0.057	1.14
72629-94-8	Perfluorotridecanoic acid	0.114	U	0.034	0.114	1.14
2058-94-8	Perfluoroundecanoic acid	0.057	U	0.023	0.057	1.14

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-04-SB-03-05RE	
Collect Date:	04/29/21 Time: 0900		GCAL Sample ID:	22105041109RE	
Matrix:	Solid % Moisture: 12.5		Instrument ID:	QQQ3	
Sample Amt:	5 g		Lab File ID:	2210520A_50.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	RXJ
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time:	0549
Prep Batch:	710837		Analytical Batch:	711722	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSI	VI B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.129	J	0.034	0.114	1.14
1763-23-1	Perfluorooctanesulfonic acid	0.310	J	0.057	0.229	1.14

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	WL-FRB-01
Collect Date:	04/29/21 Time: 0750		GCAL Sample ID:	22105041110
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3
Sample Amt:	125 mL		Lab File ID:	2210525A_59.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:
Prep Date:	05/07/21		Analysis Date:	05/26/21 Time: 0632
Prep Batch:	710580		Analytical Batch:	712118
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	V U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	3.50	U	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	3.00	U	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	3.00	U	1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	2.00	U	0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	WL-FRB-01RE			
Collect Date:	04/29/21 Time: 0750		GCAL Sample ID:	22105041110RE			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210602C_40.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/07/21		Analysis Date:	06/03/21	Time:	0357	
Prep Batch:	710580		Analytical Batch:	712820			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Di	lution QSN	A B15	
CONCENTRATI	ON UNITS: ng/L			/			
CAS	ANALYTE	_	RESULT Q	DL	LOD)	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid		3.00 U	1.50	3.00		4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-05-SB-0	0-02		
Collect Date:	04/28/21 Time: 1220		GCAL Sample ID:	22105041111			
Matrix:	Solid % Moisture: 14.6		Instrument ID:	QQQ1			
Sample Amt:	5 g		Lab File ID:	2210515A_27.c	L		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M		2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	1703	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	Dilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.234	U	0.070	0.234	1.17
39108-34-4	8:2 Fluorotelomersulfonic acid	0.117	U	0.035	0.117	1.17
2991-50-6	NEtFOSAA	0.117	U	0.035	0.117	1.17
2355-31-9	NMeFOSAA	0.059	U	0.023	0.059	1.17
375-73-5	Perfluorobutanesulfonic acid	0.059	υ	0.023	0.059	1.17
375-22-4	Perfluorobutanoic acid	0.117	U	0.047	0.117	1.17
335-76-2	Perfluorodecanoic acid	0.117	U	0.047	0.117	1.17
307-55-1	Perfluorododecanoic acid	0.092	J	0.023	0.059	1.17
375-85-9	Perfluoroheptanoic acid	0.059	U	0.023	0.059	1.17
307-24-4	Perfluorohexanoic acid	0.042	J	0.023	0.059	1.17
375-95-1	Perfluorononanoic acid	0.059	U	0.023	0.059	1.17
1763-23-1	Perfluorooctanesulfonic acid	0.515	J	0.059	0.234	1.17
335-67-1	Perfluorooctanoic acid	0.234	U	0.094	0.234	1.17
2706-90-3	Perfluoropentanoic acid	0.059	U	0.023	0.059	1.17
376-06-7	Perfluorotetradecanoic acid	0.063	J	0.023	0.059	1.17
72629-94-8	Perfluorotridecanoic acid	0.313	J	0.035	0.117	1.17
2058-94-8	Perfluoroundecanoic acid	0.451	J	0.023	0.059	1.17

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-05-SB-00-02RE
Collect Date:	04/28/21 Time: 1220		GCAL Sample ID:	22105041111RE
Matrix:	Solid % Moisture: 14.6		Instrument ID:	QQQ3
Sample Amt:	5 g		Lab File ID:	2210520A_52.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time: 0619
Prep Batch:	710837		Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg			
CAS	ANALYTE		RESULT O	

0.110

0.035

J

0.117

1.17

355-46-4

Perfluorohexanesulfonic acid

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-05-SB-02-04
Collect Date:	04/28/21 Time: 1223		GCAL Sample ID:	22105041113
Matrix:	Solid % Moisture: 7.2		Instrument ID:	QQQ1
Sample Amt:	5 g		Lab File ID:	2210515A_28.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time: 1721
Prep Batch:	710837		Analytical Batch:	711275
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.216	U	0.065	0.216	1.08
39108-34-4	8:2 Fluorotelomersulfonic acid	0.108	U	0.032	0.108	1.08
2991-50-6	NEtFOSAA	0.108	U	0.032	0.108	1.08
2355-31-9	NMeFOSAA	0.054	U	0.022	0.054	1.08
375-73-5	Perfluorobutanesulfonic acid	0.054	U	0.022	0.054	1.08
375-22-4	Perfluorobutanoic acid	0.108	U	0.043	0.108	1.08
335-76-2	Perfluorodecanoic acid	0.108	U	0.043	0.108	1.08
307-55-1	Perfluorododecanoic acid	0.032	J	0.022	0.054	1.08
375-85-9	Perfluoroheptanoic acid	0.054	U	0.022	0.054	1.08
307-24-4	Perfluorohexanoic acid	0.048	J	0.022	0.054	1.08
375-95-1	Perfluorononanoic acid	0.023	J	0.022	0.054	1.08
1763-23-1	Perfluorooctanesulfonic acid	0.196	J	0.054	0.216	1.08
335-67-1	Perfluorooctanoic acid	0.216	U	0.086	0.216	1.08
2706-90-3	Perfluoropentanoic acid	0.023	J	0.022	0.054	1.08
376-06-7	Perfluorotetradecanoic acid	0.022	J	0.022	0.054	1.08
72629-94-8	Perfluorotridecanoic acid	0.098	J	0.032	0.108	1.08
2058-94-8	Perfluoroundecanoic acid	0.162	J	0.022	0.054	1.08

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	_		Client Sample ID:	AOI01-05-SB-02-04RE	
Collect Date:	04/28/21 Time:	1223		GCAL Sample ID:	22105041113RE	
Matrix:	Solid % Moisture:	7.2		Instrument ID:	QQQ3	
Sample Amt:	5 <u>g</u>			Lab File ID:	2210520A_53.d	
Injection Vol.:	1.0	((µL)	GC Column:	ACC-C18-30M ID	<u>2.1</u> (mm)
Prep Final Vol.:	1000	((µL)	Dilution Factor:	1 Analyst:	RXJ
Prep Date:	05/11/21			Analysis Date:	05/21/21 Time:	0633
Prep Batch:	710837			Analytical Batch:	711722	
Prep Method:	PFAS ID QSM B15 Prep			Analytical Method:	PFAS Isotope Dilution QS	M B15
CONCENTRATI	ON UNITS: ug/kg					

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.058	J	0.032	0.108	1.08

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-05-SB-04-06
Collect Date:	04/28/21 Time: 1225		GCAL Sample ID:	22105041114
Matrix:	Solid % Moisture: 15.8		Instrument ID:	QQQ1
Sample Amt:	5.03 g		Lab File ID:	2210515A_29.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time: 1738
Prep Batch:	710837		Analytical Batch:	711275
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.236	U	0.071	0.236	1.18
39108-34-4	8:2 Fluorotelomersulfonic acid	0.118	U	0.035	0.118	1.18
2991-50-6	NEtFOSAA	0.118	U	0.035	0.118	1.18
2355-31-9	NMeFOSAA	0.059	U	0.024	0.059	1.18
375-73-5	Perfluorobutanesulfonic acid	0.059	U	0.024	0.059	1.18
375-22-4	Perfluorobutanoic acid	0.118	U	0.047	0.118	1.18
335-76-2	Perfluorodecanoic acid	0.118	U	0.047	0.118	1.18
307-55-1	Perfluorododecanoic acid	0.059	U	0.024	0.059	1.18
375-85-9	Perfluoroheptanoic acid	0.059	U	0.024	0.059	1.18
307-24-4	Perfluorohexanoic acid	0.059	U	0.024	0.059	1.18
375-95-1	Perfluorononanoic acid	0.059	U	0.024	0.059	1.18
1763-23-1	Perfluorooctanesulfonic acid	0.300	J	0.059	0.236	1.18
335-67-1	Perfluorooctanoic acid	0.236	U	0.094	0.236	1.18
2706-90-3	Perfluoropentanoic acid	0.059	U	0.024	0.059	1.18
376-06-7	Perfluorotetradecanoic acid	0.059	U	0.024	0.059	1.18
72629-94-8	Perfluorotridecanoic acid	0.118	U	0.035	0.118	1.18
2058-94-8	Perfluoroundecanoic acid	0.059	U	0.024	0.059	1.18

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	A0101-05-SB-04-06RE
Collect Date:	04/28/21 Time: 1225	GCAL Sample ID:	22105041114RE
Matrix:	Solid % Moisture: 15.8	instrument ID:	QQQ3
Sample Amt:	5.03 g	Lab File ID:	2210520A_54.d
Injection Vol.:	1.0 (µL) GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	<u>1000</u> (µL) Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21	Analysis Date:	05/21/21 Time: 0648
Prep Batch:	710837	Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg		

CAS	ANALYTE	RESULT	Q	DL.	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.118	U	0.035	0.118	1.18

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-06-SB-00	0-02		
Collect Date:	04/28/21 Time: 0940		GCAL Sample ID:	22105041116			
Matrix:	Solid % Moisture: 10.7		Instrument ID:	QQQ1			
Sample Amt:	5.03 g		Lab File ID:	2210515A_31.d			
Injection Vol.:	1.0 ((µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000 (μL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	1813	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	ilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.223	U	0.067	0.223	1.11
39108-34-4	8:2 Fluorotelomersulfonic acid	0.111	U	0.033	0.111	1.11
2991-50-6	NEtFOSAA	0.111	U	0.033	0.111	1.11
2355-31-9	NMeFOSAA	0.056	U	0.022	0.056	1.11
375-73-5	Perfluorobutanesulfonic acid	0.056	U	0.022	0.056	1.11
375-22-4	Perfluorobutanoic acid	0.235	J	0.045	0.111	1.11
335-76-2	Perfluorodecanoic acid	0.116	J	0.045	0.111	1.11
307-55-1	Perfluorododecanoic acid	0.023	J	0.022	0.056	1.11
375-85-9	Perfluoroheptanoic acid	0.100	J	0.022	0.056	1.11
307-24-4	Perfluorohexanoic acid	0.121	J	0.022	0.056	1.11
375-95-1	Perfluorononanoic acid	0.120	J	0.022	0.056	1.11
1763-23-1	Perfluorooctanesulfonic acid	0.445	J	0.056	0.223	1.11
335-67-1	Perfluorooctanoic acid	0.173	J	0.089	0.223	1.11
2706-90-3	Perfluoropentanoic acid	0.189	J	0.022	0.056	1.11
376-06-7	Perfluorotetradecanoic acid	0.056	U	0.022	0.056	1.11
72629-94-8	Perfluorotridecanoic acid	0.082	J	0.033	0.111	1.11
2058-94-8	Perfluoroundecanoic acid	0.051	J	0.022	0.056	1.11

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	A0101-06-SB-00-02RE
Collect Date:	04/28/21 Time: 0940	GCAL Sample ID:	22105041116RE
Matrix:	Solid % Moisture: 10.7	Instrument ID:	QQQ3
Sample Amt:	5.03 g	Lab File ID:	2210520A_55.d
Injection Vol.:	<u>1.0</u> (μL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21	Analysis Date:	05/21/21 Time: 0703
Prep Batch:	710837	Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg		

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ	
355-46-4	Perfluorohexanesulfonic acid	0.111	U	0.033	0.111	1.11	

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-06-SB-0	3-05		
Collect Date:	04/28/21 Time: 1000		GCAL Sample ID:	22105041117			
Matrix:	Solid % Moisture: 28.5		Instrument ID:	QQQ3			
Sample Amt:	5 g		Lab File ID:	2210520A_56.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/11/21		Analysis Date:	05/21/21	Time:	0717	
Prep Batch:	710837		Analytical Batch:	711722			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	ilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.280	U	0.084	0.280	1.40
39108-34-4	8:2 Fluorotelomersulfonic acid	0.140	U	0.042	0.140	1.40
2991-50-6	NEtFOSAA	0.140	U	0.042	0.140	1.40
2355-31-9	NMeFOSAA	0.070	U	0.028	0.070	1.40
375-73-5	Perfluorobutanesulfonic acid	0.070	U	0.028	0.070	1.40
375-22-4	Perfluorobutanoic acid	0.140	U	0.056	0.140	1.40
335-76-2	Perfluorodecanoic acid	0.140	U	0.056	0.140	1.40
307-55-1	Perfluorododecanoic acid	0.070	U	0.028	0.070	1.40
375-85-9	Perfluoroheptanoic acid	0.070	U	0.028	0.070	1.40
355-46-4	Perfluorohexanesulfonic acid	0.140	U	0.042	0.140	1.40
307-24-4	Perfluorohexanoic acid	0.039	J	0.028	0.070	1.40
375-95-1	Perfluorononanoic acid	0.070	U	0.028	0.070	1.40
1763-23-1	Perfluorooctanesulfonic acid	0.280	U	0.070	0.280	1.40
335-67-1	Perfluorooctanoic acid	0.280	U	0.112	0.280	1.40
2706-90-3	Perfluoropentanoic acid	0.070	U	0.028	0.070	1.40
376-06-7	Perfluorotetradecanoic acid	0.070	U	0.028	0.070	1.40
72629-94-8	Perfluorotridecanoic acid	0.140	U	0.042	0.140	1.40
2058-94-8	Perfluoroundecanoic acid	0.070	U	0.028	0.070	1.40

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-07-SB-00-02	
Collect Date:	04/28/21 Time: 0845		GCAL Sample ID:	22105041118	
Matrix:	Solid % Moisture: 8.6		Instrument ID:	QQQ1	
Sample Amt:	<u>5 g</u>		Lab File ID:	2210515A_33.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time:	1847
Prep Batch:	710837		Analytical Batch:	711275	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	M B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.219	U	0.066	0.219	1.09
39108-34-4	8:2 Fluorotelomersulfonic acid	0.109	U	0.033	0.109	1.09
2991-50-6	NEtFOSAA	0.109	U	0.033	0.109	1.09
2355-31-9	NMeFOSAA	0.055	U	0.022	0.055	1.09
375-73-5	Perfluorobutanesulfonic acid	0.055	U	0.022	0.055	1.09
375-22-4	Perfluorobutanoic acid	0.096	J	0.044	0.109	1.09
335-76-2	Perfluorodecanoic acid	0.183	J	0.044	0.109	1.09
307-55-1	Perfluorododecanoic acid	0.023	J	0.022	0.055	1.09
375-85-9	Perfluoroheptanoic acid	0.026	J	0.022	0.055	1.09
307-24-4	Perfluorohexanoic acid	0.046	J	0.022	0.055	1.09
375-95-1	Perfluorononanoic acid	0.114	J	0.022	0.055	1.09
1763-23-1	Perfluorooctanesulfonic acid	0.970	J	0.055	0.219	1.09
335-67-1	Perfluorooctanoic acid	0.219	U	0.088	0.219	1.09
2706-90-3	Perfluoropentanoic acid	0.031	J	0.022	0.055	1.09
376-06-7	Perfluorotetradecanoic acid	0.055	U	0.022	0.055	1.09
72629-94-8	Perfluorotridecanoic acid	0.035	J	0.033	0.109	1.09
2058-94-8	Perfluoroundecanoic acid	0.076	J	0.022	0.055	1.09

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411			Client Sample ID:	A0101-07-SB-00-02RE	
Collect Date:	04/28/21 Time:	0845		GCAL Sample ID:	22105041118RE	
Matrix:	Solid % Moisture:	8.6		Instrument ID:	QQQ3	
Sample Amt:	5 g			Lab File ID:	2210520A_57.d	
Injection Vol.:	1.0		(µL)	GC Column:	ACC-C18-30M ID	<u>2.1</u> (mm)
Prep Final Vol.:	1000		(µL)	Dilution Factor:	1 Analyst:	RXJ
Prep Date:	05/11/21			Analysis Date:	05/21/21 Time:	0732
Prep Batch:	710837			Analytical Batch:	711722	
Prep Method:	PFAS ID QSM B15 Prep			Analytical Method:	PFAS Isotope Dilution QS	M B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.068	J	0.033	0.109	1.09

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-07-SB-00-02-D
Collect Date:	04/28/21 Time: 0845	GCAL Sample ID:	22105041119
Matrix:	Solid % Moisture: 8.4	Instrument ID:	QQQ1
Sample Amt:	5.01 g	Lab File ID:	2210515A_34.d
Injection Vol.:	<u>1.0</u> (μL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:	05/11/21	Analysis Date:	05/15/21 Time: 1905
Prep Batch:	710837	Analytical Batch:	711275
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.218	Ū	0.065	0.218	1.09
39108-34-4	8:2 Fluorotelomersulfonic acid	0.109	U	0.033	0.109	1.09
2991-50-6	NEtFOSAA	0.109	U	0.033	0.109	1.09
2355-31-9	NMeFOSAA	0.054	U	0.022	0.054	1.09
375-73-5	Perfluorobutanesulfonic acid	0.054	U	0.022	0.054	1.09
375-22-4	Perfluorobutanoic acid	0.069	J	0.044	0.109	1.09
335-76-2	Perfluorodecanoic acid	0.116	J	0.044	0.109	1.09
307-55-1	Perfluorododecanoic acid	0.022	J	0.022	0.054	1.09
375-85-9	Perfluoroheptanoic acid	0.026	J	0.022	0.054	1.09
307-24-4	Perfluorohexanoic acid	0.040	J	0.022	0.054	1.09
375-95-1	Perfluorononanoic acid	0.070	J	0.022	0.054	1.09
1763-23-1	Perfluorooctanesulfonic acid	1.18		0.054	0.218	1.09
335-67-1	Perfluorooctanoic acid	0.218	U	0.087	0.218	1.09
2706-90-3	Perfluoropentanoic acid	0.031	J	0.022	0.054	1.09
376-06-7	Perfluorotetradecanoic acid	0.054	U	0.022	0.054	1.09
72629-94-8	Perfluorotridecanoic acid	0.035	J	0.033	0.109	1.09
2058-94-8	Perfluoroundecanoic acid	0.055	J	0.022	0.054	1.09

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-07-SB-00-02-DRE
Collect Date:	04/28/21 Time: 0845	_	GCAL Sample ID:	22105041119RE
Matrix:	Solid % Moisture: 8.4		Instrument ID:	QQQ3
Sample Amt:	5.01 g		Lab File ID:	2210520A_58.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time: 0747
Prep Batch:	710837		Analytical Batch:	711722
Prep Method:	PFAS ID QSM 815 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg			
CAS	ΔΝΔΙ ΥΤΕ			DI 10D 100

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.059	J	0.033	0.109	1.09

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-07-SB-02-04
Collect Date:	04/28/21 Time: 0850	GCAL Sample ID:	22105041120
Matrix:	Solid % Moisture: 7.1	Instrument ID:	QQQ1
Sample Amt:	5.01 g	Lab File ID:	2210515A_35.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:	05/11/21	Analysis Date:	05/15/21 Time: 1922
Prep Batch:	710837	Analytical Batch:	711275
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.215	U	0.064	0.215	1.07
39108-34-4	8:2 Fluorotelomersulfonic acid	0.107	U	0.032	0.107	1.07
2991-50-6	NEtFOSAA	0.107	U	0.032	0.107	1.07
2355-31-9	NMeFOSAA	0.054	U	0.021	0.054	1.07
375-73-5	Perfluorobutanesulfonic acid	0.054	υ	0.021	0.054	1.07
375-22-4	Perfluorobutanoic acid	0.107	U	0.043	0.107	1.07
335-76-2	Perfluorodecanoic acid	0.107	U	0.043	0.107	1.07
307-55-1	Perfluorododecanoic acid	0.054	U	0.021	0.054	1.07
375-85-9	Perfluoroheptanoic acid	0.054	U	0.021	0.054	1.07
307-24-4	Perfluorohexanoic acid	0.029	J	0.021	0.054	1.07
375-95-1	Perfluorononanoic acid	0.054	U	0.021	0.054	1.07
1763-23-1	Perfluorooctanesulfonic acid	0.169	J	0.054	0.215	1.07
335-67-1	Perfluorooctanoic acid	0.215	U	0.086	0.215	1.07
2706-90-3	Perfluoropentanoic acid	0.054	U	0.021	0.054	1.07
376-06-7	Perfluorotetradecanoic acid	0.054	U	0.021	0.054	1.07
72629-94-8	Perfluorotridecanoic acid	0.107	U	0.032	0.107	1.07
2058-94-8	Perfluoroundecanoic acid	0.054	U	0.021	0.054	1.07

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	1050411			AOI01-07-SB-02-04RE			
Collect Date:	04/28/21 Time:	0850		GCAL Sample ID:	22105041120R	E		
Matrix:	Solid % Moisture:	7.1		Instrument ID:	QQQ3			
Sample Amt:	5.01 g			Lab File ID:	2210520A_59.c	i		_
Injection Vol.:	1.0		(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000		(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/11/21			Analysis Date:	05/21/21	Time:	0801	
Prep Batch:	710837			Analytical Batch:	711722			
Prep Method:	PFAS ID QSM B15 Prep			Analytical Method:	PFAS Isotope D	Dilution QS	M B15	
CONCENTRATI	ON UNITS: ug/kg							

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.107	U	0.032	0.107	1.07

FORM I SV-1

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-07-SB-04-06	
Collect Date:	04/28/21 Time: 0855		GCAL Sample ID:	22105041121	
Matrix:	Solid % Moisture: 14.1		Instrument ID:	QQQ1	
Sample Amt:	5.01 g		Lab File ID:	2210515A_36.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	<u>2.1</u> (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time:	1939
Prep Batch:	710837		Analytical Batch:	711275	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	M B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.232	U	0.070	0.232	1.16
39108-34-4	8:2 Fluorotelomersulfonic acid	0.116	U	0.035	0.116	1.16
2991-50-6	NEtFOSAA	0.116	U	0.035	0.116	1.16
2355-31-9	NMeFOSAA	0.058	U	0.023	0.058	1.16
375-73-5	Perfluorobutanesulfonic acid	0.058	U	0.023	0.058	1.16
375-22-4	Perfluorobutanoic acid	0.116	U	0.046	0.116	1.16
335-76-2	Perfluorodecanoic acid	0.116	U	0.046	0.116	1.16
307-55-1	Perfluorododecanoic acid	0.058	U	0.023	0.058	1.16
375-85-9	Perfluoroheptanoic acid	0.058	U	0.023	0.058	1.16
307-24-4	Perfluorohexanoic acid	0.028	J	0.023	0.058	1.16
375-95-1	Perfluorononanoic acid	0.058	U	0.023	0.058	1.16
1763-23-1	Perfluorooctanesulfonic acid	0.299	J	0.058	0.232	1.16
335-67-1	Perfluorooctanoic acid	0.232	U	0.093	0.232	1.16
2706-90-3	Perfluoropentanoic acid	0.058	U	0.023	0.058	1.16
376-06-7	Perfluorotetradecanoic acid	0.058	U	0.023	0.058	1.16
72629-94-8	Perfluorotridecanoic acid	0.116	U	0.035	0.116	1.16
2058-94-8	Perfluoroundecanoic acid	0.058	U	0.023	0.058	1.16

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-07-SB-04-06RE
Collect Date:	04/28/21 Time: 0855		GCAL Sample ID:	22105041121RE
Matrix:	Solid % Moisture: 14.1		Instrument ID:	QQQ3
Sample Amt:	<u>5.01 g</u>		Lab File ID:	2210520A_60.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time: 0816
Prep Batch:	710837		Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.116	U	0.035	0.116	1.16

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-08-SB-00-	02		
Collect Date:	04/28/21 Time: (0750	GCAL Sample ID:	22105041122			
Matrix:	Solid % Moisture: 6	6.6	Instrument ID:	QQQ3			
Sample Amt:	<u>5 g</u>		Lab File ID:	2210520A_61.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 A	nalyst:	RXJ	
Prep Date:	05/11/21		Analysis Date:	05/21/21	Time:	0831	
Prep Batch:	710837		Analytical Batch:	711722			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dil	ution QSN	/I B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.214	U	0.064	0.214	1.07
39108-34-4	8:2 Fluorotelomersulfonic acid	0.107	U	0.032	0.107	1.07
2991-50-6	NEtFOSAA	0.107	U	0.032	0.107	1.07
2355-31-9	NMeFOSAA	0.054	U	0.021	0.054	1.07
375-73-5	Perfluorobutanesulfonic acid	0.054	U	0.021	0.054	1.07
375-22-4	Perfluorobutanoic acid	0.109	J	0.043	0.107	1.07
335-76-2	Perfluorodecanoic acid	0.082	J	0.043	0.107	1.07
307-55-1	Perfluorododecanoic acid	0.046	J	0.021	0.054	1.07
375-85-9	Perfluoroheptanoic acid	0.049	J	0.021	0.054	1.07
355-46-4	Perfluorohexanesulfonic acid	0.217	J	0.032	0.107	1.07
307-24-4	Perfluorohexanoic acid	0.087	J	0.021	0.054	1.07
375-95-1	Perfluorononanoic acid	0.039	J	0.021	0.054	1.07
1763-23-1	Perfluorooctanesulfonic acid	4.28	J	0.054	0.214	1.07
335-67-1	Perfluorooctanoic acid	0.155	J	0.086	0.214	1.07
2706-90-3	Perfluoropentanoic acid	0.098	J	0.021	0.054	1.07
376-06-7	Perfluorotetradecanoic acid	0.054	U	0.021	0.054	1.07
72629-94-8	Perfluorotridecanoic acid	0.067	J	0.032	0.107	1.07
2058-94-8	Perfluoroundecanoic acid	0.282	J	0.021	0.054	1.07

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-08-SB-02	2-04		
Collect Date:	04/28/21 Time: 0755		GCAL Sample ID:	22105041125			
Matrix:	Solid % Moisture: 15.1		Instrument ID:	QQQ1			
Sample Amt:	5 g		Lab File ID:	2210515A_40.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	-
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	2049	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	ilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.236	U	0.071	0.236	1.18
39108-34-4	8:2 Fluorotelomersulfonic acid	0.118	U	0.035	0.118	1.18
2991-50-6	NEtFOSAA	0.118	U	0.035	0.118	1.18
2355-31-9	NMeFOSAA	0.059	U	0.024	0.059	1.18
375-73-5	Perfluorobutanesulfonic acid	0.059	U	0.024	0.059	1.18
375-22-4	Perfluorobutanoic acid	0.118	U	0.047	0.118	1.18
335-76-2	Perfluorodecanoic acid	0.057	J	0.047	0.118	1.18
307-55-1	Perfluorododecanoic acid	0.059	U	0.024	0.059	1.18
375-85-9	Perfluoroheptanoic acid	0.030	J	0.024	0.059	1.18
307-24-4	Perfluorohexanoic acid	0.048	J	0.024	0.059	1.18
375-95-1	Perfluorononanoic acid	0.164	J	0.024	0.059	1.18
335-67-1	Perfluorooctanoic acid	0.285	J	0.094	0.236	1.18
2706-90-3	Perfluoropentanoic acid	0.027	J	0.024	0.059	1.18
376-06-7	Perfluorotetradecanoic acid	0.059	U	0.024	0.059	1.18
72629-94-8	Perfluorotridecanoic acid	0.118	U	0.035	0.118	1.18
2058-94-8	Perfluoroundecanoic acid	0.059	U	0.024	0.059	1.18

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-08-SB-0	2-04RE		
Collect Date:	04/28/21 Time: 0755		GCAL Sample ID:	22105041125R	E		
Matrix:	Solid % Moisture: 15.1		Instrument ID:	QQQ3			
Sample Amt:	5 g		Lab File ID:	2210520A_66.c	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/11/21		Analysis Date:	05/21/21	Time:	0944	
Prep Batch:	710837		Analytical Batch:	711722			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	
CONCENTRATI	ON UNITS: ua/ka						

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.061	J	0.035	0.118	1.18

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-08-SB-0	2-04DL		
Collect Date:	04/28/21 Time: 0755		GCAL Sample ID:	22105041125D	L		
Matrix:	Solid % Moisture: 15.1		Instrument ID:	QQQ3			
Sample Amt:	5 g		Lab File ID:	2210520A_80.d	1		_
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	10	Analyst:	RXJ	
Prep Date:	05/11/21		Analysis Date:	05/21/21	Time:	1308	
Prep Batch:	710837		Analytical Batch:	711722			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope E	Dilution QS	M B15	
CONCENTRATI	ON UNITS: ug/kg						

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
1763-23-1	Perfluorooctanesulfonic acid	41.5		0.589	2.36	11.8

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-08-SB-04-06	
Collect Date:	04/28/21 Time:	0800	GCAL Sample ID:	22105041126	
Matrix:	Solid % Moisture:	23.2	Instrument ID:	QQQ1	
Sample Amt:	5.01 g		Lab File ID:	2210515A_42.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time	: 2123
Prep Batch:	710837		Analytical Batch:	711275	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution Q	SM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.214	J	0.078	0.260	1.30
39108-34-4	8:2 Fluorotelomersulfonic acid	0.130	U	0.039	0.130	1.30
2991-50-6	NEtFOSAA	0.130	U	0.039	0.130	1.30
2355-31-9	NMeFOSAA	0.065	U	0.026	0.065	1.30
375-73-5	Perfluorobutanesulfonic acid	0.065	U	0.026	0.065	1.30
375-22-4	Perfluorobutanoic acid	0.130	U	0.052	0.130	1.30
335-76-2	Perfluorodecanoic acid	0.130	U	0.052	0.130	1.30
307-55-1	Perfluorododecanoic acid	0.065	U	0.026	0.065	1.30
375-85-9	Perfluoroheptanoic acid	0.065	U	0.026	0.065	1.30
307-24-4	Perfluorohexanoic acid	0.119	J	0.026	0.065	1.30
375-95-1	Perfluorononanoic acid	0.065	U	0.026	0.065	1.30
1763-23-1	Perfluorooctanesulfonic acid	0.260	U	0.065	0.260	1.30
335-67-1	Perfluorooctanoic acid	0.260	U	0.104	0.260	1.30
2706-90-3	Perfluoropentanoic acid	0.065	U	0.026	0.065	1.30
376-06-7	Perfluorotetradecanoic acid	0.065	U	0.026	0.065	1.30
72629-94-8	Perfluorotridecanoic acid	0.130	U	0.039	0.130	1.30
2058-94-8	Perfluoroundecanoic acid	0.065	U	0.026	0.065	1.30

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-08-SB-04-06RE
Collect Date:	04/28/21 Time: 0800		GCAL Sample ID:	22105041126RE
Matrix:	Solid % Moisture: 23.2		Instrument ID:	QQQ3
Sample Amt:	5.01 g		Lab File ID:	2210520A_67.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time: 0958
Prep Batch:	710837		Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.130	U	0.039	0.130	1.30
					·	

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Cli	ient Sample ID:	AOI01-09-SB-00-0	2		
Collect Date:	04/27/21 Time: 1400	G	CAL Sample ID:	22105041127			
Matrix:	Solid % Moisture: 12.9	Ins	strument ID:	QQQ3			
Sample Amt:	5.02 g	La	b File ID:	2210517A_49.d			
Injection Vol.:	1.0 (μL) GC	C Column:	ACC-C18-30M	_ ID	2.1	(mm)
Prep Final Vol.:	1000 (μL) Dil	ution Factor:	<u>1</u> An	alyst:	RXJ	
Prep Date:	05/10/21	An	alysis Date:	05/18/21	Time:	0428	
Prep Batch:	710742	An	alytical Batch:	711477			
Prep Method:	PFAS ID QSM B15 Prep	An	alytical Method:	PFAS Isotope Dilut	tion QSN	/I B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.229	U	0.069	0.229	1.14
39108-34-4	8:2 Fluorotelomersulfonic acid	0.114	U	0.034	0.114	1.14
2991-50-6	NEtFOSAA	0.114	U	0.034	0.114	1.14
2355-31-9	NMeFOSAA	0.057	U	0.023	0.057	1.14
375-73-5	Perfluorobutanesulfonic acid	0.139	J	0.023	0.057	1.14
375-22-4	Perfluorobutanoic acid	0.258	J	0.046	0.114	1.14
335-76-2	Perfluorodecanoic acid	0.098	J	0.046	0.114	1.14
307-55-1	Perfluorododecanoic acid	0.038	J	0.023	0.057	1.14
375-85-9	Perfluoroheptanoic acid	0.086	J	0.023	0.057	1.14
355-46-4	Perfluorohexanesulfonic acid	0.318	J	0.034	0.114	1.14
307-24-4	Perfluorohexanoic acid	0.183	J	0.023	0.057	1.14
375-95-1	Perfluorononanoic acid	0.161	J	0.023	0.057	1.14
1763-23-1	Perfluorooctanesulfonic acid	2.17		0.057	0.229	1.14
335-67-1	Perfluorooctanoic acid	0.200	J	0.092	0.229	1.14
2706-90-3	Perfluoropentanoic acid	0.180	J	0.023	0.057	1.14
376-06-7	Perfluorotetradecanoic acid	0.057	U	0.023	0.057	1.14
72629-94-8	Perfluorotridecanoic acid	0.147	J	0.034	0.114	1.14
2058-94-8	Perfluoroundecanoic acid	0.170	J	0.023	0.057	1.14

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-09-SB-00-02-D
Collect Date:	04/27/21 Time: 1400	GCAL Sample ID:	22105041128
Matrix:	Solid % Moisture: 11.6	instrument ID:	QQQ3
Sample Amt:	5 g	Lab File ID:	2210517A_50.d
Injection Vol.:	<u>1.0</u> (μL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/10/21	Analysis Date:	05/18/21 Time: 0443
Prep Batch:	710742	Analytical Batch:	711477
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.226	Ú	0.068	0.226	1.13
39108-34-4	8:2 Fluorotelomersulfonic acid	0.113	U	0.034	0.113	1.13
2991-50-6	NEtFOSAA	0.113	U	0.034	0.113	1.13
2355-31-9	NMeFOSAA	0.057	U	0.023	0.057	1.13
375-73-5	Perfluorobutanesulfonic acid	0.137	J	0.023	0.057	1.13
375-22-4	Perfluorobutanoic acid	0.149	J	0.045	0.113	1.13
335-76-2	Perfluorodecanoic acid	0.070	J	0.045	0.113	1.13
307-55-1	Perfluorododecanoic acid	0.027	J	0.023	0.057	1.13
375-85-9	Perfluoroheptanoic acid	0.056	J	0.023	0.057	1.13
355-46-4	Perfluorohexanesulfonic acid	0.261	J	0.034	0.113	1.13
307-24-4	Perfluorohexanoic acid	0.108	J	0.023	0.057	1.13
375-95-1	Perfluorononanoic acid	0.111	J	0.023	0.057	1.13
1763-23-1	Perfluorooctanesulfonic acid	1.77		0.057	0.226	1.13
335-67-1	Perfluorooctanoic acid	0.139	J	0.090	0.226	1.13
2706-90-3	Perfluoropentanoic acid	0.107	J	0.023	0.057	1.13
376-06-7	Perfluorotetradecanoic acid	0.057	U	0.023	0.057	1.13
72629-94-8	Perfluorotridecanoic acid	0.124	J	0.034	0.113	1.13
2058-94-8	Perfluoroundecanoic acid	0.120	J	0.023	0.057	1.13

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-09-SB-05-07	
Collect Date:	04/27/21 Time: 1410		GCAL Sample ID:	22105041129	_
Matrix:	Solid % Moisture: 14.0		Instrument ID:	QQQ3	
Sample Amt:	5.01 g		Lab File ID:	2210517A_51.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mn	n)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ	_
Prep Date:	05/10/21		Analysis Date:	05/18/21 Time: 0457	
Prep Batch:	710742		Analytical Batch:	711477	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.232	U	0.070	0.232	1.16
39108-34-4	8:2 Fluorotelomersulfonic acid	0.116	U	0.035	0.116	1.16
2991-50-6	NEtFOSAA	0.116	U	0.035	0.116	1.16
2355-31-9	NMeFOSAA	0.058	U	0.023	0.058	1.16
375-73-5	Perfluorobutanesulfonic acid	0.117	J	0.023	0.058	1.16
375-22-4	Perfluorobutanoic acid	0.116	U	0.046	0.116	1.16
335-76-2	Perfluorodecanoic acid	0.116	U	0.046	0.116	1.16
307-55-1	Perfluorododecanoic acid	0.058	U	0.023	0.058	1.16
375-85-9	Perfluoroheptanoic acid	0.058	U	0.023	0.058	1.16
355-46-4	Perfluorohexanesulfonic acid	0.039	J	0.035	0.116	1.16
307-24-4	Perfluorohexanoic acid	0.035	J	0.023	0.058	1.16
375-95-1	Perfluorononanoic acid	0.026	J	0.023	0.058	1.16
1763-23-1	Perfluorooctanesulfonic acid	0.441	J	0.058	0.232	1.16
335-67-1	Perfluorooctanoic acid	0.232	U	0.093	0.232	1.16
2706-90-3	Perfluoropentanoic acid	0.058	U	0.023	0.058	1.16
376-06-7	Perfluorotetradecanoic acid	0.058	U	0.023	0.058	1.16
72629-94-8	Perfluorotridecanoic acid	0.116	U	0.035	0.116	1.16
2058-94-8	Perfluoroundecanoic acid	0.058	U	0.023	0.058	1.16

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-09-SB-08-10	
Collect Date:	04/27/21 Time: 1411		GCAL Sample ID:	22105041130	
Matrix:	Solid % Moisture: 13.3		Instrument ID:	QQQ3	
Sample Amt:	5.01 g		Lab File ID:	2210517A_52.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	D <u>2.1</u> (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst	RXJ
Prep Date:	05/10/21		Analysis Date:	05/18/21 Time	e: 0512
Prep Batch:	710742		Analytical Batch:	711477	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution (QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.230	U	0.069	0.230	1.15
39108-34-4	8:2 Fluorotelomersulfonic acid	0.115	U	0.035	0.115	1.15
2991-50-6	NEtFOSAA	0.115	U	0.035	0.115	1.15
2355-31-9	NMeFOSAA	0.058	U	0.023	0.058	1.15
375-73-5	Perfluorobutanesulfonic acid	0.145	J	0.023	0.058	1.15
375-22-4	Perfluorobutanoic acid	0.115	U	0.046	0.115	1.15
335-76-2	Perfluorodecanoic acid	0.115	U	0.046	0.115	1.15
307-55-1	Perfluorododecanoic acid	0.058	U	0.023	0.058	1.15
375-85-9	Perfluoroheptanoic acid	0.058	U	0.023	0.058	1.15
355-46-4	Perfluorohexanesulfonic acid	0.081	J	0.035	0.115	1.15
307-24-4	Perfluorohexanoic acid	0.058	U	0.023	0.058	1.15
375-95-1	Perfluorononanoic acid	0.058	υ	0.023	0.058	1.15
1763-23-1	Perfluorooctanesulfonic acid	0.222	J	0.058	0.230	1.15
335-67-1	Perfluorooctanoic acid	0.230	U	0.092	0.230	1.15
2706-90-3	Perfluoropentanoic acid	0.058	U	0.023	0.058	1.15
376-06-7	Perfluorotetradecanoic acid	0.058	U	0.023	0.058	1.15
72629-94-8	Perfluorotridecanoic acid	0.115	U	0.035	0.115	1.15
2058-94-8	Perfluoroundecanoic acid	0.058	U	0.023	0.058	1.15

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-10-SB-00-02	
Collect Date:	04/28/21 Time: 1405		GCAL Sample ID:	22105041131	
Matrix:	Solid % Moisture: 8.2		Instrument ID:	QQQ1	
Sample Amt:	5.03 g		Lab File ID:	2210515A_43.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	MRA
Prep Date:	05/11/21		Analysis Date:	05/15/21 Time:	2140
Prep Batch:	710837		Analytical Batch:	711275	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	6M B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.217	U	0.065	0.217	1.08
39108-34-4	8:2 Fluorotelomersulfonic acid	0.108	U	0.032	0.108	1.08
2991-50-6	NEtFOSAA	0.108	U	0.032	0.108	1.08
2355-31-9	NMeFOSAA	0.054	U	0.022	0.054	1.08
375-73-5	Perfluorobutanesulfonic acid	0.054	U	0.022	0.054	1.08
375-22-4	Perfluorobutanoic acid	0.065	J	0.043	0.108	1.08
335-76-2	Perfluorodecanoic acid	0.324	J	0.043	0.108	1.08
307-55-1	Perfluorododecanoic acid	0.099	J	0.022	0.054	1.08
375-85-9	Perfluoroheptanoic acid	0.023	J	0.022	0.054	1.08
355-46-4	Perfluorohexanesulfonic acid	0.377	J	0.032	0.108	1.08
307-24-4	Perfluorohexanoic acid	0.080	J	0.022	0.054	1.08
375-95-1	Perfluorononanoic acid	0.054	U	0.022	0.054	1.08
1763-23-1	Perfluorooctanesulfonic acid	2.00		0.054	0.217	1.08
335-67-1	Perfluorooctanoic acid	0.217	U	0.087	0.217	1.08
2706-90-3	Perfluoropentanoic acid	0.044	J	0.022	0.054	1.08
376-06-7	Perfluorotetradecanoic acid	0.039	J	0.022	0.054	1.08
72629-94-8	Perfluorotridecanoic acid	0.475	J	0.032	0.108	1.08
2058-94-8	Perfluoroundecanoic acid	1.27		0.022	0.054	1.08

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-10-SB-00-02-D			
Collect Date:	04/28/21 Time: 1405		GCAL Sample ID:	22105041132			
Matrix:	Solid % Moisture: 8.1		instrument ID:	QQQ1			
Sample Amt:	5 g		Lab File ID:	2210515A_44.d			
Injection Vol.:	1.0 ((µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000 ((µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	2158	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS isotope D	ilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.218	U	0.065	0.218	1.09
39108-34-4	8:2 Fluorotelomersulfonic acid	0.109	U	0.033	0.109	1.09
2991-50-6	NEtFOSAA	0.109	U	0.033	0.109	1.09
2355-31-9	NMeFOSAA	0.054	U	0.022	0.054	1.09
375-73-5	Perfluorobutanesulfonic acid	0.054	U	0.022	0.054	1.09
375-22-4	Perfluorobutanoic acid	0.058	J	0.044	0.109	1.09
335-76-2	Perfluorodecanoic acid	0.290	J	0.044	0.109	1.09
307-55-1	Perfluorododecanoic acid	0.102	J	0.022	0.054	1.09
375-85-9	Perfluoroheptanoic acid	0.054	U	0.022	0.054	1.09
307-24-4	Perfluorohexanoic acid	0.068	J	0.022	0.054	1.09
375-95-1	Perfluorononanoic acid	0.053	J	0.022	0.054	1.09
1763-23-1	Perfluorooctanesulfonic acid	1.79		0.054	0.218	1.09
335-67-1	Perfluorooctanoic acid	0.218	U	0.087	0.218	1.09
2706-90-3	Perfluoropentanoic acid	0.035	J	0.022	0.054	1.09
376-06-7	Perfluorotetradecanoic acid	0.032	J	0.022	0.054	1.09
72629-94-8	Perfluorotridecanoic acid	0.509	J	0.033	0.109	1.09
2058-94-8	Perfluoroundecanoic acid	1.30		0.022	0.054	1.09

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-10-SB-00-02-DRE
Collect Date:	04/28/21 Time: 1405		GCAL Sample ID:	22105041132RE
Matrix:	Solid % Moisture: 8.1		Instrument ID:	QQQ3
Sample Amt:	<u>5 g</u>		Lab File ID:	2210520A_69.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1Analyst: RXJ
Prep Date:	05/11/21		Analysis Date:	05/21/21 Time: 1028
Prep Batch:	710837		Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.311	J	0.033	0.109	1.09

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-10-SB-0	3-05		
Collect Date:	04/28/21 Time: 1410		GCAL Sample ID:	22105041135			
Matrix:	Solid % Moisture: 19.1		Instrument ID:	QQQ1			
Sample Amt:	<u>5 g</u>		Lab File ID:	2210515A_73.0	i		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/12/21		Analysis Date:	05/16/21	Time:	0620	
Prep Batch:	710838		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.247	U	0.074	0.247	1.24
39108-34-4	8:2 Fluorotelomersulfonic acid	0.124	U	0.037	0.124	1.24
2991-50-6	NEtFOSAA	0.124	U	0.037	0.124	1.24
2355-31-9	NMeFOSAA	0.062	U	0.025	0.062	1.24
375-73-5	Perfluorobutanesulfonic acid	0.062	U	0.025	0.062	1.24
375-22-4	Perfluorobutanoic acid	0.066	J	0.049	0.124	1.24
335-76-2	Perfluorodecanoic acid	0.124	U	0.049	0.124	1.24
307-55-1	Perfluorododecanoic acid	0.062	U	0.025	0.062	1.24
375-85-9	Perfluoroheptanoic acid	0.033	J	0.025	0.062	1.24
355-46-4	Perfluorohexanesulfonic acid	0.297	JJ	0.037	0.124	1.24
307-24-4	Perfluorohexanoic acid	0.089	J	0.025	0.062	1.24
375-95-1	Perfluorononanoic acid	0.141	J	0.025	0.062	1.24
1763-23-1	Perfluorooctanesulfonic acid	0.795	J	0.062	0.247	1.24
335-67-1	Perfluorooctanoic acid	0.106	JJ	0.099	0.247	1.24
2706-90-3	Perfluoropentanoic acid	0.043	J	0.025	0.062	1.24
376-06-7	Perfluorotetradecanoic acid	0.062	U	0.025	0.062	1.24
72629-94-8	Perfluorotridecanoic acid	0.124	U	0.037	0.124	1.24
2058-94-8	Perfluoroundecanoic acid	0.062	U	0.025	0.062	1.24

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0I01-01-GW	
Collect Date:	04/27/21 Time: 1525		GCAL Sample ID:	22105041138	
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3	
Sample Amt:	125 mL		Lab File ID:	2210507B_44.d	
Injection Vol.:	1.0 (μL)	GC Column:	ACC-C18-30M ID 2	.1 (mm)
Prep Final Vol.:	1000 (μL)	Dilution Factor:	1 Analyst: R	XJ
Prep Date:	05/04/21		Analysis Date:	05/08/21 Time: 03	337
Prep Batch:	709960		Analytical Batch:	710901	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM E	315

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	9.38		0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	10.4		0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	8.75	1.15	0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	29.6		0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	7.66		0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	55.4		0.480	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	252		0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	92.3		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	290		0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	138		0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	57.3		0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	88.5		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	223		0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-02-GW
Collect Date:	04/28/21 Time: 0850		GCAL Sample ID:	22105041139
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3
Sample Amt:	125 mL		Lab File ID:	2210507B_45.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:
Prep Date:	05/04/21		Analysis Date:	05/08/21 Time: 0352
Prep Batch:	709960		Analytical Batch:	710901
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
39108-34-4	8:2 Fluorotelomersulfonic acid	16.9		0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	4.15		0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	58.1		0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	1.78	J	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	57.0		0.480	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	127		0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	169		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	32.3		0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	94.2		0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	40.5		0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	263		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-02-GWD	DL		
Collect Date:	04/28/21 Time: 0850		GCAL Sample ID:	22105041139D	L		
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210515A_15.d	l		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	5	Analyst:	MRA	
Prep Date:	05/04/21		Analysis Date:	05/15/21	Time:	1420	
Prep Batch:	709960		Analytical Batch:	711273			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	Dilution QSI	VI B15	
CONCENTRATI	ON UNITS: ng/L						

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	534		7.50	15.0	20.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0I01-03-GW
Collect Date:	04/29/21 Time: 1005		GCAL Sample ID:	22105041140
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3
Sample Amt:	125 mL		Lab File ID:	2210507B_46.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1Analyst: RXJ
Prep Date:	05/04/21		Analysis Date:	05/08/21 Time: 0406
Prep Batch:	709960		Analytical Batch:	710901
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	6.77		0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	12.6		0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	2.69	J	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	51.3	-	0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	21.9	-	0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	3.81	J	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	16.3		0.480	2.00	4.00
307-24-4	Perfluorohexanoic acid	345		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	49.7		0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	125		0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	298		0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	45.0		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	52.3		0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-03-GWDL
Collect Date:	04/29/21 Time: 1005	GCAL Sample ID:	22105041140DL
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ3
Sample Amt:	125 mL	Lab File ID:	2210527A_31.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	5 Analyst: RXJ
Prep Date:	05/04/21	Analysis Date:	05/28/21 Time: 0033
Prep Batch:	709960	Analytical Batch:	712388
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ng/L		

355-46-4 Perfluorohexanesulfonic acid				
	1830	6.20	15.0	20.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-04-GW			
Collect Date:	04/29/21 Time: 1130		GCAL Sample ID:	22105041141			
Matrix:	Water % Moisture: NA		instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210507B_47.0	ł		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/04/21		Analysis Date:	05/08/21	Time:	0421	
Prep Batch:	709960		Analytical Batch:	710901			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	64.4		0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	48.2		0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	1.000	J	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	19.4		0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	24.6		0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	3.42	J	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	35.9		0.480	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	306		0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	95.2		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	97.5		0.780	2.00	4.00
335-67-1	Perfluorooctanoic acid	71.8		0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	82.6		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	9.74		0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411			Client Sample ID:	A0101-04-GW	DL		
Collect Date:	04/29/21	Time: <u>1130</u>		GCAL Sample ID:	22105041141D	L		
Matrix:	Water % Mois	sture: NA		Instrument iD:	QQQ3			
Sample Amt:	<u>125 mL</u>			Lab File ID:	2210517A_13.0	ł		
Injection Vol.:	1.0		(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000		(µL)	Dilution Factor:	5	Analyst:	RXJ	
Prep Date:	05/04/21			Analysis Date:	05/17/21	Time:	1934	
Prep Batch:	709960			Analytical Batch:	711477			
Prep Method:	PFAS ID QSM B15	Prep		Analytical Method:	PFAS Isotope I	Dilution QS	M B15	
CONCENTRATI	ON UNITS: ng/L							

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
1763-23-1	Perfluorooctanesulfonic acid	408		3.80	10.0	20.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-03-GW-D	
Collect Date:	04/29/21 Time: 1005		GCAL Sample ID:	22105041142	
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3	
Sample Amt:	125 mL		Lab File ID:	2210507B_48.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	RXJ
Prep Date:	05/04/21		Analysis Date:	05/08/21 Time:	0436
Prep Batch:	709960		Analytical Batch:	710901	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	M B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	6.06		0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	10.7		0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	2.17	J	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	46.5		0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	22.0		0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	3.26	J	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	15.0		0.480	2.00	4.00
307-24-4	Perfluorohexanoic acid	320		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	45.1		0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	115		0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	275		0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	41.8		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	44.7		0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-03-GW-DDL
Collect Date:	04/29/21 Time: 1005	GCAL Sample ID:	22105041142DL
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ3
Sample Amt:	125 mL	Lab File ID:	2210517A_14.d
Injection Vol.:	1.0 (µL) GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL) Dilution Factor:	10 Analyst: RXJ
Prep Date:	05/04/21	Analysis Date:	05/17/21 Time: 1949
Prep Batch:	709960	Analytical Batch:	711477
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ng/L		

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	1350		12.4	30.0	40.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-05-GW
Collect Date:	04/28/21 Time: 1435		GCAL Sample ID:	22105041143
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3
Sample Amt:	<u>125 mL</u>		Lab File ID:	2210507B_49.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/04/21		Analysis Date:	05/08/21 Time: 0450
Prep Batch:	709960		Analytical Batch:	710901
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	4.46		0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	2.00	U	0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	15.4		0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	10.6		0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	1.12	J	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	9.78		0.480	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	169		0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	70.9		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	14.7		0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	100		0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	87.2		0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	23.0		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-06-GW	**		
Collect Date:	04/28/21 Time: 1245		GCAL Sample ID:	22105041144			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210507B_50.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/04/21		Analysis Date:	05/08/21	Time:	0505	
Prep Batch:	709960		Analytical Batch:	710901			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	Dilution QS	M B15	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	2.00	U	0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	2.00	U	0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	1.65	J	0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	1.97	J	0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	2.00	Ü	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	4.74		0.480	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	13.1		0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	7.58		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	2.03	J	0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	8.93		0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	7.85	1	0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	4.72		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	A0101-07-GW
Collect Date:	04/28/21 Time: 1140	GCAL Sample ID:	22105041145
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ3
Sample Amt:	125 mL	Lab File ID:	2210525A_60.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/07/21	Analysis Date:	05/26/21 Time: 0646
Prep Batch:	710580	Analytical Batch:	712118
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	U	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	1.58	J	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	2.65	J	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	7.07		1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	3.09	J	0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	3.61	J	0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	52.6		0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	5.45		0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.52	J	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	υ	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-08-GW			
Collect Date:	04/28/21 Time: 1010		GCAL Sample ID:	22105041146			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210525A_61.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/07/21		Analysis Date:	05/26/21	Time:	0701	
Prep Batch:	710580		Analytical Batch:	712118			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	ilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	U	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	1.33	J	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	5.02		1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	5.64		1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	66.8		1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	12.9		0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	4.42		0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	581		0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	10.8		0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	9.87		0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-09-GW			
Collect Date:	04/27/21 Time: 1620		GCAL Sample ID:	22105041147			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210505A_24.c	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/03/21		Analysis Date:	05/05/21	Time:	1702	
Prep Batch:	710037		Analytical Batch:	710369			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	2.00	U	0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	2.00	U	0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	5.16		0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	15.9		0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	2.00	U	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	10.5		0.480	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	161		0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	39.5		0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	4.25		0.780	2.00	4.00
335-67-1	Perfluorooctanoic acid	24.6		0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	11.2		0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	AOI01-09-GWRE		
Collect Date:	04/27/21 Time: 162	20	GCAL Sample ID:	22105041147RE		
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3		
Sample Amt:	125 mL		Lab File ID:	2210527A_30.d		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	<u>2.1</u> (mm)	
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	RXJ	
Prep Date:	05/03/21		Analysis Date:	05/28/21 Time:	0018	
Prep Batch:	710037		Analytical Batch:	712388		
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15		
CONCENTRATI	ON UNITS: ng/L					

CAS ANALYTE RESULT Q DL LOD LOQ 1763-23-1 Perfluorooctanesulfonic acid 399 0.760 2.00

4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	A0101-10-GW			
Collect Date:	04/29/21 Time: 0820		GCAL Sample ID:	22105041148			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210525A_62.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/07/21		Analysis Date:	05/26/21	Time:	0715	
Prep Batch:	710580		Analytical Batch:	712118			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	ilution QSI	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	U	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	3.21	J	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	2.56	J	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	3.42	J	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	60.6		1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	8.28		0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	9.88		0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	11.5		0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	3.37	J	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	WL-ERB-02			
Collect Date:	04/28/21 Time: 1430		GCAL Sample ID:	22105041151			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210525A_65.d	15 10		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	_
Prep Date:	05/07/21		Analysis Date:	05/26/21	Time:	0759	
Prep Batch:	710580		Analytical Batch:	712118			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope D	ilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	U	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	3.50	U	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	3.00	U	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	3.00	U	1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	(13.6)		0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	WL-ERB-03
Collect Date:	04/29/21 Time: 0900	GCAL Sample ID:	22105041152
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ3
Sample Amt:	125 mL	Lab File ID:	2210525A_66.d
Injection Vol.:	1.0 (µ	L) GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	<u>1000</u> (µ	L) Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/07/21	Analysis Date:	05/26/21 Time: 0814
Prep Batch:	710580	Analytical Batch:	712118
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CONCENTRATION UNITS ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	NU I	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	3.50	U	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	3.00	U	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	3.00	U	1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	2.00	U	0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	WL-ERB-04			
Collect Date:	04/29/21 Time: 1000		GCAL Sample ID:	22105041153			_
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210525A_67.c	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/07/21		Analysis Date:	05/26/21	Time:	0829	
Prep Batch:	710580		Analytical Batch:	712118			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope	Dilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	T U/	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEIFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	3.50	U	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	3.00	U	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	3.00	U	1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	2.00	U	0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	WL-ERB-01			
Collect Date:	04/28/21 Time: 1325		GCAL Sample ID:	22105041154			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210525A_69.c	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/07/21		Analysis Date:	05/26/21	Time:	0858	
Prep Batch:	710580		Analytical Batch:	712118			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	U	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	3.50	U	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	3.00	U	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	3.00	U	1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.940	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.980	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	20.7	11 m	0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	Ü	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	AOI01-10-SB-03-05 (RE)
Collect Date:	04/28/21 Time: 1410	GCAL Sample ID:	22105041155
Matrix:	Solid % Moisture: 19.1	Instrument ID:	QQQ1
Sample Amt:	5 g	Lab File ID:	2210521A_26.d
Injection Vol.:	1.0 (µL) GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	<u>1000</u> (µL	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/19/21	Analysis Date:	05/21/21 Time: 1928
Prep Batch:	711505	Analytical Batch:	711941
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS isotope Dilution QSM B15

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.261	J	0.037	0.124	1.24
335-67-1	Perfluorooctanoic acid	0.247	U	0.099	0.247	1.24

Report No:	221050411	Client Sample ID:	AOI01-05-SB-00-02
Collect Date:	04/28/21 1220	LAB Sample ID:	22105041111
Matrix:	Solid	Instrument ID:	PH01
% Solids:	NA	Analyst:	SLL2
Sample Amt:	NA	Lab File ID:	NA
Prep Vol.:	NA	Dilution Factor:	1
Prep Date:	NA	Analysis Date:	05/06/21 1350
Prep Batch:	NA	Analytical Batch:	710425
Prep Method:	NA	Analytical Method:	EPA 9045D

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
рН	7.88	pH UNITS		1.00	1.00	1.00

1

221050411	Client Sample ID:	AOI01-05-SB-00-02-D
04/28/21 1220	LAB Sample ID:	22105041112
Solid	Instrument ID:	PH01
NA	Analyst:	SLL2
NA	Lab File ID:	NA
NA	Dilution Factor:	1
NA	Analysis Date:	05/06/21 1352
NA	Analytical Batch:	710425
NA	Analytical Method:	EPA 9045D
	04/28/21 1220 Solid NA NA NA NA	04/28/21 1220LAB Sample ID:SolidInstrument ID:NAAnalyst:NALab File ID:NADilution Factor:NAAnalysis Date:NAAnalysis Date:

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
pH	7.94	pH UNITS		1.00	1.00	1.00

Report No:	221050411	Client Sample ID:	AOI01-10-SB-00-02
Collect Date:	04/28/21 1405	LAB Sample ID:	22105041131
Matrix:	Solid	Instrument ID:	PH01
% Solids:	NA	Analyst:	SLL2
Sample Amt:	NA	Lab File ID:	NA
Prep Vol.:	NA	Dilution Factor:	1
Prep Date:	NA	Analysis Date:	05/06/21 1354
Prep Batch:	NA	Analytical Batch:	710425
Prep Method:	NA	Analytical Method:	EPA 9045D

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
pН	7.30	pH UNITS		1.00	1.00	1.00

Report No:	221050411	Client Sample ID:	AOI01-05-SB-00-02
Collect Date:	04/28/21 1220	LAB Sample ID:	22105041111
Matrix:	Solid	Instrument ID:	TOC6
% Solids:	NA	Analyst:	JGD
Sample Amt:	ΝΑ	Lab File ID:	NA
Prep Vol.:	NA	Dilution Factor:	1
Prep Date:	NA	Analysis Date:	05/12/21 1401
Prep Batch:	NA	Analytical Batch:	710972
Prep Method:	NA	Analytical Method:	EPA 9060A

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Total Organic Carbon	11700	mg/kg		153	200	250

Report No:	221050411	Client Sample ID:	AOI01-05-SB-00-02-D
Collect Date:	04/28/21 1220	LAB Sample ID:	22105041112
Matrix:	Solid	Instrument ID:	TOC6
% Solids:	NA	Analyst:	JGD
Sample Amt:	NA	Lab File ID:	NA
Prep Vol.:	NA	Dilution Factor:	1
Prep Date:	NA	Analysis Date:	05/12/21 1529
Prep Batch:	NA	Analytical Batch:	710972
Prep Method:	NA	Analytical Method:	EPA 9060A

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Total Organic Carbon	10300	mg/kg		153	200	250

Report No:	221050411	Client Sample ID:	AOI01-10-SB-00-02
Collect Date:	04/28/21 1405	LAB Sample ID:	22105041131
Matrix:	Solid	Instrument ID:	TOC6
% Solids:	NA	Analyst:	JGD
Sample Amt:	NA	Lab File ID:	NA
Prep Vol.:	NA	Dilution Factor:	1
Prep Date:	NA	Analysis Date:	05/12/21 1545
Prep Batch:	NA	Analytical Batch:	710972
Prep Method:	NA	Analytical Method:	EPA 9060A

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Total Organic Carbon	9660	mg/kg		153	200	250

DATA VALIDATION WORKSHEET

Per- and Polyfluorinated Compounds by LC/MS/MS

Reviewer: Tyler Bryant 6/15/2021 Date: III IV **DV Level:** Π

Review Document:

<u>X</u> National Functional Guidelines for Organic Data Review

<u>X</u> DOD QSM 5.1, Table B-15

_____ Method 537 Rev. 1.1

D 11 . .

Project Name:	Windsor Locks
Project Number:	60552172
Laboratory:	Pace Gulf Coast
SDG No.:	211032903 + 50411
Test Name:	PFAS

1.0 Laborat	tory Deliverables	Yes	No	NA
1.1	Do Chain-of-Custody forms list all samples that were analyzed? Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained? Do sample preservation, collection and storage condition meet method requirement? 4±2°C If samples were received with the cooler temperature exceeding 6°C, then flag J(+)/UJ(-). If >20°C, J(+)/X(-) Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, conditional			
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?	X		
1.3	Do sample preservation, collection and storage condition meet method requirement? 4±2°C	v		
1.5	If samples were received with the cooler temperature exceeding 6° C, then flag J(+)/UJ(-). If >20°C, J(+)/X(-)	Л		
1.4	Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, condition of		v	
1.4	samples, analytical problems or special circumstances affecting the quality of the data?	s that were analyzed?Xlicating sample chain-of-custody was maintained?Xrage condition meet method requirement? $4\pm 2^{\circ}$ CXmperature exceeding 6°C, then flag J(+)/UJ(-). If >20°C, J(+)/X(-)Xand lab narrative indicate any problems with sample receipt, condition ofX		
Notes:				

2.0 Holding	Times	Yes	No	NA
2.1	Have any technical holding times, determined from date of sampling to date of analysis, been exceeded? If yes, $J(+)/UJ(-)$. Extraction: 14 days; Analysis: 40 days.	X		
2.2	Have any technical holding time grossly (twice the holding time) been exceeded? If yes, $J(+)/X(-)$.		X	
Notes:	Field samples AOI01-10-SB-03-05 and AOI01-08-SB-00-02 were re-extracted and reanalyzed outside holding time.			

3.0 Blanks	(Laboratory and Field)	Yes	No	NA
3.1	Were method blanks (MB) prepared at the appropriate frequency (one per 20 samples, per batch per matrix?)	X		
3.2	Do any instrument/method blanks have positive results?	X		
3.3	Do any field equipment blanks/trip blanks have positive results?	X		
Notes:	Several field and laboratory blanks displayed analyte concentrations greater than the detection limit. False positives			
	were qualified "UJ".			

4.0 Initial a	and Continuing Calibration	Yes	No	NA
4.1	For each calibration standard, was each analyte calculated within 70%-130% of the true value, RSD $\leq 20\%$, or $r^2 \geq 0.99$?	X		
4.2	Was the retention time window for each analyte and surrogate set using the midpoint standard of the curve?	Χ		
4.3	Was the relative retention time of each analyte within laboratory control limits?	Χ		
4.4	Was a second source calibration verification (ICV) analyzed for each calibration curve? If no, flag "X".	Χ		
4.5	Were continuing calibration standards analyzed every ten samples and at the end of the sequence? If no, flag "X".	Χ		
4.6	For each calibration standard used for quantitation, was the S/N Ratio ≥10:1 and for all analytes with promulgated standards was the confirmation ion at a S/N at 3:1? (Table B-15, non-DW matrices)	X		
For initial c	alibration: 70%-130%, RSD ≤20%, or r2≥0.99. J(+)/UJ(-)			
For ICV/CO	CV: %D>30%, Positive: J(+), Negative:J(+)/UJ(-).			
Notes:				

5.0 Labora	tory Control Sample (LCS)	Yes	No	NA
5.1	Were LCS/LCSD analyzed at required frequency (one per 20 samples per batch) for each matrix?	Χ		
5.2	Are there any %R for LCS/LCSD recoveries outside the laboratory QC limits(lab default is 70%-130%)?		v	
5.2	Action: If Yes, for %R >130, J+(+) only; for %R 30%-70%, J-(+)/UJ(-), and %R<30%, J-(+)/X(-).		Λ	
5.3	Are there any RPD for LCS/LCSD recoveries outside the QC limits? If Yes, J(+) only.		Χ	
lotes:				

	•		unt/Extracted Internal Standar		Yes	No	N
6.1	Are recoveries wi	Are recoveries within acceptance criteria for all samples and method blanks?				X	
6.2	If No in Section 6	No in Section 6.1, are these sample(s) or method blank(s) reanalyzed?					
	If No in Section 6	.2, is any sample diluti	on factor greater than 10? (recov	veries may be diluted out.)			
6.3		<10%	low	high			
0.5	Positives	J-	J-	J+			
	Non-detects	Х	UJ	None			
	Has the Extracted/Injected Standard area count been met for all quality control and field samples? (50%-150%) If						
6.4		<20%	low	high		v	
0.4	PositivesJ-J-Non-detectsXUJNoneHas the Extracted/Injected Standard area count been met for all quality control and field samples? (50%-150%) If<20%	Λ					
	Non-detects	Х	UJ	None			

7.0 Matrix	Matrix Spike/Matrix Spike Duplicate (MS/MSD)								
7.1	Were matrix s	spikes analyzed at req	uired frequency (one per 20 s	amples per batch) for each matrix?		X			
	Are there any %R for matrix spike and matrix spike duplicate recoveries outside the laboratory QC limits?								
7.2	%Recovery:	<30%	30%-70%	>130%		X			
	Action:	J-(+)/X(-)	J-(+)/UJ(-)	J+(+) only					
7.2	Are there any RPD for matrix spike and matrix spike duplicate recoveries outside the QC limits? (±30%)						V		
7.3	Action: No action is required based on MS/MSd failure alone. Note in the report and use professional judgement.						X		
Notes:	Multiple field	samples displayed hi	gh percent recoveries in the I	MS and MSD.					

8.0 Field/La	boratory Duplicates	Yes	No	NA
8.1	Acceptable field duplicate results? If no, J(+) parent sample/field duplicate only.		X	
Notes:	Imprecise field sample results associated with parent sample AOI01-10-SB-00-02 were qualified J or UJ, fd.			

9.0 Instrum	Yes	No	NA	
9.1	Was an instrument sensitivity check analyzed prior to analysis and every 12 hours? If not X(+/-)	Χ		
9.2	Were analyte concentrations at the LOQ for the ISC and within $\pm 30\%$ of their true values? If not (J(+)/UJ(-)		Χ	
Notes:	ISCs in batches 707851 and 711275 displayed high percent recoveries for PFTrDA and NEtFOSAA			

10.0 Compou	Yes	No	NA	
10.1	Do detection limits meet those required by the project QAPP and were they properly adjusted for dilution factors and moisture (including adjustment of wet weight aliquot)?	X		
10.2	Was a mass calibration performed daily prior to analysis?	X		
Notes:				

11.0 Data Co	Yes	No	NA	
11.1	Is % completeness within the control limits? (Control limit 95% _{aq} and 90% _{so})	X		
11.1.1	Number of samples:47			
11.1.2	Number of target compounds in each analysis: <u>18</u>			
11.1.3	Number of results "X" or "R" flagged results: <u>0</u>			

Page 413 of 419

QQQ1 Run Log

Analyst:	MRA	Expiration:	
Instrument:	QQQ1		
Batch:	2210401A		
Current ICAL Bath:	2210401ACAL		
20mM Amm Acetate	016-47-4	4/3/2021	
Methanol	2130147	6/30/2025	
Calibration Std	016-45-2	9/30/2021	
ICV Std	016-21-3	8/2/2021	
EIS Mix	016-43-4	9/25/2021	
IIS Mix	016-47-1	9/30/2021	
Ame	Nata File	Типе	Aca Date-Time
MeOH Shot	22100401A 01.d	Method Blank	4/1/2021 10:32
1205 RT Check	22100401A_02.d	gc	4/1/2021 10:46
MeOH Shot	22100401A_03.d	Method Blank	4/1/2021 11:00
1201	22100401A_04.d	Cal	4/1/2021 11:14
1202	22100401A_05.d	Cal	4/1/2021 11:28
1203	22100401A_06.d	Cal	4/1/2021 11:43
1204	22100401A_07.d	Cal	4/1/2021 11:57
1205	22100401A_08.d	Cal	4/1/2021 12:11
1206	22100401A_09.d	Cal	4/1/2021 12:26
MeOH Shot	22100401A_10.d	Method Blank	4/1/2021 14:22
1500	22100401A_11.d	Sample	4/1/2021 14:36
1600	22100401A_12.d	Sample	4/1/2021 14:50
1450	22100401A_13.d	QC	4/1/2021 15:05
1450	22100401A_14.d	QC	4/1/2021 15:19
MeOH Shot	22100401A_15.d	Method Blank	4/1/2021 15:42
1600	22100401A_16.d	Sample	4/1/2021 15:56
1450	22100401A_17.d	QC	4/1/2021 16:11
MeOH Shot	22100401A_18.d	Method Blank	4/1/2021 16:38
22103272801	22100401A_19.d	Sample	4/1/2021 16:52
22103272802	22100401A_20.d	Sample	4/1/2021 17:07

Comment	MRA, MeOH SHOT/INSTRUMENT IDLE	MRA, QQQ1	MRA, MeOH SHOT/INSTRUMENT IDLE	MRA, QQQ1	MRA,QQQ1	MRA, MeOH SHOT/INSTRUMENT IDLE	MRA,QQQ1	MRA, QQQ1	MRA, QQQ1	MRA, QQQ1	MRA, MeOH SHOT/INSTRUMENT IDLE	MRA,QQQ1;RR for PFHpS	MRA,QQQ1;RR for PFNS	MRA, MeOH SHOT/INSTRUMENT IDLE	MRA,QQQ1;707245;M2PFDA spiked @1/4 ICAL	MRA,QQQ1;707245;M2PFDA spiked @1/4 ICAL					
Date-Time	2021 10:32	2021 10:46	2021 11:00	2021 11:14	2021 11:28	2021 11:43	2021 11:57	2021 12:11	2021 12:26	2021 14:22	2021 14:36	2021 14:50	2021 15:05	2021 15:19	2021 15:42	2021 15:56	2021 16:11	2021 16:38	2021 16:52	2021 17:07	

-

-

- -

Dil.

. . . .

-

MRA,QQQ1;7CV MRA,QQQ1;707245 MRA.QQQ1:707245	MRA,QQQ1;707245;M2PFDA spiked @1/4 ICAL MRA,QQQ1;707245;M2PFDA spiked @1/4 ICAL MRA.QOO1:707245:M2PFDA spiked @1/4 ICAL	MRA,QQQ1;707245;M2PFDA spiked @1/4 ICAL MRA,QQQ1;707245;M2PFDA spiked @1/4 ICAL MRA,QQQ1-707245;M2PFDA spiked @1/4 ICAL	MRA,QQQ1;707245;M2PFDA spiked @1/4 ICAL MRA,QQQ1;CCV MRA,QQQ1;706836	MRA,QQQ1;706836 MRA,QQQ1;706836 MRA,QQQ1;706836; M2PFDA spiked at 1/4 ICAL	MKA,QQ1;706836; MZPFDA Spiked at 1/4 ICAL MRA,QQ01;706630 MRA,QQ01;706630 MRA,QQ01;706630	MRA,QQQ1;706630; M2PFDA spiked at 1/4 ICAL MRA,QQQ1;706630; M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL	MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;CCV	MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL MRA,QQQ1;707127;M2PFDA spiked at 1/4 ICAL
4/1/2021 17:21 4/1/2021 17:35 4/1/2021 17:50	4/1/2021 18:04 4/1/2021 18:18 4/1/2021 18:33	4/1/2021 18:47 4/1/2021 19:01 4/1/2021 19:16	4/1/2021 19:30 4/1/2021 19:30 4/1/2021 19:59	4/1/2021 20:13 4/1/2021 20:27 4/1/2021 20:42	4/1/2021 2023 4/1/2021 21:10 4/1/2021 21:25 4/1/2021 21:39	4/1/2021 21:53 4/1/2021 22:08 4/1/2021 22:22 4/1/2021 22:36 4/1/2021 22:51	4/1/2021 23:05 4/1/2021 23:19 4/1/2021 23:34 4/1/2021 23:48 4/2/2021 0:02 4/2/2021 0:02	4/2/2021 0:31 4/2/2021 0:46 4/2/2021 1:00 4/2/2021 1:14
22100401A_21.d QC 22100401A_22.d Sample 22100401A 23.d Sample					22100401A_36.0 Sample 22100401A_37.d Sample 22100401A_38.d QC 22100401A_39.d QC	22100401A_40.d Sample 22100401A_41.d Sample 22100401A_42.d Sample 22100401A_43.d QC 22100401A_44.d Sample	22100401A_45.d Sample 22100401A_46.d Sample 22100401A_47.d Sample 22100401A_48.d Sample 22100401A_49.d Sample 22100401A_50.d QC	22100401A_51.d Sample 22100401A_52.d Sample 22100401A_53.d Sample 22100401A_54.d Sample
1400 22103243503 22103243504	22103243505 22103243506 22103264201	22103264801 22103264802 22103264804	22103264903 1400 2160915	2160916 2160917 22103221301 .5ml 20x 22103271301 .5ml 10v	2159796 2159796 2159796	22103221301 .5ml 20x 22103221301 .5ml 10x 2162464 2162465 22103244909	22103245301 22103254501 22103254502 22103255201 22103255201 1400	22103255203 5X 22103255203 22103255204 22103255205

20 11 11 11 10 11 10 11 10

_

S

 $\overline{}$

<u>н</u> н

H

Page 414 of 419

Pace Gulf Coast Report#: 221032903

-

H

Η

T

 \neg

-

- -

Pace Gulf Coast Report#: 221032903

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221032903	Instrument ID:	QQQ1
Analysis Date:	04/01/2021 15:19	Lab File ID:	22100401A_14.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707996

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3.42	90 1	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	3.65	95	70	130	
NEtFOSAA	ng/L	4.00	3.93	98	70	130	
NMeFOSAA	ng/L	4.00	3.72	93	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.30	107	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3,68	104	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.13	103	70	130	
Perfluorododecanoic acid	ng/L	4.00	3.20	80	70	130	
Perfluoroheptanoic acid	ng/L	4.00	3.76	94	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.04	101	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.10	85	70	130	
Perfluorononanoic acid	ng/L	4.00	3.63	91	70	130	
Perfluorooctanoic acid	ng/L	4.00	3.82	95	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	3.16	85	70	130	
Perfluoropentanoic acid	ng/L	4.00	3.65	91	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	3.88	97	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.34	84	70	130	
Perfluoroundecanoic acid	ng/L	4.00	3.64	91	70	130	

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221032903	Instrument ID:	QQQ1
Analysis Date:	04/02/2021 03:52	Lab File ID:	22100401A_65.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707996

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.08	107	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	2.92	76	70	130	
NEtFOSAA	ng/L	4.00	4.90	123	70	130	
NMeFOSAA	ng/L	4.00	3.57	89	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.39	110	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.83	108	70	130	
Perfluorodecanoic acid	ng/L	4.00	3.73	93	70	130	
Perfluorododecanoic acid	ng/L	4.00	3.72	93	70	130	
Perfluoroheptanoic acid	ng/L	4.00	3.50	88	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.02	101	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.14	86	70	130	
Perfluorononanoic acid	ng/L	4.00	4.03	101	70	130	- 1
Perfluorooctanoic acid	ng/L	4.00	3.79	95	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.10	110	70	130	
Perfluoropentanoic acid	ng/L	4.00	3.76	94	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	3.96	99	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.37	84	70	130	
Perfluoroundecanoic acid	ng/L	4.00	3.62	90	70	130	

61

ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	221032903	Instrument ID:	QQQ1
Analysis Date:	04/01/2021 14:50	Lab File ID:	22100401A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707996

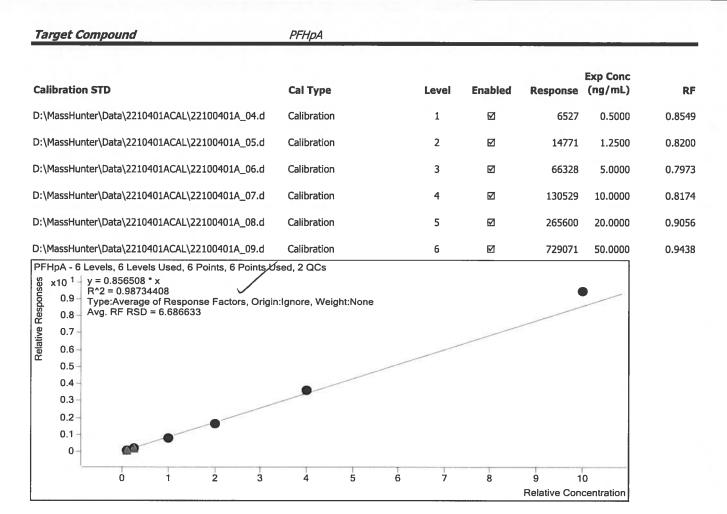
ANALYTE	UNITS	TRUE	FOUND	% REC	/CL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	8870	89	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	8760	87	70	130	
NEtFOSAA	ng/L	10000	10800	108	70	130	
NMeFOSAA	ng/L	10000	7320	73	70	130	
Perfluorobutanoic acid	ng/L	10000	8010	80	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	8690	87	70	130	
Perfluorodecanoic acid	ng/L	10000	8880	89	70	130	
Perfluorododecanoic acid	ng/L	10000	8880	89	70	130	
Perfluoroheptanoic acid	ng/L	10000	8620	86	70	130	
Perfluorohexanoic acid	ng/L	10100	8310	82	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	8990	90	70	130	
Perfluorononanoic acid	ng/L	10000	9740	97	70	130	
Perfluorooctanoic acid	ng/L	10100	9350	93	70	130	
Perfluorooctanesulfonic acid	ng/L	10000	7370	74	70	130	
Perfluoropentanoic acid	ng/L	10100	8260	82	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9240	92	70	130	
Perfluorotridecanoic acid	ng/L	10000	7060	71	70	130	
Perfluoroundecanoic acid	ng/L	10000	8270	83	70	130	

4I ORGANICS INSTRUMENT BLANK

Report No:	221032903	Instrument ID:	QQQ1
Analysis Date:	04/01/2021 14:36	Lab File ID:	22100401A_11.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707996

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.91	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.81	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.56	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.81	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	υ	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

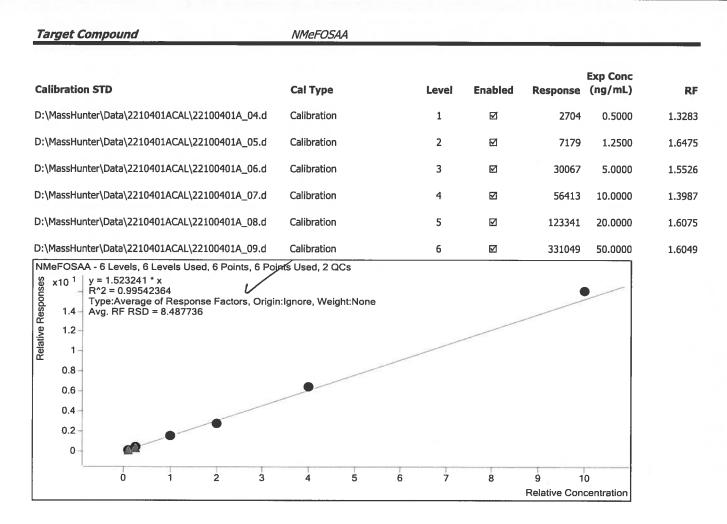
* - Result greater than 1/2 LOQ


Quantitative Analysis Calibration Report

Batch Data Path Analysis Time Report Time Last Calib Update	D:\MassHunter\Data\2 4/9/2021 10:00 AM 4/9/2021 10:04 AM 4/1/2021 4:36 PM	2210401ACAL\QuantRe Analyst Name Reporter Name Batch State		4/9/2021 10:04 AM Reporter Name GCAL\Icms		1A.batch.b	in
Calibration Info Extracted ISTD	MPFBA						
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI	
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	Ø	52381	5.0000	10476.175	
D:\MassHunter\Data\2210401ACAL\22100401A_05.d	Calibration	2	Ø	48208	5.0000	9641.6108	
D:\MassHunter\Data\2210401ACAL\22100401A_06.d	Calibration	3	Ø	54572	5.0000	10914.498	
D:\MassHunter\Data\2210401ACAL\22100401A_07.d	Calibration	4	A	53363	5.0000	10672.6374	
D:\MassHunter\Data\2210401ACAL\22100401A_08.d	Calibration	5	R	46708	5.0000	9341.5059	
D:\MassHunter\Data\2210401ACAL\22100401A_09.d	Calibration	6	V	53678	5.0000	10735.5427	
Instrument ISTD	M3PFBA						
Calibration STD	Cal Туре	Level	Enabled	Response	Exp Conc (ng/mL)	RI	
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	$\mathbf{\nabla}$	48108	5.0000	9621.6949	
D:\MassHunter\Data\2210401ACAL\22100401A_05.d	Calibration	2		45997	5.0000	9199.4276	
D:\MassHunter\Data\2210401ACAL\22100401A_06.d	Calibration	3		52149	5.0000	10429.7252	
D:\MassHunter\Data\2210401ACAL\22100401A_07.d	Calibration	4	M	47073	5.0000	9414.6436	
D:\MassHunter\Data\2210401ACAL\22100401A_08.d	Calibration	5		46205	5.0000	9240.9006	
D:\MassHunter\Data\2210401ACAL\22100401A_09.d	Calibration	6		49710	5.0000	9941.9732	
M3PFBA - 6 Levels, 6 Levels Used, 6 Points, 6 Points y = 9641.394174 * x R^2 = 0.00000000 Type:Average of Response Factors, Origin Avg. RF RSD = 4.907468 5.1- 5- 4.9- 4.8- 4.7- 4.6-	1						
	-20 -10 0 10 20	30 40	50 60	70 80 Concentratio	90 100 on (ng/mi)		

Target Compound

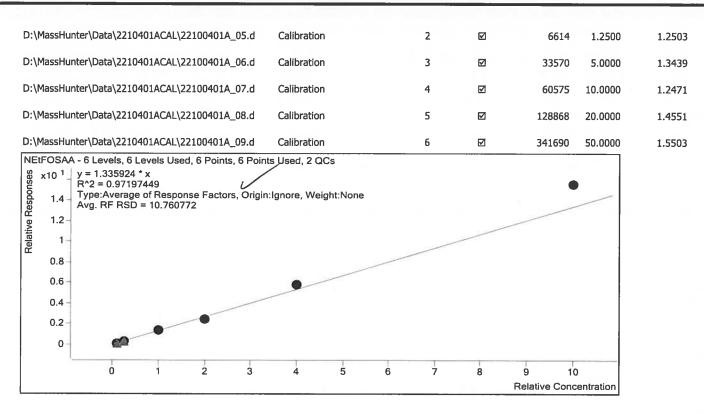
PFBA


Quantitative Analysis Calibration Report

Target Compound

PFHxS

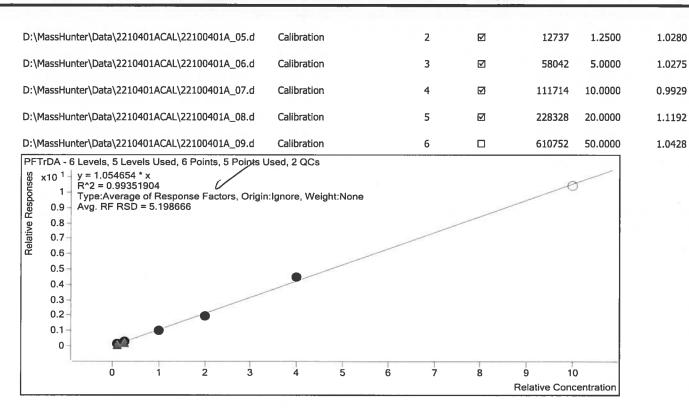
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	V	2030	0.4570	2.1682
D:\MassHunter\Data\2210401ACAL\22100401A_05.d	Calibration	2	V	4122	1.1425	2.1602
D:\MassHunter\Data\2210401ACAL\22100401A_06.d	Calibration	3	Ø	18161	4.5700	1.9015
D:\MassHunter\Data\2210401ACAL\22100401A_07.d	Calibration	4	Ø	33953	9.1400	1.9454
D:\MassHunter\Data\2210401ACAL\22100401A_08.d	Calibration	5	N	69723	18.2800	2.3409
D:\MassHunter\Data\2210401ACAL\22100401A_09.d	Calibration	6	V	207678	45.7000	2.3474



Extracted ISTD

d5-NEtFOSAA

Calibration STD	Cal Type	Levei	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	M	26390	5.0000	5278.0047
D:\MassHunter\Data\2210401ACAL\22100401A_05.d	Calibration	2	Ø	21160	5.0000	4232.0139
D:\MassHunter\Data\2210401ACAL\22100401A_06.d	Calibration	3	V	24979	5.0000	4995.8567
D:\MassHunter\Data\2210401ACAL\22100401A_07.d	Calibration	4	Ø	24285	5.0000	4857.0606
D:\MassHunter\Data\2210401ACAL\22100401A_08.d	Calibration	5	V	22141	5.0000	4428.2524
D:\MassHunter\Data\2210401ACAL\22100401A_09.d	Calibration	6	Ø	22041	5.0000	4408.1223
Target Compound	NEtFOSAA			_		
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	N	3085	0.5000	1.1689


Quantitative Analysis Calibration Report

Target Compound

PFUnA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	V	6637	0.5000	0.8185
D:\MassHunter\Data\2210401ACAL\22100401A_05.d	Calibration	2	R	15350	1.2500	0.8775
D:\MassHunter\Data\2210401ACAL\22100401A_06.d	Calibration	3	Ø	70098	5.0000	0.8280
D:\MassHunter\Data\2210401ACAL\22100401A_07.d	Calibration	4	Ø	127536	10.0000	0.8203
D:\MassHunter\Data\2210401ACAL\22100401A_08.d	Calibration	5	V	277684	20.0000	0.9473
D:\MassHunter\Data\2210401ACAL\22100401A_09.d	Calibration	6		723127	50.0000	1.0615

Quantitative Analysis Calibration Report

Extracted	ISTD
-----------	------

d-NEtFOSA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	Ø	18329	5.0000	3665.7107
D:\MassHunter\Data\2210401ACAL\22100401A_05.d	Calibration	2		16811	5.0000	3362.1833
D:\MassHunter\Data\2210401ACAL\22100401A_06.d	Calibration	3		17049	5.0000	3409.7310
D:\MassHunter\Data\2210401ACAL\22100401A_07.d	Calibration	4		17289	5.0000	3457.8306
D:\MassHunter\Data\2210401ACAL\22100401A_08.d	Calibration	5	V	14442	5.0000	2888.3349
D:\MassHunter\Data\2210401ACAL\22100401A_09.d	Calibration	6	V	18199	5.0000	3639.7800
Extracted ISTD	d9-NEtFOSE					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
Calibration STD D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Cal Type Calibration	Level	Enabled ☑	Response 32810		RF 6562.0353
					(ng/mL)	
D:\MassHunter\Data\2210401ACAL\22100401A_04.d	Calibration	1	Ø	32810	(ng/mL) 5.0000	6562.0353
D:\MassHunter\Data\2210401ACAL\22100401A_04.d D:\MassHunter\Data\2210401ACAL\22100401A_05.d	Calibration	1 2	ম	32810 30137	(ng/mL) 5.0000 5.0000	6562.0353 6027.4186
D:\MassHunter\Data\2210401ACAL\22100401A_04.d D:\MassHunter\Data\2210401ACAL\22100401A_05.d D:\MassHunter\Data\2210401ACAL\22100401A_06.d	Calibration Calibration Calibration	1 2 3	ଅ ଅ ଅ	32810 30137 34923	(ng/mL) 5.0000 5.0000 5.0000	6562.0353 6027.4186 6984.6106
D:\MassHunter\Data\2210401ACAL\22100401A_04.d D:\MassHunter\Data\2210401ACAL\22100401A_05.d D:\MassHunter\Data\2210401ACAL\22100401A_06.d D:\MassHunter\Data\2210401ACAL\22100401A_07.d	Calibration Calibration Calibration Calibration	1 2 3 4	ୟ ଅ ଅ	32810 30137 34923 35152	(ng/mL) 5.0000 5.0000 5.0000 5.0000	6562.0353 6027.4186 6984.6106 7030.4014

QOO1 22100401A GCAL Levelly lemp.xlsx Pace Guil Coast Report#. 221032903 Printed at: 11:08 AM on: 4/14/2021 Page 142 of 419

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221032903	Instrument ID:	QQQ1
Analysis Date:	04/01/2021 19:44	Lab File ID:	22100401A_31.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707996

ANALYTE	UNITS	TRUE	FOUND	% REC	/LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9970	105 /	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	8940	93	70	130	
NEtFOSAA	ng/L	10000	11200	112	70	130	
NMeFOSAA	ng/L	10000	9200	92	70	130	
Perfluorobutanoic acid	ng/L	10000	8970	90	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8730	98	70	130	
Perfluorodecanoic acid	ng/L	10000	10500	105	70	130	
Perfluorododecanoic acid	ng/L	10000	10000	100	70	130	
Perfluoroheptanoic acid	ng/L	10000	9760	98	70	130	
Perfluorohexanoic acid	ng/L	10000	9830	98	70	130	1
Perfluorohexanesulfonic acid	ng/L	9140	8710	95	70	130	1
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	9930	99	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8430	91	70	130	
Perfluoropentanoic acid	ng/L	10000	9290	93	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9510	ି <u>9</u> 5	70	130	
Perfluorotridecanoic acid	ng/L	10000	8160	82	70	130	
Perfluoroundecanoic acid	ng/L	10000	9680	97	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221032903	Instrument ID:	QQQ1
Analysis Date:	04/02/2021 00:17	Lab File ID:	22100401A_50.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707996

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9960	105	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	8330	87	70	130	
NEtFOSAA	ng/L	10000	10900	109	70	130	
NMeFOSAA	ng/L	10000	8800	88	70	130	
Perfluorobutanoic acid	ng/L	10000	9020	90	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8840	100	70	130	
Perfluorodecanoic acid	ng/L	10000	9930	99	70	130	
Perfluorododecanoic acid	ng/L	10000	9610	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9660	97	70	130	
Perfluorohexanoic acid	ng/L	10000	9430	94	70	130	1
Perfluorohexanesulfonic acid	ng/L	9140	8270	90	70	130	
Perfluorononanoic acid	ng/L	10000	9880	99	70	130	
Perfluorooctanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	7740	83	70	130	
Perfluoropentanoic acid	ng/L	10000	9510	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9350	94	70	130	
Perfluorotridecanoic acid	ng/L	10000	8130	81	70	130	
Perfluoroundecanoic acid	ng/L	10000	9790	98	70	130	

81

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221032903	Standard ID:	1205 (ICAL Midpoint)
Analyst:	MRA	Instrument ID:	QQQ1
Analysis Date:	04/01/21 12:11	Lab File ID:	22100401A_08.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	707996

	M2PFDA	M2PFHxA	M2PFOA	M4PFOS
	Area	Area	Area	Area
STANDARD	227690	424824	186405	30710

CLIENT SAMPLE ID	LAB SAMP ID		#		#		#		#
MB2162464	2162464	73706	*	396553		204353		19655	
LCS2162465	2162465	76425	*	402823		199453		21361	
WL-DECON-01	22103290301	70783	*	384583		191105		18866	

*for information only

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

FORM 8I - ORG

QQQ2 Run Log

Analyst: Instrument: Batch: Current ICAL Bath: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	MRA QQQ2 2210405A 2210405ACAL 016-48-7 2130017 016-48-2 016-43-4 016-47-1 016-47-1	Expiration: 4/7/2021 6/30/2025 9/30/2021 8/2/2021 9/25/2021	
Name MeOH Shot 1206 RT Check MeOH Shot 1201 1203 1203	Data File 2210405A_01.d 2210405A_02.d 2210405A_03.d 2210405A_03.d 2210405A_05.d 2210405A_05.d 2210405A_05.d	Type MeOH Shot QC MeOH Shot Cal Cal	Acq. [4/5/2 4/5/2 4/5/2 4/5/2 4/5/2
1204 1205 1206 MeOH Shot 1500 1600 1450	2210405A_07.d 2210405A_08.d 2210405A_09.d 2210405A_10.d 2210405A_11.d 2210405A_11.d 2210405A_13.d 2210405A_13.d	Cal Cal Cal MeOH Shot Sample QC	4/5/2 4/5/2 4/5/2 4/5/2 4/5/2 4/5/2 4/5/2
1450 MeOH Shot 22103272801 10x 22103272802 10x MeOH Shot 2165007 2165008	2210405A_14.a 2210405A_15.d 2210405A_16.d 2210405A_17.d 2210405A_19.d 2210405A_19.d 2210405A_19.d	цс MeOH Shot Sample MeOH Shot Sample QC	4/5/2 4/5/2 4/5/2 4/5/2 4/5/2 4/5/2

Dil.	-	1	1	1	1	1	1	1	4	7	1	1	1	1	1	10	10	1	1	Ļ	
Comment	MRA, QQQ2; MeOH SHOT/INSTRUMENT IDLE	MRA, QQQ2	MRA, QQQ2; MeOH SHOT/INSTRUMENT IDLE	MRA, QQQ2;Cal	MRA, QQQ2; Cal	MRA, QQQ2; Cal	MRA, QQQ2;Cal	MRA, QQQ2; Cal	MRA,QQQ2;Cal	MRA,QQQ2;MeOH SHOT/INSTRUMENT IDLE	MRA, QQQ2	MRA, QQQ2	MRA, QQQ2	MRA, QQQ2	MRA,QQQ2;MeOH SHOT/INSTRUMENT IDLE	MRA,QQQ2;707245	MRA,QQQ2;707245	MRA,QQQ2;MeOH SHOT/INSTRUMENT IDLE	MRA,QQ2;707245	MRA,QQQ2;707612	
Date-Time	2021 10:15	2021 10:28	2021 10:41	2021 10:54	2021 11:07	2021 11:20	2021 11:33	2021 11:47	2021 12:00	2021 12:30	2021 12:43	2021 12:56	2021 13:10	2021 13:23	2021 14:09	2021 14:22	2021 14:35	2021 15:01	2021 15:14	2021 15:28	

Page 410 of 419

Pace Gulf Coast Report#: 221032903

1	
1	
ł	0
1	0
	ō.
1	δi
1	22
1	<u>.</u>
1	0
	<u> </u>
1	: 221032903
	ÔÎ.
	Report#:
u	18
	Ξ.
	0
	õ
Į.	.
	Ľ
E	
F	oast
Į.	Coas
Ł	
Ł	Q
Į.	0
	2
L	Ē.
Æ	7
Þ	Ú.
I	45
	ace
Ľ	2
Ľ	07
F	۰.
r	_

7	10		10	10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10	10	1	1	Ч	
MRA,QQQ2;707612	MRA,QQ2;707612 MRA,OOO2·707612	MRA, QQQ2;CCV	MRA, QQQ2;707612	MRA, QQQ2;707612	MRA,QQQ2;707127	MRA,QQQ2;707127	MRA, QQQ2;707127	MRA,QQQ2;707127	MRA,QQQ2;707127	MRA, QQQ2;707127	MRA,QQQ2;707245; IIS spiked 4x	MRA,QQQ2;707245; IIS spiked 4x	MRA, QQQ2;707245	MRA,QQQ2;707245	MRA, QQQ2; CCV	MRA,QQQ2;707768	MRA, QQQ2;707768	MRA, QQQ2;707768	MRA, QQQ2;707768	MRA, QQQ2;707768	MRA, QQQ2;707768	MRA, QQQ2; CCV	MRA,QQQ2;707245	MRA, QQQ2;707612	MRA, QQQ2;707612	MRA,QQQ2;707586	MRA,QQQ2;707586	MRA,QQQ2;707586	MRA, QQQ2;707586	MRA,QQQ2;707586	MRA,QQQ2;707586	MRA,QQQ2;707586	
4/5/2021 15:41	4/5/2021 15:54 4/5/2021 16:07	4/5/2021 16:20	4/5/2021 16:33	4/5/2021 16:46	4/5/2021 16:59	4/5/2021 17:12	4/5/2021 17:26	4/5/2021 17:39	4/5/2021 17:52	4/5/2021 18:05	4/5/2021 18:18	4/5/2021 18:31	4/5/2021 18:44	4/5/2021 18:58	4/5/2021 19:11	4/5/2021 19:24	4/5/2021 19:37	4/5/2021 19:50	4/5/2021 20:03	4/5/2021 20:16	4/5/2021 20:29	4/5/2021 20:43	4/5/2021 20:56	4/5/2021 21:09	4/5/2021 21:22	4/5/2021 21:35	4/5/2021 21:48	4/5/2021 22:01	4/5/2021 22:14	4/5/2021 22:28	4/5/2021 22:41	4/5/2021 22:54	
	2210405A_22.d Sample 2210405A 23.d Sample	_	2210405A_25.d Sample	2210405A_26.d Sample	2210405A_27.d Sample	2210405A_28.d QC	2210405A_29.d Sample	2210405A_30.d Sample	2210405A_31.d Sample	2210405A_32.d Sample	2210405A_33.d Sample	2210405A_34.d Sample	2210405A_35.d Sample	2210405A_36.d Sample	2210405A_37.d QC	2210405A_38.d Sample	2210405A_39.d QC	2210405A_40.d QC	2210405A_41.d Sample	2210405A_42.d Sample	2210405A_43.d Sample	2210405A_44.d QC	2210405A_45.d Sample	2210405A_46.d Sample	2210405A_47.d Sample	2210405A_48.d Sample	2210405A_49.d QC	2210405A_50.d Sample	2210405A_51.d Sample	2210405A_52.d Sample	2210405A_53.d Sample	2210405A_54.d Sample	
2165009	22103135002 10X 22103135003 10X	1400	22103272801 10x	22103272802 10x	2162464	2162465	22103244909	22103245301	22103255201	22103290301	22103243503	22103243504	22103243506	22103264804	1400	2166243	2166244	2166245	22104023101	22104023105	22104023106	1400	22103264903	22103243501	22103243502	2164879	2164880	22103265109 10x	22103265111 10x	22104022002	22104022003	22104022004	

Page 412 of 419

Ч	Ч	1	1	Ч	1	Ч	1	10	Ч	H	1	1	4	1	Ч	1	1	1	1	1	50	Ч	÷,	1	Ч	Ч	Ļ	7	4
MRA,QQQ2;707586	MRA,QQQ2;707586	MRA,QQQ2;707586	MRA, QQQ2;707586	MRA, QQQ2; CCV	MRA, QQQ2;CCV	MRA,QQQ2;707586	MRA,QQQ2;707586	MRA,QQQ2;707586	MRA,QQQ2;707694	MRA, QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA, QQQ2; CCV	MRA,QQQ2;707694	MRA,QQQ2;707694	MRA,QQQ2;706944; M2PFDA spiked at 4x IIS	MRA, QQQ2;706944	MRA, QQQ2;706944	MRA, QQQ2;706944	MRA, QQQ2;706944	MRA, QQQ2; 706944	MRA, QQQ2; CCV	MRA,QQQ2;Instrument Blank
4/5/2021 23:07	4/5/2021 23:20	4/5/2021 23:33	4/5/2021 23:46	4/6/2021 0:00	4/6/2021 0:13	4/6/2021 0:26	4/6/2021 0:39	4/6/2021 0:52	4/6/2021 1:05	4/6/2021 1:18	4/6/2021 1:31	4/6/2021 1:45	4/6/2021 1:58	4/6/2021 2:11	4/6/2021 2:24	4/6/2021 2:37	4/6/2021 2:50	4/6/2021 3:03	4/6/2021 3:17	4/6/2021 3:30	4/6/2021 3:43	4/6/2021 3:56	4/6/2021 4:09	4/6/2021 4:22	4/6/2021 4:35	4/6/2021 4:48	4/6/2021 5:02	4/6/2021 5:15	4/6/2021 5:28
2210405A_55.d QC	2210405A_56.d QC	2210405A_57.d Sample	2210405A_58.d Sample	2210405A_59.d QC	2210405A_60.d QC	2210405A_61.d Sample	2210405A_62.d Sample	2210405A_63.d Sample	2210405A_64.d Sample	2210405A_65.d QC	2210405A_66.d QC	2210405A67.d Sample	2210405A_68.d Sample	2210405A_69.d Sample	2210405A_70.d Sample	2210405A_71.d Sample	2210405A_72.d Sample	2210405A_73.d Sample	2210405A_74.d QC	2210405A_75.d Sample	2210405A_76.d Sample	2210405A_77.d Sample	2210405A_78.d QC	2210405A_79.d Sample	2210405A_80.d Sample	2210405A_81.d QC	2210405A_82.d QC	2210405A_83.d QC	2210405A_84.d Sample
2164882	2164883	22104022005	22104022006	1450	1450	22103265102	22103265106	22104023102 10x	2165815	2165816	2165817	22103243503	22103243504	22103243505	22103243506	22103264201	22104023103	22104023104	1400	22104023901	22104026301 50x	2161507	2161508	22103255721	22103255722	2161509	2161510	1400	MeOH Shot

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221032903	Instrument ID:	QQQ2
Analysis Date:	04/05/2021 13:23	Lab File ID:	2210405A_14.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707851

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3.67	97	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	3.82	99	70	130	
NEtFOSAA	ng/L	4.00	3.78	94	70	130	
NMeFOSAA	ng/L	4.00	4.25	106	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.05	101	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.43	97	70	130	
Perfluorodecanoic acid	ng/L	4.00	3.29	82	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.90	122	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.04	101	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.14	104	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.79	104	70	130	
Perfluorononanoic acid	ng/L	4.00	3.92	98	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.40	110	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	3.77	102	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.22	105	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	3.88	97	70	130	
Perfluorotridecanoic acid	ng/L	4.00	5.50	137	70	130	*
Perfluoroundecanoic acid	ng/L	4.00	3.98	100	70	130	

61

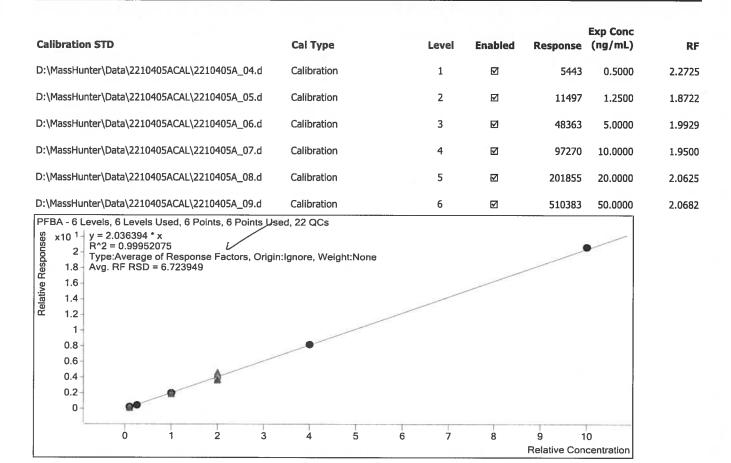
ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	221032903	Instrument ID:	QQQ2
Analysis Date:	04/05/2021 12:56	Lab File ID:	2210405A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707851

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	9120	91 🗸	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	8420	83	70	130	
NEtFOSAA	ng/L	10000	9600	96	70	130	
NMeFOSAA	ng/L	10000	8350	84	70	130	
Perfluorobutanoic acid	ng/L	10000	8390	84	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	8630	86	70	130	
Perfluorodecanoic acid	ng/L	10000	8640	86	70	130	
Perfluorododecanoic acid	ng/L	10000	8920	89	70	130	
Perfluoroheptanoic acid	ng/L	10000	9020	90	70	130	
Perfluorohexanoic acid	ng/L	10100	8710	86	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	9240	92	70	130	
Perfluorononanoic acid	ng/L	10000	9440	94	70	130	
Perfluorooctanoic acid	ng/L	10100	9080	90	70	130	
Perfluorooctanesulfonic acid	ng/L	10000	8620	86	70	130	
Perfluoropentanoic acid	ng/L	10100	8390	83	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9150	91	70	130	
Perfluorotridecanoic acid	ng/L	10000	7680	77	70	130	
Perfluoroundecanoic acid	ng/L	10000	8710	87	70	130	

41

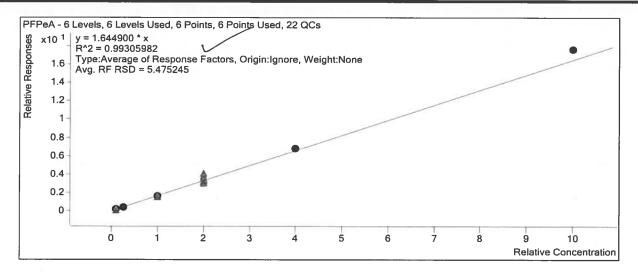
ORGANICS INSTRUMENT BLANK


Report No:	221032903	Instrument ID:	QQQ2
Analysis Date:	04/05/2021 12:43	Lab File ID:	2210405A_11.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707851

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	UV	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.91	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.81	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.81	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

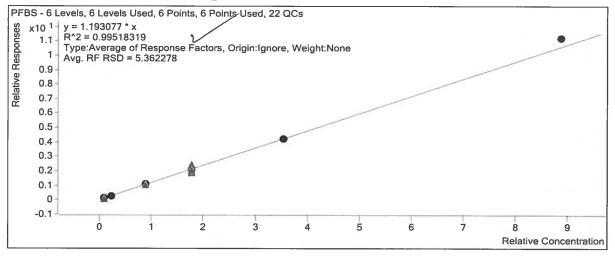
Batch Data Path Analysis Time Report Time Last Calib Update	D:\MassHunter\Data 4/13/2021 8:42 AM 4/13/2021 8:45 AM 4/6/2021 11:19 AM	2210405ACAL\Quan Analyst Name Reporter Name Batch State	tResults\2210405A.batch.t GCAL\lcms GCAL\lcms Processed	pin
Calibration Info Extracted ISTD	MPFBA			
Calibration STD	Cal Type	Level Enabl	Exp Conc ed Response (ng/mL)	R
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1 🗹	23952 5.0000	4790.325
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2 🛛	24564 5.0000	4912.806
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3 🗹	24267 5.0000	4853.446
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4 🗹	24941 5.0000	4988.276
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5 🗹	24467 5.0000	4893.419
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6 🗹	24677 5.0000	4935.491
Instrument ISTD	M3PFBA			
			· · · · · · · · · · · · · · · · · · ·	
Calibration STD	Cai Type	Level Enabl	Exp Conc ed Response (ng/mL)	R
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1 🗹	27863 5.0000	5572.686
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2 2	27119 5.0000	5423.842
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3 2	30163 5.0000	6032.510
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4 🗹	29226 5.0000	5845.146
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5 🛛	30132 5.0000	6026.402
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6 🗹	29140 5.0000	5828.091
M3PFBA - 6 Levels, 6 Levels Used, 6 Points, 6 Points \$\$ x10 4 y = 5788.113085 * x R^2 = 0.00000000 Type:Average of Response Factors, Origin 3.4 Avg. RF RSD = 4.235209 3.2 - 3.2 - 3.2 - 2.8 - 2.6 - 2.4 - 2.2 -				
-90 -80 -70 -60 -50 -40 -30	-20 -10 0 10 2	0 30 40 50	60 70 80 90 100 Concentration (ng/ml)	

Target Compound


PFBA

Target Compound

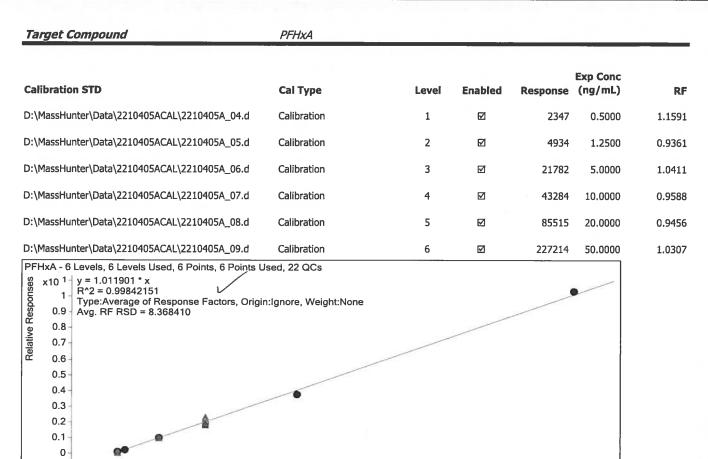
PFMPA

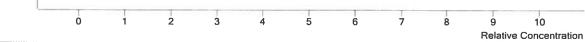

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	2431	0.5000	1.5067
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	Ø	5632	1.2500	1.3469
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	Ø	24390	5.0000	1.5000
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	Ø	48928	10.0000	1.4695
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	N	100427	20.0000	1.5261
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	Ø	258191	50.0000	1.5694

Target Compound

PFBS

C	alibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D	MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	V	1260	0.4435	1.2085
D	\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	V	2944	1.1088	1.0907
D	\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	V	12897	4.4350	1.2475
D	\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	R	24371	8.8700	1.1558
D	\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	2	51704	17.7400	1.1894
D	\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6		131458	44.3500	1.2665

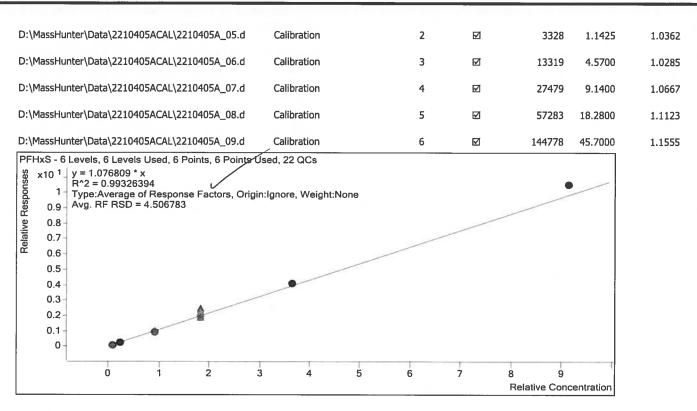



Extracted ISTD

M3PFBS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	11756	5.0000	2351.1363

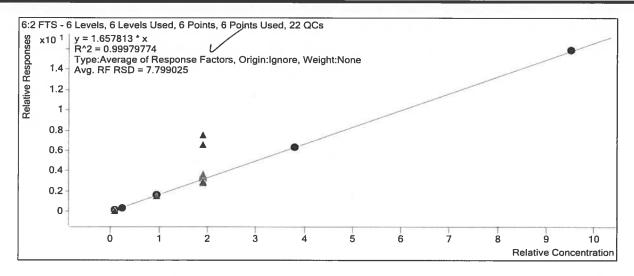
QOO2 2210405A GCAL Levelly Jemp.xlsx Pace Guil Coast Report# 221032903 Printed at: 11:09 AM on: 4/14/2021 Page 210 of 419



Instrument ISTD

M2PFHxA

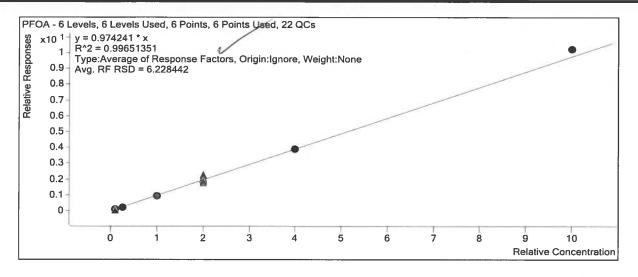
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	178316	40.0000	4457.9012
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	$\overline{\mathbf{N}}$	184156	40.0000	4603.8876
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	Ŋ	198924	40.0000	4973.0933
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	Ø	196014	40.0000	4900.3416
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	Ø	197228	40.0000	4930.6896
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	Ø	191187	40.0000	4779.6855



Townst	C	· · · · · · · · · · · · · · · · · · ·	
Target	Com	ошпа	

ADONA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	V	8223	0.4725	2.6954
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	Ø	20238	1.1813	2.5178
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	M	85984	4.7250	2.7089
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	M	173264	9.4500	2.6394
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	M	358301	18.9000	2.7607
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6		890134	47.2500	2.7898



Extracted ISTD

M8PFOA

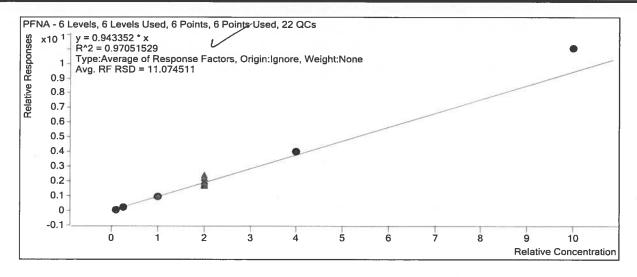
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	\square	32283	5.0000	6456.6781
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	Ø	34022	5.0000	6804.3172
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3		33588	5.0000	6717.6480
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	Ø	34733	5.0000	6946.6115
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	Ø	34336	5.0000	6867.1001
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	Ø	33764	5.0000	6752.8016
Target Compound	PFOA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	V	3422	0.5000	1.0601
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	Ø	7655	1.2500	0.9000
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	Ø	32428	5.0000	0.9655
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	Ø	63896	10.0000	0.9198
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	Ø	134039	20.0000	0.9759
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	N	345761	50.0000	1.0241

Instrument ISTD

M2PFOA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	73271	20.0000	3663.5384
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	N	76263	20.0000	3813.1404
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3		81426	20.0000	4071.2812
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4		78240	20.0000	3912.0208
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	Ø	77334	20.0000	3866.6941
D:\MassHunter\Data\2210405ACAL\2210405A_09.d M2PFOA - 6 Levels, 6 Levels Used, 6 Points, 6 Point	Calibration s Used, 22 QCs	6	Ø	76324	20.0000	3816.1950
$ \begin{array}{c} \$ \\ \$ \\ \$ \\ \$ \\ \ast \\ \$ \\ \ast \\ \$ \\ \$ \\ \$ \\$	n:Ignore, Weight:None					
0.95	•					
0.9 -	X /					
0.8	a de la companya de l					
0.75						
0.7 -	, ser					
0.65 -						
-70 -60 -50 -40 -30 -20 -	10 0 10 20 30 4	0 50	60 70 8	0 90 100 Concentratio		


Instrument ISTD

MPFOA

Calibration STD	Cal Type	Lev	vel	Enabled	Response	Exp Conc (ng/mL)	RF	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	t	l	Ø	439522	25.0000	17580.8922	

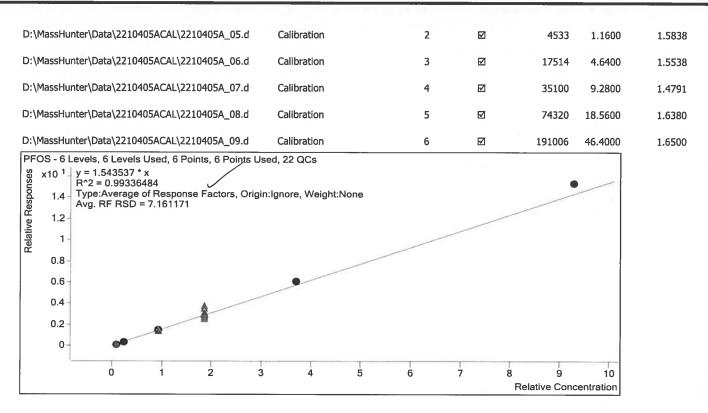
QPace Gail Coast Report - 221032903 mp.xlsx

Printed at: 11:09 AM on: 4/14/2021 Page 221 of 419

Instrument ISTD

M4PFOS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	M	74294	20.0000	3714.7241
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	R	73615	20.0000	3680.7526
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	\square	80270	20.0000	4013.4855
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	R	76297	20.0000	3814.8653
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	V	75716	20.0000	3785.8099
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	V	74043	20.0000	3702.1708
M4PFOS - 6 Levels, 6 Levels Used, 6 Points, 6 Points % x10 5 % x10 7 % x10 7 % 2 = 0.0000000 8 0.95 0.95 0.95 0.95 0.85 0.85 0.85 0.75 0.75 0.75 0.75 0.75 -70 -60 -50 -40 -30 -20 -1	n:Ignore, Weight:None	0 50	60 70 8	0 90 100 Concentrati		

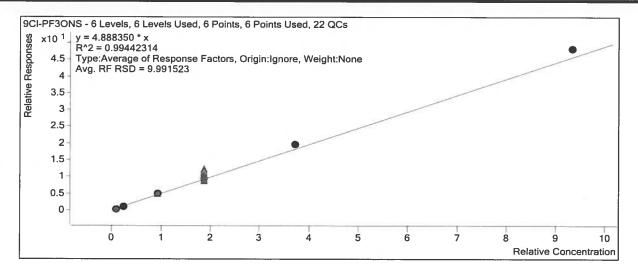

Target Compound

PFOS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	1605	0.4640	1.3566	

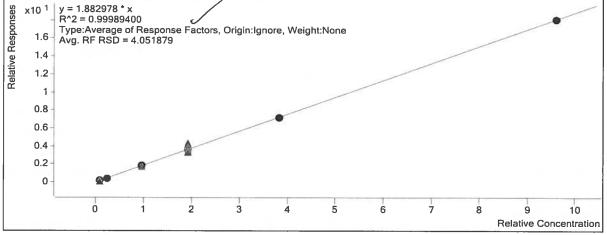
QP02 2210405A GCAL Levely jemp.xlsx

Printed at: 11:09 AM on: 4/14/2021 Page 224 of 419


Extracted	ISTD
-----------	------

M8PFOS

					Exp Conc		
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	V	12747	5.0000	2549.3192	
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	Ø	12337	5.0000	2467.4566	
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3		12146	5.0000	2429.2913	
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4		12786	5.0000	2557.2340	
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	Ø	12223	5.0000	2444.6934	
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6		12474	5.0000	2494.8320	
Target Compound	9CI-PF3ONS						
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
Calibration STD D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Cal Type Calibration	Level	Enabled I	Response 4680		RF 3.9356	
					(ng/mL)		
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1		4680	(ng/mL) 0.4665	3.9356	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration Calibration	1 2	2 D	4680 14027	(ng/mL) 0.4665 1.1663	3.9356 4.8742	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d D:\MassHunter\Data\2210405ACAL\2210405A_05.d D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration Calibration Calibration	1 2 3	2 2 2	4680 14027 57958	(ng/mL) 0.4665 1.1663 4.6650	3.9356 4.8742 5.1142	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d D:\MassHunter\Data\2210405ACAL\2210405A_05.d D:\MassHunter\Data\2210405ACAL\2210405A_06.d D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration Calibration Calibration Calibration	1 2 3 4	ଟ ଅ ଅ	4680 14027 57958 118337	(ng/mL) 0.4665 1.1663 4.6650 9.3300	3.9356 4.8742 5.1142 4.9598	


QOO2 2210405A GCAL Levelity temp.xlsx

Printed at: 11:09 AM on: 4/14/2021 Page 225 of 419

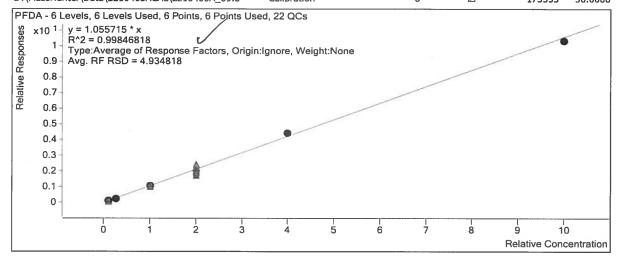
8:2 FTS

			-			
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1		1296	0.4800	2.0300
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2		2712	1.2000	1.8116
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	M	11762	4.8000	1.8824
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	Y	23307	9.6000	1.8461
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5		47317	19.2000	1.8518
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	Ø	110071	48.0000	1.8760
8:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points	Used, 22 QCs					

Extracted ISTD

Target Compound

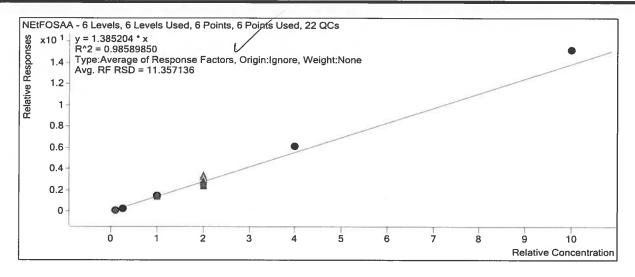
M2 8:2 FTS


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	6651	5.0000	1330.1021

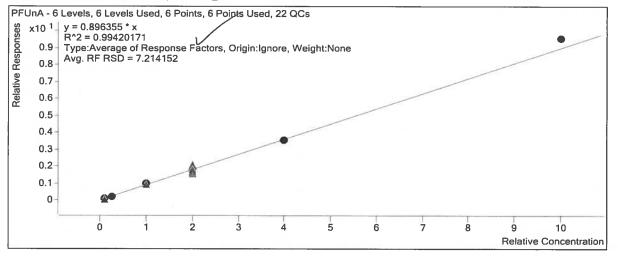
Pace-Guil Coast Repont. 221032903

Printed at: 11:09 AM on: 4/14/2021 Page 226 of 419

Target Compound	PFDA					
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	Ø	6112	5.0000	1222.3412
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5		6654	5.0000	1330.8665
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4		6576	5.0000	1315.1518
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3		6509	5.0000	1301.7352
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2		6237	5.0000	1247.3309


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	1851	0.5000	1.1091
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	N	4381	1.2500	1.0060
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	M	16793	5.0000	1.0754
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	V	32763	10.0000	0.9937
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	V	73225	20.0000	1.1155
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	Ø	173553	50.0000	1.0346

Extracted ISTD


M6PFDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	16693	5.0000	3338.5373
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	Ø	17420	5.0000	3484.0810
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3		15615	5.0000	3123.0349
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4		16485	5.0000	3297.0391
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	Ø	16411	5.0000	3282.2178
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	б	Ø	16774	5.0000	3354.8667

PFUnA

Exp Conc **Calibration STD Cal Type** Enabled (ng/mL) Level Response RF D:\MassHunter\Data\2210405ACAL\2210405A_04.d Calibration 1 \square 1551 0.5000 0.8853 D:\MassHunter\Data\2210405ACAL\2210405A_05.d Calibration 2 Ø 3478 1.2500 0.7952 D:\MassHunter\Data\2210405ACAL\2210405A_06.d Calibration 3 15681 5.0000 $\mathbf{\nabla}$ 0.9770 D:\MassHunter\Data\2210405ACAL\2210405A_07.d Calibration 4 \checkmark 31242 10.0000 0.8809 D:\MassHunter\Data\2210405ACAL\2210405A_08.d Calibration 5 \checkmark 60342 20.0000 0.8830 D:\MassHunter\Data\2210405ACAL\2210405A_09.d Calibration 6 \square 158869 50.0000 0.9567

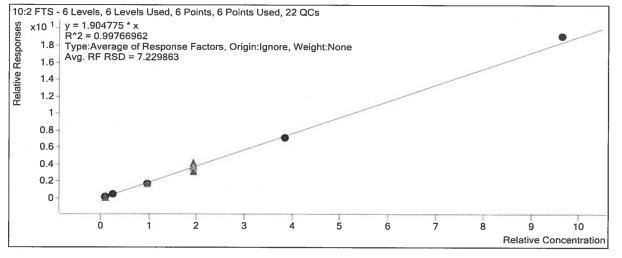
Extracted ISTD

Target Compound

M7PFUnA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	17516	5.0000	3503.2944	

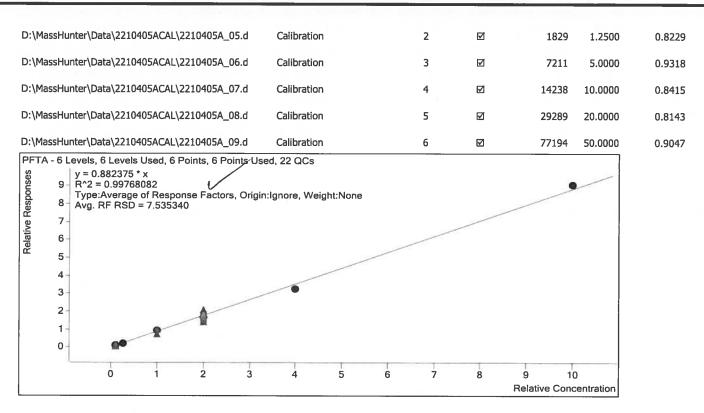
QQQ2 2210405A GCAL Levelity Jemp.xlsx


Printed at: 11:09 AM or: 4/14/2021 Page 232 of 419

Target Compound

10:2 FTS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	1163	0.4820	1.8134
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2		3230	1.2050	2.1493
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	Ø	11579	4.8200	1.8454
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	R	22548	9.6400	1.7785
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	Ø	47807	19.2800	1.8632
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	V	116589	48.2000	1.9789



Extracted ISTD

d-NMeFOSA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Z	8081	5.0000	1616.1769	

QDO2 2210405A GCAL Levelly Lemp.xlsx Pace Guil Coast Report#: 221032903

Extracted ISTD

M2PFHxDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	8616	5.0000	1723.1006	
D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	2	R	8457	5.0000	1691.3806	
D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration	3	R	8280	5.0000	1656.0102	
D:\MassHunter\Data\2210405ACAL\2210405A_07.d	Calibration	4	Ø	8320	5.0000	1663.9500	
D:\MassHunter\Data\2210405ACAL\2210405A_08.d	Calibration	5	A	8529	5.0000	1705.8880	
D:\MassHunter\Data\2210405ACAL\2210405A_09.d	Calibration	6	Ø	8314	5.0000	1662.7216	
Target Compound	PFHxDA						
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
Calibration STD D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Cal Type Calibration	Level	Enabled 전	Response 1259	•	RF 1.4616	
					(ng/mL)		
D:\MassHunter\Data\2210405ACAL\2210405A_04.d	Calibration	1	Ø	1259	(ng/mL) 0.5000	1.4616	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d D:\MassHunter\Data\2210405ACAL\2210405A_05.d	Calibration	1 2	ଅ ଅ	1259 2182	(ng/mL) 0.5000 1.2500	1.4616 1.0320	
D:\MassHunter\Data\2210405ACAL\2210405A_04.d D:\MassHunter\Data\2210405ACAL\2210405A_05.d D:\MassHunter\Data\2210405ACAL\2210405A_06.d	Calibration Calibration Calibration	1 2 3	ଅ ଅ ଅ	1259 2182 7633	(ng/mL) 0.5000 1.2500 5.0000	1.4616 1.0320 0.9218	
					(ng/mL)		

QPO2 2210405A CCAL Levelty temp.xlsx

Printed at: 11:09 AM on: 4/14/2021 Page 241 of 419

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221032903	Instrument ID:	QQQ2
Analysis Date:	04/05/2021 16:20	Lab File ID:	2210405A_24.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707851

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9270	97 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9310	97	70	130	
NEtFOSAA	ng/L	10000	10900	109	70	130	
NMeFOSAA	ng/L	10000	10100	101	70	130	
Perfluorobutanoic acid	ng/L	10000	9500	95	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8630	97	70	130	
Perfluorodecanoic acid	ng/L	10000	9310	93	70	130	
Perfluorododecanoic acid	ng/L	10000	9970	100	70	130	
Perfluoroheptanoic acid	ng/L	10000	9670	97	70	130	
Perfluorohexanoic acid	ng/L	10000	9770	98	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8730	96	70	130	
Perfluorononanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanoic acid	ng/L	10000	9800	98	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9380	101	70	130	
Perfluoropentanoic acid	ng/L	10000	9730	97	70	130	
Perfluorotetradecanoic acid	ng/L	10000	7990	80	70	130	
Perfluorotridecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroundecanoic acid	ng/L	10000	9560	96	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221032903	Instrument ID:	QQQ2
Analysis Date:	04/05/2021 19:11	Lab File ID:	2210405A_37.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	707851

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	8990	95 1	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9030	94	70	130	
NEtFOSAA	ng/L	10000	10100	101	70	130	
NMeFOSAA	ng/L	10000	8580	86	70	130	
Perfluorobutanoic acid	ng/L	10000	9640	96	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8350	94	70	130	
Perfluorodecanoic acid	ng/L	10000	9300	93	70	130	
Perfluorododecanoic acid	ng/L	10000	9900	99	70	130	
Perfluoroheptanoic acid	ng/L	10000	9950	100	70	130	
Perfluorohexanoic acid	ng/L	10000	9200	92	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8990	98	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	9520	95	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9310	100	70	130	
Perfluoropentanoic acid	ng/L	10000	9790	98	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9960	100	70	130	
Perfluorotridecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroundecanoic acid	ng/L	10000	9390	94	70	130	10

81

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221032903	Standard ID:	1205 (ICAL Midpoint)
Analyst:	MRA	Instrument ID:	QQQ2
Analysis Date:	04/05/21 11:47	Lab File ID:	2210405A_08.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	707851

		M2PFDA	M2PFHx/	M2PFHxA		1	M4PFOS		
		Area		Area		Area		Area	
STANDARD		25381		197228	197228		77334		
CLIENT SAMPLE ID	LAB SAMP ID		#		#		#	J	#
MB2162464RE	2162464RE	24379		181590		77454		68644	
LCS2162465RE	2162465RE	26944		216165		92194		80539	
WL-DECON-01RE	22103290301RE	22804		180679		79855		67330	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

FORM 8I - ORG

Page 4337 of 4387

-
÷÷-
<u> </u>
0
050
õ
<u> </u>
5
2
ม
V N
- 442
TE-
TE.
~
~
0
47
~
n
-
20
÷
ö
0
1
0
-
<i>.</i>
C')
-
m
Χ.
ā.
õ.
ш.

5/17/2021 6/30/2025 8/24/2021 8/2/2021 10/23/2021 11/10/2021 11/10/2021 11/10/2021 5/10/202114:50 8/2/0023; RXJ,QQQ3; Instrument Blank/Instrument Idle 5/10/202114:50 8/2/QQQ3; RTEST 5ample 5/10/202114:50 8/2/2022114:50 8/2/QQQ3; Instrument Blank/Instrument Idle 5/10/202116:00 8/2/2022116:15 8/2/2022116:00 8/2/2022116:15 8/2/2022111:26 8/2/2022111:26 8/2/2/202111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2022111:28 8/2/2/202111:28 8/2/2/2/202112:29 8/2/2/2/202112:29 8/2/2/2/202112:29 8/2/2/2/202112:29 8/2/2/2/202112:29 8/2/2/2/2/2/2/2022112:29 8/2/2/2/2022112:29 8/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	QQQ3
221 221 222 221 221 221 221 221	2210510ACAL
225 221 221 221 221 221 221 221	016-74-3
21 22 22 22 2021 2021 2021 2021 27 27 27 27 27 27 27 27 27 27	2130147 6,
11 2021 Acq. Date-Time 5/10/2021 14:35 5/10/2021 14:35 5/10/2021 14:35 5/10/2021 14:35 5/10/2021 14:50 5/10/2021 15:31 5/10/2021 15:31 5/10/2021 16:15 5/10/2021 16:15 5/10/2021 16:28 5/10/2021 16:28 5/10/2021 16:28 5/10/2021 16:15 5/10/2021 11:28 5/10/2021 11:28 5/15/2021 11:28	016-68-2 8/
 (021 Acq. Date-Time 5/10/2021 14:35 5/10/2021 14:50 5/10/2021 14:50 5/10/2021 15:08 5/10/2021 15:11 5/10/2021 16:15 5/10/2021 16:15 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 16:28 5/10/2021 16:29 5/10/2021 16:28 5/10/2021 16:28 5/10/2021 16:28 5/10/2021 16:29 5/10/2021 16:28 5/10/2021 16:29 5/10/2021 16:28 5/10/2021 16:29 5/10/2021 16:28 5/10/2021 11:36 5/10/2021 11:38 5/10/2021 11:38 5/15/2021 11:38 5/15/2021 11:33 5/15/2021 14:37 5/15/2021 14:37 5/15/2021 14:37 5/15/2021 14:37 5/15/2021 14:37 5/15/2021 14:37 	016-21-3 8/
1021 Acq. Date-Time 5/10/2021 14:35 5/10/2021 14:50 5/10/2021 14:50 5/10/2021 15:08 5/10/2021 15:45 5/10/2021 16:00 5/10/2021 16:00 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 11:14 5/10/2021 11:28 5/10/2021 11:28 5/11/2021 11:28 5/15/2021 11:28	016-69-7 10
Acq. Date-Time 5/10/2021 14:35 5/10/2021 14:50 5/10/2021 15:08 5/10/2021 15:31 5/10/2021 15:45 5/10/2021 16:00 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 11:28 5/10/2021 11:28 5/10/2021 11:28 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:33 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:37 5/15/2021 14:52	016-69-5 11,
5/10/2021 14:35 5/10/2021 14:50 5/10/2021 15:08 5/10/2021 15:45 5/10/2021 15:45 5/10/2021 16:00 5/10/2021 16:15 5/10/2021 16:29 5/10/2021 16:28 5/10/2021 16:28 5/10/2021 11:28 5/10/2021 11:14 5/15/2021 11:28 5/15/2021 11:28	Data File Typ
5/10/2021 14:50 5/10/2021 15:08 5/10/2021 15:31 5/10/2021 15:31 5/10/2021 16:00 5/10/2021 16:15 5/10/2021 16:15 5/10/2021 16:14 5/10/2021 16:14 5/10/2021 16:14 5/10/2021 11:28 5/10/2021 11:28 5/10/2021 11:28 5/15/2021 11:28	
5/10/2021 15:08 5/10/2021 15:31 5/10/2021 15:31 5/10/2021 16:00 5/10/2021 16:15 5/10/2021 16:29 5/10/2021 16:28 5/10/2021 17:22 5/10/2021 17:21 5/10/2021 17:21 5/10/2021 11:14 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:39 5/15/2021 11:33 5/15/2021 11:33	
5/10/2021 15:31 5/10/2021 15:45 5/10/2021 16:00 5/10/2021 16:15 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 17:22 5/10/2021 17:22 5/10/2021 17:21 5/10/2021 11:14 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:08	2210510A_03.d San
5/10/2021 15:45 5/10/2021 16:00 5/10/2021 16:00 5/10/2021 16:29 5/10/2021 16:58 5/10/2021 16:58 5/10/2021 17:22 5/10/2021 17:22 5/10/2021 17:36 5/10/2021 17:36 5/10/2021 17:36 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:08	2210510A_04.d Sar
5/10/2021 16:00 5/10/2021 16:15 5/10/2021 16:29 5/10/2021 16:58 5/10/2021 16:58 5/10/2021 17:22 5/10/2021 17:21 5/10/2021 17:51 5/15/2021 11:14 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:08 5/15/2021 14:08	2210510A_05.d Cal
5/10/2021 16:15 5/10/2021 16:29 5/10/2021 16:29 5/10/2021 16:58 5/10/2021 17:22 5/10/2021 17:21 5/10/2021 17:51 5/10/2021 17:51 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:23	2210510A_06.d Cal
5/10/2021 16:29 5/10/2021 16:44 5/10/2021 16:58 5/10/2021 17:22 5/10/2021 17:36 5/10/2021 17:51 5/15/2021 11:14 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:23	
5/10/2021 16:44 5/10/2021 16:58 5/10/2021 17:22 5/10/2021 17:36 5/10/2021 17:51 5/10/2021 18:06 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:37 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:23	
5/10/2021 16:58 5/10/2021 17:22 5/10/2021 17:24 5/10/2021 17:51 5/10/2021 17:51 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:23	
5/10/2021 17:22 5/10/2021 17:36 5/10/2021 17:51 5/15/2021 11:14 5/15/2021 11:18 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:23	
5/10/2021 17:36 5/10/2021 17:51 5/10/2021 18:06 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 11:43 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23	
5/10/2021 17:51 5/10/2021 18:06 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 13:39 5/15/2021 14:08 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23	
5/10/2021 18:06 5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:43 5/15/2021 13:39 5/15/2021 13:53 e 5/15/2021 14:08 e 5/15/2021 14:23 e 5/15/2021 14:23 e 5/15/2021 14:23	
5/15/2021 11:14 5/15/2021 11:28 5/15/2021 11:28 5/15/2021 13:39 6 5/15/2021 13:53 14:08 6 5/15/2021 14:08 6 5/15/2021 14:23 16 5/15/2021 14:23 16 5/15/2021 14:23	
5/15/2021 11:28 5/15/2021 11:43 5/15/2021 13:39 5/15/2021 13:53 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:37 5/15/2021 14:37	
5/15/2021 11:43 5/15/2021 13:39 5/15/2021 13:53 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:37 5/15/2021 14:52	
5/15/2021 13:39 5/15/2021 13:53 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:23 5/15/2021 14:37 5/15/2021 14:52	
5/15/2021 13:53 5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:37 5/15/2021 14:37	
5/15/2021 14:08 5/15/2021 14:23 5/15/2021 14:37 5/15/2021 14:52	2210515A_05.d QC
5/15/2021 14:23 5/15/2021 14:37 5/15/2021 14:52	2210515A_06.d Sam
5/15/2021 14:37 5/15/2021 14:52	
5/15/2021 14:52	
	2210515A_09.d Sa

Page 4338 of 4387

~	•
1	•
2	
l C	2
5	2
L C	
1 2	1
15	
6	1
4.	•
12	5
6	2
1.2	÷
1~	;
1	٢.
1 8	2
18	1
123	ζ.
	٢.
1 12	:
	5
١C)
18	ł.
12	í.
۱ñ	

	2 2 2 2 2
MRA,QQQ3,710894 RR MRA,QQQ3,710894 RR MRA,QQQ3,709960 RR MRA,QQQ3,709960 RR MRA,QQQ3,709960 RR MRA,QQQ3,709960 RR MRA,QQQ3,709960 RR MRA,QQQ3,710325 MRA,QQQ3,710325 MRA,QQQ3,710325 MRA,QQQ3,710325 MRA,QQQ3,710325 MRA,QQQ3,710325	MRA, QQQ3, 710325 MRA, QQQ3, 710894 RR MRA, QQQ3, 710894 RR MRA, QQQ3, 710894 RR MRA, QQQ3, 710742 MRA, QQQ3, 710742
5/15/2021 15:07 N 5/15/2021 15:21 N 5/15/2021 15:36 N 5/15/2021 15:50 N 5/15/2021 16:05 N 5/15/2021 16:05 N 5/15/2021 16:34 N 5/15/2021 16:49 N 5/15/2021 16:49 N 5/15/2021 17:03 N 5/15/2021 17:18 N 5/15/2021 17:33 N 5/15/2021 17:33 N 5/15/2021 18:02 N 5/15/2021 18:17 N 5/15/2021 18:17 N	18:46 19:15 19:15 19:30 19:30 19:59 19:59 20:13 20:13 20:13 21:12 21:12 21:12 21:12 21:12 22:10 22:13 22:13 22:13 22:25 22:10 22:39 22:39 22:300
Sample Sample Sample Sample Sample Sample Sample QC QC Sample Sample	Sample Sample Sample Sample Sample QC Sample Sample Sample Sample Sample Sample
2210515A_10.d 2210515A_11.d 2210515A_12.d 2210515A_13.d 2210515A_14.d 2210515A_15.d 2210515A_16.d 2210515A_16.d 2210515A_19.d 2210515A_20.d 2210515A_22.d 2210515A_22.d 2210515A_22.d 2210515A_22.d	2210515A_25.d 2210515A_26.d 2210515A_28.d 2210515A_29.d 2210515A_34.d 2210515A_34.d 2210515A_34.d 2210515A_34.d 2210515A_37.d 2210515A_37.d 2210515A_34.d 2210515A_40.d 2210515A_41.d 2210515A_43.d 2210515A_43.d 2210515A_43.d 2210515A_48.d 22
22104303602 22105082901 22104292901 10x 22104300610 5x 22105041139 5x 1400 22105041140 10x 22105041141 5x 22105041141 5x 22105041142 10x 22105041142 10x 22105041142 10x 22105041142 10x 22105041142 10x 22105041142 10x 22105041142 10x 22105041142 10x 22104242917 1x	22104242928 22104281801 10x 22104281802 10x 22104281804 10x 22104281808 10x 22104281808 10x 22104281808 10x 22104281808 10x 22104281808 10x 22104281808 10x 22105041101 22105041102 22105041103 22105041129 22105041129 22105041129 22105041129 22105041129 22105041120 22105041120 22104306027 5x 22104306027 1x

Page 4339 of 4387

ſ		1	1	Ч	H	1	Ч	٦	ъ	20	20	S	1	H	50	1	1	50	٦	50	÷	1	1	1	1	1	1	÷1	Ħ	1	1	1	Ч
MRA.0003.710742	MRA, QQ3, 710742	MRA, QQQ3, 710742	MRA, QQQ3, DOD CCV	MRA,QQQ3,710742	MRA,QQQ3,710742	MRA, QQQ3, 710742	MRA, QQQ3, 710742	MRA, QQQ3, 710145 RR	MRA, QQQ3, 710836 RR	RXJ,QQQ3;Instrument Blank/Instrument Idle	MRA, QQQ3, 710836 RR	MRA, QQQ3, 710836 RR	MRA, QQQ3, 710836 RR	MRA, QQQ3,710836 RR	RXJ,QQQ3;Instrument Blank/Instrument Idle	MRA, QQQ3, DOD CCV	MRA,QQQ3,711042	MRA,QQQ3,711042	MRA,QQQ3,711042	MRA, QQQ3,711042	MRA, QQQ3, 711042	MRA, QQQ3,711042	MRA, QQQ3, 711042	MRA, QQQ3, 711042	MRA,QQQ3,711042	MRA,QQQ3,711042							
5/15/2021 23:23	5/15/2021 23:38	5/15/2021 23:52	5/16/2021 0:07	5/16/2021 0:22	5/16/2021 0:37	5/16/2021 0:52	5/16/2021 1:06	5/16/2021 1:21	5/16/2021 1:36	5/16/2021 1:50	5/16/2021 2:05	5/16/2021 2:19	5/16/2021 2:34	5/16/2021 2:49	5/16/2021 3:03	5/16/2021 3:18	5/16/2021 3:32	5/16/2021 3:47	5/16/2021 4:02	5/16/2021 4:16	5/16/2021 4:31	5/16/2021 4:45	5/16/2021 5:00	5/16/2021 5:15	5/16/2021 5:30	5/16/2021 5:44	5/16/2021 5:59	5/16/2021 6:14	5/16/2021 6:28	5/16/2021 6:43	5/16/2021 6:57	5/16/2021 7:12	5/16/2021 7:27
Sample	Sample	Sample	gc	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Blank	Sample	Sample	Sample	Sample	Blank	QC	Sample	QC	СC	Sample	Sample	Sample	Sample	Sample	Sample	Sample
2210515A 50.d	2210515A_51.d	2210515A_54.d	2210515A_55.d	2210515A_58.d	2210515A_59.d	2210515A_61.d	2210515A_62.d	2210515A_63.d	2210515A_64.d	2210515A_65.d	2210515A_67.d	2210515A_68.d	2210515A_69.d	2210515A_70.d		2210515A_72.d	2210515A_73.d	2210515A_74.d	2210515A_75.d	2210515A_77.d	2210515A_78.d	2210515A_79.d	2210515A_80.d	2210515A_81.d	2210515A_82.d	2210515A_83.d	2210515A_84.d	2210515A_85.d	2210515A_86.d	2210515A_87.d	2210515A_88.d	2210515A_89.d	2210515A_90.d
22104306028 5x	22104306028 1x	22104306110	1400	22104306113	22104306114	22104306116	22104306201	22104283105	22104283108 5x	22104283109 20x	22104283110 20x	22104274610 5x	22104274610 1x	22104274619	22104274601 50x	22104274601 1x	IB	22104274602 50x	22104274602 1x	22104274603 50x	22104274603 1x	IB	1400	2185559	2185560	2185561	22104300604	22104306301	22104306302	22104306303	22105010915	22105011117	22105052610

Page 4340 of 4387

Pace Gulf Coast Report#: 221050411

MRA,QQQ3,711042	MRA, QQQ3, 711042	MRA, QQQ3, 711042	MRA, QQQ3, DOD CCV	MRA,QQQ3,711042	MRA, QQQ3, 711042	MRA,QQQ3,711042	MRA, QQQ3, 711042	MRA,QQQ3,711042	MRA, QQQ3, 711042	MRA, QQQ3, 711042	MRA, QQQ3, 711042	MRA, QQQ3, 711042	5/16/2021 10:41 MRA,QQQ3,711042	5/16/2021 10:56 MRA,QQQ3,711042	5/16/2021 11:11 MRA,QQQ3,711042	5/16/2021 11:25 MRA,QQQ3, DOD CCV	5/16/2021 11:30 RXJ,QQQ3;instrument Blank/Instrument Idle	5/16/2021 11:44 RXJ,QQQ3;Instrument Blank/Instrument Idle	
5/16/2021 7:41	5/16/2021 7:56	5/16/2021 8:11	5/16/2021 8:25	5/16/2021 8:30	5/16/2021 8:44	5/16/2021 8:59	5/16/2021 9:14	5/16/2021 9:28	5/16/2021 9:43	5/16/2021 9:57	5/16/2021 10:12	5/16/2021 10:27	5/16/2021 10:41	5/16/2021 10:56	5/16/2021 11:11	5/16/2021 11:25	5/16/2021 11:30	5/16/2021 11:44	
Sample	Sample	Sample	QC	Sample	Sample	Sample	Sample	Sample	Sample	Sample	QC	QC	Sample	Sample	Sample	QC	Blank	Blank	
2210515A_91.d	2210515A_92.d	2210515A_93.d	2210515A_94.d	2210515A_95.d	2210515A_96.d	2210515A_97.d	2210515A_98.d	2210515A_99.d	2210515A_100.d Sample	2210515A_101.d Sample	2210515A_102.d QC	2210515A_103.d	2210515A_104.d Sample	2210515A_105.d Sample	2210515A_106.d Sample	2210515A_107.d	2210515A_108.d	2210515A_109.d Blank	
2611	2612	2613		2614	2615	2616	2617	2618	2619	2620	2621	2622	2623	2624	2625				

221050526 22105052(22105052(22105052(22105052(22105052(61

ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/10/2021 15:51	Lab File ID:	2210510A_13.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710792

ANALYTE	UNITS	TRUE	FOUND	% REC	ACL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	8840	88 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	9190	91	70	130	
NEtFOSAA	ng/L	10000	9300	93	70	130	
NMeFOSAA	ng/L	10000	8470	85	70	130	
Perfluorobutanoic acid	ng/L	10000	8990	90	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	8950	90	70	130	
Perfluorodecanoic acid	ng/L	10000	9600	96	70	130	
Perfluorododecanoic acid	ng/L	10000	9020	90	70	130	
Perfluoroheptanoic acid	ng/L	10000	9200	92	70	130	
Perfluorohexanoic acid	ng/L	10100	9220	91	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	9200	92	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10100	9350	93	70	130	
Perfluorooctanesulfonic acid	ng/L	10000	8030	80	70	130	
Perfluoropentanoic acid	ng/L	10100	9110	90	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10500	105	70	130	
Perfluorotridecanoic acid	ng/L	10000	8360	84	70	130	
Perfluoroundecanoic acid	ng/L	10000	9200	92	70	130	

Page 3098 of 4387

FORM 6I - ORG

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/15/2021 09:28	Lab File ID:	2210515A_02.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711273

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3,95	104	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4.29	112	70	130	
NEtFOSAA	ng/L	4.00	4.12	103	70	130	
NMeFOSAA	ng/L	4.00	4.10	103	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.32	108	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.75	106	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.17	104	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.25	106	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.09	102	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.47	112	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.90	106	70	130	
Perfluorononanoic acid	ng/L	4.00	4.14	103	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.29	107	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.06	109	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.14	104	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.38	110	70	130	
Perfluorotridecanoic acid	ng/L	4.00	4.19	105	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.14	104	70	130	

41 ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/10/2021 15:36	Lab File ID:	2210510A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711161

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	υ	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.03	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	Ŭ	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

4I ORGANICS INSTRUMENT BLANK

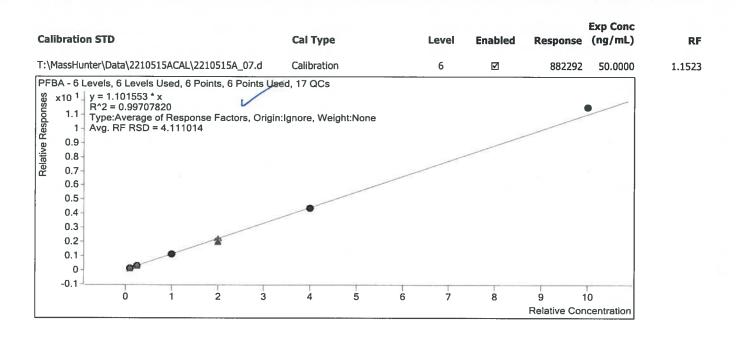
Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/15/2021 09:14	Lab File ID:	2210515A_01.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711273

				/			
ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	9/	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

41

ORGANICS INSTRUMENT BLANK

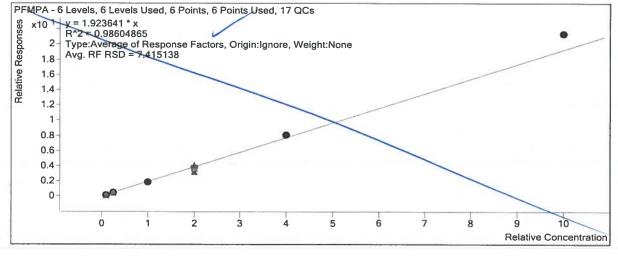
Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/10/2021 15:36	Lab File ID:	2210510A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477


ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.03	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

Level 1 2 3 4	Enabled 2	Response	Exp Conc (ng/mL)	
1 2 3	Q		•	
2 3			("9/10L)	R
3		75337	5.0000	15067.330
	\mathbf{M}	84442	5.0000	16888.492
4	R	78385	5.0000	15676.934
	M	69105	5.0000	13821.063
5	R	81068	5.0000	16213.507
6	Ø	76566	5.0000	15313.257
Level	Enabled	Response	Exp Conc (ng/mL)	R
1		7724	5.0000	1544.834
2	Ø	8351	5.0000	1670.125
3	V	7850	5.0000	1570.036
4	V	6662	5.0000	1332.417
5	R	7861	5.0000	1572.197
6	V	7854	5.0000	1570.766
	40	40 50 60		40 50 60 70 80 90 100 Concentration (ng/ml)

Target Compound

PFBA


QPO1 2210515A GCAL LEVEDY LEMP.XISX

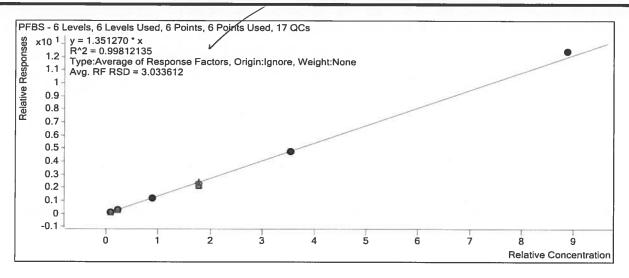
Target Compound

PFMPA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1		5931	0.5000	1.7447
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	N	16440	1.2500	1.8042
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	Ø	66236	5.0000	1.9435
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	V	113582	10.0000	1.8914
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	V	282600	20.0000	2.0253
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6		704142	50.0000	2.1327

Extracted ISTD

M5PFPeA

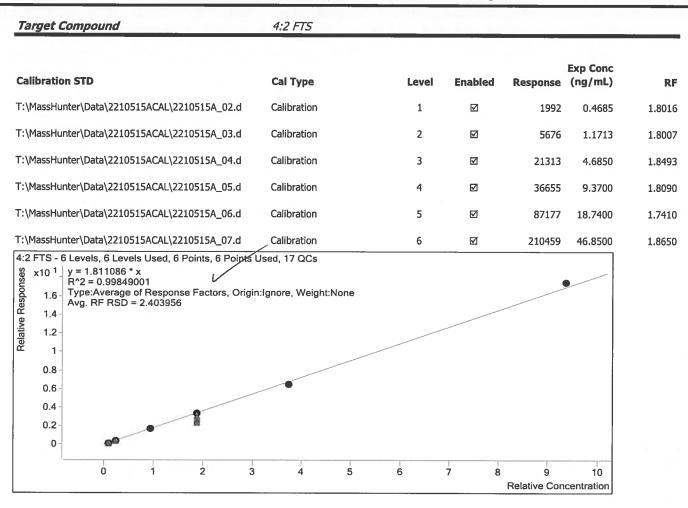

Pace Guil Coast Report 221050411 temp.xlsx

Calibration STD	Cal Type		Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration		5	$\mathbf{\nabla}$	34884	5.0000	6976.7636
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration		6		33017	5.0000	6603.4234
Target Compound	PFPeA						
Calibration STD	Cal Type		Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration		1	M	3487	0.5000	1.0258
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration		2	M	9361	1.2500	1.0273
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration		3	V	33976	5.0000	0.9970
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration		4	Ø	58926	10.0000	0.9813
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration		5	Ø	144143	20.0000	1.0330
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration		6		369402	50.0000	1.1188
PFPeA - 6 Levels, 6 Levels Used, 6 Points, 6 Points Us x10 ¹ y = 1.030518 * x y = 1.1 R ² = 0.99114291 Type:Average of Response Factors, Origin: Avg. RF RSD = 4.631108 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 2 3		6	7	8	9 1	0	
	· · ·				Relative Con		

Target Compound

PFBS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	2720	0.4435	1.3786
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	7333	1.1088	1.3480
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	M	27499	4.4350	1.3558
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	45922	8.8700	1.2793
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ø	113531	17.7400	1.3457
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	\square	289409	44.3500	1.4003

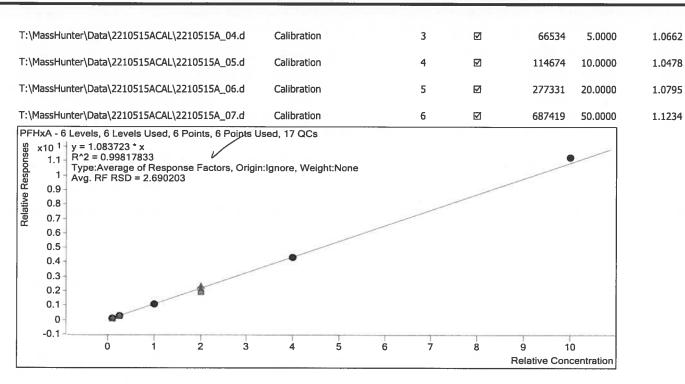


Extracted ISTD

M3PFBS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	M	22240	5.0000	4447.9669
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	M	24533	5.0000	4906.5995
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	M	22867	5.0000	4573.3592
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	R	20235	5.0000	4047.0532
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ø	23779	5.0000	4755.8067
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6		23300	5.0000	4660.0616
Target Compound	PFMBA					

Calibration STD		Cal Type	Leve	el Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\22105	15ACAL\2210515A_02.d	Calibration	1	M	5667	0.5000	0.9097
T:\MassHunter\Data\22105	15ACAL\2210515A_03.d	Calibration	2	Ø	15098	1.2500	0.8720
T:\MassHunter\Data\22105	15ACAL\2210515A_04.d	Calibration	3	X	57698	5.0000	0.9246
T:\MassHunter\Data\22105	15ACAL\2210515A_05.d	Calibration	4	M	99256	10.0000	0.9069
T:\MassHunter\Data\22105	15ACAL\2210515A_06.d	Calibration	5	M	242636	20.0000	0.9445
T:\MassHunter\Data\22105	15ACAL\2210515A_07.d	Calibration	6	M	610993	50.0000	0.9985


Extracted ISTD

M2 4:2 FTS

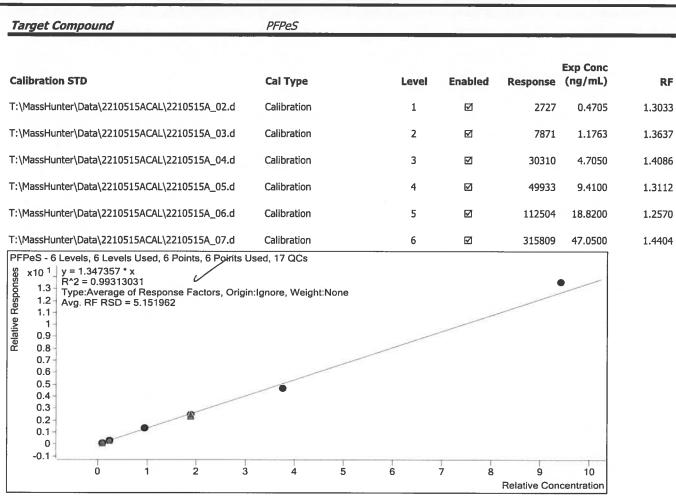
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	M	11798	5.0000	2359.6174
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	M	13457	5.0000	2691.4457
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	V	12300	5.0000	2459.9529
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	N	10813	5.0000	2162.5377
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	V	13360	5.0000	2671.9886
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	M	12043	5.0000	2408.6930
Target Compound	PFHxA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	6939	0.5000	1.1139
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	18553	1.2500	1.0715

ODO1 2210515A GCAL LevelTy Lemp.xlsx Pace Guil Coast Report#: 221050411

Extracted ISTD	M5PFHxA			_		
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1		62293	5.0000	12458.6421
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2		69257	5.0000	13851.4325
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	N	62403	5.0000	12480.5230
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	N	54722	5.0000	10944.4478
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ø	64225	5.0000	12844.9499
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6		61189	5.0000	12237.8887
Instrument ISTD	M2PFHxA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1		646363	40.0000	16159.0800
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	695574	40.0000	17389.3594
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	Ø	654061	40.0000	16351.5171
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	517324	40.0000	12933.0954
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ø	654861	40.0000	16371.5329

QOO1 2210515A GCAL Levelty temp.xlsx Pace Guil Coast Report#: 221050411

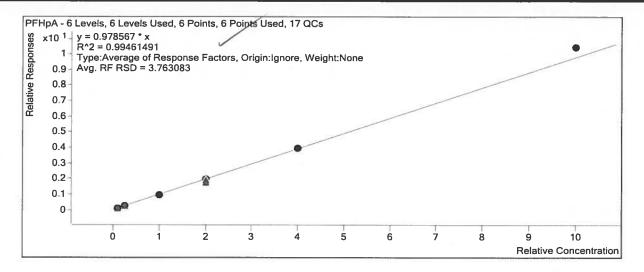

T:\MassHunter\Data\2210515ACAL\2210515A_07.d

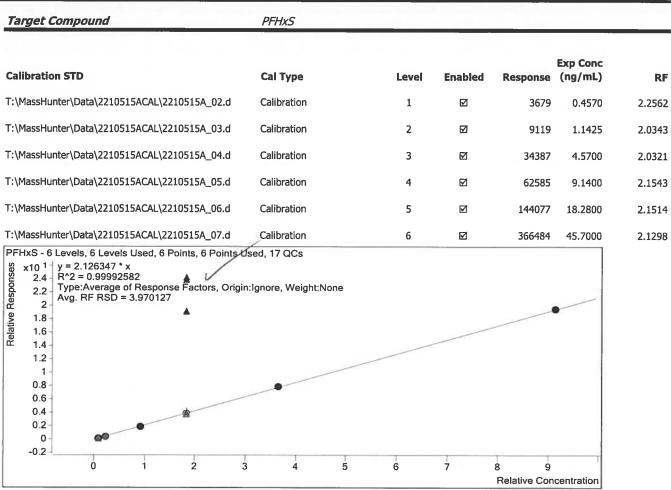
6

☑

Calibration

558762 40.0000 13969.0529



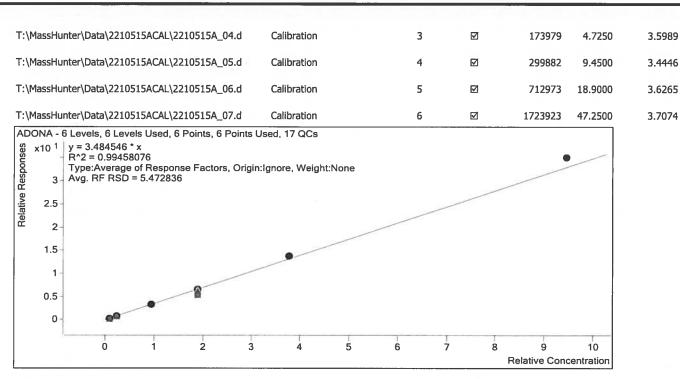

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	5633	10.0000	563.2882
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	6209	10.0000	620.8722
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3		5728	10.0000	572.7741
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	$\mathbf{\nabla}$	5047	10.0000	504.6770
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5		6057	10.0000	605.6622
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6		5340	10.0000	533.9819
Target Compound	HFPO-DA					

M3HFPODA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1		707	1.0000	1.2558
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Z	1767	2.5000	1.1381

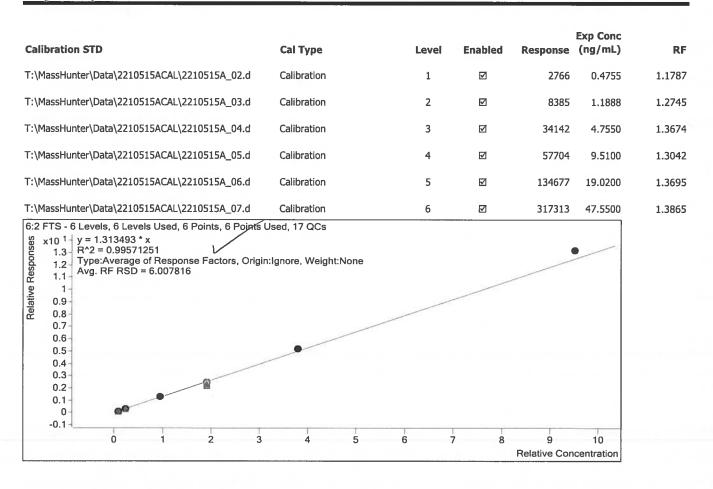
Extracted ISTD

Quantitative Analysis Calibration Report	
---	--

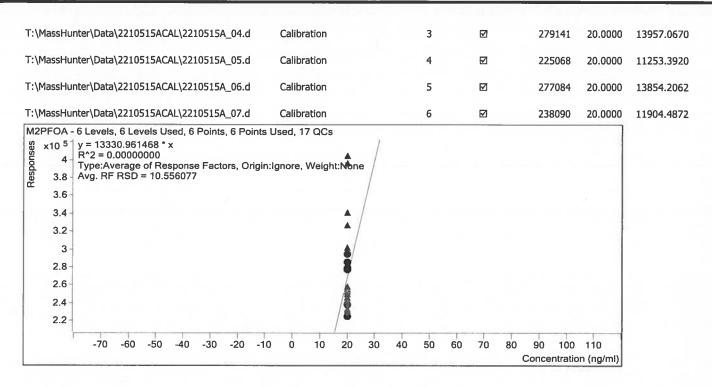

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	V	17842	5.0000	3568.4195
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	\square	19618	5.0000	3923.5435
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3		18514	5.0000	3702.7912
F:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	15893	5.0000	3178.5202
F:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	M	18317	5.0000	3663.4559
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	Ø	18827	5.0000	3765.3288
Target Compound	ADONA					

M3PFHxS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	15812	0.4725	3.2432
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	44970	1.1813	3.2868

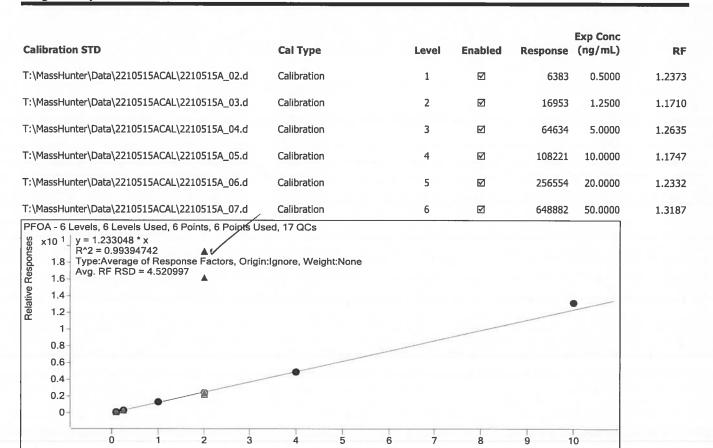

QPO1 2210515A GCAL Levelty temp.xlsx Pace Guir Coast Report#: 221050411

Extracted ISTD

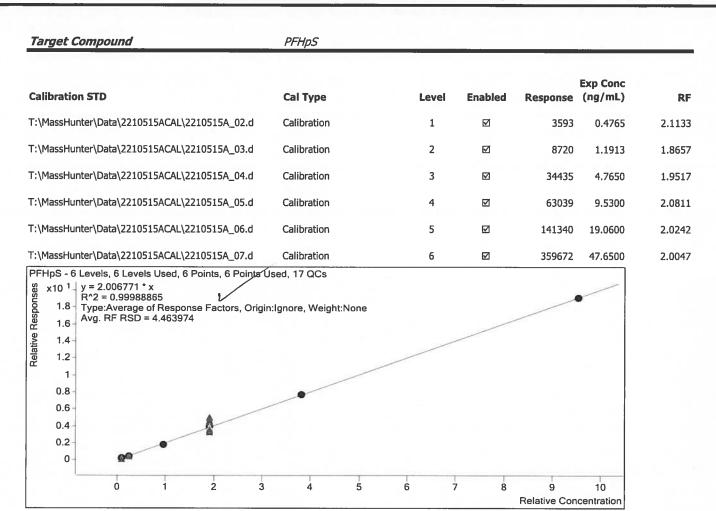


Target Compound

6:2 FTS

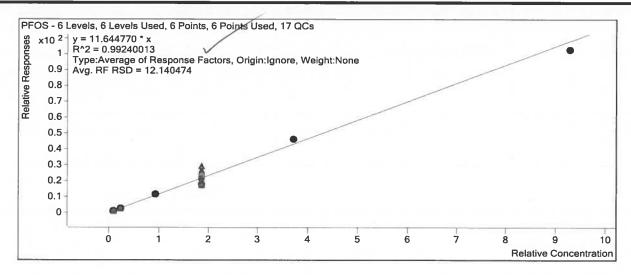


QD01_2210515A_GCAL_Levelity_temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:29 AM op: 6/9/2021 Page 2264 of 4387



Target Compound

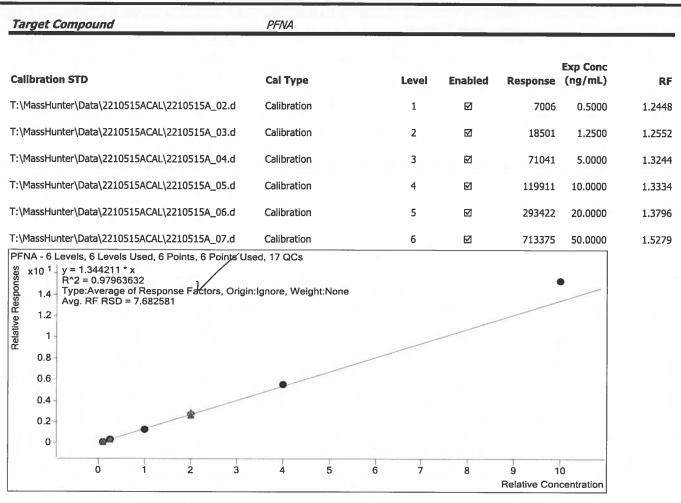
```
PFOA
```



Relative Concentration

Target Compound

PFOS

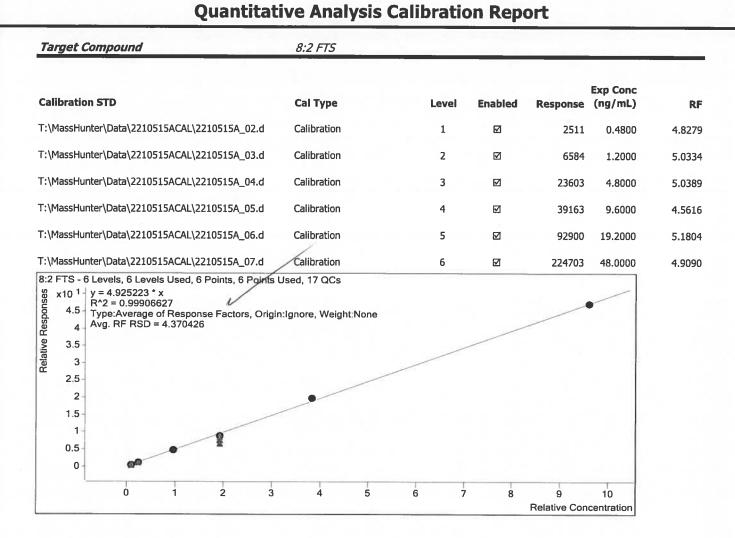
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	2481	0.4640	13.2660
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	6649	1.1600	10.7224
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	Ø	22977	4.6400	12.7067
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	37923	9.2800	9.5895
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ø	93535	18.5600	12.5399
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	Ø	251755	46.4000	11.0441



M9PFNA

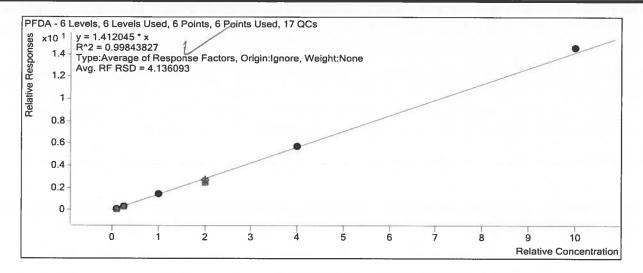
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	V	56278	5.0000	11255.6087
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	58961	5.0000	11792.1048
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	Ø	53642	5.0000	10728.4499
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	44965	5.0000	8993.0471
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	R	53172	5.0000	10634.3820
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	R	46689	5.0000	9337.7350

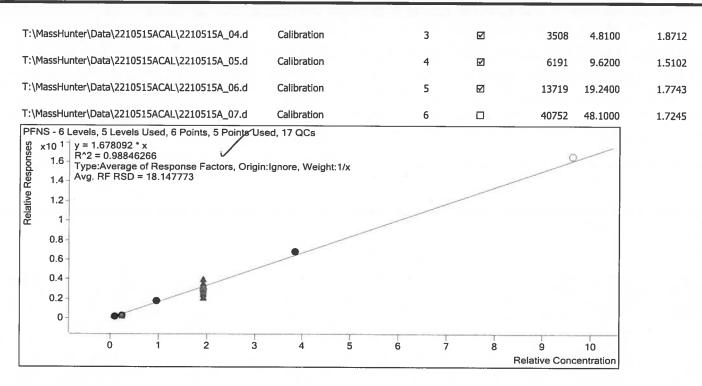
Extracted ISTD


Quantitative	Analysis	Calibration	Report
--------------	----------	-------------	--------

Extracted ISTD	M8PFOS					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	V	2015	5.0000	403.0051
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	2673	5.0000	534.5757
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	Ø	1949	5.0000	389.7167
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	2131	5.0000	426.1457
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	A	2009	5.0000	401.8850
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	Ø	2456	5.0000	491.2806
Instrument ISTD	M4PFOS					
Calibration STD	Col Turo				Exp Conc	

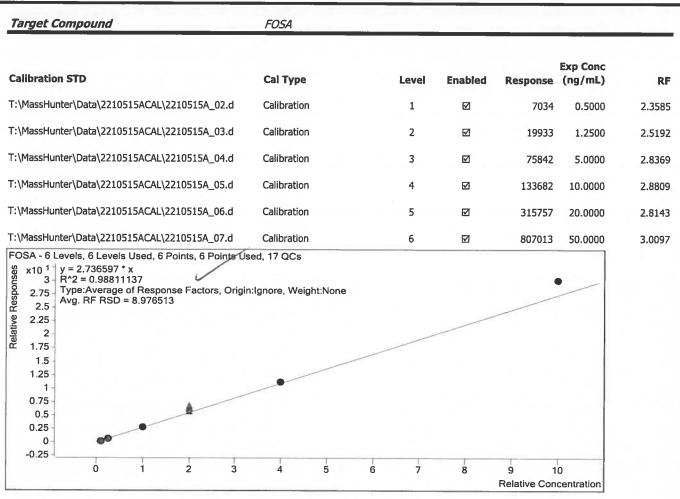
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF	
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1		43943	20.0000	2197.1313	
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	V	45053	20.0000	2252.6347	


QOO1 2210515A GCAL LevelTV Lemp.xlsx Pace Guil Coast Report#: 221050411


7	arget	Com	pound	
---	-------	-----	-------	--

PFDA

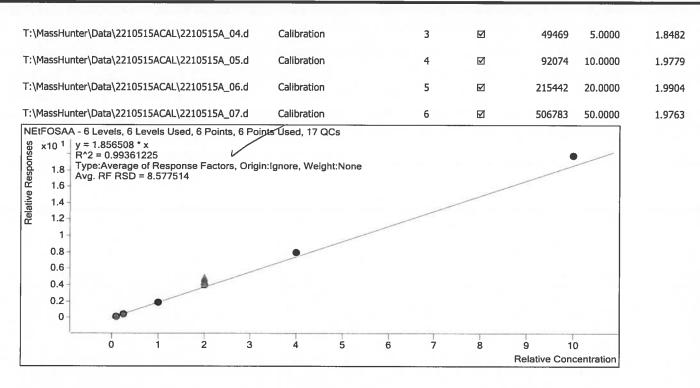
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	V	8775	0.5000	1.3805
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	23647	1.2500	1.4138
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	V	87337	5.0000	1.4724
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	V	145463	10.0000	1.3125
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5		349013	20.0000	1.4384
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	V	821690	50.0000	1.4546



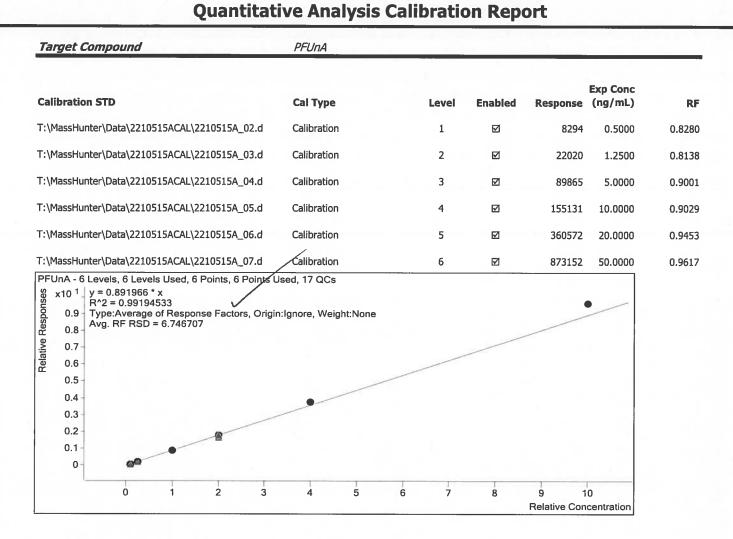
Target Compound	NMeFOSAA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	V	4277	0.5000	1.5090
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2		12079	1.2500	1.4587
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	R	45681	5.0000	1.5106
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Z	79161	10.0000	1.4410
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	M	192211	20.0000	1.4980
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	$\mathbf{\Sigma}$	464617	50.0000	1.5737
NMeFOSAA - 6 Levels, 6 Levels Used, 6 Points, 6 Po x10 ¹ y = 1.498475 * x R^2 = 0.99671097 Type:Average of Response Factors, Origin y = 1.2 -						

1.2 Relative 1 0.8 0.6 0.4 0.2 00 0 ό 2 7 3 ä, 5 6 8 9 1 10 **Relative Concentration**

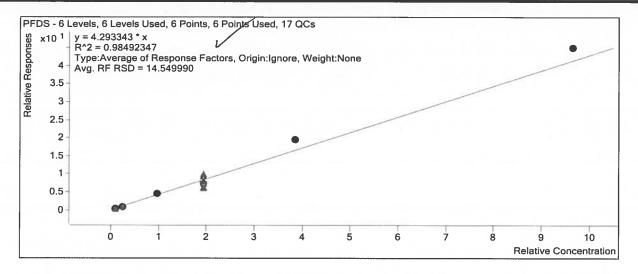
Quantitative A	Analysis	Calibration	Report
-----------------------	----------	-------------	--------


Extracted ISTD

d3-NMeFOSAA

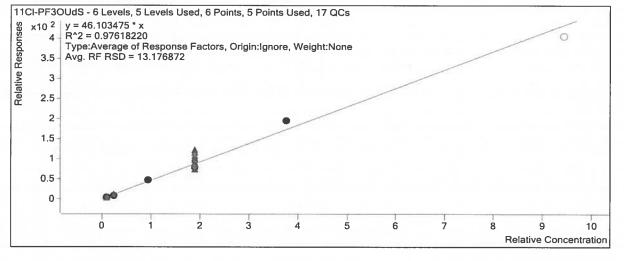

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	$\overline{\mathbf{M}}$	28347	5.0000	5669.3787
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	R	33125	5.0000	6624.9576
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	N	30241	5.0000	6048.1592
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	27468	5.0000	5493.6753
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ø	32078	5.0000	6415.5158
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	${\bf \boxtimes}$	29524	5.0000	5904.8633
Target Compound	NEtFOSAA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	4545	0.5000	1.5942
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Z	12895	1.2500	1.7521


Extracted ISTD	d5-NEtFOSAA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1		28509	5.0000	5701.8723
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	29438	5.0000	5887.5692
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	N	26766	5.0000	5353.2626
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	M	23276	5.0000	4655.2331
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5		27061	5.0000	5412.1429
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	V	25642	5.0000	5128.4743
Extracted ISTD	MZPFUnA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	M	100169	5.0000	20033.8294
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2		108236	5.0000	21647.2273
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	R	99833	5.0000	19966.6871
T:\MassHunter\Data\2210515ACAL\2210515A_05.d			_	85007		
	Calibration	4	\Box	85907	5.0000	17181.4994
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration Calibration	4 5	R	95355	5.0000 5.0000	17181.4994 19071.0820

Target Compound

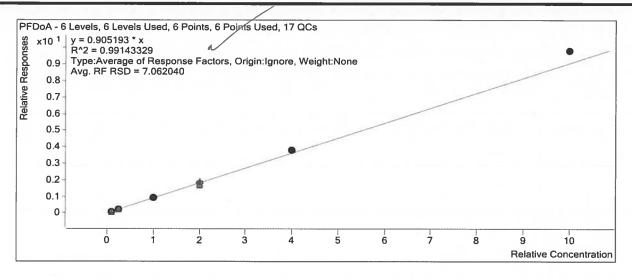
PFDS


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	N	827	0.4825	4.2538
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	V	2149	1.2063	3.3327
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	V	8691	4.8250	4.6218
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	V	15779	9.6500	3.8370
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	V	39171	19.3000	5.0502
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	Ø	110567	48.2500	4.6644

Target Compound

11CI-PF3OUdS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ŋ	9296	0.4715	48.9212
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	23852	1.1788	37.8502
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	Ø	92215	4.7150	50.1846
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	V	167111	9.4300	41.5848
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ð	393959	18.8600	51.9765
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6		998700	47.1500	43.1145

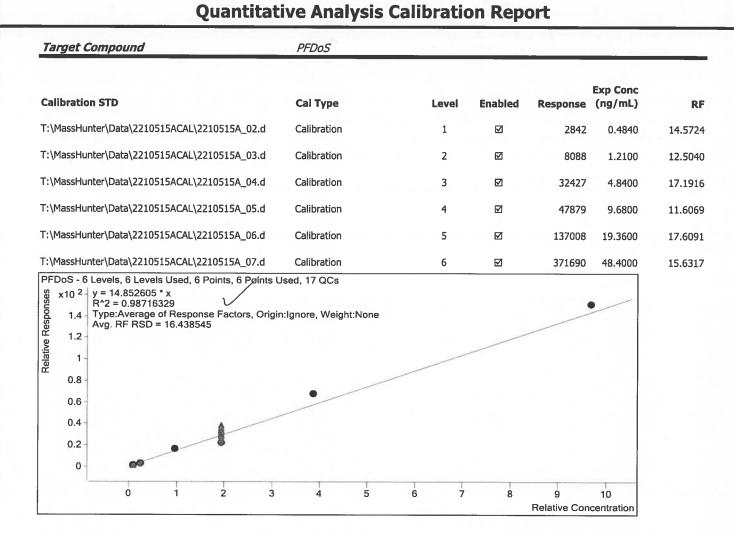

1	arget	Compound	

10:2 FTS

Calibration STD	Cal Type	Level	Enabled		Exp Conc (ng/mL)	RF	
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	3629	0.4820	6.9490	

QDO1 2210515A GCAL Levelty lemp.xlsx

Printed at: 11:29 AM op: 6/9/2021 Page 2281 of 4387

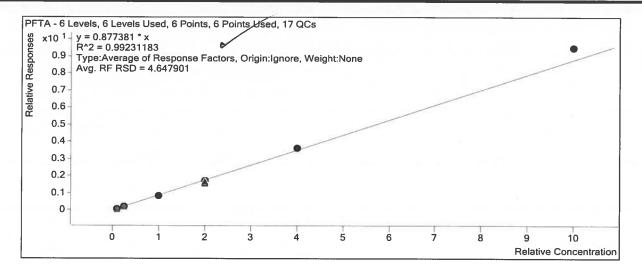

Extracted ISTD

MPFDoA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1		66028	5.0000	13205.5427
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	73055	5.0000	14610.9923
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	V	64312	5.0000	12862.3812
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4		57403	5.0000	11480.6046
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	V	66039	5.0000	13207.8734
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	M	65106	5.0000	13021.2476
Extracted ISTD	d-NMeFOSA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	27701	5.0000	5540.1328
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2		31047	5.0000	6209.4867
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	R	28948	5.0000	5789.6841
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	V	25611	5.0000	5122.1762
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	Ø	30175	5.0000	6034.9730
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6		30999	5.0000	6199.8419
Target Compound	NMeFOSA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/ml)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	2334	0.5000	0.8428



Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
T:\MassHunter\Data\2210515ACAL\2210515A_02.d	Calibration	1	Ø	5829	0.5000	0.8828
T:\MassHunter\Data\2210515ACAL\2210515A_03.d	Calibration	2	Ø	14305	1.2500	0.7833
T:\MassHunter\Data\2210515ACAL\2210515A_04.d	Calibration	3	Ø	57717	5.0000	0.8975
T:\MassHunter\Data\2210515ACAL\2210515A_05.d	Calibration	4	Ø	96668	10.0000	0.8420
T:\MassHunter\Data\2210515ACAL\2210515A_06.d	Calibration	5	V	240233	20.0000	0.9094
T:\MassHunter\Data\2210515ACAL\2210515A_07.d	Calibration	6	V	593880	50.0000	0.9122

PFTrDA

Target Compound

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/15/2021 17:55	Lab File ID:	2210515A_30.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9760	103	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	7930	83	70	130	
NEtFOSAA	ng/L	10000	11700	117	70	130	
NMeFOSAA	ng/L	10000	8960	90	70	130	
Perfluorobutanoic acid	ng/L	10000	9430	94	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8520	96	70	130	
Perfluorodecanoic acid	ng/L	10000	9990	100	70	130	
Perfluorododecanoic acid	ng/L	10000	9950	100	70	130	
Perfluoroheptanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanoic acid	ng/L	10000	9520	95	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9230	101	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	9830	98	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	10100	108	70	130	
Perfluoropentanoic acid	ng/L	10000	9510	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9830	98	70	130	
Perfluorotridecanoic acid	ng/L	10000	9540	95	70	130	
Perfluoroundecanoic acid	ng/L	10000	9710	97	70	130	

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/15/2021 21:06	Lab File ID:	2210515A_41.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9380	99 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	7810	81	70	130	
NEtFOSAA	ng/L	10000	11400	114	70	130	
NMeFOSAA	ng/L	10000	8440	84	70	130	
Perfluorobutanoic acid	ng/L	10000	9550	96	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8330	94	70	130	
Perfluorodecanoic acid	ng/L	10000	9590	96	70	130	
Perfluorododecanoic acid	ng/L	10000	9850	99	70	130	
Perfluoroheptanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanoic acid	ng/L	10000	9870	99	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9100	100	70	130	
Perfluorononanoic acid	ng/L	10000	10000	100	70	130	
Perfluorooctanoic acid	ng/L	10000	10000	100	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	11600	125	70	130	
Perfluoropentanoic acid	ng/L	10000	9370	94	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9950	100	70	130	
Perfluorotridecanoic acid	ng/L	10000	9520	95	70	130	
Perfluoroundecanoic acid	ng/L	10000	9530	95	70	130	

81

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	05/10/21 14:44	Lab File ID:	2210510A_09.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711161

		M2PFDA		M2PFHx	A	M2PFOA	۱ I	M4PFO	s
		Area		Area		Area		Area	
STANDARD		203872		327393		162813		33012	
CLIENT SAMPLE ID	LAB SAMP ID	/	#	/	#	/	#	1	#
MB2179810	2179810	213993		346375		177496		33277	
LCS2179811	2179811	202214		315715		161905		31330	
LCSD2179812	2179812	214371		338435		174243		33092	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits

* Value outside QC limits

Page 4344 of 4387

-
<u> </u>
4
0
S.
0
Ξ
è.
2
郌
₽.
5
ă.
ğ
~
ĽĽ.
-
S
G
0
C)
<u> </u>
-
7
ര
8
ä
σ.
۵.

	— — — — — — — — — — — — — — — — — — — —	1 1 20
	Acq. Date-Time Comment 5/10/2021 14:35 RXJ,QQQ3; RT TEST 5/10/2021 14:50 RXJ,QQQ3; RT TEST 5/10/2021 15:08 RXJ,QQQ3; RT TEST 5/10/2021 15:13 RXJ,QQQ3; RT TEST 5/10/2021 15:31 RXJ,QQQ3; ICAL 5/10/2021 15:31 RXJ,QQQ3; ICAL 5/10/2021 15:31 RXJ,QQQ3; ICAL 5/10/2021 16:15 RXJ,QQQ3; ICAL 5/10/2021 16:15 RXJ;QQQ3; ICAL 5/10/2021 16:15 RXJ;QQQ3; ICAL 5/10/2021 16:15 RXJ;QQQ3; ICAL 5/10/2021 16:29 RXJ;QQQ3; ICAL 5/10/2021 16:28 RXJ;QQQ3; ICAL 5/10/2021 16:28 RXJ;QQQ3; ICAL 5/10/2021 16:28 RXJ;QQQ3; ICAL 5/10/2021 16:28 RXJ;QQQ3; ICAL 5/10/2021 116:28 RXJ;QQQ3; ICAL 5/10/2021 117:21 RXJ,QQQ3; ICAL 5/10/2021 117:21 RXJ,QQQ3; ICAL 5/10/2021 117:36 RXJ,QQQ3; ICAL 5/10/2021 117:36 RXJ,QQQ3; ICAL 5/10/2021 117:31 RXJ,QQQ3; ICAL 5/10/2021 118:49 RXJ,QQQ3; ICAL	5/17/2021 19:34 RXJ,QQQ3; 5/17/2021 19:51 MRA,QQQ3,710836 5/17/2021 20:06 MRA,QQQ3,710836 5/17/2021 20:21 MRA,QQQ3,710145 5/17/2021 20:35 MRA,QQQ3,710145
HBN: 711477 5/19/2021 6/30/2025 8/24/2021 8/2/2021 10/23/2021 11/10/2021	Type Sample 5/7 Sample 5/7 Sample 5/7 Cal 5/7 Cal 5/7 Cal 5/7 Cal 5/7 Sample 5/7 Sample 5/7 Sample 5/7 QC Sample 5/7 QC QC 00	QC 5/1 Sample 5/1 Sample 5/1 Sample 5/1 Sample 5/1
QQQ3 2210510ACAL 2210510ACAL 016-75-3 2130147 016-68-2 016-68-2 016-69-7 016-69-5	Data File 2210510A_01.d 2210510A_02.d 2210510A_03.d 2210510A_06.d 2210510A_06.d 2210510A_07.d 2210510A_01.d 2210510A_11.d 2210510A_11.d 2210510A_11.d 2210510A_13.d 2210510A_13.d 2210510A_13.d 2210517A_01.d 2210517A_03.d 2210517A_03.d 2210517A_03.d	2210517A_05.d 2210517A_06.d 2210517A_07.d 2210517A_08.d 2210517A_09.d
Instrument: Batch: Current ICAL Bath: ZOmM Amm Acetate Methanol Calibration Std ICV Std ICV Std IS Mix IIS Mix	Name IB 1204RT TEST 1204RT TEST 1204 1203 1206 1206 1206 1206 1206 1206 1200 1450 1450 1450 1450 1450	1204 Test 22104274603 22104274603 22104283105 22104283108

.

<u>___</u>

MRA, QQQ3, 710145	MRA, QQQ3, 709960	MRA, QQQ3, 709960	MRA, QQQ3, 709960	MRA, QQQ3, 710743	MRA, QQQ3, 710742	MRA, QQQ3, 710742	MRA, QQQ3, 710742	MRA, QQQ3, 710743	MRA, QQQ3, 710743	MRA, QQQ3, 710743	MRA, QQQ3, 710743	MRA,QQQ3,710743	MRA, QQQ3, 710743	MRA,QQQ3,710743	MRA, QQQ3, 710743	MRA, QQQ3, 710743	MRA,QQQ3,710743	MRA, QQQ3, 710743	MRA, QQQ3, CCV	MRA, QQQ3, 710743												
5/17/2021 20:50	5/17/2021 21:19	5/17/2021 21:34	5/17/2021 21:49	5/17/2021 22:07	5/17/2021 22:24	5/17/2021 22:38	5/17/2021 22:53	5/17/2021 23:08	5/17/2021 23:23	5/17/2021 23:37	5/17/2021 23:52	5/18/2021 0:07	5/18/2021 0:21	5/18/2021 0:36	5/18/2021 0:51	5/18/2021 1:05	5/18/2021 1:20	5/18/2021 1:35	5/18/2021 1:49	5/18/2021 2:04	5/18/2021 2:19	5/18/2021 2:34	5/18/2021 2:48	5/18/2021 3:03	5/18/2021 3:17	5/18/2021 3:32	5/18/2021 3:47	5/18/2021 4:01	5/18/2021 4:16	5/18/2021 4:30	5/18/2021 4:45	5/18/2021 5:00
Sample	Sample	Sample	Sample	Blank	Blank	gc	QC	QC	Sample	QC	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	QC	Sample	gc	Sample									
2210517A_10.d	2210517A_12.d	2210517A_13.d	2210517A_14.d	2210517A_15.d	2210517A_16.d	2210517A_17.d	2210517A_18.d	2210517A_19.d	2210517A_20.d	2210517A_21.d	2210517A_22.d	2210517A_23.d	2210517A_24.d	2210517A_25.d	2210517A_26.d	2210517A_27.d	2210517A_28.d	2210517A_29.d	2210517A_30.d	2210517A_31.d	2210517A_32.d	2210517A_33.d	2210517A_34.d	2210517A_35.d	2210517A_36.d	2210517A_37.d	2210517A_38.d	2210517A_39.d	2210517A_40.d	2210517A_41.d	2210517A_42.d	2210517A_43.d
22104283109 22104283109	22105041140	22105041141	22105041142	2183955	2183946	2183947	2183948	2183956	22104306202	1400	22104306203	22104306204	22104306205	22104306206	22104306207	22104306208	22104306209	22104306210	22104306211	1400	22104306212	22105011113	22105011114	22105011115	22105011116	22105011125	22105011126	22105011127	22105011128	22105011129	1450	22105011130

20 20 5 10

H

MRA, QQQ3, 710743 MRA, QQQ3, 710742 MRA, QQQ3, 711160 MRA, QQQ3, 711160 MRA, QQQ3, 711160 MRA, QQQ3, 710742 MRA, QQQ3, 711160 MRA, QQQ3, 711160 MRA, QQQ3, 711160 **MRA, QQQ3, CCV MRA, QQQ3, CCV** MRA, QQQ3, CCV 5/18/2021 11:36 5/18/2021 12:10 5/18/2021 13:23 5/18/2021 10:52 5/18/2021 11:06 5/18/2021 11:50 5/18/2021 12:25 5/18/2021 13:09 5/18/2021 10:07 5/18/2021 10:22 5/18/2021 10:37 5/18/2021 11:21 5/18/2021 12:40 5/18/2021 12:54 5/18/2021 5:15 5/18/2021 5:29 5/18/2021 5:44 5/18/2021 5:59 5/18/2021 6:13 5/18/2021 6:28 5/18/2021 7:26 5/18/2021 7:56 5/18/2021 8:10 5/18/2021 8:25 5/18/2021 8:39 5/18/2021 9:24 5/18/2021 9:38 5/18/2021 9:53 5/18/2021 6:43 5/18/2021 6:57 5/18/2021 7:12 5/18/2021 7:41 5/18/2021 8:54 5/18/2021 9:09 Sample Blank g g g g g 2210517A_44a.d 210517A_45a.d 2210517A_59a.d 2210517A_46.d 2210517A_47.d 210517A_48.d 2210517A_49.d 2210517A_50.d 210517A_51.d 2210517A_52.d 2210517A_53.d 2210517A_54.d 2210517A_55.d 2210517A_56.d 2210517A_57.d 2210517A_58.d 2210517A_60.d 2210517A_61.d 2210517A_63.d 2210517A_64.d 2210517A_66.d 2210517A_67.d 2210517A_68.d 2210517A_69.d 2210517A_70.d 2210517A_75.d 2210517A_62.d 2210517A_65.d 2210517A_71.d 2210517A_72.d 2210517A_73.d 2210517A_74.d 2210517A_76.d 2210517A_77.d 22105041103 22105041128 22104306110 22105055816 22105011131 22105041102 22105041127 22105041129 22105041130 22104306026 22104306028 22104306029 22104306112 22104306113 22104306114 22104306115 22104306116 22104306026 22105055815 22105041101 22105041104 22104306111 22104306028 22104306029 22105133801 22104306027 22104306201 22104306027 22105133501 2186346 2186347 1400 1400 1400

10 20 ഗ

5/18/2021 13:38 MRA, QQQ3, 711160 MRA, QQQ3, 711042 MRA, QQQ3, 711042 MRA, QQQ3, 711042 MRA, QQQ3, 711042 MRA, QQQ3, 710368 MRA, QQQ3, 710368 MRA, QQQ3, 711388 MRA, QQQ3, 711042 MRA, QQQ3, 711042 MRA, QQQ3, 711042 MRA, QQQ3, 710368 MRA, QQQ3, 711042 MRA, QQQ3, 711042 MRA, QQQ3, CCV MRA, QQQ3, CCV 5/18/2021 13:54 5/18/2021 14:09 5/18/2021 14:23 5/18/2021 14:38 5/18/2021 14:53 5/18/2021 15:07 5/18/2021 15:45 5/18/2021 16:00 5/18/2021 16:15 5/18/2021 16:29 5/18/2021 16:44 5/18/2021 17:15 5/18/2021 17:30 5/18/2021 17:59 5/18/2021 18:14 5/18/2021 18:29 5/18/2021 15:22 5/18/2021 16:59 5/18/2021 17:45 Sample Sample

Sample

Sample

Sample

Sample Sample

Sample

g g

Blank

2185559 2185560 2185561

g

2210517A_91a.d 2210517A_78.d 2210517A_89.d 2210517A_90.d 2210517A_92.d 2210517A_79.d 2210517A_80.d 2210517A_81.d 2210517A_82.d 2210517A_83.d 2210517A_84.d 2210517A_85.d 2210517A_86.d 2210517A_87.d 2210517A_88.d 2210517A_93.d 2210517A_94.d 2210517A_95.d 2210517A_96.d 2210517A_97.d 22105055817 22104306302 22104306303 22104280103 22104280103 22105010915 22105171802 22104300604 22104306301 22104280105 22105011117 22105171801

1400

Sample Sample

Sample Sample Sample Sample

2187770

2187772 2187771

Sample

g

1450

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/17/2021 17:19	Lab File ID:	2210517A_04.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.24	112	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4.55	118	70	130	
NEtFOSAA	ng/L	4.00	4.08	102	70	130	
NMeFOSAA	ng/L	4.00	4.54	113	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.37	109	70	130	
Perfluorobutanesulfonic acid	ng/L	3,55	3.61	102	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.33	108	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.10	103	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.34	109	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.51	113	70	130	-
Perfluorohexanesulfonic acid	ng/L	3.66	3.98	109	70	130	
Perfluorononanoic acid	ng/L	4.00	4.25	106	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.37	109	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.11	111	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.25	106	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.24	106	70	130	
Perfluorotridecanoic acid	ng/L	4.00	4.17	104	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.22	106	70	130	

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	instrument ID:	QQQ3
Analysis Date:	05/18/2021 02:45	Lab File ID:	2210517A_42.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3.99	105	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4.38	114	70	130	<u> </u>
NEtFOSAA	ng/L	4.00	4.45	111	70	130	
NMeFOSAA	ng/L	4.00	4.02	101	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.37	109	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.77	106	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.29	107	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.09	102	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.30	107	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.27	107	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.98	109	70	130	
Perfluorononanoic acid	ng/L	4.00	4.28	107	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.41	110	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.25	115	70	130	-
Perfluoropentanoic acid	ng/L	4.00	4.20	105	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.33	108	70	130	
Perfluorotridecanoic acid	ng/L	4.00	4.15	104	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.11	103	70	130	

41

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/17/2021 17:04	Lab File ID:	2210517A_03.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477

ANALYTE	UNITS	RESULT	Q	/ DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	ul	0.94	2.00	4.00	Γ
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	1
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	υ	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	υ	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	υ	0.95	2.00	4.00	· ·

* - Result greater than 1/2 LOQ

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/17/2021 21:37	Lab File ID:	2210517A_21.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9190	97 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9460	99	70	130	
NEtFOSAA	ng/L	10000	9230	92	70	130	
NMeFOSAA	ng/L	10000	9330	93	70	130	
Perfluorobutanoic acid	ng/L	10000	9270	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8350	94	70	130	
Perfluorodecanoic acid	ng/L	10000	9530	95	70	130	
Perfluorododecanoic acid	ng/L	10000	9600	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9580	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9120	91	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8840	97	70	130	
Perfluorononanoic acid	ng/L	10000	9360	94	70	130	
Perfluorooctanoic acid	ng/L	10000	9430	94	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8750	94	70	130	
Perfluoropentanoic acid	ng/L	10000	9600	96	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9650	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9730	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9510	95	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/18/2021 00:04	Lab File ID:	2210517A_31.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9100	96 i	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9990	104	70	130	
NEtFOSAA	ng/L	10000	9150	91	70	130	
NMeFOSAA	ng/L	10000	9120	91	70	130	
Perfluorobutanoic acid	ng/L	10000	9310	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8150	92	70	130	
Perfluorodecanoic acid	ng/L	10000	9520	95	70	130	
Perfluorododecanoic acid	ng/L	10000	9700	97	70	130	
Perfluoroheptanoic acid	ng/L	10000	9480	95	70	130	
Perfluorohexanoic acid	ng/L	10000	9440	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8710	95	70	130	
Perfluorononanoic acid	ng/L	10000	9550	96	70	130	
Perfluorooctanoic acid	ng/L	10000	9360	94	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8790	95	70	130	
Perfluoropentanoic acid	ng/L	10000	9490	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9740	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9680	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9660	97	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No: 221050411 Instrument ID: QQQ3 Analysis Date: 05/18/2021 05:26 Lab File ID: 2210517A_53.d Analytical Method: EPA 537 Mod Isotope Dilution Analytical Batch: 711477

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9100	96 /	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9460	99	70	130	
NEtFOSAA	ng/L	10000	9540	95	70	130	
NMeFOSAA	ng/L	10000	9540	95	70	130	
Perfluorobutanoic acid	ng/L	10000	9330	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8270	93	70	130	
Perfluorodecanoic acid	ng/L	10000	9530	95	70	130	
Perfluorododecanoic acid	ng/L	10000	9740	97	70	130	
Perfluoroheptanoic acid	ng/L	10000	9640	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9430	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8730	95	70	130	
Perfluorononanoic acid	ng/L	10000	9610	96	70	130	
Perfluorooctanoic acid	ng/L	10000	9280	93	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8810	95	70	130	
Perfluoropentanoic acid	ng/L	10000	9490	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9750	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9690	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9710	97	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/18/2021 08:07	Lab File ID:	2210517A_64.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9080	95 1	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9540	99	70	130	
NEtFOSAA	ng/L	10000	9360	94	70	130	11
NMeFOSAA	ng/L	10000	9070	91	70	130	
Perfluorobutanoic acid	ng/L	10000	9370	94	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8320	94	70	130	
Perfluorodecanoic acid	ng/L	10000	9570	96	70	130	
Perfluorododecanoic acid	ng/L	10000	9570	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9440	94	70	130	
Perfluorohexanoic acid	ng/L	10000	9430	94	70	130	-
Perfluorohexanesulfonic acid	ng/L	9140	8730	96	70	130	
Perfluorononanoic acid	ng/L	10000	9500	95	70	130	
Perfluorooctanoic acid	ng/L	10000	9520	95	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8910	96	70	130	
Perfluoropentanoic acid	ng/L	10000	9500	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9710	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9550	96	70	130	
Perfluoroundecanoic acid	ng/L	10000	9550	96	70	130	

Report No:	221050411	Instrument ID:	QQQ3	
Analysis Date:	05/18/2021 09:50	Lab File ID:	2210517A_71.d	
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477	

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9460	99	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9660	101	70	130	
NEtFOSAA	ng/L	10000	9350	94	70	130	
NMeFOSAA	ng/L	10000	9650	96	70	130	<u> </u>
Perfluorobutanoic acid	ng/L	10000	9340	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8410	95	70	130	
Perfluorodecanoic acid	ng/L	10000	9670	97	70	130	
Perfluorododecanoic acid	ng/L	10000	9680	97	70	130	
Perfluoroheptanoic acid	ng/L	10000	9460	95	70	130	
Perfluorohexanoic acid	ng/L	10000	9380	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8890	97	70	130	
Perfluorononanoic acid	ng/L	10000	9540	95	70	130	
Perfluorooctanoic acid	ng/L	10000	9070	91	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8660	93	70	130	
Perfluoropentanoic acid	ng/L	10000	9680	97	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9660	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9690	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9650	96	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/18/2021 14:29	Lab File ID:	2210517A_89.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711477

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9360	98	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9280	97	70	130	
NEtFOSAA	ng/L	10000	9600	96	70	130	
NMeFOSAA	ng/L	10000	9580	96	70	130	1
Perfluorobutanoic acid	ng/L	10000	9320	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8450	95	70	130	<u> </u>
Perfluorodecanoic acid	ng/L	10000	9520	95	70	130	
Perfluorododecanoic acid	ng/L	10000	9670	97	70	130	
Perfluoroheptanoic acid	ng/L	10000	9640	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9340	93	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8970	98	70	130	
Perfluorononanoic acid	ng/L	10000	9550	95	70	130	
Perfluorooctanoic acid	ng/L	10000	9270	93	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8610	93	70	130	
Perfluoropentanoic acid	ng/L	10000	9540	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9640	96	70	130	
Perfluorotridecanoic acid	ng/L	10000	9810	98	70	130	
Perfluoroundecanoic acid	ng/L	10000	9700	97	70	130	

81

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)		
Analyst:	MRA	Instrument ID:	QQQ3		
Analysis Date:	05/10/21 14:44	Lab File ID:	2210510A_09.d		
Analytical Method: PFAS isotope Dilution QSM B15		Analytical Batch:	711273		

		M2PFDA		M2PFHx	Ą	M2PFOA	\	M4PFOS	3
		Area		Area		Area		Area	
STANDARD		203872		327393		162813		33012	
CLIENT SAMPLE ID	LAB SAMP ID	\checkmark	#	\checkmark	#	~	#	/	#
AOI01-02-GWDL	22105041139DL	252008		364884		196633		41933	\square

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

FORM 8I - ORG

Page 4348 of 4387

I

	Dil. ık/Instrument Idle 1 1	nk/Instrument Idle 1 1 1	1 1 1k/Instrument Idle 1 1	
	Comment RXJ,QQQ3;Instrument Blank/Instrument Idle RXJ;QQQ3; RT TEST RXJ;QQQ3; RT TEST	RXJ,QQQ3;Instrument Blank/Instrument Idle RXJ;QQQ3; ICAL RXJ;QQQ3; ICAL RXJ;QQQ3; ICAL RXJ:OQO3: ICAL		RXJ,QQQ3;BLANK RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639
	Acq. Date-Time 5/10/2021 14:35 5/10/2021 14:50 5/10/2021 15:08	5/10/2021 15:31 5/10/2021 15:45 5/10/2021 16:00 5/10/2021 16:15 5/10/2021 16:29	5/10/2021 16:44 5/10/2021 16:58 5/10/2021 17:22 5/10/2021 17:36 5/10/2021 17:51 5/10/2021 17:51	5/20/2021 19:52 5/20/2021 20:07 5/20/2021 20:26 5/20/2021 20:36 5/20/2021 20:51 5/20/2021 21:06 5/20/2021 21:35 5/20/2021 21:35
HBN: 711722 L 5/22/2021 6/30/2025 8/24/2021 8/2/2021 10/23/2021 11/10/2021	Type 1.d Sample 2.d Sample 3.d Sample	4.d Sample 5.d Cal 6.d Cal 7.d Cal 8.d Cal		1.d Sample 2.d Sample 3.d Blank 4.d QC 5.d QC 5.d Sample 7.d Sample 8.d Sample 9.d Sample
QQQ3 2210520A 2210510ACAL 016-77-5 2130147 016-68-2 016-69-7 016-69-7 016-69-5	Data File 2210510A_01.d 2210510A_02.d 2210510A_03.d	2210510A_04.d 2210510A_05.d 2210510A_06.d 2210510A_07.d 2210510A_08.d	2210510A_09.d 2210510A_09.d 2210510A_11.d 2210510A_12.d 2210510A_13.d 2210510A_13.d 2210510A_13.d	2210520A_01.d 2210520A_02.d 2210520A_03.d 2210520A_04.d 2210520A_05.d 2210520A_05.d 2210520A_07.d 2210520A_07.d 2210520A_08.d 2210520A_08.d
Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name IB 1204RT TEST 1204RT TEST	IB 1201 1202 1203 1204	1205 1206 1206 18 1500 1600 1450	1500 1450 2189169 2189170 2189171 22104075208 22104075208 22105198601

		ent Blank ent Blank
RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639 RXJ,QQQ3;711639	KXJ,QQQ3;711639 KXJ,QQQ3;711639 KXJ,QQQ3;711639 KXJ,QQQ3;711639 KXJ,QQQ3;711639 KXJ,QQQ3;711639 KXJ,QQQ3;711639 XXJ,QQQ3;711639 XXJ,QQQ3;711639	KXJ,QQQ3;Instrument Blank RXJ,QQQ3;Instrument Blank RXJ,QQQ3;Instrument Blank RXJ,QQQ3;CCV RXJ,QQQ3;711634 RXJ,QQQ3;711634 RXJ,QQQ3;711634 RXJ,QQQ3;711634 RXJ,QQQ3;711634 RXJ,QQQ3;711634 RXJ,QQQ3;711639 RXJ,QQQ3;710837 RXJ,QQQ3;710837
	RXJ,QQQ RXJ,QQQ RXJ,QQQ RXJ,QQQ RXJ,QQQ RXJ,QQQ RXJ,QQQ RXJ,QQQ RXJ,QQQ	RXJ,QQQ3;Inst RXJ,QQQ3;Inst RXJ,QQQ3;CCV RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711 RXJ,QQQ3;711
5/20/2021 22:04 5/20/2021 22:19 5/20/2021 22:33 5/20/2021 22:48 5/20/2021 23:02 5/20/2021 23:17 5/20/2021 23:46 5/21/2021 23:36 5/21/2021 0:16 5/21/2021 0:16	5/21/2021 0:45 5/21/2021 0:45 5/21/2021 1:14 5/21/2021 1:14 5/21/2021 1:29 5/21/2021 1:58 5/21/2021 2:12 5/21/2021 2:42 5/21/2021 2:42	5/21/2021 3:25 5/21/2021 3:25 5/21/2021 3:55 5/21/2021 4:10 5/21/2021 4:24 5/21/2021 4:39 5/21/2021 5:08 5/21/2021 5:23 5/21/2021 5:23 5/21/2021 5:52 5/21/2021 5:52
5/20/2 5/20/2 5/20/2 5/20/2 5/20/2 5/20/2 5/21/2 5/21/2 5/21/2	5/21/2 5/21/2 5/21/2 5/21/2 5/21/2 5/21/2 5/21/2 5/21/2 5/21/2 5/21/2	5/21/2021 5/21/2021 5/21/2021 5/21/2021 5/21/2021 5/21/2021 5/21/2021 5/21/2021 5/21/2021 5/21/2021
Sample Sample Sample Sample QC Sample Sample Sample	Sample Sample Sample Sample QC Sample QC	Sample Blank QC QC Sample Sample Blank Blank
2210520A_10.d 2210520A_11.d 2210520A_12.d 2210520A_13.d 2210520A_14.d 2210520A_16.d 2210520A_16.d 2210520A_17.d 2210520A_18.d 2210520A_19.d 2210520A_20.d		
221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052	221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052	221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052 221052
801 002 005 005 007 007 007 007	010 011 012 014 001 002 003	04 06 10
22105183801 22105183001 22105183002 22105183003 22105183005 22105183005 22105183005 22105183006 22105183006 22105183008 22105183009 22105183009	22105183010 22105183011 22105183012 22105183013 22105183013 22105183014 22105193001 1400 22105193003 22105193003 1400	lB 1500 1450 1450 2189149 2189150 2189151 22104283106 22104283106 22104283106 22104283100 22104283100 22104283110 2184338

RXJ,QQQ3;710837	RXJ,QQQ3;CCV	RXJ,QQQ3;710837	RXJ,QQQ3;CCV	RXJ,QQQ3;710837	RXJ,QQQ3;710837	RXJ,QQQ3;710837	RXJ,QQQ3;710837	RXJ,QQQ3;710837	RXJ,QQQ3;711253	RXJ,QQQ3;711253	RXJ,QQQ3;711253	RXJ,QQQ3;711634	RXJ,QQQ3;710837	RXJ,QQQ3;711634	RXJ,QQQ3;711634	RXJ,QQQ3;711634																		
5/21/2021 6:21	5/21/2021 6:36	5/21/2021 6:51	5/21/2021 7:05	5/21/2021 7:20	5/21/2021 7:34	5/21/2021 7:49	5/21/2021 8:04	5/21/2021 8:19	5/21/2021 8:33	5/21/2021 8:48	5/21/2021 9:03	5/21/2021 9:17	5/21/2021 9:32	5/21/2021 9:47	5/21/2021 10:01	5/21/2021 10:16	5/21/2021 10:31	5/21/2021 10:45	5/21/2021 11:00	5/21/2021 11:14	5/21/2021 11:29	5/21/2021 11:44	5/21/2021 11:58	5/21/2021 12:13	5/21/2021 12:28	5/21/2021 12:42	5/21/2021 12:57	5/21/2021 13:11	5/21/2021 13:26	5/21/2021 13:41	5/21/2021 13:55	5/21/2021 14:10	5/21/2021 14:24	
QC	Sample	Sample	Sample	Sample	Sample	Sample	QC	Sample	QC	QC	QC	Sample	Sample	Sample	Sample	Sample	Blank	QC	QC	Sample	Blank	Sample	Sample	Sample										
2210520A_44.d	2210520A_45.d	2210520A_46.d	2210520A_47.d	2210520A_48.d	2210520A_49.d	2210520A_50.d	2210520A_51.d	2210520A_52.d	2210520A_53.d	2210520A_54.d	2210520A_55.d	2210520A_56.d	2210520A_57.d	2210520A_58.d	2210520A_59.d	2210520A_60.d	2210520A_61.d	2210520A_62.d	2210520A_63.d	2210520A_64.d	2210520A_65.d	2210520A_66.d	2210520A_67.d	2210520A_68.d	2210520A_69.d	2210520A_70.d	2210520A_71.d	2210520A_72.d	2210520A_73.d	2210520A_74.d	2210520A_75.d	2210520A_76.d	2210520A_77.d	
2184339	22104274604	22105041105	22105041106	22105041107	22105041108	22105041109	1400	22105041111	22105041113	22105041114	22105041116	22105041117	22105041118	22105041119	22105041120	22105041121	22105041122	22105041123*ms	22105041124*msd	1400	22105041125*10	22105041125	22105041126	22105041131	22105041132	2187004	2187005	2187042	22104283104	2184338	22104283106	22104283109	22104283110	

10

-

-

, I

1

-

H

Н

-

H

-

-

Pace Gulf Coast Report#: 221050411

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/21/2021 02:10	Lab File ID:	2210520A_35.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711722

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.23	111	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	3.91	102	70	130	
NEtFOSAA	ng/L	4.00	4.40	110	70	130	
NMeFOSAA	ng/L	4.00	4.38	109	70	130	
Perfluorobutanoic acid	ng/L.	4.00	4.32	108	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.82	108	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.34	108	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.32	108	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.27	107	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.41	110	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	4.05	111	70	130	
Perfluorononanoic acid	ng/L	4.00	4.22	105	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.29	107	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.20	113	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.19	105	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.27	107	70	130	
Perfluorotridecanoic acid	ng/L	4.00	4.22	106	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.04	101	70	130	

ORGANICS INSTRUMENT BLANK

Report No:	221050411	instrument ID:	QQQ3			
Analysis Date:	05/21/2021 01:40	Lab File ID:	2210520A_33.d			
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711722			

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	UV	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	1
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	υ	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/21/2021 06:04	Lab File ID:	2210520A_51.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711722

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9010	95	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9180	96	70	130	<u> </u>
NEtFOSAA	ng/L	10000	9410	94	70	130	
NMeFOSAA	ng/L	10000	9490	95	70	130	
Perfluorobutanoic acid	ng/L	10000	9270	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8380	94	70	130	
Perfluorodecanoic acid	ng/L	10000	9630	96	70	130	
Perfluorododecanoic acid	ng/L	10000	9530	95	70	130	
Perfluoroheptanoic acid	ng/L	10000	9500	95	70	130	
Perfluorohexanoic acid	ng/L	10000	9430	94	70	130	-
Perfluorohexanesulfonic acid	ng/L	9140	8660	95	70	130	
Perfluorononanoic acid	ng/L	10000	9320	93	70	130	
Perfluorooctanoic acid	ng/L	10000	9280	93	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8820	95	70	130	
Perfluoropentanoic acid	ng/L	10000	9620	96	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9490	95	70	130	
Perfluorotridecanoic acid	ng/L	10000	9670	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9350	93	70	130	

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/21/2021 09:14	Lab File ID:	2210520A_64.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711722

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9900	104	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9430	98	70	130	
NEtFOSAA	ng/L	10000	9260	93	70	130	
NMeFOSAA	ng/L	10000	9600	96	70	130	
Perfluorobutanoic acid	ng/L	10000	9350	94	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8300	94	70	130	
Perfluorodecanoic acid	ng/L	10000	9540	95	70	130	
Perfluorododecanoic acid	ng/L	10000	9630	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9520	95	70	130	-
Perfluorohexanoic acid	ng/L	10000	9390	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8900	97	70	130	
Perfluorononanoic acid	ng/L	10000	9460	95	70	130	
Perfluorooctanoic acid	ng/L	10000	9280	93	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8670	93	70	130	
Perfluoropentanoic acid	ng/L	10000	9710	97	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9760	98	70	130	
Perfluorotridecanoic acid	ng/L	10000	9620	96	70	130	
Perfluoroundecanoic acid	ng/L	10000	9420	94	70	130	

FORM 7E - ORG

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/21/2021 12:54	Lab File ID:	2210520A_79.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711722

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	8940	94 /	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9020	94	70	130	
NEtFOSAA	ng/L	10000	9440	94	70	130	
NMeFOSAA	ng/L	10000	9400	94	70	130	
Perfluorobutanoic acid	ng/L	10000	9340	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8240	93	70	130	
Perfluorodecanoic acid	ng/L	10000	9630	96	70	130	
Perfluorododecanoic acid	ng/L	10000	9640	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9550	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9370	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8790	96	70	130	
Perfluorononanoic acid	ng/L	10000	9390	94	70	130	
Perfluorooctanoic acid	ng/L	10000	9430	94	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8690	94	70	130	
Perfluoropentanoic acid	ng/L	10000	9500	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9520	95	70	130	
Perfluorotridecanoic acid	ng/L	10000	9810	98	70	130	
Perfluoroundecanoic acid	ng/L	10000	9610	96	70	130	

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/21/2021 16:22	Lab File ID:	2210520A_93.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711722

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9180	97 🗸	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9530	99	70	130	
NEtFOSAA	ng/L	10000	9270	93	70	130	
NMeFOSAA	ng/L	10000	8950	89	70	130	
Perfluorobutanoic acid	ng/L	10000	9250	92	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8210	93	70	130	-
Perfluorodecanoic acid	ng/L	10000	9520	95	70	130	
Perfluorododecanoic acid	ng/L	10000	9590	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9540	95	70	130	
Perfluorohexanoic acid	ng/L	10000	9530	95	70	130	-
Perfluorohexanesulfonic acid	ng/L	9140	8650	95	70	130	
Perfluorononanoic acid	ng/L	10000	9500	95	70	130	
Perfluorooctanoic acid	ng/L	10000	9280	93	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8710	94	70	130	
Perfluoropentanoic acid	ng/L	10000	9530	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9840	98	70	130	
Perfluorotridecanoic acid	ng/L	10000	9700	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9590	96	70	130	

	ne Comment	0:32 MRA, MEOH SHOT/INSTRUMENT IDL	0:49 MRA,QQQ1;Cal	1:07 MRA,QQQ1;Cal	L:24 MRA,QQQ1;Cal	L:41 MRA,QQQ1;Cal	L:58 MRA,QQQ1;Cal	2:16 MRA,QQQ1;Cal	2:33 MRA,QQQ1;Cal	1:08 MRA, MEOH SHOT/INSTRUMENT IDL	1:25 MRA,QQQ1;Cal	5:08 MRA, MEOH SHOT/INSTRUMENT IDL	5:26 MRA,QQQ1;Cal	5:43 MRA, MEOH SHOT/INSTRUMENT IDL	5:00 MRA,QQQ1	5:17 MRA,QQQ1	5:36 MRA, MEOH SHOT/INSTRUMENT IDL	5:53 MRA,QQQ1	7:10 MRA,QQQ1	7:27 MRA,QQQ1	7:45 MRA, MeOH SHOT/INSTRUMENT IDL	3:02 MRA, MEOH SHOT/INSTRUMENT IDU	3:19 MRA,QQQ1;711505 1st run	3:36 MRA,QQQ1;711505 1st run
	Acq. Date-Time	5/21/2021 10:32	5/21/2021 10:49	5/21/2021 11:07	5/21/2021 11:24	5/21/2021 11:41	5/21/2021 11:58	5/21/2021 12:16	5/21/2021 12:33	5/21/2021 14:08	5/21/2021 14:25	5/21/2021 15:08	5/21/2021 15:26	5/21/2021 15:43	5/21/2021 16:00	5/21/2021 16:17	5/21/2021 16:36	5/21/2021 16:53	5/21/2021 17:10	5/21/2021 17:27	5/21/2021 17:45	5/21/2021 18:02	5/21/2021 18:19	5/21/2021 18:36
8/2/2021 11/20/2021 11/20/2021	Type	Blank	Cal	Blank	Cal	Blank	Cal	Blank	Sample	Sample	Blank	QC	QC	Sample	Blank	Blank	Sample	QC						

 1450
 2210521A_18.d

 1600
 2210521A_19.d

 MeOH Shot
 2210521A_20.d

 MeOH Shot
 2210521A_20.d

 MeOH Shot
 2210521A_20.d

 2105
 20.d

 MeOH Shot
 2210521A_20.d

 2105
 20.d

 MeOH Shot
 2210521A_20.d

 2105
 21.d

 2188447
 2210521A_22.d

 2188448
 2210521A_23.d

Pace Gulf Coast Report#: 221050411

2/1/2026 HBN:711941 5/23/2021 11/17/2021 8/2/2021 Date Date 2130330 2210521A_04.d 2210521A 01.d 2210521A_02.d 2210521A_05.d 2210521A_06.d 2210521A_07.d 2210521A_08.d 2210521A_09.d 2210521A_10.d 2210521A_12.d 2210521A_13.d 2210521A_16.d 2210521A_18.d 2210521ACAL 2210521A_03.d 2210521A_11.d 2210521A_14.d 2210521A_15.d 2210521A_17.d 2210521A QQQ1 016-78-7 016-74-9 016-21-3 016-78-3 Data File 016-77-7 20mM Amm Acetate Current ICAL Bath: **Calibration Std** Instrument **MeOH Shot MeOH Shot MeOH Shot MeOH Shot MeOH Shot** Methanol ICV Std **EIS Mix** IIS Mix Batch: Name 1205 1202 1600 1450 1450 1207 1500 1206 1201 1202 1203 1204 1205

Page 4353 of 4387

Pace Gulf Coast Report#: 221050411

Sample g g Я g g g g Я 210521A_24.d 2210521A_41.d 2210521A_44.d 2210521A_47.d 2210521A_25.d 2210521A_26.d 2210521A_27.d 2210521A_29.d 2210521A_30.d 2210521A_31.d 2210521A_32.d 2210521A_33.d 2210521A_34.d 2210521A_35.d 2210521A_36.d 2210521A_37.d 2210521A_38.d 2210521A_39.d 2210521A_40.d 2210521A_42.d 2210521A_43.d 2210521A_45.d 210521A_46.d 2210521A_48.d 2210521A_28.d 22105041155 22105011208 22105010902 22105118904 22105118912 22105118914 22105118915 22105118918 22105041105 22105041109 22105041156 22105041157 22105011207 22105055702 22105010901 22105010903 22105118901 22105118902 22105118903 22105118907 22105118911 22105118913

1400

5/21/2021 18:53 5/21/2021 19:11 5/21/2021 19:28 5/21/2021 19:45 5/21/2021 20:03 5/21/2021 20:20 5/21/2021 20:37 5/21/2021 20:55 5/21/2021 21:12 5/21/2021 21:29 5/21/2021 21:47 5/21/2021 22:04 5/21/2021 22:21 5/21/2021 22:38 5/21/2021 22:56 5/21/2021 23:13 5/21/2021 23:30 5/21/2021 23:48 5/22/2021 0:05 5/22/2021 0:22 5/22/2021 0:40 5/22/2021 0:57 5/22/2021 1:14 5/22/2021 1:32 5/22/2021 1:49

MRA, QQQ1;711505 1st run MRA, QQQ1;711505 1st run MRA, QQQ1; 711505 1st run MRA, QQQ1; 711505 1st run MRA, QQQ1;711505 1st run MRA, QQQ1; 711505 1st run MRA,QQQ1;711505 1st run MRA,QQQ1;711505 1st run MRA, QQQ1; 711505 1st run MRA, QQQ1; 711505 1st run MRA,QQQ1;711505 1st run MRA, QQQ1;711505 1st run MRA, QQQ1; 711505 1st run MRA, QQQ1; CCV

MRA,QQQ1;711505 1st run MRA,QQQ1;711505 1st run MRA, QQQ1; 711505 1st run MRA,QQQ1;711505 1st run MRA, QQQ1;711505 1st run MRA,QQQ1;711505 1st run MRA, QQQ1;711505 1st run MRA,QQQ1;711505 1st run MRA, QQQ1; 711505 1st run MRA, QQQ1;711505 1st run MRA, QQQ1; CCV

22105118917

1400

ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	221050411	instrument ID:	QQQ1
Analysis Date:	05/21/2021 17:27	Lab File ID:	2210521A_19.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711941

ANALYTE	UNITS	TRUE	FOUND	% REC	/LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	11500	1151	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	10400	103	70	130	
NEtFOSAA	ng/L	10000	11900	119	70	130	
NMeFOSAA	ng/L	10000	12000	120	70	130	
Perfluorobutanoic acid	ng/L	10000	11400	114	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	10700	107	70	130	
Perfluorodecanoic acid	ng/L	10000	11400	114	70	130	
Perfluorododecanoic acid	ng/L	10000	11600	116	70	130	
Perfluoroheptanoic acid	ng/L	10000	11400	114	70	130	
Perfluorohexanoic acid	ng/L	10100	11000	109	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	12100	121	70	130	
Perfluorononanoic acid	ng/L	10000	12800	128	70	130	
Perfluorooctanoic acid	ng/L	10100	10900	108	70	130	
Perfluorooctanesulfonic acid	ng/L	10000	8790	88	70	130	
Perfluoropentanoic acid	ng/L	10100	11000	109	70	130	
Perfluorotetradecanoic acid	ng/L	10000	13000	130	70	130	
Perfluorotridecanoic acid	ng/L	10000	9520	95	70	130	
Perfluoroundecanoic acid	ng/L	10000	10900	109	70	130	

FORM 6I - ORG

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/21/2021 16:53	Lab File ID:	2210521A_17.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711941

					/		
ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9.52	9.04	95 .	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9.60	7.90	82	70	130	
NEtFOSAA	ng/L	10.0	9.36	93	70	130	
NMeFOSAA	ng/L	10.0	9.76	98	70	130	
Perfluorobutanoic acid	ng/L	10.0	8.64	86	70	130	
Perfluorobutanesulfonic acid	ng/L	8.88	8.32	94	70	130	
Perfluorodecanoic acid	ng/L	10.0	8.48	85	70	130	
Perfluorododecanoic acid	ng/L	10.0	8.24	82	70	130	
Perfluoroheptanoic acid	ng/L	10.0	8.64	86	70	130	
Perfluorohexanoic acid	ng/L	10.0	8.88	89	70	130	
Perfluorohexanesulfonic acid	ng/L	9.12	10.1	110	70	130	
Perfluorononanoic acid	ng/L	10.0	8.80	88	70	130	
Perfluorooctanoic acid	ng/L	10.0	8.80	88	70	130	
Perfluorooctanesulfonic acid	ng/L	9.28	8.32	90	70	130	
Perfluoropentanoic acid	ng/L	10.0	9.04	90	70	130	
Perfluorotetradecanoic acid	ng/L	10.0	8.96	90	70	130	
Perfluorotridecanoic acid	ng/L	10.0	7.96	80	70	130	
Perfluoroundecanoic acid	ng/L	10.0	8.64	86	70	130	

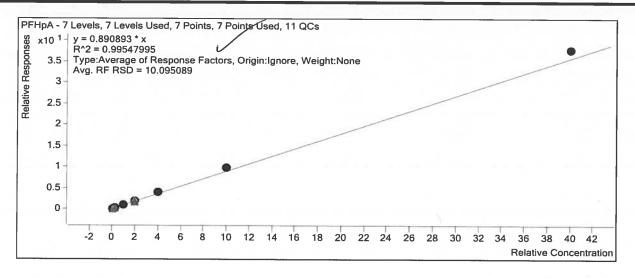
ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/21/2021 16:00	Lab File ID:	2210521A_14.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711941

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	UV	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	1
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

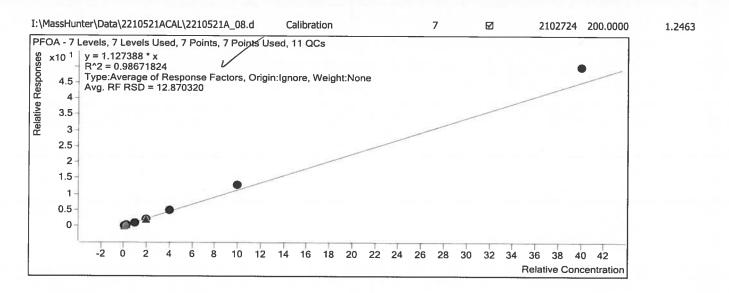
FORM 4I - ORG


Batch Data Path Analysis Time Report Time Last Calib Update	C:\MassHunter\Data\(6/5/2021 6:18 PM 6/5/2021 6:29 PM 5/27/2021 2:43 PM	QQQ1\2210 Analyst Reporte Batch S	Name r Name	uantResults\2 GCAL\Icms GCAL\Icms Processed	210521A.b	atch.bin
Calibration Info Instrument ISTD	M3PFBA				_	
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
I:\MassHunter\Data\2210521ACAL\2210521A_02.d	Calibration	1	Ø	8901	5.0000	1780.2878
I:\MassHunter\Data\2210521ACAL\2210521A_03.d	Calibration	2	V	9378	5.0000	1875.6519
I:\MassHunter\Data\2210521ACAL\2210521A_04.d	Calibration	3	Ø	9319	5.0000	1863.8954
I:\MassHunter\Data\2210521ACAL\2210521A_05.d	Calibration	4	Z	8953	5.0000	1790.5082
I:\MassHunter\Data\2210521ACAL\2210521A_10.d	Calibration	5		9718	5.0000	1943.6713
I:\MassHunter\Data\2210521ACAL\2210521A_07.d	Calibration	6		9790	5.0000	1957.9573
I:\MassHunter\Data\2210521ACAL\2210521A_08.d	Calibration	7		8734	5.0000	1746.8906
M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points % x10 ⁴ 9 = 1851.266054 * x % 1.1 - R^2 = 0.0000000 1.075 - Type:Average of Response Factors, Origin Avg. RF RSD = 4.426962 1 - 0.975 - 0.95 0.925 - 0.95 0.925 - 0.95 0.85 - 0.85 - 0.825 - 0.8						

Target Compound

PFBA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
I:\MassHunter\Data\2210521ACAL\2210521A_02.d	Calibration	1	Ø	6168	0.5000	0.8202
I:\MassHunter\Data\2210521ACAL\2210521A_03.d	Calibration	2		15478	1.2500	0.8169
I:\MassHunter\Data\2210521ACAL\2210521A_04.d	Calibration	3	V	74124	5.0000	0.9151
I:\MassHunter\Data\2210521ACAL\2210521A_05.d	Calibration	4	¥	161836	10.0000	0.9849
I:\MassHunter\Data\2210521ACAL\2210521A_10.d	Calibration	5	Ø	378395	20.0000	1.0381
I:\MassHunter\Data\2210521ACAL\2210521A_07.d	Calibration	6	V	968159	50.0000	1.0550
I:\MassHunter\Data\2210521ACAL\2210521A_08.d	Calibration	7	Q	3114956	200.0000	0.9983


Printed at: 11:32 AM op: 6/9/2021 Page 2409 of 4387

Target Compound	PFHxS					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	F
:\MassHunter\Data\2210521ACAL\2210521A_02.d	Calibration	1		2700	0.4570	1.64
:\MassHunter\Data\2210521ACAL\2210521A_03.d	Calibration	2	Ø	6688	1.1425	1.71
:\MassHunter\Data\2210521ACAL\2210521A_04.d	Calibration	3		29605	4.5700	1.75
:\MassHunter\Data\2210521ACAL\2210521A_05.d	Calibration	4	Ø	64882	9.1400	1.92
\MassHunter\Data\2210521ACAL\2210521A_10.d	Calibration	5	Ø	145466	18.2800	2.23
\MassHunter\Data\2210521ACAL\2210521A_07.d	Calibration	6	Ø	376406	45.7000	2.24
\MassHunter\Data\2210521ACAL\2210521A_08.d	Calibration	7		1228437	182.8000	1.81
$x_{10} = 1.904767 * x$ $a_{20} = 6.5 - 1.904767 * x$ $a_{20} = 0.99378504$ $a_{20} = 6.5 - 1.5 - 1.2737907$ $a_{20} = 5.5 - 1.2737907$ $a_{20} = 5.5 - 1.2737907$ $a_{20} = 1.2737907$	n:Ignore, Weight:None					
3.5- 3- 2.5- 2- 1.5- 1- 0.5- 0- -0.5-						

Extracted ISTD

M3PFHxS

Instrument ISTD

M2PFOA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
I:\MassHunter\Data\2210521ACAL\2210521A_02.d	Calibration	1	Ø	239024	20.0000	11951.1808
I:\MassHunter\Data\2210521ACAL\2210521A_03.d	Calibration	2	M	247218	20.0000	12360.9007
I:\MassHunter\Data\2210521ACAL\2210521A_04.d	Calibration	3	V	275264	20.0000	13763.1982
I:\MassHunter\Data\2210521ACAL\2210521A_05.d	Calibration	4	N	265537	20.0000	13276.8373
I:\MassHunter\Data\2210521ACAL\2210521A_10.d	Calibration	5	Ø	287104	20.0000	14355.2188
I:\MassHunter\Data\2210521ACAL\2210521A_07.d	Calibration	6	V	292765	20.0000	14638.2382
I:\MassHunter\Data\2210521ACAL\2210521A_08.d	Calibration	7	V	233016	20.0000	11650.7921
M2PFOA - 7 Levels, 7 Levels Used, 7 Points, 7 Point	s Used, 11 QCs					
	•					

Extracted ISTD

M8PFOA

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/21/2021 22:21	Lab File ID:	2210521A_36.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711941

					/		
ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9980	105	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	8750	91	70	130	1
NEtFOSAA	ng/L.	10000	10600	106	70	130	
NMeFOSAA	ng/L	10000	10800	108	70	130	
Perfluorobutanoic acid	ng/L	10000	10400	104	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9450	107	70	130	
Perfluorodecanoic acid	ng/L	10000	10000	100	70	130	
Perfluorododecanoic acid	ng/L	10000	10800	108	70	130	
Perfluoroheptanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanoic acid	ng/L	10000	9960	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	10200	111	70	130	-
Perfluorononanoic acid	ng/L	10000	10500	105	70	130	
Perfluorooctanoic acid	ng/L	10000	10800	108	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9910	107	70	130	
Perfluoropentanoic acid	ng/L	10000	10000	100	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10400	104	70	130	
Perfluorotridecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroundecanoic acid	ng/L	10000	10200	102	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/22/2021 01:49	Lab File ID:	2210521A_48.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711941

ANALYTE	UNITS	TRUE	FOUND	% REC	/LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	107	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9300	97	70	130	
NEtFOSAA	ng/L	10000	11200	112	70	130	
NMeFOSAA	ng/L	10000	10600	106	70	130	
Perfluorobutanoic acid	ng/L	10000	10400	104	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8570	97	70	130	
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10500	105	70	130	
Perfluoroheptanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9970	109	70	130	
Perfluorononanoic acid	ng/L	10000	10400	104	70	130	
Perfluorooctanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9790	105	70	130	
Perfluoropentanoic acid	ng/L	10000	10000	100	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9950	99	70	130	
Perfluorotridecanoic acid	ng/L	10000	9850	98	70	130	
Perfluoroundecanoic acid	ng/L	10000	10700	107	70	130	

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	MRA	Instrument ID:	QQQ1
Analysis Date:	05/21/21 14:25	Lab File ID:	2210521A_10.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711941

		M2PFDA	\	M2PFHx	Α	M2PFOA	\	M4PFOS	5
		Area		Area		Area		Area	
STANDARD		373044 65		653927	653927		287104		
CLIENT SAMPLE ID	LAB SAMP ID		#	\checkmark	#		#		#
MB2188447	2188447	268838		544004		243467		77619	
LCS2188448	2188448	261756	\square	529406		241792		72660	
AOI01-10-SB-03-05 (RE)	22105041155	249259	\square	522829		237171		70680	
AOI01-10-SB-03-05-MS (RE)	22105041156	262986		527472		238250		73972	
AOI01-10-SB-03-05-MSD (RE)	22105041157	272761		544249		250643		105617	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

_
÷
÷.
204
õ
õ
Ŧ
N.
2
#
ť.
ō
Repor
CD .
n
5
Coas
õ
Õ.
<u>.</u>
Ξ.
2
G
á.
8
ace
ň
<u> </u>

	Dil.					
	Acq. Date-Time Comment 5/24/2021 19:48 RXJ,QQQ3;ICAL 5/24/2021 20:03 RXJ,QQQ3;ICAL					
HBN: 712118 5/27/2021 2/1/2026 11/23/2021 8/2/2021 11/24/2021 11/20/2021	Type Cal Cal	Cal Cal	cai Cai Samnle	Sample QC Sample QC	QC Sample QC Blank	QC Sample Sample Sample QC
QQQ3 2210525A 2210524BCAL 016-80-1 2130330 016-79-3 016-79-3 016-79-3 016-79-7 016-78-3	Data File 22105248_01.d 22105248_02.d	22105248_03.d 22105248_04.d 22105248_04.d	22105248_06.d 22105248_06.d 22105248_07.d	22105248_00.d 22105248_09.d 22105258_01.d 2210525A_01.d 2210525A_02.d	2210525A_03.d 2210525A_04.d 2210525A_05.d 2210525A_06.d	2210525A_08.d 2210525A_08.d 2210525A_10.d 2210525A_11.d 2210525A_12.d 2210525A_13.d
Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name 1201 1202	1203 1204 1205	1206 1207 1500	1600 1450 1500 1450	1400 test 22105203905 1400 2187905 2187906	2187907 2187907 22105127201 22105127203 22105127204 22105127204 22105127205*ms

Ч

RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419	RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711419	RXJ,QQQ3;711419 RXJ,QQQ3;711419 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316	RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316 RXJ,QQQ3;711316	RXJ,QQQ3;711316 RXJ,QQQ3;711258 RXJ,QQQ3;711258 RXJ,QQQ3;711099
5/25/2021 19:23 5/25/2021 19:37 5/25/2021 19:52 5/25/2021 20:07 5/25/2021 20:28	5/25/2021 20:42 5/25/2021 21:01 5/25/2021 21:16 5/25/2021 21:30 5/25/2021 21:39 5/25/2021 21:59 5/25/2021 22:24 5/25/2021 22:29 5/25/2021 22:43	5/25/2021 22:58 5/25/2021 23:13 5/25/2021 23:27 5/25/2021 23:42 5/25/2021 23:46 5/26/2021 0:11 5/26/2021 0:26	5/26/2021 0:55 5/26/2021 0:55 5/26/2021 1:24 5/26/2021 1:39 5/26/2021 1:53 5/26/2021 2:08 5/26/2021 2:08	5/26/2021 2:52 5/26/2021 3:07 5/26/2021 3:22 5/26/2021 3:36
	2210525A_19.d Sample 2210525A_20.d Sample 2210525A_21.d QC 2210525A_22.d Sample 2210525A_23.d Sample 2210525A_24.d Sample 2210525A_25.d Sample 2210525A_25.d Sample 2210525A_27.d Sample			
22105127206*msd 22105127207 22105127208 22105127209 22105127210	22105127211 22105127212 1400 22105127214 22105127214 22105127219 22105127220 22105127221 22105127221	22105127223 22105158101 22105086007 22105086008 1400 22105086009 22105086013 22105086014	22105086017 22105086018 22105086019 22105086020 22105086021 22105086022 22105127215*10 1450	22105127216*10 22105101513*5 22105101513*50 22105055801*50

RXJ,QQQ3;711099 RXJ,QQQ3;711099 RXJ,QQQ3;711099 RXJ,QQQ3;709858 RXJ,QQQ3;710144 RXJ,QQQ3;710144 RXJ,QQQ3;710144	RXJ,QQQ3;710144 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580	RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580 RXJ,QQQ3;710580	RXJ,QQQ3;CCV RXJ,QQQ3;711753 RXJ,QQQ3;711753 RXJ,QQQ3;711753 RXJ,QQQ3;711753 RXJ,QQQ3;711753 RXJ,QQQ3;711753 RXJ,QQQ3;711753 RXJ,QQQ3;711753 RXJ,QQQ3;711753
5/26/2021 3:51 5/26/2021 4:06 5/26/2021 4:20 5/26/2021 4:35 5/26/2021 4:49 5/26/2021 5:04 5/26/2021 5:04	5/26/2021 5:33 5/26/2021 5:33 5/26/2021 6:02 5/26/2021 6:17 5/26/2021 6:32 5/26/2021 6:46 5/26/2021 7:01 5/26/2021 7:01	5/26/2021 7:59 5/26/2021 7:59 5/26/2021 8:14 5/26/2021 8:14 5/26/2021 8:43 5/26/2021 8:58 5/26/2021 8:58	5/26/2021 9:42 5/26/2021 10:03 5/26/2021 10:17 5/26/2021 10:32 5/26/2021 11:16 5/26/2021 11:16 5/26/2021 11:30 5/26/2021 11:45 5/26/2021 12:01
2210525A_48.d Sample 2210525A_49.d Sample 2210525A_50.d Sample 2210525A_51.d Sample 2210525A_53.d Sample 2210525A_53.d Sample 2210525A_54.d Sample			2210525A_72.d QC 2210525A_73.d Blank 2210525A_74.d QC 2210525A_75.d Sample 2210525A_76.d Sample 2210525A_77.d Sample 2210525A_79.d Sample 2210525A_80.d Sample 2210525A_81.d Sample
22105055801*2000xdai 2194560 22105055803*5 22104242921* 22104300602*5 22104303107*100 1400	2194582 2183139 2183140 2183141 22105041110 22105041145 22105041146 22105041148 22105041148	22105041150 22105041151 22105041152 22105041153 1400 22105041154 22105011124 22104280209*5	1400 2189803 2189804 22104306016 22104306017 22104306019 22104306020 22104306021 22104306021 1500TEST

4 4 0

10

2210525A_82.d Sample 2210525A_83.d Sample 2210525A_84.d Sample 2210525A_85.d Sample 2210525A_86.d QC

5/26/2021 12:16 RXJ,QQQ3;711753 5/26/2021 12:31 RXJ,QQQ3;711753 5/26/2021 12:45 RXJ,QQQ3;711753 5/26/2021 13:00 RXJ,QQQ3;711753 5/26/2021 13:15 RXJ,QQQ3;CCV

1 1 1 1 1

ORGANICS INITIAL CALIBRATION VERIFICATION

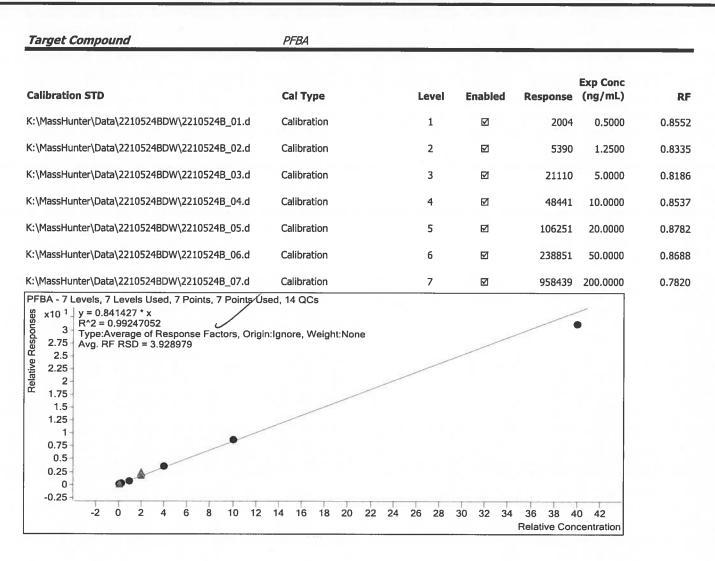
Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/24/2021 21:55	Lab File ID:	2210524B_09.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711987

ANALYTE	UNITS	TRUE	FOUND	% REC	/LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	11900	119	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	11400	113	70	130	
NEtFOSAA	ng/L	10000	11300	113	70	130	-
NMeFOSAA	ng/L	10000	10500	105	70	130	
Perfluorobutanoic acid	ng/L	10000	11500	115	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	11500	115	70	130	
Perfluorodecanoic acid	ng/L	10000	12100	121	70	130	
Perfluorododecanoic acid	ng/L	10000	11400	114	70	130	
Perfluoroheptanoic acid	ng/L	10000	11700	117	70	130	
Perfluorohexanoic acid	ng/L	10100	11400	113	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	11600	116	70	130	
Perfluorononanoic acid	ng/L	10000	12900	129	70	130	
Perfluorooctanoic acid	ng/i	10100	11600	114	70	130	
Perfluorooctanesulfonic acid	ng/L	10000	10000	100	70	130	
Perfluoropentanoic acid	ng/L	10100	11600	114	70	130	
Perfluorotetradecanoic acid	ng/L	10000	13000	130	70	130	
Perfluorotridecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroundecanoic acid	ng/L	10000	11900	119	70	130	

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/26/2021 02:37	Lab File ID:	2210525A_43.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

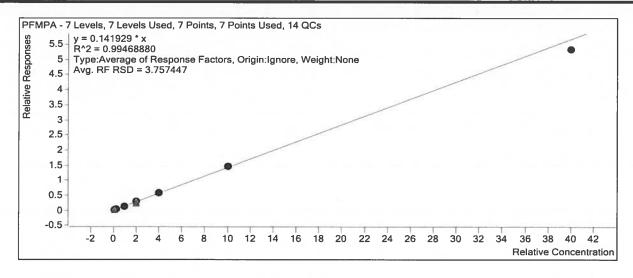
ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.12	108	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4,22	110	70	130	
NEtFOSAA	ng/L.	4.00	4.22	105	70	130	
NMeFOSAA	ng/L	4.00	3.83	96	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.07	102	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.61	102	70	130	
Perfluorodecanoic acid	ng/L	4.00	3.98	99	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.06	101	70	130	
Perfluoroheptanoic acid	ng/L	4.00	3.99	100	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.10	102	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	4.05	111	70	130	
Perfluorononanoic acid	ng/L	4.00	3.98	99	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.17	104	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	3.74	101	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.10	102	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	3.86	97	70	130	
Perfluorotridecanoic acid	ng/L	4.00	4.14	103	70	130	
Perfluoroundecanoic acid	ng/L	4.00	3.98	99	70	130	


ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/25/2021 15:40	Lab File ID:	2210525A_01.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	RESULT	Q	/ DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	υV	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	-
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ


Batch Data Path Analysis Time Report Time Last Calib Update	is Time 5/31/2021 11:06 AM Time 6/2/2021 1:57 PM		L\QuantRe Name r Name tate	sults\221052 GCAL\awg GCAL\Icms Processed	n	
Calibration Info Extracted ISTD	MPFBA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	R	23436	5.0000	4687.274
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	25869	5.0000	5173.752
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	M	25787	5.0000	5157.4696
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	28371	5.0000	5674.1952
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5		30247	5.0000	6049.3945
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6		27491	5.0000	5498.2819
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7		30641	5.0000	6128.189
Instrument ISTD	M3PFBA					
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	Level		Kesponse	(ng/m L)	26.988
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		144	5.0000	28.8020
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3		125	5.0000	25.0353
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	A	144	5.0000	28.751
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	195	5.0000	39.0197
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	168	5.0000	33.6872
K:\MassHunter\Data\2210524BDW\2210524B_07.d M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points	Calibration	7		185	5.0000	37.0154
<pre> % x10 2 y = 31.328468 * x R^2 = 0.0000000 1.9 7ype:Average of Response Factors, Origi Avg. RF RSD = 16.916850 1.8 1.7 1.6 1.5 1.4 1.3 </pre>	n:Ignore, Weight:None					

Target Compound

```
PFMPA
```

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	393	0.5000	0.1437
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	995	1.2500	0.1362
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	4044	5.0000	0.1411
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	9179	10.0000	0.1447
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	19997	20.0000	0.1470
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	44683	50.0000	0.1473
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	Ø	173888	200.0000	0.1335

	ompound		-	_	P	FPeA		_		_						
Calibratio	n STD				C	al Tyj	pe			Le	vel	Enabled	i Res	sponse	Exp Conc (ng/mL)	R
(:\MassHun	ter\Data\2210524	BDW\221	.0524B_()1.d	Ca	alibrat	tion				1			2520	0.5000	0.920
(:\MassHun	iter\Data\2210524	BDW\221	.0524B_()2.d	Ca	alibrat	tion				2			6442	1.2500	0.881
(:\MassHun	ter\Data\2210524	BDW\221	.0524B_()3.d	Ca	alibrat	ion				3			25826	5.0000	0.901
(:\MassHun	iter\Data\2210524	BDW\221	.0524B_()4.d	Ca	alibrat	ion				4	Ø		60051	10.0000	0.946
:\MassHun	iter\Data\2210524	BDW\221	0524B_()5.d	Ca	alibrat	ion				5	Ø		131759	20.0000	0.968
:\MassHun	ter\Data\2210524	BDW\221	0524B_()6.d	Ca	alibrat	ion				6			290122	50.0000	0.956
:\MassHun	ter\Data\2210524	BDW\221	0524B_0)7.d	Ca	alibrat	ion				7	V	1	121612	200.0000	0.860
x10 ¹ 3- 2.5- 2-	Avg. RF RSD = 4	.375963								_	/	/				
2									/	/						
1.5 -						/	/									
1-					/											
1		~														
0.5 -																
	0 •- ⁰															

Exp Conc Calibration STD Cal Type Level Enabled Response (ng/mL) RF

QOO3 2210525A GCAL Levelty temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:55 AM op: 6/9/2021 Page 2832 of 4387

5476.1031	5.0000	27381	Ø	1	Calibration	2210524BDW\2210524B_01.d	inter\Data\221	(:\MassHu
5844.1203	5.0000	29221	M	2	Calibration	2210524BDW\2210524B_02.d	nter\Data\221	(:\MassHu
5730.910	5.0000	28655	Ø	3	Calibration	2210524BDW\2210524B_03.d	nter\Data\221	(:\MassHu
6343.628	5.0000	31718	V	4	Calibration	2210524BDW\2210524B_04.d	nter\Data\221	(:\MassHu
6801.033	5.0000	34005	V	5	Calibration	2210524BDW\2210524B_05.d	nter\Data\221	(:\MassHu
6066.796	5.0000	30334	Ø	6	Calibration	2210524BDW\2210524B_06.d	nter\Data\221	(:\MassHu
6514.756	5.0000	32574	Ø	7	Calibration	2210524BDW\2210524B_07.d	nter\Data\221	(:\MassHu
					PFBS	nd	Compound	Target C
	Exp Conc							
RI	(ng/mL)	Response	Enabled	Level	Cal Type		on STD	Calibratio
1.089	0.4435	872	N	1	Calibration	2210524BDW\2210524B_01.d	nter\Data\221	:\MassHu
1.065	1.1088	2252	Ø	2	Calibration	2210524BDW\2210524B_02.d	nter\Data\221	:\MassHu
1.064	4.4350	8820		3	Calibration	2210524BDW\2210524B_03.d	nter\Data\221	:\MassHu
1.119	8.8700	20111		4	Calibration	2210524BDW\2210524B_04.d	nter\Data\221	:\MassHu
1.163	17.7400	43972	Ø	5	Calibration	2210524BDW\2210524B_05.d	nter\Data\221	:\MassHu
1.125	44.3500	97588	N	6	Calibration	2210524BDW\2210524B_06.d	nter\Data\221	:\MassHu
1.014	177.4000	363876	M	7	Calibration	2210524BDW\2210524B_07.d	nter\Data\221	:\MassHu
						evels Used, 7 Points, 7 Points U 1661 * x 99244974 erage of Response Factors, Origi RSD = 4.508054	y = 1.091661 R^2 = 0.9924 Type:Averag	PFBS - 7 L Sasudisation 3.5 - 3.5 - 3.5 - 2.5 -
					_			2.5
								2-
								1.5 - 1 -
						-		0.5 -
							0.	0-
	36 38	32 34 Relative Cond	5 28 30	22 24 20	14 16 18 20	0 2 4 6 8 10	-2 0	

Extracted ISTD

M3PFBS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	9029	5.0000	1805.7859
:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	☑	9534	5.0000	1906.8859
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	9344	5.0000	1868.8929

Pace Gui Coast Report 22105041

Printed at: 11:55 AM op: 6/9/2021 Page 2833 of 4387

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	3023	5.0000	604.5259
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		2964	5.0000	592.7038
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	3158	5.0000	631.5754
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	3233	5.0000	646.6807
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	3336	5.0000	667.2550
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	2918	5.0000	583.6998
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7		2834	5.0000	566.7417
Target Compound	4:2 FTS					
					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	828	0.4685	2.9230
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	1891	1.1713	2.7238
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	7854	4.6850	2.6543
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	17062	9.3700	2.8158
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	36243	18.7400	2.8985
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	M	77684	46.8500	2.8407
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	R	254694	187.4000	2.3981
4:2 FTS - 7 Levels, 7 Levels Used, 7 Points, 7 Points \$\$ x10 ² y = 2.750594 * x R ² = 0.97218801 Type:Average of Response Factors, Origin Avg. RF RSD = 6.607697 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	n:Ignore, Weight:None					
-2 0 2 4 6 8 10 1	2 14 16 18 20 2	2 24 26	28 30 32	34 36 Relative Con	38 40	

Extracted ISTD

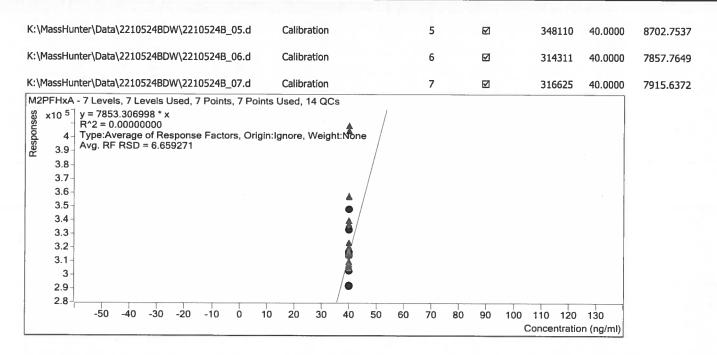
M5PFHxA

	5 M. C.				Exp Conc		
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF	
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	M	35247	5.0000	7049.3758	

QD03 2210525A GCAL Levelly Lemp.xlsx Pace Guil Coast Repont. 221050411 Printed at: 11:55 AM op: 6/9/2021 Page 2836 of 4387

K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		36778	5.0000	7355.6792
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	36688	5.0000	7337.6001
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4		39507	5.0000	7901.3299
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	42932	5.0000	8586.3105
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	38765	5.0000	7752.9996
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	V	41103	5.0000	8220.6238
Target Compound	PFHxA					
Calibration STD	Cai Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	3237	0.5000	0.9183
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	8352	1.2500	0.9083
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	M	32301	5.0000	0.8804
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	N	74833	10.0000	0.9471
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5		161327	20.0000	0.9394
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	353784	50.0000	0.9126
K:\MassHunter\Data\2210524BDW\2210524B_07.d	, Calibration	7		1366672	200.0000	0.8312
PFHxA - 7 Levels, 7 Levels Used, 7 Points, 7 Points U \$\$ x10 1 - y = 0.905362 * x \$\$ x2 = 0.98975773 \$\$ x2 = 0.98975773 Type:Average of Response Factors, Origin Avg. RF RSD = 4.336710 \$\$ 2.75 \$\$ 2.25 \$\$ 2.25 \$\$ 2.25 \$\$ 2.25 \$\$ 2.25 \$\$ 2.25 \$\$ 1.25 \$\$ 1.25 \$\$ 1.25 \$\$ 0.25 \$\$ 0.25\\ \$\$ 0.25\\ \$\$ 0.25\\ \$\$ 0.25\\ \$\$ 0.25\\ \$\$ 0.25\\ \$\$ 0.25\\ \$\$						

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 Relative Concentration


Instrument ISTD

M2PFHxA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	292066	40.0000	7301.6523	
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	291637	40.0000	7290.9298	
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	R	303245	40.0000	7581.1348	
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	M	332931	40.0000	8323.2763	

QP03 22105254 GCAL Levelly temp.xlsx

Printed at: 11:55 AM op: 6/9/2021 Page 2837 of 4387

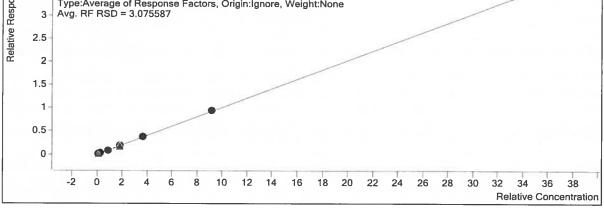
Target Compound

PFPeS

:\MassHunt	ter\Data\2210524BDW\2210524B_01.d	Calibration					
		Calibration	1		912	0.4705	1.0736
:\MassHunt	ter\Data\2210524BDW\2210524B_02.d	Calibration	2	N	2262	1.1763	1.0083
:\MassHunt	ter\Data\2210524BDW\2210524B_03.d	Calibration	3	V	8880	4.7050	1.0099
:\MassHunt	ter\Data\2210524BDW\2210524B_04.d	Calibration	4		20436	9.4100	1.0721
:\MassHunt	ter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	43913	18.8200	1.0956
:\MassHunt	ter\Data\2210524BDW\2210524B_06.d	Calibration	6		97701	47.0500	1.0621
:\MassHunt	ter\Data\2210524BDW\2210524B_07.d	Calibration	7	V	360900	188.2000	0.9486
x 10 ¹ y 3.5 F	evels, 7 Levels Used, 7 Points, 7 Points U y = 1.038616 * x R^2 = 0.98833783 Type:Average of Response Factors, Origin Avg. RF RSD = 4.971559						

Page 9 of 37

Relative Concentration

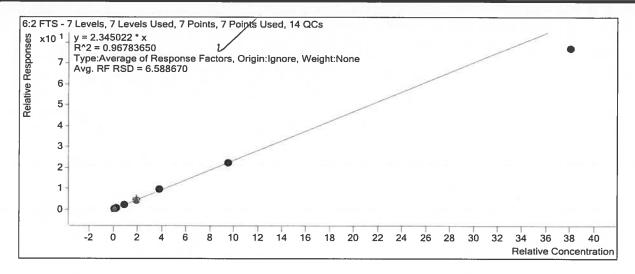

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	R
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Q	42824	5.0000	8564.791
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	N	44855	5.0000	8970.999
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	V	44877	5.0000	8975.407
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4		48593	5.0000	9718.594
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5		51930	5.0000	10385.979
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6		46759	5.0000	9351.827
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	M	48717	5.0000	9743.354
Target Compound	PFHpA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	3916	0.5000	0.914
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	9855	1.2500	0.878
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	V	39541	5.0000	0.881
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	89723	10.0000	0.923
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	V	196131	20.0000	0.944
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	V	430456	50.0000	0.920
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	R	1650748	200.0000	0.847
PFHpA - 7 Levels, 7 Levels Used, 7 Points, 7 Points U \$ x10 ¹ y = 0.901352 * x R^2 = 0.99466809 Type:Average of Response Factors, Origin Avg. RF RSD = 3.710502 2.5 1 0.5 0						
-2 0 2 4 6 8 10 12	14 16 18 20 22 2	4 26 28	30 32 34	36 38 4 Relative Con		

Extracted ISTD	M3PFHxS						
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	7323	5.0000	1464.5904	
	_			- Printeria		······ 6/0/202	+

QOO3 2210525A GCAL Levelty temp.xlsx

Printed at: 11:55 AM op: 6/9/2021 4387

K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	7643	5.0000	1528.5110
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	7730	5.0000	1545.9946
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	8278	5.0000	1655.5151
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	8817	5.0000	1763.3306
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6		7794	5.0000	1558.7249
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	V	7958	5.0000	1591.5690
Target Compound	PFHxS					
					Ewn Come	
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	M	679	0.4570	1.0147
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	M	1763	1.1425	1.0093
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3		7015	4.5700	0.9928
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	M	15491	9.1400	1.0237
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	33331	18.2800	1.0340
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	V	74352	45.7000	1.0438
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7		276481	182.8000	0.9503
PFHxS - 7 Levels, 7 Levels Used, 7 Points, 7 Points, x10 ¹ y = 1.009814 * x R^2 = 0.99486808 Type:Average of Response Factors, Origin 3 - Avg. RF RSD = 3.075587						


Target Compound

ADONA

		Exp Conc					
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF	
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	5948	0.4725	1.6499	
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ŋ	15279	1.1813	1.5960	
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	M	61432	4.7250	1.6087	
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	141859	9.4500	1.7253	

QQQ3 2210525A GCAL Levelty temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:55 AM op: 6/9/2021 Page 2841 of 4387

Quantitative Analysis Calibration Report

Instrument ISTD	M2PFOA						
Calibration STD	Cal Type		Level	Enabled	Response	Exp Conc (ng/mL)	R
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration		1	V	162469	20.0000	8123.449
(:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration		2	N	158978	20.0000	7948.899
:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration		3	☑	168078	20.0000	8403.895
:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration		4		179935	20.0000	8996.752
::\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration		5		189779	20.0000	9488.936
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration		6	Ø	169060	20.0000	8452.989
(:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration		7	$\overline{\mathbf{N}}$	170536	20.0000	8526.818
% x10 5- y = 8563.105970 * x % 2.2- R^2 = 0.0000000 2.15- Type:Average of Response Factors, Origi 2.15- Avg. RF RSD = 6.132436 2.05- 2- 1.95- 1.9- 1.85- 1.8- 1.75- 1.7- 1.65- 1.6-	n:lgnore, Weigh	nt:None					
1.5570 -60 -50 -40 -30 -20 -	10 0 10	20 30	40 50	60 70 8	30 90 100 Concentrati		

Extracted ISTD

M8PFOA

Cal Type

Calibration STD

Level

Enabled

Exp Conc Response (ng/mL)

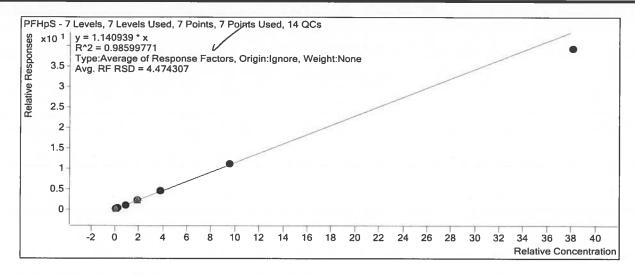
RF

QP03 2210525A GCAL Levelty temp.xlsx

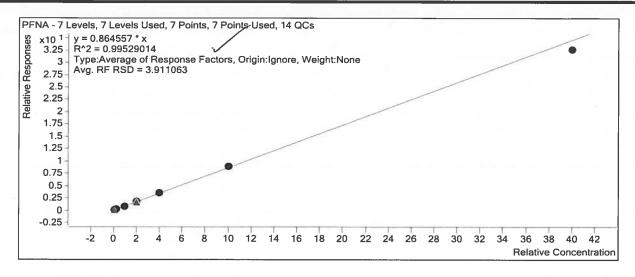
Printed at: 11:55 AM op: 6/9/2021 Page 2643 of 4387

Quantitative Analysis Calibration Report

K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	38148	5.0000	7629.6999
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	V	40521	5.0000	8104.1340
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	N	40411	5.0000	8082.1205
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4		43503	5.0000	8700.5716
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	N	46260	5.0000	9251.9984
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	J	40698	5.0000	8139.6213
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7		43199	5.0000	8639.7884
Target Compound	PFOA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	N	4737	0.5000	1.2417
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	V	11430	1.2500	1.1283
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	44948	5.0000	1.1123
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4		101736	10.0000	1.1693
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	220540	20.0000	1.1919
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	483861	50.0000	1.1889
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7		1828336	200.0000	1.0581
PFOA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 7 Points,						
-2 0 2 4 6 8 10 12	14 16 18 20 22	24 26 28	30 32 34	36 38 4 Relative Con	0 42 centration	

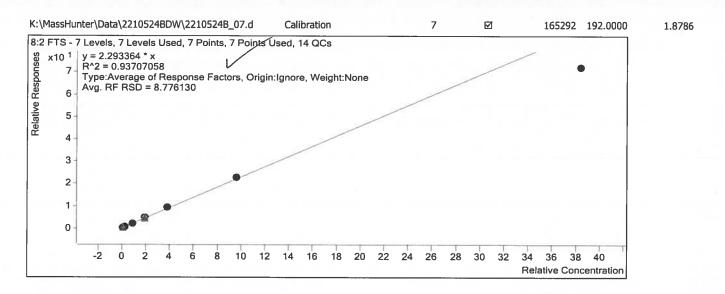

Instrument ISTD

MPFOA


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	1125106	25.0000	45004.2482
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		1115712	25.0000	44628.4654
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	1131983	25.0000	45279.3075

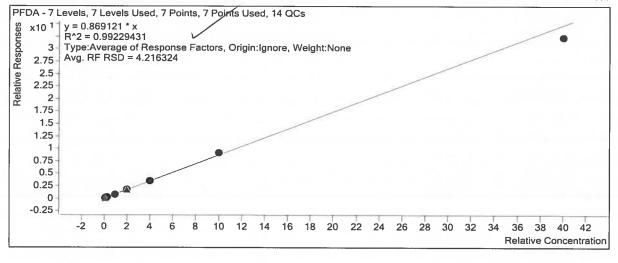
QP03 2210525A CCAL Levelly temp.xlsx

Printed at: 11:55 AM op: 6/9/2021 Page 2844 of 4387

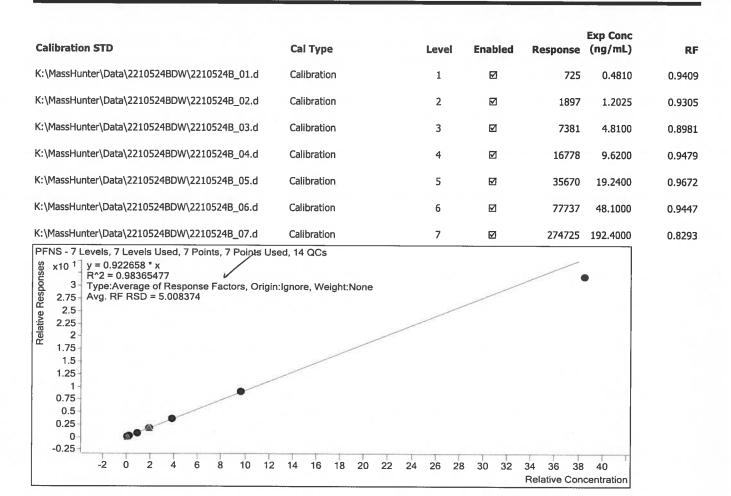


Extracted ISTD	M9PFNA			_		
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	50738	5.0000	10147.5783
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	53528	5.0000	10705.5739
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	M	53224	5.0000	10644.7153
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	A	56741	5.0000	11348.1833
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	V	60442	5.0000	12088.4562
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	V	52943	5.0000	10588.5802
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	Ø	53895	5.0000	10779.0990
Target Compound	PFNA		_			
Target Compound	PFNA					
Target Compound	PFNA Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
Calibration STD		Level 1	Enabled	Response 4330		RF 0.8534
Calibration STD K:\MassHunter\Data\2210524BDW\2210524B_01.d	Cal Type				(ng/mL)	
Calibration STD <:\MassHunter\Data\2210524BDW\2210524B_01.d <:\MassHunter\Data\2210524BDW\2210524B_02.d	Cal Type Calibration	1	Ø	4330	(ng/mL) 0.5000	0.8534 0.8434
Calibration STD <:\MassHunter\Data\2210524BDW\2210524B_01.d <:\MassHunter\Data\2210524BDW\2210524B_02.d <:\MassHunter\Data\2210524BDW\2210524B_03.d	Cal Type Calibration Calibration	1 2	N	4330 11287	(ng/mL) 0.5000 1.2500	0.8534 0.8434
Calibration STD <:\MassHunter\Data\2210524BDW\2210524B_01.d <:\MassHunter\Data\2210524BDW\2210524B_02.d <:\MassHunter\Data\2210524BDW\2210524B_03.d <:\MassHunter\Data\2210524BDW\2210524B_04.d	Cal Type Calibration Calibration Calibration	1 2 3	2 2 2	4330 11287 44930	(ng/mL) 0.5000 1.2500 5.0000	0.8534 0.8434 0.8442
	Cal Type Calibration Calibration Calibration Calibration	1 2 3 4	2 2 2 2	4330 11287 44930 101321	(ng/mL) 0.5000 1.2500 5.0000 10.0000	0.8534 0.8434 0.8442 0.8928

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	M	761	0.4640	1.023
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	2105	1.1600	1.0706
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	7718	4.6400	0.973
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4		17434	9.2800	1.02 1
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	V	37060	18.5600	1.0417
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	82022	46.4000	1.0333
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7		300784	185.6000	0.9413
\$ x10 ¹ y = 1.014973 * x R ² = 0.99210222 Type:Average of Response Factors, Origin Avg. RF RSD = 4.295646 2.5					•	
R^2 = 0.99210222 V Type:Average of Response Factors, Origination Avg. RF RSD = 4.295646 2.5 2.5 1.5						
<pre>\$ x10 1 y = 1.014973 * x R^2 = 0.99210222 Type:Average of Response Factors, Origin Avg. RF RSD = 4.295646 2- 1.5- 1- 0.5-</pre>						
<pre>\$ x10 1 y = 1.014973 * x R^2 = 0.99210222 Type:Average of Response Factors, Origin Avg. RF RSD = 4.295646 2- 1.5 1- 0.5 0</pre>		22 24 26	28 30 3	2 34 36 Relative Con	38 40 acentration	

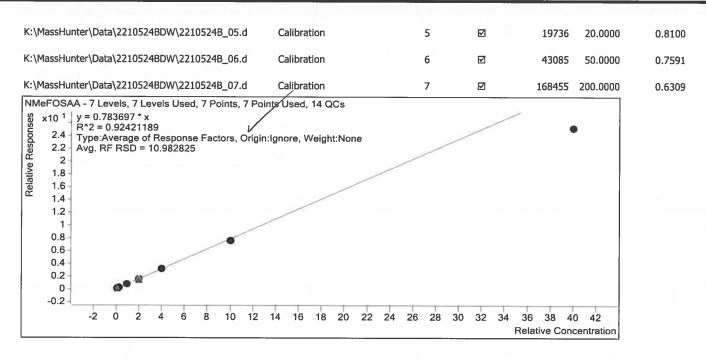

QQQ3 2210525A GCAL Levelly temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:55 AM on: 6/9/2021 Page 2647 of 4387

Target Compound


PFDA

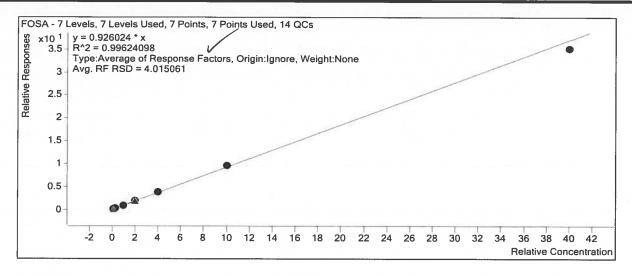
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Z	4542	0.5000	0.8829
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	M	11523	1.2500	0.8520
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	V	45283	5.0000	0.8428
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4		104045	10.0000	0.8881
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5		219564	20.0000	0.8982
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6		489224	50.0000	0.9124
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7		1741178	200.0000	0.8075

Target Compound


PFNS

M6PFDA					
Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
Calibration	1	Ø	51446	5.0000	10289.2694
Calibration	2		54098	5.0000	10819.663
Calibration	3		53732	5.0000	10746.456
Calibration	4		58575	5.0000	11715.017
Calibration	5	Ø	61109	5.0000	12221.895
Calibration	6		53621	5.0000	10724.147
Calibration	7		53907	5.0000	10781.446
M2PFDA					
Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
Calibration	1		219154	20.0000	10957.720
	Cal Type Calibration Calibration Calibration Calibration Calibration Calibration Calibration M2PFDA	Cal TypeLevelCalibration1Calibration2Calibration3Calibration4Calibration5Calibration6Calibration7M2PFDALevel	Cal TypeLevelEnabledCalibration1ICalibration2ICalibration3ICalibration4ICalibration5ICalibration6ICalibration7ICalibration7ICalibration7ICalibration2ICalibration5ICalibration5ICalibration5ICalibration5ICalibration5ICalibration5ICal TypeLevelEnabled	Cal TypeLevelEnabledResponseCalibration1I51446Calibration2I54098Calibration3I53732Calibration4I58575Calibration5I61109Calibration6I53621Calibration7I53907M2PFDALevelEnabledResponse	Cal TypeLevelEnabledResponseExp Conc (ng/mL)Calibration1I514465.0000Calibration2I540985.0000Calibration3I537325.0000Calibration4I585755.0000Calibration5I611095.0000Calibration6I536215.0000Calibration7I539075.0000Calibration7I539075.0000M2PEDALevelEnabledResponse (ng/mL)

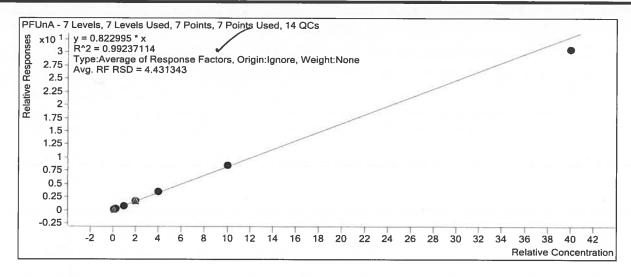
Page 2851 of 4387


Quantitative Analysis Calibration Report

Extracted ISTD	M8FOSA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	16577	5.0000	3315.3815
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		17344	5.0000	3468.8195
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	16848	5.0000	3369.6434
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	18486	5.0000	3697.1063
:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	V	19782	5.0000	3956.3290
(:\MassHunter\Data\22105248DW\2210524B_06.d	Calibration	6	V	17669	5.0000	3533.8959
:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	Ø	18739	5.0000	3747.8082
Target Compound	FOSA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	1476	0.5000	0.8903	
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	3886	1.2500	0.8961	
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	15693	5.0000	0.9314	
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	35684	10.0000	0.9652	
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	76408	20.0000	0.9656	
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	168615	50.0000	0.9543	
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	Ø	658978	200.0000	0.8792	

QQQ3 2210525A GCAL LevelTV Lemp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:55 AM op: 6/9/2021 Page 2853 of 4387

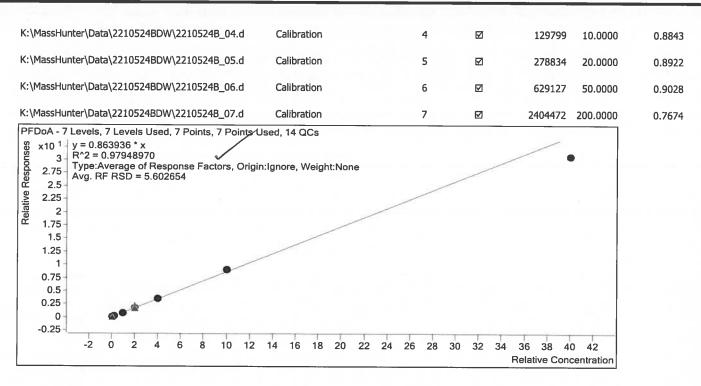

Target Compound	PFDS					_
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	÷
K:\MassHunter\Data\2210524BDW\2210524B_(01.d Calibration	1	Ø	622	0.4825	0.80
K:\MassHunter\Data\2210524BDW\2210524B_(02.d Calibration	2	V	1731	1.2063	0.84
K:\MassHunter\Data\2210524BDW\2210524B_(03.d Calibration	3	Ø	6558	4.8250	0.79
(:\MassHunter\Data\2210524BDW\2210524B_(04.d Calibration	4	Ø	14729	9.6500	0.82
:\MassHunter\Data\2210524BDW\2210524B_(05.d Calibration	5		31395	19.3000	0.84
:\MassHunter\Data\2210524BDW\2210524B_(06.d Calibration	6		69925	48.2500	0.84
:\MassHunter\Data\2210524BDW\2210524B_(07.d Calibration	7		250601	193.0000	0.75
<pre>% x10 1 y = 0.817968 * x R^2 = 0.99068630 2.75 Type:Average of Response Factors 2.5 Avg. RF RSD = 4.327777 2.25 1.75 1.5 1.25 1.5 0.75 0.5 0.25 0</pre>						
-0.25	10 12 14 16 18 20	22 24 26 28	30 32	34 36 38	40	

Exp Conc Calibration STD Cal Type Level Enabled Response (ng/mL) RF

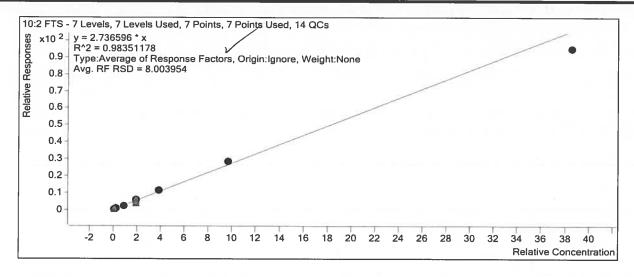
QP22-Gail C5254 GCAL Levelly 11 mp.xlsx

Printed at: 11:55 AM on: 6/9/2021 Page 2654 of 4387

Quantitative Analysis Calibration Report

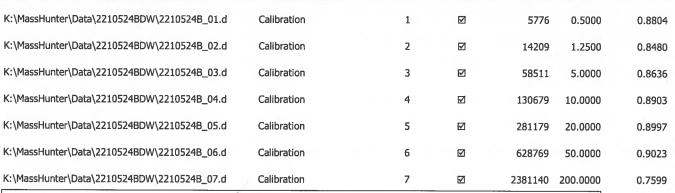

Target Compound	NEtFOSAA				
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ŋ	929	0.5000
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		2235	1.2500
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3		8607	5.0000
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	V	19986	10.0000
:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5		42831	20.0000
:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	92346	50.0000
:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	R	331379	200.0000
\$ x10 ¹⁻ y = 0.965446 * x R ² = 0.99771848 3.5- Type:Average of Response Factors, Origi Avg. RF RSD = 3.368314 2.5-	in:Ignore, Weight:None		/		
2- 1.5- 1- 0.5- 0- -2 0 2 4 6 8 10 12	14 16 18 20 22	24 26 28	30 32 34	36 38 4	40 42

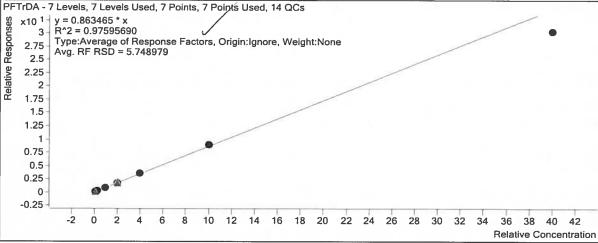
Target Compound


11CI-PF3OUdS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
Pace Guil Coast Report#: 221050411		Page 27 of 37		Printed a	U: 11:55 APT 0	Page 2856 of 4387

Target Compound	10:2 FTS					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	R	604	0.4820	2.5875
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		1578	1.2050	2.6331
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	6342	4.8200	2.5843
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	V	14646	9.6400	3.0059
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	M	29950	19.2800	2.9122
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	V	65343	48.2000	2.9692
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	N	217710	192.8000	2.4640



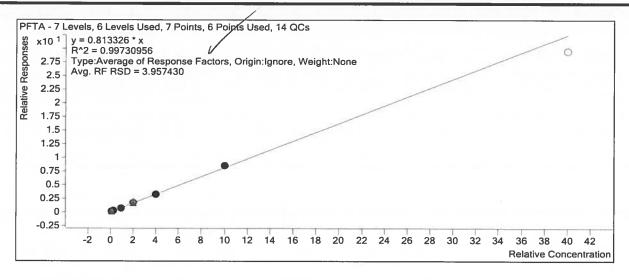

d-NMeFOSA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1		3972	5.0000	794.4294
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	Ø	4128	5.0000	825.6370
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3		3957	5.0000	791.3911
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	4674	5.0000	934.7493
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5		4848	5.0000	969.6440
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	4343	5.0000	868.5146
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	Ø	4817	5.0000	963.3181
Target Compound	NMeFOSA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	M	1404	0.5000	3.5353
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2	A	2138	1.2500	2.0714
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	5212	5.0000	1.3172
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4	M	10327	10.0000	1.1048
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	N	21158	20.0000	1.0910
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	44630	50.0000	1.0277
K:\MassHunter\Data\2210524BDW\2210524B_06.d K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration Calibration	6 7	ସ	44630 164320	50.0000 200.0000	1.0277 0.8529

Extracted ISTD

Quantitative Analysis Calibration Report

Extracted ISTD


d9-NEtFOSE

Calibration STD	Cal Type	Levei	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	2897	5.0000	579.4063
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		2910	5.0000	582.0000
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	Ø	2860	5.0000	572.0923
K:\MassHunter\Data\2210524BDW\2210524B_04.d	Calibration	4		3111	5.0000	622.2621
K:\MassHunter\Data\2210524BDW\2210524B_05.d	Calibration	5	Ø	3363	5.0000	672.5554
K:\MassHunter\Data\2210524BDW\2210524B_06.d	Calibration	6	V	2945	5.0000	589.0653
K:\MassHunter\Data\2210524BDW\2210524B_07.d	Calibration	7	Ø	3323	5.0000	664.5875
Extracted ISTD	d-NEtFOSA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210524BDW\2210524B_01.d	Calibration	1	Ø	4260	5.0000	852.0523
K:\MassHunter\Data\2210524BDW\2210524B_02.d	Calibration	2		4377	5.0000	875.4510
K:\MassHunter\Data\2210524BDW\2210524B_03.d	Calibration	3	M	4269	5.0000	853.7278

QQQ3 2210525A GCAL Levelly temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:55 AM op: 6/9/2021 Page 2652 of 4387

Quantitative Analysis Calibration Report

Target Con	pound	PFHxDA			-	
Calibration S	TD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)
K:\MassHunter	\Data\2210524BDW\2210524B_01.d	Calibration	1		7458	0.5000
K:\MassHunter	\Data\2210524BDW\2210524B_02.d	Calibration	2		17473	1.2500
K:\MassHunter	\Data\2210524BDW\2210524B_03.d	Calibration	3		71609	5.0000
<:\MassHunter	\Data\2210524BDW\2210524B_04.d	Calibration	4	Ø	156576	10.0000
K:\MassHunter	\Data\2210524BDW\2210524B_05.d	Calibration	5	V	339435	20.0000
<:\MassHunter	\Data\2210524BDW\2210524B_06.d	Calibration	6	Ø	782304	50.0000
(:\MassHunter	\Data\2210524BDW\2210524B_07.d	Calibration	7		3058331	200.0000
Ty	2 = 0.96882517 pe:Average of Response Factors, Origin g. RF RSD = 7.138653	n:Ignore, Weight:None				
2 - 1.5 - 1 - 0.5 -						
1.5- 1-	0000					

Extracted ISTD

M2PFHxDA

Exp Conc Calibration STD Cal Type Level Enabled Response (ng/mL) RF

QQQ3 2210525A GCAL LevelTV temp.xlsx Pace Guil Coast Repont: 221050411 Printed at: 11:55 AM op: 6/9/2021 Page 2865 of 4387

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/25/2021 16:40	Lab File ID:	2210525A_05.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10300	109	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10400	108	70	130	
NEtFOSAA	ng/L	10000	10200	102	70	130	
NMeFOSAA	ng/L	10000	10200	102	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9180	103	70	130	
Perfluorodecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorododecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroheptanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9410	103	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9100	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10500	105	70	130	
Perfluoroundecanoic acid	ng/L	10000	10400	104	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/25/2021 21:16	Lab File ID:	2210525A_21.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10100	106	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10000	105	70	130	
NEtFOSAA	ng/L	10000	9850	99	70	130	
NMeFOSAA	ng/L	10000	10100	101	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9020	102	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9280	102	70	130	
Perfluorononanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9270	100	70	130	-
Perfluoropentanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroundecanoic acid	ng/L	10000	10100	101	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/25/2021 23:56	Lab File ID:	2210525A_32.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	108	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10200	107	70	130	
NEtFOSAA	ng/L	10000	10100	101	70	130	
NMeFOSAA	ng/L	10000	10200	102	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9050	102	70	130	
Perfluorodecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorododecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroheptanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9280	102	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10000	100	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9170	99	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9970	100	70	130	
Perfluorotridecanoic acid	ng/L	10000	10700	107	70	130	
Perfluoroundecanoic acid	ng/L	10000	10100	101	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/26/2021 05:19	Lab File ID:	2210525A_54.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	107	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10600	110	70	130	
NEtFOSAA	ng/L	10000	9680	97	70	130	
NMeFOSAA	ng/L	10000	10100	101	70	130	-
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9080	102	70	130	
Perfluorodecanoic acid	ng/L	10000	10300	103	70	130	
Perfluorododecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroheptanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9080	99	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9320	100	70	130	
Perfluoropentanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroundecanoic acid	ng/L	10000	10300	103	70	130	

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	instrument ID:	QQQ3
Analysis Date:	05/26/2021 08:43	Lab File ID:	2210525A_68.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10400	109	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10500	109	70	130	
NEtFOSAA	ng/L	10000	9800	98	70	130	
NMeFOSAA	ng/L	10000	9880	99	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	-
Perfluorobutanesulfonic acid	ng/L	8870	9210	104	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroheptanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9230	101	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	9920	99	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9380	101	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10000	100	70	130	
Perfluorotridecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroundecanoic acid	ng/L	10000	10300	103	70	130	

FORM 7E - ORG

Report No:	221050411	instrument ID:	QQQ3
Analysis Date:	05/26/2021 09:42	Lab File ID:	2210525A_72.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10100	107 🗸	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10000	105	70	130	<u> </u>
NEtFOSAA	ng/L	10000	9870	99	70	130	
NMeFOSAA	ng/L	10000	10100	101	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9300	105	70	130	-
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	9960	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9200	101	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	9980	100	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9370	101	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroundecanoic acid	ng/L	10000	10200	102	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/26/2021 13:15	Lab File ID:	2210525A_86.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712118

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10600	111 1	70	130	<u> </u>
8:2 Fluorotelomersulfonic acid	ng/L	9600	10200	106	70	130	
NEtFOSAA	ng/L	10000	9680	97	70	130	
NMeFOSAA	ng/L	10000	9470	95	70	130	
Perfluorobutanoic acid	ng/L	10000	10100	101	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9000	101	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroheptanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9070	99	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9100	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroundecanoic acid	ng/L	10000	10200	102	70	130	

81

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1450 (ISC)
Analyst:	RXJ	instrument ID:	QQQ3
Analysis Date:	05/25/21 15:54	Lab File ID:	2210525A_02.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	712118

	M2PFDA	M2PFHxA	M2PFOA	M4PFOS
	Area	Area	Area	Area
STANDARD	227267	294870	160197	37630

CLIENT SAMPLE ID	LAB SAMP ID	/	#	1	#		#	/	#
MB2183139RE	2183139RE	220856		320334		170589		36078	
LCS2183140RE	2183140RE	216016		320081		169102		35682	
LCSD2183141RE	2183141RE	209096		308427		162958		34197	
WL-FRB-01	22105041110	251255		358948		189473		39462	
A0101-07-GW	22105041145	231670		336812		181447		37691	
A0I01-08-GW	22105041146	233732		340166		182038		35816	
A0I01-10-GW	22105041148	231844		337043		179593		37318	
AOI01-10-GW-MS	22105041149	235129		346657		182985		38331	
AOI01-10-GW-MSD	22105041150	231556		339926		180982		37881	
WL-ERB-02	22105041151	230309		338536		179082		37325	
WL-ERB-03	22105041152	229481		328038		175847		36513	
WL-ERB-04	22105041153	235328		337562		182667		37484	
WL-ERB-01	22105041154	234187		340721		181527		37408	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits * Value outside QC limits

FORM 8I - ORG

				1 10 5 5 5 5
	Comment RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL	RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;BLANK RXJ,QQQ3;BLANK	RXJ,QQQ3;CCV RXJ,QQQ3;TEST RXJ,QQQ3;BLANK RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;710824	RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;710824 RXJ,QQQ3;711042
	Acq. Date-Time 5/24/2021 19:48 5/24/2021 20:03 5/24/2021 20:20	5/24/2021 20:35 5/24/2021 20:50 5/24/2021 21:04 5/24/2021 21:19 5/24/2021 21:41 5/24/2021 21:55	5/24/2021 22:10 5/27/2021 15:55 5/27/2021 16:10 5/27/2021 16:24 5/27/2021 17:38 5/27/2021 17:52 5/27/2021 18:07 5/27/2021 18:22	5/27/2021 18:52 5/27/2021 19:11 5/27/2021 19:26 5/27/2021 19:55 5/27/2021 19:55 5/27/2021 20:10
HBN: 712388 5/29/2021 2/1/2026 11/23/2021 8/2/2021 11/24/2021 11/20/2021	Type Cal Cal Cal	Cal Cal Cal Sample Sample	QC Sample Sample Sample Sample Sample	Sample Sample Sample Sample Sample
QQQ3 2210527A 2210524BCAL 016-81-1 2130330 016-79-3 016-79-3 016-79-7 016-78-3	Data File 22105248_01.d 22105248_02.d 22105248_03.d	22105248_04.d 22105248_05.d 22105248_06.d 22105248_07.d 22105248_08.d 22105248_09.d	22105248_10.d 2210527A_01.d 2210527A_02.d 2210527A_03.d 2210527A_04.d 2210527A_05.d 2210527A_05.d 2210527A_05.d 2210527A_07.d	2210527A_08.d 2210527A_09.d 2210527A_10.d 2210527A_11.d 2210527A_12.d 2210527A_13.d
Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name 1201 1202 1203	1204 1205 1206 1207 1500 1600	1450 1400TEST 1500 1450 22105052602 22105052603 22105052603 22105052605	22105052606 22105052607 22105052608 22105052609 22104300604 22105052612

1400	2210527A_14.d	QC	5/27/2021 20:24	RXJ,QQQ3;CCV	
22105052615	2210527A_15.d	Sample	5/27/2021 20:39	RXJ,QQQ3;711042	• •
22105052616	2210527A_16.d	Sample	5/27/2021 20:53	RXJ,QQQ3;711042	
22105052617	2210527A_17.d	Sample	5/27/2021 21:08	RXJ,QQQ3;711042	
22105052618	2210527A_18.d	Sample	5/27/2021 21:23	RXJ,QQQ3;711042	
22105052619	2210527A_19.d	Sample	5/27/2021 21:37	RXJ,QQQ3;711042	• •
22105052620	2210527A_20.d	Sample	5/27/2021 21:52	RXJ,QQQ3;711042	
22105052621	2210527A_21.d	Sample	5/27/2021 22:07	RXJ,QQQ3;711042	
22105052622	2210527A_22.d	Sample	5/27/2021 22:21	RXJ,QQQ3;711042	
22105052623	2210527A_23.d	Sample	5/27/2021 22:36	RXJ,QQQ3;711042	-
22105052624	2210527A_24.d	Sample	5/27/2021 22:50	RXJ,QQQ3;711042	
1400	2210527A_25.d	QC	5/27/2021 23:05	RXJ,QQQ3;CCV	-
22105052625	2210527A_26.d	Sample	5/27/2021 23:20	RXJ,QQQ3;711042	-
22104280215	2210527A_27.d	Sample	5/27/2021 23:34	RXJ,QQQ3;709734	-
22104280216	2210527A_28.d	Sample	5/27/2021 23:49	RXJ,QQQ3;709734	
22104280218	2210527A_29.d	Sample	5/28/2021 0:03	RXJ,QQQ3;709734	
22105041147	2210527A_30.d	Sample	5/28/2021 0:18	RXJ,QQQ3;710037	-
22105041140	2210527A_31.d	Sample	5/28/2021 0:33	RXJ,QQQ3;709960	
22104300702	2210527A_32.d	Sample	5/28/2021 0:47	RXJ,QQQ3;709960	-
22104300707	2210527A_33.d	Sample	5/28/2021 1:02	RXJ,QQQ3;709960	-
22104280208	2210527A_34.d	Sample	5/28/2021 1:17	RXJ,QQQ3;710368	
22105073101	2210527A_35.d	Sample	5/28/2021 1:31	RXJ,QQQ3;710561	
1400	2210527A_36.d	gc	5/28/2021 1:46	RXJ,QQQ3;CCV	
22105073102	2210527A_37.d	Sample	5/28/2021 2:00	RXJ,QQQ3;710561	-
22105073103	2210527A_38.d	Sample	5/28/2021 2:15	RXJ,QQQ3;710561	
22104300701	2210527A_39.d	Sample	5/28/2021 2:30	RXJ,QQQ3;710144	ц)
22105072101	2210527A_40.d	Sample	5/28/2021 2:44	RXJ,QQQ3;710561	
22105078801	WorklistData-0062.d	Sample	5/28/2021 2:59	RXJ,QQQ3;711315	
22105082902	2210527A_41.d	Sample	5/28/2021 3:13	RXJ,QQQ3;711315	
22105111101	2210527A_42.d	Sample	5/28/2021 3:28	RXJ,QQQ3;711315	
22105111102	2210527A_43.d	Sample	5/28/2021 3:43	RXJ,QQQ3;711315	-
22105111103	2210527A_44.d	Sample	5/28/2021 3:57	RXJ,QQQ3;711315	
22105111104	2210527A_45.d	Sample	5/28/2021 4:12	RXJ,QQQ3;711315	
1450	2210527A_46.d	gc	5/28/2021 4:26	RXJ,QQQ3;CCV	

22105111105 22 22105154101 22 22105154102 22 22105154104 22 22105154104 22 22105154106 22 22105154106 22 22105154107 22 22105154108 22	2210527A_47.d 2210527A_48.d 2210527A_49.d 2210527A_50.d 2210527A_51.d 2210527A_53.d 2210527A_53.d 2210527A_53.d	Sample Sample Sample Sample Sample Sample Sample	5/28/2021 4:41 5/28/2021 4:56 5/28/2021 5:10 5/28/2021 5:25 5/28/2021 5:40 5/28/2021 5:54 5/28/2021 6:09 5/28/2021 6:09	RXJ,QQQ3;711315 RXJ,QQQ3;711315 RXJ,QQQ3;711315 RXJ,QQQ3;711315 RXJ,QQQ3;711315 RXJ,QQQ3;711315 RXJ,QQQ3;711315 RXJ,QQQ3;711315 RXJ,QQQ3;711315	
	210527A_56.d	Sample	5/28/2021 6:53	RXJ,QQQ3;711315	
7	b./2_A/220122	20	5/28/2021 7:07	RXJ, QQQ3; CCV	-

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/27/2021 16:24	Lab File ID:	2210527A_03.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712388

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.10	108	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4.39	114	70	130	
NEtFOSAA	ng/L	4.00	4.02	100	70	130	
NMeFOSAA	ng/L	4.00	3.62	91	70	130	
Perfluorobutanoic acid	ng/L	4.00	3.99	100	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.90	110	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.00	100	70	130	
Perfluoroheptanoic acid	ng/L	4.00	3.99	100	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.31	108	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.70	101	70	130	
Perfluorononanoic acid	ng/L	4.00	4.06	101	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.14	104	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	3.75	101	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.06	102	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.00	100	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.88	97	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.13	103	70	130	

41

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/27/2021 16:10	Lab File ID:	2210527A_02.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712388

				/			
ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	W	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	1
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/27/2021 20:24	Lab File ID:	2210527A_14.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712388

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10000	105	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9860	103	70	130	
NEtFOSAA	ng/L	10000	9990	100	70	130	
NMeFOSAA	ng/L	10000	9780	98	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9190	104	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9260	101	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	_
Perfluorooctanoic acid	ng/L	10000	9970	100	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9060	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroundecanoic acid	ng/L	10000	10300	103	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/27/2021 23:05	Lab File ID:	2210527A_25.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712388

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10400	110	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10300	108	70	130	<u> </u>
NEtFOSAA	ng/L	10000	9940	99	70	130	
NMeFOSAA	ng/L	10000	9760	98	70	130	1
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9230	104	70	130	
Perfluorodecanoic acid	ng/L	10000	10300	103	70	130	
Perfluorododecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9350	102	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9190	99	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroundecanoic acid	ng/L	10000	10400	104	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/28/2021 01:46	Lab File ID:	2210527A_36.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712388

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10300	108 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9710	101	70	130	
NEtFOSAA	ng/L	10000	9990	100	70	130	
NMeFOSAA	ng/L	10000	9910	99	70	130	
Perfluorobutanoic acid	ng/L	10000	10100	101	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9150	103	70	130	
Perfluorodecanoic acid	ng/L	10000	10400	104	70	130	
Perfluorododecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9210	101	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9190	99	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9990	100	70	130	
Perfluorotridecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroundecanoic acid	ng/L	10000	10300	103	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/28/2021 07:07	Lab File ID:	2210527A_57.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712388

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10000	105	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10500	109	70	130	
NEtFOSAA	ng/L	10000	10200	102	70	130	
NMeFOSAA	ng/L	10000	9920	99	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8950	101	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9300	102	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9160	99	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroundecanoic acid	ng/L	10000	9940	99	70	130	

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Comment RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;ICAL RXJ,QQQ3;T11580 RXJ,QQQ3;711580 RXJ,QQQ3;711580 RXJ,QQQ3;711580 RXJ,QQQ3;711580	RXJ,QQQ3;711580 RXJ,QQQ3;711580 RXJ,QQQ3;711580 RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;CCV RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;711160
	Acq. Date-Time 6/2/2021 18:27 6/2/2021 18:41 6/2/2021 19:11 6/2/2021 19:11 6/2/2021 19:25 6/2/2021 19:54 6/2/2021 19:54 6/2/2021 20:38 6/2/2021 20:38 6/2/2021 21:22 6/2/2021 21:22 6/2/2021 21:52	6/2/2021 22:06 6/2/2021 22:21 6/2/2021 22:35 6/2/2021 22:50 6/2/2021 23:05 6/2/2021 23:20 6/2/2021 23:34 6/2/2021 23:49
HBN: 712820 6/4/2021 2/1/2026 11/23/2021 8/2/2021 11/20/2021 12/1/2021	Type Cal Cal Cal Cal Cal Cal Sample Sample Sample Sample	Sample Sample Sample Sample QC Sample Sample
QQQ3 2210602CAL 2210602CCAL 016-82-7 2130330 016-82-3 016-82-8 016-83-1	Data File 2210602C_01.d 2210602C_02.d 2210602C_03.d 2210602C_04.d 2210602C_06.d 2210602C_07.d 2210602C_07.d 2210602C_10.d 2210602C_10.d 2210602C_11.d 2210602C_11.d 2210602C_13.d 2210602C_13.d 2210602C_13.d 2210602C_13.d	2210602C_16.d 2210602C_17.d 2210602C_18.d 2210602C_19.d 2210602C_20.d 2210602C_21.d 2210602C_21.d 2210602C_23.d
Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name 1201 1202 1203 1204 1206 1206 1206 1207 1200 1600 1450 22105147313 22105147313 22105147313 22105147330 22105157812	22105157903 22105157910 22105157910 22105055815*50 1400 22105055816*50 22105055817*50

50 20 20 20 10 10 20 H RXJ,QQQ3;710144 RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;710580 RXJ,QQQ3;711946 XJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711946 3XJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711946 3XJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;711160 XJ,QQQ3;711160 3XJ,QQQ3;711160 RXJ, QQQ3;711160 XJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;711160 RXJ,QQQ3;711160 XXJ,QQQ3;711946 XXJ,QQQ3;711946 3XJ,QQQ3;711946 XJ,QQQ3;711946 XJ,QQQ3;711946 RXJ,QQQ3;CCV RXJ,QQQ3;CCV 6/3/2021 0:03 6/3/2021 0:18 6/3/2021 0:33 6/3/2021 1:16 5/3/2021 1:46 6/3/2021 2:15 6/3/2021 2:29 6/3/2021 2:59 6/3/2021 4:26 6/3/2021 0:47 6/3/2021 2:00 6/3/2021 2:44 5/3/2021 3:13 6/3/2021 3:28 6/3/2021 3:42 6/3/2021 4:56 6/3/2021 5:10 6/3/2021 5:39 6/3/2021 6:38 5/3/2021 7:36 5/3/2021 8:05 5/3/2021 1:02 6/3/2021 1:31 6/3/2021 4:12 5/3/2021 4:41 5/3/2021 5:25 6/3/2021 5:54 5/3/2021 6:09 6/3/2021 6:23 5/3/2021 3:57 5/3/2021 6:52 6/3/2021 7:07 6/3/2021 7:22 5/3/2021 7:51 Sample Sample Sample Sample 2210602C_24.d Sample g g 2210602C_25.d 2210602C_33.d 2210602C_35.d 2210602C_36.d 2210602C_38.d 2210602C_41.d 2210602C_26.d 2210602C_27.d 2210602C_28.d 2210602C_29.d 2210602C_30.d 2210602C_31.d 2210602C_32.d 2210602C_34.d 2210602C_37.d 2210602C_39.d 2210602C_40.d 2210602C_42.d 2210602C_43.d 2210602C_44.d 210602C_46.d 2210602C_47.d 2210602C_48.d 210602C_49.d 2210602C_50.d 2210602C_56.d 2210602C_57.d 2210602C_45.d 2210602C_51.d 2210602C_53.d 2210602C_54.d 210602C_52.d 210602C_55.d 22105055818*50 22105055819*20 22105055820*20 22105055821*20 22105055822*10 22105055826*10 22104303107*20 22105055815*5 22105055816*5 22105055817*5 22105055818*5 22105055819 22105055820 22105055826 22105041110 22105055821 22105055822 22105133601 22105133603 22105147517 22105147518 22105147519 22105147520 22105147523 22105147524 22105133602 22105147522 22105147521 2190879 2190878 2190877 2190880 1450 1400

RXJ,QQQ3;711946 3XJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;712006 RXJ,QQQ3;712006 RXJ,QQQ3;711946 RXJ,QQQ3;711946 RXJ,QQQ3;711875 RXJ,QQQ3;712006 RXJ,QQQ3;712006 RXJ,QQQ3;712006 RXJ,QQQ3;711515 RXJ,QQQ3;CCV RXJ,QQQ3;CCV RXJ,QQQ3;CCV 6/3/2021 10:46 6/3/2021 10:02 6/3/2021 10:32 6/3/2021 11:01 6/3/2021 11:15 6/3/2021 11:30 6/3/2021 11:45 6/3/2021 12:00 5/3/2021 12:14 5/3/2021 12:29 6/3/2021 12:43 6/3/2021 10:17 6/3/2021 8:20 6/3/2021 8:35 6/3/2021 8:49 6/3/2021 9:04 6/3/2021 9:19 6/3/2021 9:33 6/3/2021 9:48 Sample g g g 2210602C_58.d 210602C_59.d 2210602C_72.d 2210602C_60.d 2210602C_66.d 2210602C_67.d 2210602C_69.d 2210602C_71.d 2210602C_73.d 2210602C_74.d 2210602C_75.d 2210602C_76.d 2210602C_61.d 2210602C_62.d 2210602C_63.d 2210602C_64.d 2210602C_65.d 2210602C_68.d 2210602C_70.d

22105147526 22105147525 22105147527 22105147528 22105147529 22105150501 22105150502 22105150503 22105150504 22105182302 22105118619 22105182303 22105182304 2105182305 22105182306 2190632 1400 1400

1400

61

ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	06/02/2021 20:24	Lab File ID:	2210602C_09.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	11000	1100	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	11100	110	70	130	1
NEtFOSAA	ng/L	10000	11100	111	70	130	
NMeFOSAA	ng/L	10000	11200	112	70	130	
Perfluorobutanoic acid	ng/L	10000	11000	110	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	10200	102	70	130	
Perfluorodecanoic acid	ng/L	10000	11500	115	70	130	<u> </u>
Perfluorododecanoic acid	ng/L	10000	11000	110	70	130	
Perfluoroheptanoic acid	ng/L	10000	11200	112	70	130	
Perfluorohexanoic acid	ng/L	10100	11000	109	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	11200	112	70	130	
Perfluorononanoic acid	ng/L	10000	12400	124	70	130	
Perfluorooctanoic acid	ng/L	10100	10700	106	70	130	
Perfluorooctanesulfonic acid	ng/L.	10000	9570	96	70	130	
Perfluoropentanoic acid	ng/L	10100	11100	110	70	130	
Perfluorotetradecanoic acid	ng/L	10000	12700	127	70	130	
Perfluorotridecanoic acid	ng/L	10000	9910	99	70	130	
Perfluoroundecanoic acid	ng/L	10000	11100	111	70	130	

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	06/03/2021 05:10	Lab File ID:	2210602C_45.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.17	109	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4.84	126	70	130	
NEtFOSAA	ng/L	4.00	4.56	114	70	130	
NMeFOSAA	ng/L	4.00	4.44	111	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.54	100	70	130	
Perfluorodecanoic acid	ng/L	4.00	3.99	100	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.04	101	70	130	
Perfluoroheptanoic acid	ng/L	4.00	3.99	100	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.10	103	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.74	102	70	130	
Perfluorononanoic acid	ng/L	4.00	3.92	98	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.20	105	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.30	116	70	130	
Perfluoropentanoic acid	ng/L	4.00	3.96	99	70	130	-
Perfluorotetradecanoic acid	ng/L	4.00	3.95	99	70	130	
Perfluorotridecanoic acid	ng/L	4.00	4.17	104	70	130	
Perfluoroundecanoic acid	ng/L	4.00	3.94	98	70	130	

41

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	06/02/2021 20:09	Lab File ID:	2210602C_08.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	u/	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	υ	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

Quantitative Analysis Calibration Report

Calibration Info Instrument ISTD M3PFBA Calibration STD Cal Type Level Enabled Response (ng/mL) D:\MassHunter\Data\2210602CCAL\2210602C_01.d Calibration 1 Ø 151 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_02.d Calibration 2 Ø 175 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_03.d Calibration 3 Ø 225 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_04.d Calibration 4 Ø 184 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_05.d Calibration 5 Ø 253 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 6 Ø 176 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 Ø 200 5.0000 D:\MassHunter\Data\22106002CCAL\2210602C_07.d Calibration 7 Ø 200 5.0000 D:\MassHunter\Data\22106002CCAL\2210602C_07.d Calibration 7 Ø 200 5.0000 M3PFBA - 7 Lev	Batch Data Path Analysis Time Report Time Last Calib Update	D:\MassHunter\Data\ 6/8/2021 1:30 PM 6/9/2021 1:19 PM 6/3/2021 9:17 AM	Analyst Reporte	QQQ3\2210602CCAL\Qi Analyst Name Reporter Name Batch State		2210602C.ba	atch.bin
Calibration STD Cal Type Level Enabled Response (rg/mL) D:\MassHunter\Data\2210602CCAL\2210602C_01.d Calibration 1 Image: Calibration		M3PFBA					
D:\MassHunter\Data\2210602CCAL\2210602C_02.d Calibration 2 ☑ 175 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_03.d Calibration 3 ☑ 225 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_04.d Calibration 4 ☑ 184 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_05.d Calibration 4 ☑ 184 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_05.d Calibration 5 ☑ 253 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 6 ☑ 176 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 ☑ 200 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 ☑ 200 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 ☑ 200 5.0000 M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 0 QCS ✓ ✓ ✓ ✓ ✓ Start 2 y = 38.961425 * x K*2 = 0.00000000 ✓ ✓ ✓ ✓ ✓ Start 2 </th <th>Calibration STD</th> <th>Cal Type</th> <th>Level</th> <th>Enabled</th> <th>Response</th> <th></th> <th>RF</th>	Calibration STD	Cal Type	Level	Enabled	Response		RF
D:\MassHunter\Data\2210602CCAL\2210602C_03.d Calibration 3 \square 225 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_04.d Calibration 4 \square 184 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_05.d Calibration 5 \square 253 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_06.d Calibration 6 \square 176 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 \square 200 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 \square 200 5.0000 M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 0 QCs $= x10^2 + y = 38.961425 * x$ = x2 = 0.00000000 Type: Average of Response Factors, Origin:Ignore, Weight:None Avg. RF RSD = 17.779935	D:\MassHunter\Data\2210602CCAL\2210602C_01.d	Calibration	. 1	Ø	151	5.0000	30.1536
D:\MassHunter\Data\2210602CCAL\2210602C_04.d Calibration 4 2 184 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_05.d Calibration 5 2 253 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_06.d Calibration 6 2 176 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 2 200 5.0000 M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 0 QCs s x10 ² - y = 38.961425 * x 2.5 R ² = 0.00000000 2.5 x10 ² - y = 38.961425 * x 2.5 x ² = 0.00000000 xype:Average of Response Factors, Origin:Ignore, Weight:None Avg. RF RSD = 17.779935	D:\MassHunter\Data\2210602CCAL\2210602C_02.d	Calibration	2	M	175	5.0000	34.9107
D:\MassHunter\Data\2210602CCAL\2210602C_05.d Calibration 5 253 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_06.d Calibration 6 2 176 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 2 200 5.0000 M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 0 QCs s x10 ² y = 38.961425 * x % 2.5 Type:Average of Response Factors, Origin:Ignore, Weight:None 2.4 Avg. RF RSD = 17.779935 2.3 2.3 2.1 1.9 1.8	D:\MassHunter\Data\2210602CCAL\2210602C_03.d	Calibration	3	Ø	225	5.0000	45.0124
D:\MassHunter\Data\2210602CCAL\2210602C_06.d Calibration 6 \square 176 5.0000 D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 \square 200 5.0000 M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 0 QCs $x \times 10^2 + y = 38.961425 * x$ $R^2 = 0.00000000$ Type:Average of Response Factors, Origin:Ignore, Weight:None Avg. RF RSD = 17.779935 2.3 - 2.2 - 2.1 -	D:\MassHunter\Data\2210602CCAL\2210602C_04.d	Calibration	4	Ø	184	5.0000	36.8939
D:\MassHunter\Data\2210602CCAL\2210602C_07.d Calibration 7 2 200 5.0000 M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 0 QCs s x10 ² y = 38.961425 * x R ² = 0.000000000 Type:Average of Response Factors, Origin:Ignore, Weight:None Avg. RF RSD = 17.779935 2.3 2.2 1.9 1.8	D:\MassHunter\Data\2210602CCAL\2210602C_05.d	Calibration	5	Ø	253	5.0000	50.6784
M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 0 QCs	D:\MassHunter\Data\2210602CCAL\2210602C_06.d	Calibration	6	V	176	5.0000	35.1193
sg x10 ² y = 38.961425 * x R ² = 0.00000000 Type:Average of Response Factors, Origin:Ignore, Weight:None 4vg. RF RSD = 17.779935 2.3 2.2 2.1 2.2 2.1 2.3 1.9 1.8	D:\MassHunter\Data\2210602CCAL\2210602C_07.d	Calibration	7	V	200	5.0000	39.9617
1.7- 1.6- 1.5-	<pre>\$ x10 2 y = 38.961425 * x R^2 = 0.00000000 Type:Average of Response Factors, Origin 2.4 Avg. RF RSD = 17.779935 2.3 - 2.2 - 2.1 - 2.1 - 1.9 - 1.8 - 1.7 - 1.6 -</pre>						

Target Compound

PFBA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210602CCAL\2210602C_01.d	Calibration	1	Ø	2357	0.5000	0.8564
D:\MassHunter\Data\2210602CCAL\2210602C_02.d	Calibration	2	Ø	6223	1.2500	0.8404
D:\MassHunter\Data\2210602CCAL\2210602C_03.d	Calibration	3		27222	5.0000	0.8225
D:\MassHunter\Data\2210602CCAL\2210602C_04.d	Calibration	4	Ø	56208	10.0000	0.8615
D:\MassHunter\Data\2210602CCAL\2210602C_05.d	Calibration	5		122904	20.0000	0.8836
D:\MassHunter\Data\2210602CCAL\2210602C_06.d	Calibration	6		297554	50.0000	0.8782
D:\MassHunter\Data\2210602CCAL\2210602C_07.d	Calibration	7	Ø	1057342	200.0000	0.7870

Printed at: 5:25 PM op: 6/9/2021 Page 2937 of 4387

Quantitative Analysis Calibration Report

D:\MassH	unter\Data\2210602CCAL\2210602C_01.d	Calibration	1	Ø	1721	5.0000	344.10
D:\MassH	unter\Data\2210602CCAL\2210602C_02.d	Calibration	2	N	1688	5.0000	337.62
D:\MassHi	unter\Data\2210602CCAL\2210602C_03.d	Calibration	3	Ø	1974	5.0000	394.7
D:\MassHi	unter\Data\2210602CCAL\2210602C_04.d	Calibration	4	Ø	1959	5.0000	391.7
D:\MassHu	unter\Data\2210602CCAL\2210602C_05.d	Calibration	5	V	2023	5.0000	404.6
D:\MassHu	unter\Data\2210602CCAL\2210602C_06.d	Calibration	6	Z	1981	5.0000	396.2
D:\MassHu	unter\Data\2210602CCAL\2210602C_07.d	Calibration	7	Ŋ	1881	5.0000	376.2
Target (Compound	6:2 FTS					
						Even Course	
Calibratio	on STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	
D:\MassHL	unter\Data\2210602CCAL\2210602C_01.d	Calibration	1	Ø	389	0.4755	2.32
D:\MassHu	unter\Data\2210602CCAL\2210602C_02.d	Calibration	2	N	1011	1.1888	2.5
D:\MassHu	inter\Data\2210602CCAL\2210602C_03.d	Calibration	3	Ø	4291	4.7550	2.28
D:\MassHu	inter\Data\2210602CCAL\2210602C_04.d	Calibration	4	V	9125	9.5100	2.44
D:\MassHu	Inter\Data\2210602CCAL\2210602C_05.d	Calibration	5	M	18520	19.0200	2.40
D:\MassHu	Inter\Data\2210602CCAL\2210602C_06.d	Calibration	6		43671	47.5500	2.3
D:\MassHu	inter\Data\2210602CCAL\2210602C_07.d	 Calibration 	7	Ø	141889	190.2000	1.98
	7 Levels, 7 Levels Used, 7 Points, 7 Points t y = 2.334062 * x R^2 = 0.95952109 Type:Average of Response Factors, Origin Avg. RF RSD = 7.435830					•	
	-2 0 2 4 6 8 10 12	14 16 18 20 22	24 26 2	8 30 32	34 36 3 Relative Con	· · · ·	

Extracted ISTD

M8PFOA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2210602CCAL\2210602C_01.d	Calibration	- 1	Ø	42987	5.0000	8597.4487
D:\MassHunter\Data\2210602CCAL\2210602C_02.d	Calibration	2	Ø	45774	5.0000	9154.8709
D:\MassHunter\Data\2210602CCAL\2210602C_03.d	Calibration	3	Ŋ	49825	5.0000	9964.9713

QP03 2210602C CCAL Levelly Lemp.xlsx

Printed at: 5:25 PM op: 6/9/2021 Page 2950 of 4387

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	06/02/2021 23:20	Lab File ID:	2210602C_21.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9940	105 🗸	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10200	106	70	130	
NEtFOSAA	ng/L	10000	10600	106	70	130	
NMeFOSAA	ng/L	10000	10200	102	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8760	99	70	130	
Perfluorodecanoic acid	ng/L	10000	10300	103	70	130	
Perfluorododecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9390	103	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9240	100	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroundecanoic acid	ng/L	10000	10300	103	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	06/03/2021 02:00	Lab File ID:	2210602C_32.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10100	106 🗸	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10600	110	70	130	
NEtFOSAA	ng/L	10000	10600	106	70	130	
NMeFOSAA	ng/L	10000	9940	99	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9080	102	70	130	
Perfluorodecanoic acid	ng/L	10000	10300	103	70	130	
Perfluorododecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9250	101	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9070	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroundecanoic acid	ng/L	10000	10100	101	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	06/03/2021 08:20	Lab File ID:	2210602C_58.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	108 1	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9630	100	70	130	
NEtFOSAA	ng/L	10000	10300	103	70	130	[
NMeFOSAA	ng/L	10000	10200	102	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9060	102	70	130	
Perfluorodecanoic acid	ng/L	10000	10300	103	70	130	
Perfluorododecanoic acid	ng/L	10000	10500	105	70	130	
Perfluoroheptanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9290	102	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8980	97	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroundecanoic acid	ng/L	10000	10100	101	70	130	

Report No:	221050411	Instrument iD:	QQQ3
Analysis Date:	06/03/2021 11:15	Lab File ID:	2210602C_70.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	107 🗸	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10300	107	70	130	
NEtFOSAA	ng/L	10000	10100	101	70	130	
NMeFOSAA	ng/L	10000	10400	104	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8770	99	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9390	103	70	130	
Perfluorononanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9010	97	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroundecanoic acid	ng/L	10000	10200	102	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	06/03/2021 12:43	Lab File ID:	2210602C_76.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712820

ANALYTE	UNITS	TRUE	FOUND	% REC /	Ĺ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9770	103	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10700	112	70	130	
NEtFOSAA	ng/L	10000	9850	99	70	130	
NMeFOSAA	ng/L	10000	10200	102	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9090	102	70	130	
Perfluorodecanoic acid	ng/L	10000	10400	104	70	130	
Perfluorododecanoic acid	ng/L	10000	10300	103	70	130	1
Perfluoroheptanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9280	102	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9030	97	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroundecanoic acid	ng/L	10000	10300	103	70	130	

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	06/02/21 19:25	Lab File ID:	2210602C_05.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	712820

		M2PFDA		M2PFHx/	Ą	M2PFOA		M4PFO	S
		Area		Area		Area		Area	
STANDARD		288048	ľ	403517		215124		48429	
CLIENT SAMPLE ID	LAB SAMP ID	\checkmark	#	\checkmark	#	\checkmark	#	1	#
WL-FRB-01RE	22105041110RE	245840		371765		191780		40427	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

FORM 8I - ORG

<u> </u>
-
÷.
X
Q
S CO
ř.
\simeq
<u>.</u>
\sim
\sim
44
18
ā
×
<u> </u>
യ
Ñ
ш.
ALC: N
in.
ö
<u> </u>
C D
<u> </u>
<u> </u>
=
O.
_
œ.
Ő.
BC
0

ы Ч Ч Ч Ч Ч Ч Ч	 न न					Ļ	Ч	Ч	Ч	Ч	1

	Acq. Date-Time Comment 5/24/2021 19:48 RXJ,QQQ3;ICAL 5/24/2021 20:03 RXJ,QQQ3;ICAL 5/24/2021 20:20 RXJ,QQQ3;ICAL	5/24/2021 20:35 RXJ,QQQ3;ICAL 5/24/2021 20:50 RXJ,QQQ3;ICAL 5/24/2021 21:04 RXJ,QQQ3;ICAL 5/24/2021 21:19 RXJ,QQQ3;ICAL		
HBN: 712509 5/30/2021 2/1/2026 11/23/2021 8/2/2021 11/24/2021 11/20/2021	Type Cal Cal Cal S S S	Cal Cal Cal Cal Samula		
QQQ3 2210528A 2210524BCAL 016-81-5 2130330 016-79-3 016-79-3 016-79-7 016-78-3	Data File 22105248_01.d 22105248_02.d 22105248_03.d	2210524B_04.d 2210524B_05.d 2210524B_06.d 2210524B_07.d 2210524B_07.d	22105248_06.0 22105248_09.d 2210528A_01.d 2210528A_01.d 2210528A_03.d 2210528A_04.d 2210528A_04.d	2210528A_06.d 2210528A_07.d 2210528A_08.d 2210528A_09.d 2210528A_10.d 2210528A_11.d 2210528A_12.d 2210528A_13.d
Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name 1201 1202 1203	1204 1205 1206 1207 1500	1600 1600 1400test 1500 1400TEST 2192459	2192460 22105253601 22105157904 22105157905*MS 22105157906*MSD 1400 1400 2187429

-

RXJ,QQQ3;711316 RXJ,QQQ3;711984 RXJ,QQQ3;711984 RXJ,QQQ3;711984 RXJ,QQQ3;711984 RXJ,QQQ3;711984 RXJ,QQQ3;711984 RXJ,QQQ3;711984 RXJ,QQQ3;711984 RXJ, QQQ3;711984 RXJ,QQQ3;711984 RXJ,QQQ3;CCV RXJ, QQQ3;CCV 5/28/2021 16:06 5/28/2021 16:20 5/28/2021 20:20 5/28/2021 23:16 5/28/2021 16:35 5/28/2021 16:50 5/28/2021 17:19 5/28/2021 17:33 5/28/2021 18:03 5/28/2021 18:47 5/28/2021 19:07 5/28/2021 19:36 5/28/2021 20:06 5/28/2021 20:35 5/28/2021 20:50 5/28/2021 21:04 5/28/2021 21:19 5/28/2021 21:33 5/28/2021 21:48 5/28/2021 22:03 5/28/2021 22:32 5/28/2021 22:46 5/28/2021 23:30 5/28/2021 23:45 5/28/2021 23:59 5/28/2021 17:04 5/28/2021 17:48 5/28/2021 18:17 5/28/2021 18:32 5/28/2021 19:22 5/28/2021 19:51 5/28/2021 22:17 5/28/2021 23:01 5/29/2021 0:14 Sample Blank g g g g 2210528A 14.d 2210528A_15.d 2210528A_16.d 2210528A_19.d 2210528A_22.d 2210528A_24.d 2210528A_25.d 2210528A_26.d 2210528A_28.d 2210528A_31.d 2210528A_34.d 2210528A_36.d 2210528A_37.d 2210528A_38.d 2210528A_39.d 2210528A_40.d 2210528A_45.d 2210528A_47.d 2210528A_17.d 2210528A_18.d 2210528A_20.d 2210528A 21.d 2210528A_23.d 2210528A_27.d 2210528A_29.d 2210528A_30.d 2210528A_32.d 2210528A_33.d 2210528A_35.d 2210528A_41.d 2210528A_42.d 2210528A_43.d 2210528A_44.d 2210528A_46.d 22104280215 22105086008 22105086010 22105086013 22105086018 22104280219 22105086002 22105086005 22105086009 22105086014 2105086019 22105086020 22105041123 22105041124 22104280217 22104300605 22104300612 22105086001 22105086004 22105086006 22105086007 22105086012 22105086017 22105086021 22105086022 22105041122 22104300701 22105086003 22105086011 2187430 2191138 2191137 1400 1400

ഗ

22104300705	2210528A_48.d	Sample	5/29/2021 0:29	RXJ,QQQ3;711984	
22104300706	2210528A_49.d	Sample	5/29/2021 0:43	RXJ,QQQ3;711984	4
1450	2210528A_50.d	QC	5/29/2021 0:58	RXJ,QQQ3;CCV	1
22104303105	2210528A_51.d	Sample	5/29/2021 1:13	RXJ,QQQ3;711984	-
22105157814	2210528A_52.d	Sample	5/29/2021 1:27	RXJ,QQQ3;711984	1
22105157815	2210528A_53.d	Sample	5/29/2021 1:42	RXJ,QQQ3;711984	1
22105157816	2210528A_54.d	Sample	5/29/2021 1:57	RXJ,QQQ3;711984	1
22105157817	2210528A_55.d	Sample	5/29/2021 2:11	RXJ,QQQ3;711984	1
22105157818	2210528A_56.d	Sample	5/29/2021 2:26	RXJ,QQQ3;711984	1
22105157819	2210528A_57.d	Sample	5/29/2021 2:41	RXJ,QQQ3;711984	1
22105157820	2210528A_58.d	Sample	5/29/2021 2:56	RXJ,QQQ3;711984	1
22105157901	2210528A_59.d	Sample	5/29/2021 3:10	RXJ,QQQ3;711984	1
22105157902	2210528A_60.d	Sample	5/29/2021 3:25	RXJ,QQQ3;711984	1
1400	2210528A_61.d	QC	5/29/2021 3:40	RXJ,QQQ3;CCV	1
22105157907	2210528A_62.d	Sample	5/29/2021 3:54	RXJ,QQQ3;711984	
22105157908	2210528A_63.d	Sample	5/29/2021 4:09	RXJ,QQQ3;711984	1
2191317	2210528A_64.d	Blank	5/29/2021 4:24	RXJ,QQQ3;712038	1
2191318	2210528A_65.d	gc	5/29/2021 4:39	RXJ,QQQ3;712038	1
2191319	2210528A_66.d	QC	5/29/2021 4:53	RXJ,QQQ3;712038	1
22104242914	2210528A_67.d	Sample	5/29/2021 5:08	RXJ,QQQ3;712038	10
22104242917	2210528A_68.d	Sample	5/29/2021 5:22	RXJ,QQQ3;712038	10
22105102604	2210528A_69.d	Sample	5/29/2021 5:37	RXJ,QQQ3;711253	10
22105102706	2210528A_70.d	Sample	5/29/2021 5:52	RXJ,QQQ3;711253	50
22105102707	2210528A_71.d	Sample	5/29/2021 6:06	RXJ,QQQ3;711253	1
22105102708 1000x dai	2210528A_72.d	Sample	5/29/2021 6:21	RXJ,QQQ3;711253	200
2195289 1000x dai	2210528A_73.d	Sample	5/29/2021 6:36	RXJ,QQQ3;711253	200
22105102709 1000x dai	2210528A_74.d	Sample	5/29/2021 6:50	RXJ,QQQ3;711253	1
1400	2210528A_75.d	Sample	5/29/2021 7:05	RXJ,QQQ3;711253	1
2195290 1000x dai	2210528A_76.d	Sample	5/29/2021 7:20	RXJ,QQQ3;711253	1
22105102710	2210528A_77.d	Sample	5/29/2021 7:35	RXJ,QQQ3;711253	1
22105102710	2210528A_78.d	Sample	5/29/2021 7:49	RXJ,QQQ3;711253	1
22105102711	2210528A_79.d	Sample	5/29/2021 8:04	RXJ,QQQ3;711253	10
22105102801	2210528A_80.d	Sample	5/29/2021 8:18	RXJ,QQQ3;711253	10
22105102706	2210528A_81.d	Sample	5/29/2021 8:33	RXJ,QQQ3;711253	5

5/29/2021 8:48 RXJ,QQQ3;711253	RXJ,QQQ3;711253	RXJ,QQQ3;711253	RXJ,QQQ3;712038	RXJ,QQQ3;CCV	5/29/2021 10:01 RXJ,QQQ3;712038	5/29/2021 10:16 RXJ,QQQ3;Instrument Idle/Instrument Blank	RXJ,QQQ3;CCV
5/29/2021 8:48	5/29/2021 9:02	5/29/2021 9:17	5/29/2021 9:31	5/29/2021 9:46	5/29/2021 10:01	5/29/2021 10:16	5/29/2021 10:30 RXI,QQQ3;CCV
Sample	Sample	Sample	Sample	QC	Sample	Sample	QC
2210528A_82.d Sample	2210528A_83.d Sample	2210528A_84.d Sample	2210528A_85a.d Sample	2210528A_86.d QC	2210528A_87a.d Sample	2210528A_88a.d Sample	2210528A_89.d QC
22105102708	22105102709	22105102710*50	22104242917	1400	22104242914	reagent blank	1400

<u>н</u> н

Pace Gulf Coast Report#: 221050411

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/29/2021 00:58	Lab File ID:	2210528A_50.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.03	106	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4.05	105	70	130	
NEtFOSAA	ng/L	4.00	4.03	101	70	130	
NMeFOSAA	ng/L	4.00	3.64	91	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.12	103	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.60	101	70	130	
Perfluorodecanoic acid	ng/L	4.00	3.97	99	70	130	
Perfluorododecanoic acid	ng/L	4.00	3.98	99	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.10	102	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.13	103	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.76	103	70	130	
Perfluorononanoic acid	ng/L	4.00	4.04	101	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.05	101	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	3.77	102	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.94	98	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.00	100	70	130	

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/24/2021 21:41	Lab File ID:	2210524B_08.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712388

ANALYTE	UNITS	RESULT	Q	/ DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	UU	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	υ	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	υ	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

FORM 4I - ORG

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/28/2021 11:08	Lab File ID:	2210528A_02.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	UV	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	υ	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

FORM 4I - ORG

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/28/2021 13:43	Lab File ID:	2210528A_11.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC	<pre>/ LCL</pre>	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9740	102 🚺	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10200	106	70	130	
NEtFOSAA	ng/L	10000	9910	99	70	130	
NMeFOSAA	ng/L	10000	9750	97	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9110	103	70	130	[
Perfluorodecanoic acid	ng/L	10000	10400	104	70	130	
Perfluorododecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9330	102	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9100	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroundecanoic acid	ng/L	10000	10400	104	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/28/2021 15:25	Lab File ID:	2210528A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9740	102 (70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10000	105	70	130	
NEtFOSAA	ng/L	10000	10300	103	70	130	
NMeFOSAA	ng/L	10000	10100	101	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	1
Perfluorobutanesulfonic acid	ng/L	8870	9150	103	70	130	
Perfluorodecanoic acid	ng/L	10000	10400	104	70	130	
Perfluorododecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroheptanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9340	102	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10000	100	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9140	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroundecanoic acid	ng/L	10000	10400	104	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/28/2021 18:47	Lab File ID:	2210528A_25.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9900	104	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10800	112	70	130	
NEtFOSAA	ng/L	10000	9700	97	70	130	
NMeFOSAA	ng/L	10000	10800	108	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9190	104	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9320	102	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	9900	99	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9230	100	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorotridecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroundecanoic acid	ng/L	10000	10400	104	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/28/2021 21:19	Lab File ID:	2210528A_35.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	107	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10100	105	70	130	
NEtFOSAA	ng/L	10000	10200	102	70	130	
NMeFOSAA	ng/L	10000	9840	98	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9110	103	70	130	
Perfluorodecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorododecanoic acid	ng/L	10000	10500	105	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	9950	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8990	98	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	9950	99	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9120	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10000	100	70	130	
Perfluorotridecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroundecanoic acid	ng/L	10000	10400	104	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/29/2021 03:40	Lab File ID:	2210528A_61.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC	/LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9980	105 0	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10100	105	70	130	
NEtFOSAA	ng/L	10000	10100	101	70	130	
NMeFOSAA	ng/L	10000	10400	104	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9090	103	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroheptanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanoic acid	ng/L	10000	9990	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9110	100	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9230	99	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotridecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroundecanoic acid	ng/L	10000	10200	102	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/29/2021 07:05	Lab File ID:	2210528A_75.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9990	105 (70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9800	102	70	130	
NEtFOSAA	ng/L	10000	9710	97	70	130	
NMeFOSAA	ng/L	10000	9890	99	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9130	103	70	130	
Perfluorodecanoic acid	ng/L	10000	10300	103	70	130	
Perfluorododecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroheptanoic acid	ng/L	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9300	102	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	9960	100	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8920	96	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10100	101	70	130	_
Perfluoroundecanoic acid	ng/L	10000	10200	102	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/29/2021 09:46	Lab File ID:	2210528A_86.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	712509

ANALYTE	UNITS	TRUE	FOUND	% REC	<pre>/ LCL</pre>	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9820	103	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10300	108	70	130	
NEtFOSAA	ng/L	10000	9980	100	70	130	
NMeFOSAA	ng/L	10000	9760	98	70	130	
Perfluorobutanoic acid	ng/L	10000	10200	102	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9170	103	70	130	
Perfluorodecanoic acid	ng/L	10000	10100	101	70	130	
Perfluorododecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroheptanoic acid	ng/L	10000	10300	103	70	130	
Perfluorohexanoic acid	ng/L	10000	10100	101	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9260	101	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	10100	101	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9120	98	70	130	
Perfluoropentanoic acid	ng/L	10000	10300	103	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10200	102	70	130	
Perfluorotridecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroundecanoic acid	ng/L	10000	10400	104	70	130	

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	05/24/21 20:50	Lab File ID:	2210524B_05.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	712388

		M2PFDA		M2PFHx	A	M2PFO	۹	M4PFO	s
		Area		Area		Area		Area	
STANDARD		254121		348110		189779		41439	
CLIENT SAMPLE ID	LAB SAMP ID		#	/	#	1	#	/	#
AOI01-03-GWDL	22105041140DL	229308		341592		191232		38177	
AOI01-09-GWRE 2210504114		200304		295830		158128		32637	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

FORM 8I - ORG

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1450 (ISC)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	05/28/21 11:23	Lab File ID:	2210528A_03.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	712509

		M2PFDA		M2PFHx/	4	M2PFOA	1	M4PFOS	S
		Area		Area		Area		Area	
STANDARD		232263		300821		169059	2	38425	
CLIENT SAMPLE ID	LAB SAMP ID	\checkmark	#	/	#	/	#	/	#
MB2191137	2191137	215286		325621		182474		35413	
LCS2191138	2191138	210270		320047		179239		34807	
AOI01-08-SB-00-02 (RE)	22105041158	253578		351298		203174		36544	
AOI01-08-SB-00-02 MS(RE)	22105041159	22105041159 261581 370650 215919	215919		38191				
AOI01-08-SB-00-02 MSD(RE)	22105041160	247430		346437		202949		35932	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

Page 4341 of 4387

	Comment MRA,MeOH SHOT/INSTRUMENT IDLE MRA,QQQ1;Cal MRA,QQQ1;Cal MRA,QQQ1;Cal MRA,QQQ1;Cal MRA,QQQ1;Cal MRA,QQQ1;Cal MRA,QQQ1;Cal MRA,QQQ1;Cal MRA,QQQ1 MRA,QQ0 MR	MRA,QQQ1 MRA,MeOH SHOT/INSTRUMENT IDLE MRA,QQQ1;710837 MRA,QQQ1;710837 MRA,QQQ1;710837 MRA,QQQ1;710837 MRA,QQQ1;710837 MRA,QQQ1;710837
	Acq. Date-Time 5/15/2021 8:33 5/15/2021 8:51 5/15/2021 9:08 5/15/2021 9:08 5/15/2021 9:25 5/15/2021 10:00 5/15/2021 10:17 5/15/2021 10:45 5/15/2021 11:20 5/15/2021 11:54 5/15/2021 11:53 5/15/2021 11:53	5/15/2021 13:44 5/15/2021 14:11 5/15/2021 14:28 5/15/2021 14:45 5/15/2021 15:02 5/15/2021 15:20 5/15/2021 15:20 5/15/2021 15:37
HBN: 711275 5/17/2021 2/1/2026 11/12/2021 8/2/2021 10/23/2021 11/14/2021	lype Blank Cal Cal Cal Cal Cal Sample Sample Blank Blank QC QC	QC Blank Sample Sample Sample Sample
QQQ1 2210515A 2210515ACAL 016-74-1 2130330 016-71-5 016-71-3 016-73-5 016-73-7	Data File 2210515A_01.d 2210515A_02.d 2210515A_03.d 2210515A_06.d 2210515A_05.d 2210515A_06.d 2210515A_09.d 2210515A_09.d 2210515A_10.d 2210515A_11.d 2210515A_11.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d 2210515A_13.d	2210515A_16.d 2210515A_17.d 2210515A_18.d 2210515A_19.d 2210515A_20.d 2210515A_21.d 2210515A_22.d 2210515A_23.d
Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name MeOH Shot 1201 1203 1206 1206 1206 1206 1200 1500 1450 1450 1450 1450 1450	1450 MeOH Shot 2184338 2184339 22104274604 22105041105 22105041105

Σ
1
6
ស
Ö
5
12
2
36
P.
ğ
١ă
e
C
يد
S S
18
<u> </u>
1
12
0
a a
<u>o</u>
0
LT.

, ,		1	1	1	1	7	1	1	1	1	1	1	10	10	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	MRA,QQQ1;710837 MRA,QQQ1;710837	MRA, QQQ1;710837	MRA,QQQ1;710837	MRA,QQQ1;710837	MRA, QQQ1; CCV	MRA,QQQ1;710837	MRA,QQQ1;710837	MRA,QQQ1;710837	MRA,QQQ1;710837	MRA, QQQ1; CCV	MRA,QQQ1;710837	MRA,QQQ1;710837	MRA,QQQ1;710837	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA, QQQ1; CCV	MRA,QQQ1;711034	MRA,QQQ1;711034	MRA,QQQ1;711034							
5/15/2021 16:11	5/15/2021 16:46	5/15/2021 17:03	5/15/2021 17:21	5/15/2021 17:38	5/15/2021 17:55	5/15/2021 18:13	5/15/2021 18:30	5/15/2021 18:47	5/15/2021 19:05	5/15/2021 19:22	5/15/2021 19:39	5/15/2021 19:57	5/15/2021 20:14	5/15/2021 20:31	5/15/2021 20:49	5/15/2021 21:06	5/15/2021 21:23	5/15/2021 21:40	5/15/2021 21:58	5/15/2021 22:15	5/15/2021 22:32	5/15/2021 22:50	5/15/2021 23:07	5/15/2021 23:24	5/15/2021 23:42	5/15/2021 23:59	5/16/2021 0:16	5/16/2021 0:34	5/16/2021 0:51	5/16/2021 1:08	5/16/2021 1:26	5/16/2021 1:43	
_24.d	2210515A_26.d Sample	2210515A_27.d Sample	2210515A_28.d Sample	2210515A_29.d Sample	2210515A_30.d QC	2210515A_31.d Sample	2210515A_32.d Sample	2210515A_33.d Sample	2210515A_34.d Sample	2210515A_35.d Sample	2210515A_36.d Sample	2210515A_37.d Sample	2210515A_38.d QC	2210515A_39.d QC	2210515A_40.d Sample	2210515A_41.d QC	2210515A_42.d Sample	2210515A_43.d Sample	2210515A_44.d Sample	2210515A_45.d Sample	2210515A_46.d QC	2210515A_47.d Sample	2210515A_48.d Sample	2210515A_49.d Sample	2210515A_50.d Sample	2210515A_51.d Sample	2210515A_52.d Sample	2210515A_53.d Sample	2210515A_54.d QC	2210515A_55.d Sample	2210515A_56.d QC	2210515A_57.d QC	
22105041107	22105041109 22105041109	22105041111	22105041113	22105041114	1400	22105041116	22105041117	22105041118	22105041119	22105041120	22105041121	22105041122	22105041123 10x	22105041124 10x	22105041125	1400	22105041126	22105041131	22105041132	2185474	2185475	22104280201	22104280202	22104280204	22104280207	22105055701	22105055702	22105055703	1400	22105010901	2185479	2185480	

Page 4343 of 4387

Pace Gulf Coast Report#: 221050411

l

MRA,QQQ1;711034 MRA,QQQ1;711034	MKA,QQQ1;711034 MRA,QQQ1;711034 MRA,QQQ1;711034 MRA,QQQ1;711034 MRA,QQQ1;711034	MRA,QQQ1;711034 MRA,QQQ1;711034 MRA,QQQ1;CCV MRA,QQQ1;CCV MRA,QQQ1;CCV	МКА, QQQL; / 11034 МКА, QQQ1; 710838 МКА, QQQ1; 710838 МКА, QQQ1; 710838 МКА, QQQ1; 710838 МКА, QQQ1; 710838	MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838	MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838 MRA,QQQ1;710838
5/16/2021 2:00 5/16/2021 2:18	5/16/2021 2:35 5/16/2021 2:52 5/16/2021 3:10 5/16/2021 3:27 5/16/2021 3:27	5/16/2021 4:02 5/16/2021 4:19 5/16/2021 4:36 5/16/2021 4:54 5/16/2021 5:11	5/16/2021 5:28 5/16/2021 5:45 5/16/2021 6:03 5/16/2021 6:20 5/16/2021 6:38 5/16/2021 6:38	5/16/2021 0:55 5/16/2021 7:12 5/16/2021 7:30 5/16/2021 7:47 5/16/2021 8:04 5/16/2021 8:22 5/16/2021 8:39	5/16/2021 8:56 5/16/2021 9:31 5/16/2021 9:31 5/16/2021 9:48 5/16/2021 10:05 5/16/2021 10:23 5/16/2021 10:23 5/16/2021 10:57
	2210515A_60.4 Sample 2210515A_61.4 Sample 2210515A_63.4 Sample 2210515A_63.4 Sample 2210515A_64.4 Sample		2210515A_70.0 Sample 2210515A_71.d Sample 2210515A_72.d QC 2210515A_73.d Sample 2210515A_74.d QC		2210515A_82.d Sample 2210515A_83.d Sample 2210515A_84.d Sample 2210515A_86.d Sample 2210515A_86.d Sample 2210515A_87.d Sample 2210515A_88.d QC 2210515A_89.d Sample
22105010902 22105010903	22105010906 22105010906 22105010906 22105010907 22105010908	22105010909 22105010910 1450 1450 22105010911	210000010912 2184340 2184341 22105041135 22105041135 22105041135	22105041157 22105011201 22105011202 22105011204 22105011204 22105011205 1400	22105011206 22105011207 22105011208 22105011209 22105011210 22105011211 1400 22105011212

ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/15/2021 11:20	Lab File ID:	2210515A_10.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	9970	100 1	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	11000	109	70	130	
NEtFOSAA	ng/L	10000	11000	110	70	130	
NMeFOSAA	ng/L	10000	9900	99	70	130	
Perfluorobutanoic acid	ng/L	10000	9740	97	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	9870	99	70	130	
Perfluorodecanoic acid	ng/L	10000	11000	110	70	130	
Perfluorododecanoic acid	ng/L	10000	10300	103	70	130	
Perfluoroheptanoic acid	ng/L.	10000	10200	102	70	130	
Perfluorohexanoic acid	ng/L	10100	9520	94	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	10800	108	70	130	
Perfluorononanoic acid	ng/L	10000	12000	120	70	130	
Perfluorooctanoic acid	ng/L	10100	9770	97	70	130	
Perfluorooctanesulfonic acid	ng/L	10000	9060	91	70	130	
Perfluoropentanoic acid	ng/L	10100	9690	96	70	130	
Perfluorotetradecanoic acid	ng/L	10000	11800	118	70	130	
Perfluorotridecanoic acid	ng/L	10000	8890	89	70	130	
Perfluoroundecanoic acid	ng/L	10000	10600	106	70	130	

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/15/2021 11:54	Lab File ID:	2210515A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3.82	100	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	3.50	91	70	130	
NEtFOSAA	ng/L	4.00	4.65	116	70	130	
NMeFOSAA	ng/L	4.00	3.93	98	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.09	102	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.55	100	70	130	
Perfluorodecanoic acid	ng/L	4.00	3.82	96	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.17	104	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.04	101	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.04	101	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.47	95	70	130	
Perfluorononanoic acid	ng/L	4.00	4.31	108	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.26	106	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.43	119	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.10	102	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.19	105	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.93	98	70	130	
Perfluoroundecanoic acid	ng/L	4.00	3.66	92	70	130	

Report No:	221050411	Instrument iD:	QQQ1
Analysis Date:	05/15/2021 13:27	Lab File ID:	2210515A_15.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9.52	9.36	99	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9.60	8.80	92	70	130	
NEtFOSAA	ng/L	10.0	11.9	119	70	130	
NMeFOSAA	ng/L	10.0	9.36	93	70	130	
Perfluorobutanoic acid	ng/L	10.0	9.60	96	70	130	
Perfluorobutanesulfonic acid	ng/L	8.88	8.80	99	70	130	
Perfluorodecanoic acid	ng/L	10.0	9.68	97	70	130	
Perfluorododecanoic acid	ng/L	10.0	9.12	91	70	130	
Perfluoroheptanoic acid	ng/L	10.0	9.44	94	70	130	
Perfluorohexanoic acid	ng/L	10.0	9.20	92	70	130	
Perfluorohexanesulfonic acid	ng/L	9.12	8.96	98	70	130	
Perfluorononanoic acid	ng/L	10.0	10.5	105	70	130	
Perfluorooctanoic acid	ng/L	10.0	9.12	91	70	130	
Perfluorooctanesulfonic acid	ng/L	9.28	9.84	106	70	130	
Perfluoropentanoic acid	ng/L	10.0	9.76	98	70	130	
Perfluorotetradecanoic acid	ng/L	10.0	9.76	98	70	130	
Perfluorotridecanoic acid	ng/L	10.0	9.84	99	70	130	
Perfluoroundecanoic acid	ng/L	10.0	8.88	89	70	130	

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/16/2021 04:54	Lab File ID:	2210515A_68.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3.61	95	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	3.78	99	70	130	
NEtFOSAA	ng/L	4.00	5.74	143	70	130	*
NMeFOSAA	ng/L	4.00	3.88	97	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.73	105	70	130	
Perfluorodecanoic acid	ng/L	4.00	3.56	89	70	130	
Perfluorododecanoic acid	ng/L	4.00	3.79	95	70	130	
Perfluoroheptanoic acid	ng/L	4.00	3.90	97	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.26	107	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	4.02	110	70	130	
Perfluorononanoic acid	ng/L	4.00	4.01	100	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.79	129	70	130	
Perfluoropentanoic acid	ng/L	4.00	3.94	98	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.02	101	70	130	
Perfluorotridecanoic acid	ng/L	4.00	4.02	101	70	130	
Perfluoroundecanoic acid	ng/L	4.00	3.78	94	70	130	

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/15/2021 13:10	Lab File ID:	2210515A_14.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	UV	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	U	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	υ	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	1
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/16/2021 00:51	Lab File ID:	2210515A_54.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	8750	92 1	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	8320	87	70	130	
NEtFOSAA	ng/L	10000	12600	126	70	130	
NMeFOSAA	ng/L	10000	9820	98	70	130	
Perfluorobutanoic acid	ng/L	10000	9550	95	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8450	95	70	130	
Perfluorodecanoic acid	ng/L	10000	9730	97	70	130	
Perfluorododecanoic acid	ng/L	10000	10200	102	70	130	
Perfluoroheptanoic acid	ng/L	10000	9610	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9710	97	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9270	101	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	9840	98	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	7730	83	70	130	
Perfluoropentanoic acid	ng/L	10000	9540	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9090	91	70	130	
Perfluorotridecanoic acid	ng/L	10000	9790	98	70	130	
Perfluoroundecanoic acid	ng/L	10000	10000	100	70	130	

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/16/2021 08:39	Lab File ID:	2210515A_81.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9000	95 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	7860	82	70	130	
NEtFOSAA	ng/L	10000	11600	116	70	130	
NMeFOSAA	ng/L	10000	9480	95	70	130	
Perfluorobutanoic acid	ng/L	10000	9480	95	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8650	97	70	130	
Perfluorodecanoic acid	ng/L	10000	9890	99	70	130	
Perfluorododecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroheptanoic acid	ng/L	10000	9680	97	70	130	
Perfluorohexanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9750	107	70	130	
Perfluorononanoic acid	ng/L	10000	10300	103	70	130	
Perfluorooctanoic acid	ng/L	10000	9710	97	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8320	90	70	130	
Perfluoropentanoic acid	ng/L	10000	9450	94	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9720	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9300	93	70	130	
Perfluoroundecanoic acid	ng/L	10000	10200	102	70	130	-

Report No:	221050411	Instrument ID:	QQQ1
Analysis Date:	05/16/2021 10:40	Lab File ID:	2210515A_88.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711275

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	8950	94	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	7640	80	70	130	
NEtFOSAA	ng/L	10000	12200	122	70	130	
NMeFOSAA	ng/L	10000	9950	100	70	130	
Perfluorobutanoic acid	ng/L	10000	9320	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8570	97	70	130	
Perfluorodecanoic acid	ng/L	10000	9270	93	70	130	
Perfluorododecanoic acid	ng/L	10000	10100	101	70	130	
Perfluoroheptanoic acid	ng/L	10000	9790	98	70	130	
Perfluorohexanoic acid	ng/L	10000	10000	100	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9460	104	70	130	
Perfluorononanoic acid	ng/L	10000	10200	102	70	130	
Perfluorooctanoic acid	ng/L	10000	9670	97	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9440	102	70	130	
Perfluoropentanoic acid	ng/L	10000	9480	95	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9610	96	70	130	
Perfluorotridecanoic acid	ng/L	10000	9240	92	70	130	
Perfluoroundecanoic acid	ng/L	10000	10000	100	70	130	

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/15/2021 14:34	Lab File ID:	2210515A_16.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711273

ANALYTE	UNITO	TOUR	FOUND	N/ DEO	1.0	1101	~
ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	<u></u>
6:2 Fluorotelomersulfonic acid	ng/L	9510	8790	92 🗸	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9360	97	70	130	
NEtFOSAA	ng/L	10000	9500	95	70	130	
NMeFOSAA	ng/L	10000	9350	93	70	130	
Perfluorobutanoic acid	ng/L	10000	9340	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8330	94	70	130	
Perfluorodecanoic acid	ng/L	10000	9610	96	70	130	
Perfluorododecanoic acid	ng/L	10000	9690	97	70	130	
Perfluoroheptanoic acid	ng/L	10000	9570	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9440	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8810	96	70	130	
Perfluorononanoic acid	ng/L	10000	9520	95	70	130	
Perfluorooctanoic acid	ng/L	10000	9470	95	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8510	92	70	130	
Perfluoropentanoic acid	ng/L	10000	9590	96	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9700	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9660	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9520	95	70	130	

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	MRA	Instrument ID:	QQQ1
Analysis Date:	05/15/21 10:00	Lab File ID:	2210515A_06.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711275

		M2PFD/	٩	M2PFHx	A	M2PFOA		M4PFOS	;
		Area		Area		Area		Area	
STANDARD		356820		654861		277084		42686	
CLIENT SAMPLE ID	LAB SAMP ID	V	#	/	#	/	#		#
MB2184338	2184338	291573		505095		227638		23741	Γ
LCS2184339	2184339	284742		512677		230552		27738	
MB2184340	2184340	308084		567562		251326		26144	
LCS2184341	2184341	291373		558003		243465		24735	
AOI01-03-SB-00-02	22105041105	298642		512145		246004		25933	\square
AOI01-03-SB-03-05	22105041106	301717		522229		240144		27775	<u> </u>
AOI01-03-SB-05-07	22105041107	287138		505575		236513		22626	
AOI01-04-SB-00-02	22105041108	288121		496459		229072		26743	
AOI01-04-SB-03-05	22105041109	304100		524004		237936		8113	*
AOI01-05-SB-00-02	22105041111	294535		522823		250302		24588	
AOI01-05-SB-02-04	22105041113	308814		526455		245077		25764	
AOI01-05-SB-04-06	22105041114	294948		513985	\square	241774		28130	
AOI01-06-SB-00-02	22105041116	291464		503499		237348		25117	
AOI01-07-SB-00-02	22105041118	293528		526862		249917		23461	
AOI01-07-SB-00-02-D	22105041119	299464		538481		249088		24783	
A0101-07-SB-02-04	22105041120	301434		528644		237201		26031	
AOI01-07-SB-04-06	22105041121	292104		508285		230869		21930	
AOI01-08-SB-02-04	22105041125	302254		537515		239697		41942	
AOI01-08-SB-04-06	22105041126	303595		520308		229887		24780	
AOI01-10-SB-00-02	22105041131	313537		564642	\square	265479		27256	
AOI01-10-SB-00-02-D	22105041132	345808	\square	615323		291763		31801	
AOI01-10-SB-03-05	22105041135	363383	\square	684415		309472		28029	
AOI01-10-SB-03-05-MS	22105041136	303556		598724		256560		27034	<u> </u>
AOI01-10-SB-03-05-MSD	22105041137	301412	\square	590443		253576		26998	

* for information only

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits

* Value outside QC limits

Page 4329 of 4387

1 10

-

-
4
Ò
١Ô.
2210504
-
2
2
2.2
疌
Ę.
õ
<u>Q</u>
Report#:
Ľ.
ŝ
Coast
2
Gulf
3
()
Pace
2
10
ш.

	 Comment RXJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3,Cal point RXJ,QQQ3,TI0580 RXJ,QQQ3;710580 	.1 RXJ,QQQ3;710622
	Acq. Date-Time 5/3/2021 17:14 5/3/2021 17:28 5/3/2021 17:43 5/3/2021 18:12 5/3/2021 18:27 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23 5/8/2021 20:14 5/8/2021 20:14 5/8/2021 20:13 5/8/2021 21:13 5/8/2021 21:27 5/8/2021 21:27 5/8/2021 21:27	5/8/2021 22:11
HBN: 710724 5/9/2021 6/30/2025 8/2/2021 8/2/2021 10/26/2021	Type Blank Cal Cal Cal Cal Cal Cal Sample Blank QC QC QC Sample Sample Sample	Sample
QQQ3 2210508A 2210503ACAL 016-68-4 2130147 016-64-4 016-21-3 016-64-3 016-64-5	Data File 2210503A_1.d 2210503A_2.d 2210503A_5.d 2210503A_5.d 2210503A_6.d 2210503A_6.d 2210503A_9.d 2210503A_10.d 2210503A_01.d 2210508A_01.d 2210508A_01.d 2210508A_03.d 2210508A_07.d 22210508A_07.d 22210508A_	2210508A_12.d
Instrument: Batch: Current ICAL Bath: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name IB 1201 1202 1203 1204 1205 1206 1206 1206 18 1500 1600 1600 1600 1600 1600 1600 18 1500 18 1500 18 2183390 2183391 2183391 2183391 2183340 2183340 2183140 22183160 22183300 22183100 22183000 22183000 2218300000000000000000000000000000000000	22104273308

Dil. 1

Η

Page 4330 of 4387

7

22104273309*MS	2210508A_13.d	Sample	5/8/2021 22:26	RXJ
22104273310*MSD	2210508A_14.d	Sample	5/8/2021 22:40	RXJ
22104273311	2210508A_15.d	Sample	5/8/2021 22:55	RXJ
22104273312	2210508A_16.d	Sample	5/8/2021 23:10	RXJ
22104273313	2210508A_17.d	Sample	5/8/2021 23:24	RXJ
22104273314	2210508A_18.d	Sample	5/8/2021 23:39	RXJ
22104273315	2210508A_19.d	Sample	5/8/2021 23:53	RXJ
22104273316	2210508A_20.d	Sample	5/9/2021 0:08	RXJ
22104273317	2210508A_21.d	Sample	5/9/2021 0:23	RXJ
1400	2210508A_22.d	gc	5/9/2021 0:37	RXJ
22104273318	2210508A_23.d	Sample	5/9/2021 0:52	RXJ
22104273319	2210508A_24.d	Sample	5/9/2021 1:07	RXJ,
22104273320	2210508A_25.d	Sample	5/9/2021 1:21	RXJ,
22104273321	2210508A_26.d	Sample	5/9/2021 1:36	RXJ,
22104282101	2210508A_27.d	Sample	5/9/2021 1:50	RXJ,
22104282102	2210508A_28.d	Sample	5/9/2021 2:05	RXJ,
22104282103	2210508A_29.d	Sample	5/9/2021 2:20	RXJ,
22104282104	2210508A_30.d	Sample	5/9/2021 2:34	RXJ,
22104282105	2210508A_31.d	Sample	5/9/2021 2:49	RXJ,
22104273312*5	2210508A_32.d	Sample	5/9/2021 3:03	RXJ,
1400	2210508A_33.d	QC	5/9/2021 3:18	RXJ,
22104273313*20	2210508A_34.d	Sample	5/9/2021 3:33	RXJ,
2183391	2210508A_35.d	gc	5/9/2021 3:47	RXJ,
2183392	2210508A_36.d	QC	5/9/2021 4:02	RXJ,
2183140	2210508A_37.d	gc	5/9/2021 4:16	RXJ,
2183141	2210508A_38.d	QC	5/9/2021 4:31	RXJ
22105077601	2210508A_39.d	Sample	5/9/2021 4:46	RXJ,
1400	2210508A_40.d	QC	5/9/2021 5:00	RXJ,
2178826	2210508A_41.d	Sample	5/9/2021 5:15	RXJ,
2178827	2210508A_42.d	QC	5/9/2021 5:29	RXJ,
22104242801	2210508A_43.d	Sample	5/9/2021 5:44	RXJ,
22104242802	2210508A_44.d	Sample	5/9/2021 5:59	RXJ,
22104242803	2210508A_45.d	Sample	5/9/2021 6:13	RXJ,
22104242804	2210508A_46.d	Sample	5/9/2021 6:28	RXJ,

J,QQQ3;710622

I,QQQ3;710622

I,QQQ3;710622

I,QQQ3;710622

|,QQQ3;710622 |,QQQ3;710622 |,QQQ3;710622

I,QQQ3;710622

J,QQQ3;710622 J,QQQ3;710622

I,QQQ3;CCV

1,0003;710622

),QQQ3;710622),QQQ3;710622),QQQ3;710622),QQQ3;710622

I,QQQ3;710622

20

J,QQQ3;710622

1,QQQ3;710622

J,QQQ3;710622 J,QQQ3;CCV

),QQQ3;710622

),QQQ3;710622),QQQ3;710580),QQQ3;710580),QQQ3;710580

J,QQQ3;710622

,,QQQ3;709858;2nd run ,,QQQ3;709858;2nd run ,,QQQ3;709858;2nd run ,,QQQ3;709858;2nd run ,,QQQ3;709858;2nd run

I,QQQ3;CCV

Page 4331 of 4387

_

4
Õ.
ň
~
0
<u> </u>
\sim
21
44
15
0
õ
-
W
£r .
77
<i></i>
~
Q
0
-
č
0
(1)
8
ä
0
α.

÷

2805 2210508A 47.d Sample 5/9/2021 6:42 RXJ.QQQ3:709858:2nd run	2210508A_48.d Sample 5/9/2021 6:57	2210508A_49.d Sample 5/9/2021 7:12		2922 2210508A_51.d Sample 5/9/2021 7:41 RXI,QQQ3;709858;2nd run	2210508A_52.d QC 5/9/2021 7:56 RXI,QQQ3;CCV	2923 2210508A_53.d Sample 5/9/2021 8:10 RXI,QQQ3;709858;2nd run		2925 2210508A_55.d Sample 5/9/2021 8:39 RXJ,QQQ3;709858;2nd run	2927 2210508A_56.d Sample 5/9/2021 8:54 RXI,QQQ3;709858;2nd run			2	2	2		2210508A_63.d QC 5/9/2021 10:36 RXJ,QQQ3;CCV	4601 2210508A_64.d Sample 5/9/2021 10:51 RXI,QQQ3;709858;2nd run	2	2210508A_66.d Sample 5/9/2021 11:21 RXJ,QQQ3;709858;2nd run		2210508A_68.d QC 5/9/2021 11:50 RXJ,QQQ3;709858;2nd run	4603 2210508A_69.d QC 5/9/2021 12:05 RXJ,QQQ3;709858;2nd run	2210508A_70.d Sample 5/9/2021 12:19 RXJ,QQQ3, instrument blank/instrument idle							2210508A_77.d QC 5/9/2021 14:02 RXJ,QQQ3;CCV			
22104242805	22104242806	22104242907	22104242921*5	22104242922	1450	22104242923	22104242924	22104242925	22104242927	22104274601*50	22104274602*5	2178833*50	22104274604*50	2178832*50	22104274603*50	1400	22104274601	22104274602	2178833	22104274604	2178832	22104274603		22104242913	22104242921	22104274614	22104274624	22104274605*5	22104274606*10	1400	22104274607*10	22104274608*10	01*00074070400

.....

-

Page 4332 of 4387

22104274610*5	2210508A_81.d Sample	Sample	Ŋ, r
22104274611*5 22104274612*10	2210508A_82.d 2210508A_83.d	Sample Sample	0 N
22104274613*5	2210508A_84.d	Sample	5/
22104274615*10	2210508A_85.d	Sample	5/
22104274616*10	2210508A_86.d	Sample	5/
22104274617*10	2210508A_87.d	Sample	5/
1400	2210508A_88.d	QC	5/
22104274618*10	2210508A_89.d	Sample	5/
22104274622*5	2210508A_90.d	Sample	5/
22104274623*5	2210508A_91.d	Sample	5/
1400	2210508A_92.d	Sample	5/
18	2210508A_93.d	Sample	5/
B	2210508A_94.d	Sample	5/
IB	2210508A_95.d Sample	Sample	5,

10 10 1000/0/		1
10:21 1202/6/	KXJ,UUU3;/U9861;Zndrun	'n
/9/2021 15:15	RXJ,QQQ3;709861;2ndrun	S
/9/2021 15:30	RXJ,QQQ3;709861;2ndrun	10
/9/2021 15:44	RXJ,QQQ3;709861;2ndrun	S
/9/2021 15:59	RXJ,QQQ3;709861;2ndrun	10
/9/2021 16:14	RXJ,QQQ3;709861;2ndrun	10
/9/2021 16:28	RXJ,QQQ3;709861;2ndrun	10
/9/2021 16:43	RXJ,QQQ3;CCV	Ч
/9/2021 16:58	RXJ,QQQ3;709861;2ndrun	10
/9/2021 17:13	RXJ,QQQ3;709861;2ndrun	S
/9/2021 17:27	RXJ,QQQ3;709861;2ndrun	S
/9/2021 17:42	RXJ,QQQ3;CCV	
/9/2021 17:57	RXJ,QQQ3, Instrument blank/Instrument Idle	Ч
/9/2021 18:11	RXJ,QQQ3, Instrument blank/Instrument Idle	Ч
/9/2021 18:26	RXJ,QQQ3, Instrument blank/Instrument Idle	H

ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/03/2021 17:38	Lab File ID:	2210503A_10.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710194

ANALYTE	UNITS	TRUE	FOUND	% REC	/LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	10000	10700	107	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	10100	11600	115	70	130	
NEtFOSAA	ng/L	10000	11300	113	70	130	
NMeFOSAA	ng/L	10000	10800	108	70	130	
Perfluorobutanoic acid	ng/L	10000	10900	109	70	130	
Perfluorobutanesulfonic acid	ng/L	10000	10900	109	70	130	
Perfluorodecanoic acid	ng/L	10000	11800	118	70	130	
Perfluorododecanoic acid	ng/L	10000	10900	109	70	130	
Perfluoroheptanoic acid	ng/L	10000	11100	111	70	130	
Perfluorohexanoic acid	ng/L	10100	11000	109	70	130	
Perfluorohexanesulfonic acid	ng/L	10000	11100	111	70	130	
Perfluorononanoic acid	ng/L	10000	12600	126	70	130	
Perfluorooctanoic acid	ng/L	10100	11400	113	70	130	
Perfluorooctanesulfonic acid	ng/L	10000	9660	97	70	130	
Perfluoropentanoic acid	ng/L	10100	11000	109	70	130	
Perfluorotetradecanoic acid	ng/L	10000	12900	129	70	130	
Perfluorotridecanoic acid	ng/L	10000	9910	99	70	130	
Perfluoroundecanoic acid	ng/L	10000	10900	109	70	130	

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3	
Analysis Date:	05/08/2021 18:00	Lab File ID:	2210508A_03.d	
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724	

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	4.02	106 0	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	3.77	98	70	130	
NEtFOSAA	ng/L	4.00	4.22	106	70	130	
NMeFOSAA	ng/L	4.00	4.34	109	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.27	107	70	130	
Perfluorobutanesulfonic acid	ng/L	3.55	3.70	104	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorododecanoic acid	ng/L	4.00	4.16	104	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.06	101	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.26	107	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.94	108	70	130	
Perfluorononanoic acid	ng/L	4.00	4.17	104	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.20	105	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	3.84	103	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.25	106	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.16	104	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.99	100	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.14	103	70	130	

ORGANICS INSTRUMENT BLANK

Report No:	221050411	instrument ID:	QQQ3
Analysis Date:	05/08/2021 17:45	Lab File ID:	2210508A_02.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.25	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	-
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	-
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	υ	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	S
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/08/2021 22:37	Lab File ID:	2210508A_22.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724

ANALYTE	UNITS	TRUE	FOUND	% REC	_ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10000	105	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10100	106	70	130	
NEtFOSAA	ng/L	10000	10500	105	70	130	
NMeFOSAA	ng/L	10000	11200	112	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9270	105	70	130	
Perfluorodecanoic acid	ng/L	10000	10600	106	70	130	
Perfluorododecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroheptanoic acid	ng/L	10000	10600	106	70	130	
Perfluorohexanoic acid	ng/L	10000	10400	104	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9590	105	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9780	105	70	130	
Perfluoropentanoic acid	ng/L	10000	10800	108	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10800	108	70	130	
Perfluorotridecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroundecanoic acid	ng/L	10000	11000	110	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/09/2021 03:00	Lab File ID:	2210508A_40.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9910	104	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9630	100	70	130	
NEtFOSAA	ng/L	10000	10800	108	70	130	
NMeFOSAA	ng/L	10000	11000	110	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9290	105	70	130	
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10800	108	70	130	
Perfluoroheptanoic acid	ng/L	10000	10700	107	70	130	
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9730	106	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9770	105	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotridecanoic acid	ng/L	10000	10500	105	70	130	
Perfluoroundecanoic acid	ng/L	10000	10500	105	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/09/2021 08:36	Lab File ID:	2210508A_63.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10100	106	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9710	101	70	130	
NEtFOSAA	ng/L	10000	11200	112	70	130	
NMeFOSAA	ng/L	10000	10600	106	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9560	108	70	130	
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10800	108	70	130	
Perfluoroheptanoic acid	ng/L	10000	10600	106	70	130	
Perfluorohexanoic acid	ng/L	10000	10700	107	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9690	106	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9920	107	70	130	
Perfluoropentanoic acid	ng/L	10000	10800	108	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotridecanoic acid	ng/L	10000	10700	107	70	130	
Perfluoroundecanoic acid	ng/L	10000	10800	108	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/09/2021 12:02	Lab File ID:	2210508A_77.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	107	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10500	109	70	130	
NEtFOSAA	ng/L	10000	10700	107	70	130	
NMeFOSAA	ng/L	10000	10800	108	70	130	
Perfluorobutanoic acid	ng/L	10000	10400	104	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9530	107	70	130	1
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10700	107	70	130	
Perfluoroheptanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9790	107	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9810	106	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotridecanoic acid	ng/L	10000	10700	107	. 70	130	
Perfluoroundecanoic acid	ng/L	10000	10800	108	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/09/2021 14:43	Lab File ID:	2210508A_88.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10400	110	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9950	104	70	130	
NEtFOSAA	ng/L	10000	10300	103	70	130	
NMeFOSAA	ng/L	10000	10300	103	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9480	107	70	130	
Perfluorodecanoic acid	ng/L	10000	10800	108	70	130	
Perfluorododecanoic acid	ng/L	10000	10700	107	70	130	
Perfluoroheptanoic acid	ng/L	10000	10700	107	70	130	
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9780	107	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9690	104	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10500	105	70	130	
Perfluorotridecanoic acid	ng/L	10000	10500	105	70	130	
Perfluoroundecanoic acid	ng/L	10000	10700	107	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3	
Analysis Date:	05/09/2021 15:42	Lab File ID:	2210508A_92.d	
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710724	

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10200	107 [/	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10800	113	70	130	
NEtFOSAA	ng/L	10000	10800	108	70	130	
NMeFOSAA	ng/L	10000	11200	112	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9390	106	70	130	
Perfluorodecanoic acid	ng/L	10000	10500	105	70	130	
Perfluorododecanoic acid	ng/L	10000	10900	109	70	130	
Perfluoroheptanoic acid	ng/L	10000	10600	106	70	130	
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9760	107	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9690	104	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10600	106	70	130	
Perfluorotridecanoic acid	ng/L	10000	10800	108	70	130	
Perfluoroundecanoic acid	ng/L	10000	10500	105	70	130	

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1450 (ISC)
Analyst:	RXJ	instrument ID:	QQQ3
Analysis Date:	05/08/21 18:00	Lab File ID:	2210508A_03.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	710724

		M2PFDA	·	M2PFHx/	٩	M2PFOA		M4PFOS	S
		Area		Area		Area		Area	
STANDARD		215476		331360		181893		32550	
CLIENT SAMPLE ID	LAB SAMP ID	/	#	~	#	\checkmark	#	/	#
MB2183139	2183139	181927		291765		148640		27295	
LCS2183140	2183140	181612		292919		148330		27688	
LCSD2183141	2183141	181326		291175		148553		27740	

FORM 8I - ORG

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits * Value outside QC limits

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	05/03/21 16:27	Lab File ID:	2210503A_6.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	710901

		M2PFDA	1	M2PFHx	A	M2PFO/	۹	M4PFO	s
		Area		Area		Area		Area	
STANDARD		199382		317435		170526		31515	
CLIENT SAMPLE ID	LAB SAMP ID		#	\checkmark	#	v	#	~	#
MB2179328	2179328	210275		336945		173547		32108	
LCS2179329	2179329	201960		325171		164501		30674	
LCSD2179330	2179330	200233		328544		166462		30521	
A0101-01-GW	22105041138	202594		321014		160597		30155	
A0101-02-GW	22105041139	178616		297794		145847		27067	
A0101-03-GW	22105041140	199965		319726		158006		29516	
A0101-04-GW	22105041141	192993		314869		156836		28650	
A0101-03-GW-D	22105041142	192491		311463		155244		28784	
A0101-05-GW	22105041143	198193		329865		160903		29676	
A0101-06-GW	22105041144	181631		301415	\square	150192		27562	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits

* Value outside QC limits

FORM 8I - ORG

Page 4333 of 4387

10

-

4
4
Õ.
1050
~
\circ
<u>.</u>
N
\sim
-
12
2
2
<u>Q</u> .
Ð
$\boldsymbol{\alpha}$
_
**
22
ö
.0
0
<u> </u>
-
-
CD
-
Φ
ő
00
0
Series.

							ne Comment					:12 RXJ,QQQ3,Cal point	:27 RXJ,QQQ3,Cal point	:42 RXJ,QQQ3,Cal point	:09 RXJ,QQQ3, Instrument blank/Instrument Idle		38 RXJ,QQQ3, ICV			:31 RXJ;QQQ3;TEST	:29 RXJ;QQQ3; Instrument Blank	44 RXJ,QQQ3;CCV	.48 RXJ,QQQ3;709944	.03 RXJ,QQQ3;709944	.18 RXJ,QQQ3;709944	:32 RXJ,QQQ3;709778	47 RXJ,QQQ3;710427	.02 RXJ,QQQ3;710427	:16 RXJ,QQQ3;710427	:31 RXJ,QQQ3;710427
							Aca Date-Time	5/3/2021 17:14	5/3/2021 17:28	5/3/2021 17:43	5/3/2021 17:58	5/3/2021 18:12	5/3/2021 18:27	5/3/2021 18:42	5/3/2021 19:09	5/3/2021 19:23	5/3/2021 19:38	5/3/2021 19:53	5/7/2021 18:16	5/7/2021 18:31	5/7/2021 19:29	5/7/2021 19:44	5/7/2021 21:48	5/7/2021 22:03	5/7/2021 22:18	5/7/2021 22:32	5/7/2021 22:47	5/7/2021 23:02	5/7/2021 23:16	5/7/2021 23:31
	5/9/2021	6/30/2025	8/24/2021	8/2/2021	10/23/2021	10/26/2021	Тире			Cal	Cal	Cal	Cal	Cal	Blank	Blank	d Sample	d QC	d Sample	d Sample	d Blank	d QC	d Sample	d QC	d QC	d Sample	d Sample	d QC	d QC	d Sample
2210507B 2210503ACAL	016-68-4	2130147	016-64-4	016-21-3	016-64-3	016-64-5	Data File	2210503A 1.d	2210503A_2.d	2210503A_3.d	2210503A_4.d	2210503A_5.d	2210503A_6.d	2210503A_7.d	2210503A_8.d	2210503A_9.d	2210503A_10.d	2210503A_11.d	2210507B_01.d	2210507B_02.d	2210507B_03.d	2210507B_04.d	2210507B_12.d	2210507B_13.d	2210507B_14.d	2210507B_15.d	2210507B_16.d	2210507B_17.d	2210507B_18.d	2210507B_19.d
Batch: Current ICAL Bath:	20mM Amm Acetate	Methanol	Calibration Std	ICV Std	EIS Mix	IIS Mix	Name	18	1201	1202	1203	1204	1205	1206	8	1500	1600	1450	IB	1204 RT TEST	1500	1450	22104242914	22104242915	22104242916	22104242917*10	2181952	2181953	2181954	22105053801

Dil.

HBN: 710901/710850

QQQ3

Instrument:

Ч

Page 4334 of 4387

RXJ,QQQ3;710427; SPLP RXJ,QQQ3;710427;TCLP RXJ,QQQ3;710427;TCLP RXJ,QQQ3;710427;TCLP RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ, QQQ3;709960 RXJ, QQQ3;709960 RXJ,QQQ3;710427 RXJ,QQQ3;710427 RXJ,QQQ3;709960 RXJ,QQQ3;709960 709960 XXJ, QQQ3; 709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 RXJ,QQQ3;709960 3XJ,QQQ3;709960 RXJ,QQQ3;709960 3XJ,QQQ3;709960 3XJ,QQQ3;709960 RXJ,QQQ3;710427 RXJ,QQQ3;709960 RXJ, QQQ3;710427 RXJ,QQQ3;CCV XXJ,QQQ3;CCV 5/7/2021 23:45 5/8/2021 0:15 5/8/2021 0:00 5/8/2021 0:29 5/8/2021 0:44 5/8/2021 0:58 5/8/2021 1:13 5/8/2021 1:28 5/8/2021 1:42 5/8/2021 2:26 5/8/2021 2:56 5/8/2021 3:10 5/8/2021 3:25 5/8/2021 3:39 5/8/2021 3:54 5/8/2021 4:09 5/8/2021 4:24 5/8/2021 4:38 5/8/2021 4:53 5/8/2021 6:06 5/8/2021 6:36 5/8/2021 6:50 5/8/2021 7:20 5/8/2021 1:57 5/8/2021 2:12 5/8/2021 2:41 5/8/2021 5:22 5/8/2021 5:52 5/8/2021 7:05 5/8/2021 5:07 5/8/2021 5:37 5/8/2021 6:21

Sample g g ဗ g ဗ g 2210507B_20.d 2210507B_34.d 2210507B_37.d 2210507B_21.d 2210507B_23.d 2210507B_24.d 2210507B_25.d 2210507B_26.d 2210507B_28.d 2210507B_29.d 2210507B_31.d 2210507B_32.d 2210507B_36.d 2210507B_40.d 2210507B_41.d 2210507B_43.d 2210507B_46.d 2210507B_22.d 2210507B_27.d 2210507B_30.d 2210507B_33.d 2210507B_35.d 2210507B_38.d 2210507B_39.d 2210507B_42.d 2210507B_44.d 2210507B_45.d 2210507B_47.d 2210507B_48.d 2210507B_49.d 2210507B_50.d 2210507B_51.d 22104281810 TCLP 22104281810 SPLP 2182017*MSD 2182016*MS 22104280356 22104300613 22105041138 22104280324 22104300610 22105041139 22105041140 22105041143 22105041144 22104292901 22104292902 22104300611 22104300702 22104300704 22104300707 22104303117 22105041141 22105041142 2182235 2182236 2179328 2179329 2179330 2182234 182237 1400 1450 1400

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/08/2021 03:07	Lab File ID:	2210507B_42.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710901

ANALYTE	UNITS	TOUE	FOUND	<i>«</i> 050	1.0	1101	~
	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3.96	104	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	4.06	106	70	130	
NEtFOSAA	ng/L	4.00	4.26	107	70	130	
NMeFOSAA	ng/L	4.00	4.46	111	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.33	108	70	130	1
Perfluorobutanesulfonic acid	ng/L	3.55	3.72	105	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.29	107	70	130	
Perfluorododecanoic acid	ng/L	4.00	3.97	99	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.19	105	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.33	108	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.87	106	70	130	
Perfluorononanoic acid	ng/L	4.00	4.08	102	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.20	105	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	3.98	107	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.05	101	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.11	103	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.97	99	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.02	101	70	130	

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/03/2021 17:23	Lab File ID:	2210503A_9.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710901

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	υ	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	1
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	1
Perfluorobutanoic acid	ng/L	1.24	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	υ	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	-
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/07/2021 17:29	Lab File ID:	2210507B_03.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710901

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	υ	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	1
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.23	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	υ	0.85	2.00	4.00	1
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	1
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	1

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/07/2021 23:42	Lab File ID:	2210507B_28.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710901

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9620	101	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10400	109	70	130	
NEtFOSAA	ng/L	10000	10700	107	70	130	
NMeFOSAA	ng/L	10000	10200	102	70	130	-
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9440	106	70	130	
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10900	109	70	130	
Perfluoroheptanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9770	107	70	130	
Perfluorononanoic acid	ng/L	10000	10800	108	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9650	104	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotridecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroundecanoic acid	ng/L	10000	10600	106	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/08/2021 05:20	Lab File ID:	2210507B_51.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710901

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10300	108	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10000	104	70	130	
NEtFOSAA	ng/L	10000	10500	105	70	130	
NMeFOSAA	ng/L	10000	10600	106	70	130	
Perfluorobutanoic acid	ng/L	10000	10400	104	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9450	107	70	130	
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10900	109	70	130	
Perfluoroheptanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9600	105	70	130	
Perfluorononanoic acid	ng/L	10000	10800	108	70	130	
Perfluorooctanoic acid	ng/L	10000	10800	108	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9570	103	70	130	
Perfluoropentanoic acid	ng/L	10000	10600	106	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10900	109	70	130	
Perfluorotridecanoic acid	ng/L	10000	10400	104	70	130	
Perfluoroundecanoic acid	ng/L	10000	10600	106	70	130	

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	05/03/21 16:27	Lab File ID:	2210503A_6.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	710369

		M2PFDA		M2PFHx/	4	M2PFO/	۹.	M4PFO	S
		Area		Area		Area		Area	
STANDARD		199382		317435		170526		31515	
CLIENT SAMPLE ID	LAB SAMP ID	~	#	\checkmark	#	/	#	/	#
AOI01-09-GW	22105041147	184594		303667		151110		28044	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits

* Value outside QC limits

-
*
õ
īõ.
õ.
_
<u>.</u>
23
2
246
퐏
5
õ
Q.
e a
Ñ
<u> </u>
- يب
S
6
0
n.
0
¥
-
<i>.</i>
Ū.
ω.
0
ä
n
-

A ACAL
016-73-2 5/15/2021 2130147 6/30/2025
016-68-2 8/24/2021
6-69-7
016-69-5 11/10/2021
Data File Type
2210510A_01.d Sample
2210510A_02.d Sample
2210510A_03.d Sample
2210510A_04.d Sample
2210510A_05.d Cal
2210510A_06.d Cal
2210510A_07.d Cal
2210510A_08.d Cal
2210510A_09.d Cal
2210510A_10.d Cal
2210510A_11.d Sample
2210510A_12.d Blank
2210510A_13.d Sample
2210510A_14.d QC
2210513A_01.d Blank
2210513A_02.d QC
2210513A_03.d Blank
2210513A_04.d QC
2210513A_05.d Sample
2210513A_06.d Sample
2210513A_07.d Blank
2210513A_08.d QC
2210513A_09.d QC

HBN: 711161

QQQ3

Instrument:

104223503*10 104260613	104260604*20 104260605*20	104260608*20 77685	77686 77687	104231021 00	2104231022 2104241513	42415	104241504 00	
2210 2210	2210 2210	2210 2177	2177 2177	221C 140C	2210 2210	2210	2210 [,] 1400	8

Sample 2210513A_10.d Sample Sample Sample Sample g g g g 2210513A_11.d 2210513A_18.d 2210513A_20.d 2210513A_22.d 2210513A_24.d 2210513A_25.d 2210510A_01.d 2210513A_15.d 2210513A_17.d 2210513A_19.d 2210513A_21.d 2210513A_23.d 2210513A_12.d 2210513A_13.d 2210513A_14.d 2210513A_16.d 2210513A_26.d

22104223501*10 22104223502*10

				/aporation		/aporation	aporation			aporation							llank
RXJ,QQQ3;710037	RXJ,QQQ3;710037	RXJ,QQQ3;710037	RXJ,QQQ3;710037	RXJ,QQQ3;709584,RR evaporation	RXJ,QQQ3;709584	RXJ,QQQ3;709584;RR evaporation	RXJ,QQQ3;709644,RR evaporation	RXJ,QQQ3;709644	RXJ,QQQ3;709644	RXJ,QQQ3;709644,RR evaporation	RXJ,QQQ3;CCV	RXJ,QQQ3;709644	RXJ,QQQ3;709644	RXJ,QQQ3;709720	RXJ,QQQ3;709720	RXJ,QQQ3;CCV	RXJ;QQQ3; Instrument Blank
13/2021 18:46	13/2021 19:01	13/2021 19:15	13/2021 19:30	13/2021 19:44	13/2021 19:59	13/2021 20:18	13/2021 20:41	13/2021 20:56	13/2021 21:10	13/2021 21:25	13/2021 21:39	13/2021 21:54	13/2021 22:09	13/2021 22:23	13/2021 22:38	13/2021 22:52	10/2021 14:35

Pace Gulf Coast Report#: 221050411

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/10/2021 15:36	Lab File ID:	2210510A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711273

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	υ	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.03	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

ORGANICS INSTRUMENT BLANK

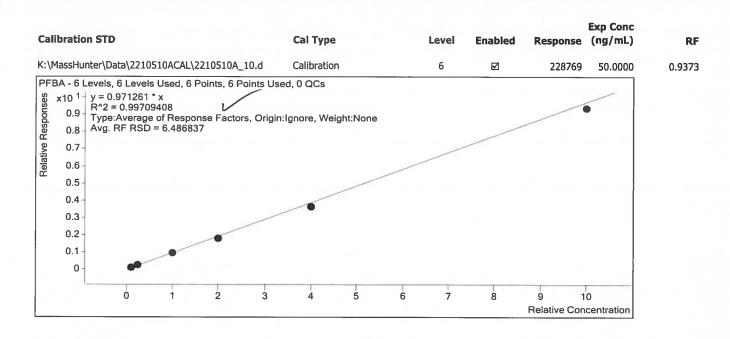
Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/13/2021 14:31	Lab File ID:	2210513A_01.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711161

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	UV	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	2.00	υ	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	1.1
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	υ	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/10/2021 15:36	Lab File ID:	2210510A_12.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711722

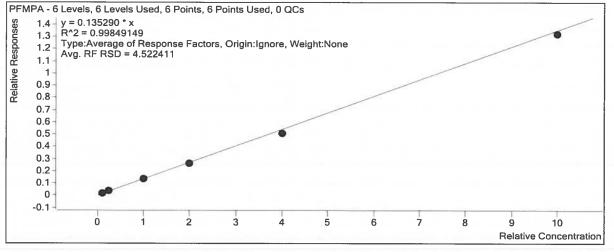
ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.03	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	1.1


Quantitative Analysis Calibration Report

Batch Data Path Analysis Time Report Time Last Calib Update	J:\MassHunter\Data\2 5/14/2021 2:30 PM 5/14/2021 3:55 PM 5/10/2021 9:47 PM	5/14/2021 3:55 PM Reporter Name			esults\2210513A.batch.bin GCAL\lcms GCAL\lcms Processed			
Calibration Info Extracted ISTD	MPFBA							
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	R		
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		23150	5.0000	4630.014		
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	N	23394	5.0000	4678.888		
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	23501	5.0000	4700.139		
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	23907	5.0000	4781.327		
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5		24801	5.0000	4960.205		
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6		24406	5.0000	4881.244		
Instrument ISTD	M3PFBA							
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	R		
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		142	5.0000	28.495		
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2		128	5.0000	25.669		
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3		131	5.0000	26.231		
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	117	5.0000	23.402		
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5		125	5.0000	24.971		
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6		145	5.0000	29.082		
M3PFBA - 6 Levels, 6 Levels Used, 6 Points, 6 Points % x10 ² y = 26.308584 * x 1.45 - R ² = 0.0000000 1.425 - Xverage of Response Factors, Origi Ave. RF RSD = 8.174627 1.35 - 1.	-							
1.15	-20 -10 0 10 20	30 40	50 60	70 80 Concentratio	90 100 on (ng/ml)			

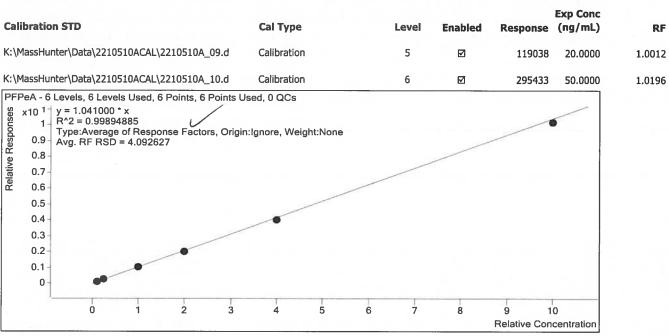
Target Compound

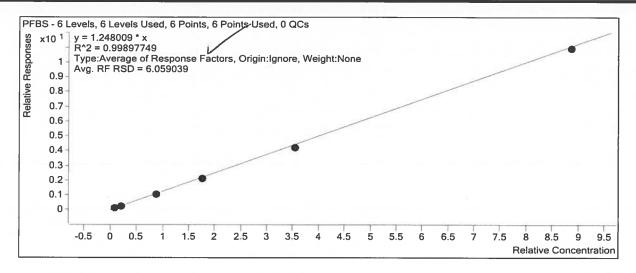
PFBA


Quantitative Analysis Calibration Report

Target Compound

PFMPA


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	408	0.5000	0.1436
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	984	1.2500	0.1382
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	3962	5.0000	0.1394
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	M	7417	10.0000	0.1305
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	V	15155	20.0000	0.1275
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6		38396	50.0000	0.1325


Target Compound

PFPeA

QOO3 2210513A GCAL Levelly temp.xlsx

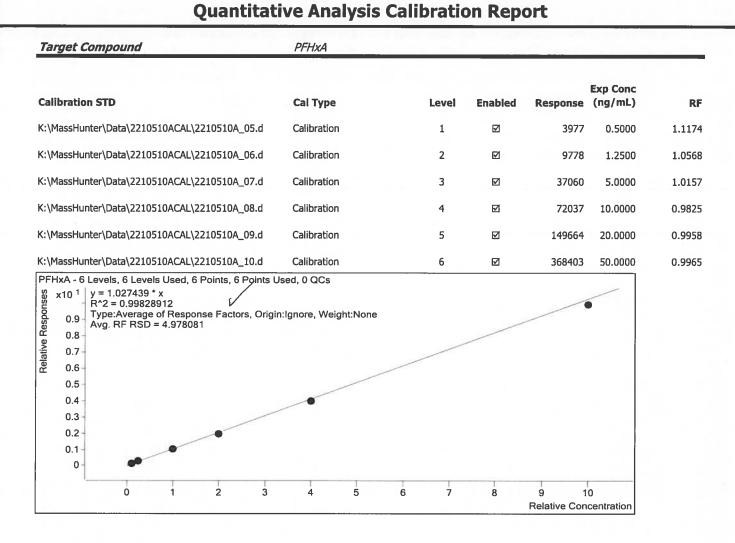
Extracted ISTD	M5PFPeA					
					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response		RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		28389	5.0000	5677.8552
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2		28487	5.0000	5697.3235
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	N	28414	5.0000	5682.8994
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4		28414	5.0000	5682.7203
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	N	29725	5.0000	5944.9305
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6		28976	5.0000	5795.2127
Target Compound	PFBS				_	
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		1076	0.4435	1.3795
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2		2504	1.1088	1.2883
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ŋ	9611	4.4350	1.2239
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	18629	8.8700	1.1810
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	38263	17.7400	1.1816
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6		95378	44.3500	1.2337

Extracted	ISTD	

M3PFBS

Calibration STD	Cal Type	Levei	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		8794	5.0000	1758.7130
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	V	8764	5.0000	1752.7379
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	A	8853	5.0000	1770.5662
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	8891	5.0000	1778.2700
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	M	9127	5.0000	1825.3239
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	M	8716	5.0000	1743.2513
Target Compound	PFMBA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		2133	0.5000	0.5993
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2		5202	1.2500	0.5623
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	20959	5.0000	0.5744
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	39703	10.0000	0.5415
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ŋ	81378	20.0000	0.5414
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6		203901	50.0000	0.5515


Extracted ISTD	M2 4:2 FTS			_		
Calibration STD	Cal Type	Levei	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	N	2407	5.0000	481.425
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	2185	5.0000	436.981
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3		2209	5.0000	441.782
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	2161	5.0000	432.193
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	2311	5.0000	462.170
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	2206	5.0000	441.1289
Target Compound	4:2 FTS					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	773	0.4685	3.426
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	1806	1.1713	3.5284
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	M	6537	4.6850	3.1580
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	12634	9.3700	3.1198
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	N	25859	18.7400	2.9856
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	63040	46.8500	3.0503
4:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points 39 x10 ¹ y = 3.211565 * x 4:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points 39 x10 ¹ x ² = 0.99470491 7ype:Average of Response Factors, Origin 4:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points 1:7 x ² = 0.99470491 7ype:Average of Response Factors, Origin 4:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points 1:7 x ² = 0.99470491 7ype:Average of Response Factors, Origin 4:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points 1:7 x ² = 0.99470491 7ype:Average of Response Factors, Origin 4:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points 1:7 x ² = 0.99470491 7ype:Average of Response Factors, Origin 4:2 FTS - 6 Levels, 6 Levels Used, 6 Points, 6 Points 1:7 x ² = 0.99470491 7ype:Average of Response Factors, Origin 4:2 FTS - 6 Levels, 6 Levels Used, 7 x ² = 0.99470491 7ype:Average of Response Factors, Origin 4:2 FTS - 6 Levels, 6 Levels, 6 Levels, 6 Points, 7 Points,						
-0.25 0 1 2 3	4 ¹ 4 5	6	7 8	9 Relative Con	10 centration	

Quantitative Analysis Calibration Report

Extracted ISTD

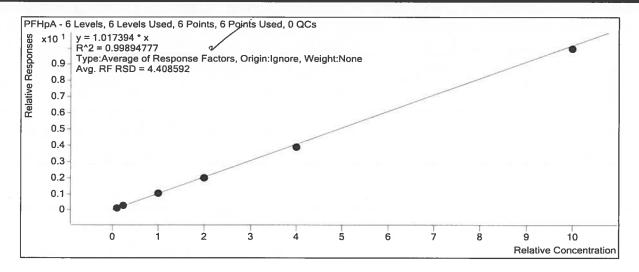
M5PFHxA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210510ACAL\2210510A_0	5.d Calibration	1	Ø	35589	5.0000	7117.8487	
K:\MassHunter\Data\2210510ACAL\2210510A_0	6.d Calibration	2	N	37009	5.0000	7401.7072	

Calibration STD	Cal Type	Level	Enabled	Deenerge	Exp Conc	25
Calibration STD	carrype	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		321254	40.0000	8031.3397
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	$\mathbf{\nabla}$	323245	40.0000	8081.1244
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	326657	40.0000	8166.4283
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	299067	40.0000	7476.6776
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	327393	40.0000	8184.8249
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6		286834	40.0000	7170.8615

M2PFHxA

Instrument ISTD

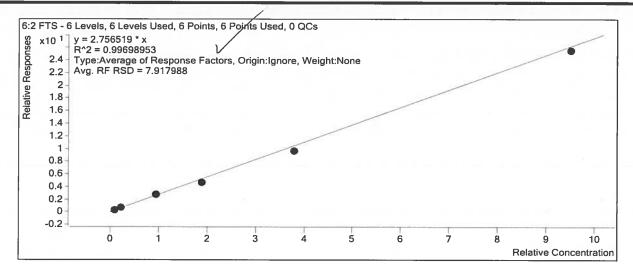

Quantitative Analysis Calibration Report

Target Co	ompound	PFPeS			_		
Calibration	STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHun	ter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	1073	0.4705	1.2961
K:\MassHunt	ter\Data\2210510ACAL\2210510A_06.d	Calibration	2		2481	1.1763	1.2035
K:\MassHun	ter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	9856	4.7050	1.1832
K:\MassHunt	ter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Z	18404	9.4100	1.0998
K:\MassHunt	ter\Data\2210510ACAL\2210510A_09.d	Calibration	5	M	38522	18.8200	1.1214
K:\MassHunt	ter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Z	93714	47.0500	1.1426
Sec. x10 ¹	evels, 6 Levels Used, 6 Points, 6 Points U y = 1.174423 * x R^2 = 0.99816667 Type:Average of Response Factors, Origin Avg. RF RSD = 6.035348						
J	0 1 2 3	4 5	6	7 8	9 Relative Con	10 centration	

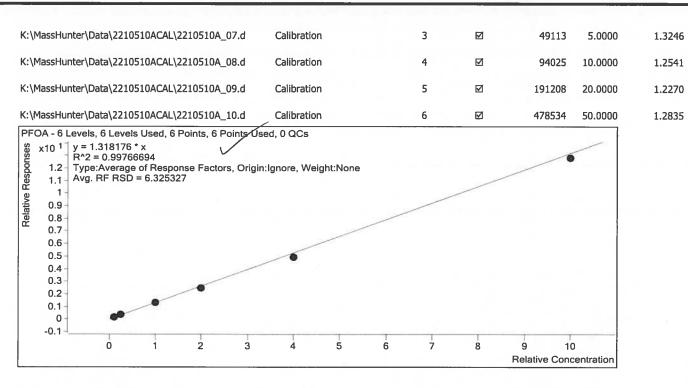
Target Compound

HFPO-DA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	V	967	1.0000	1.1527
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	V	2324	2.5000	1.1007
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3		8430	10.0000	0.9575
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	V	17549	20.0000	1.0428
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	R	36443	40.0000	1.0129
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	V	87184	100.0000	0.9615

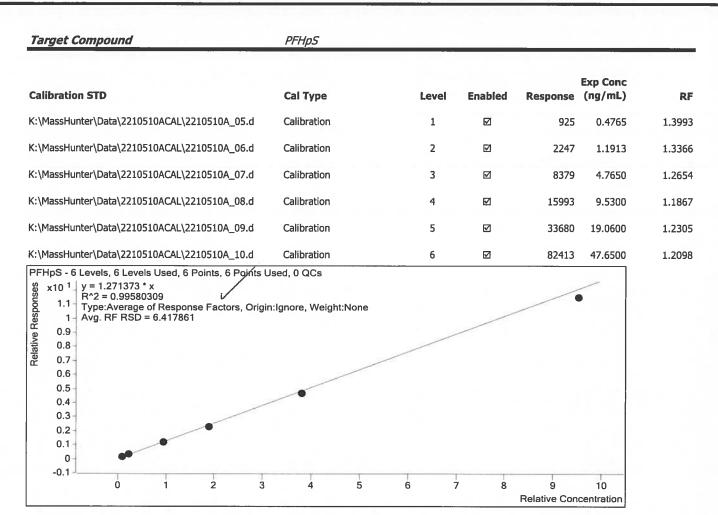


Extracted ISTD	M3PFHxS					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	6938	5.0000	1387.569
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	7057	5.0000	1411.404
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	V	6949	5.0000	1389.750
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	N	7071	5.0000	1414.151
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	7180	5.0000	1436.072
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	R	7148	5.0000	1429.565
Target Compound	PFHxS					
Taryot compound	11110					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	M	715	0.4570	1.126
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	V	1877	1.1425	1.1643
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	M	7183	4.5700	1.131(
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	V	13658	9.1400	1.0567
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	28416	18.2800	1.0824
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	70648	45.7000	1.0814
PFHxS - 6 Levels, 6 Levels Used, 6 Points, 6 Points	Jsed, 0 QCs					
\$ x10 ¹ y = 1.107116 * x R ² = 0.99894862 0.9 Xvg. RF RSD = 3.623055 0.8 0.7 0.7 0.6 0.6	n:Ignore, Weight:None	•				
- 7.0 sea - 8.0 -						
0.5 -	/					
0.4 -	-					
0.3 -						
0.2						
0.1-						
· · · · · · · · · · · · · · · · · · ·	3 4	5 6	7	8 9	1	
	- 7			Relative Cor	centration	


Target Compound

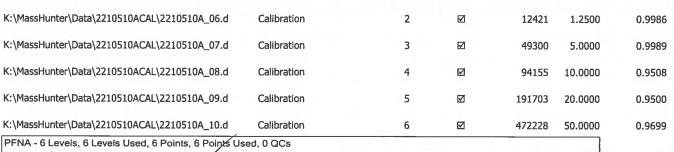
ADONA

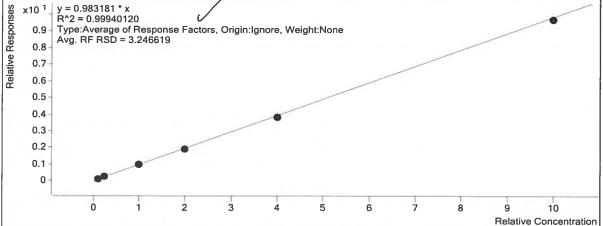
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	7153	0.4725	2.0669	
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	18177	1.1813	2.0834	

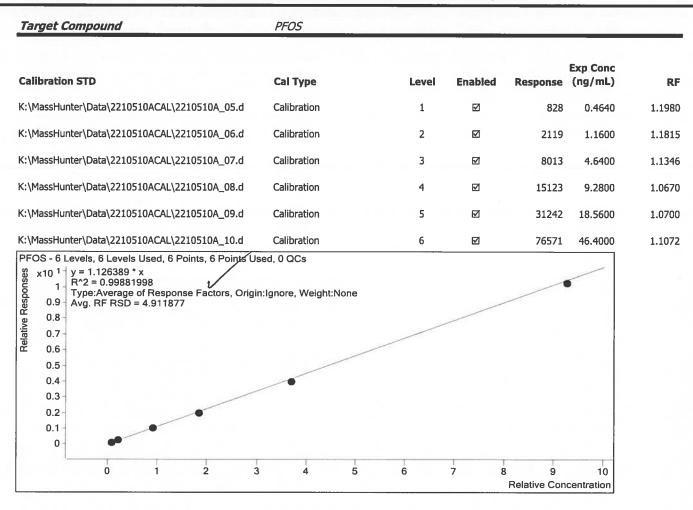


Instrument ISTD	

MPFOA

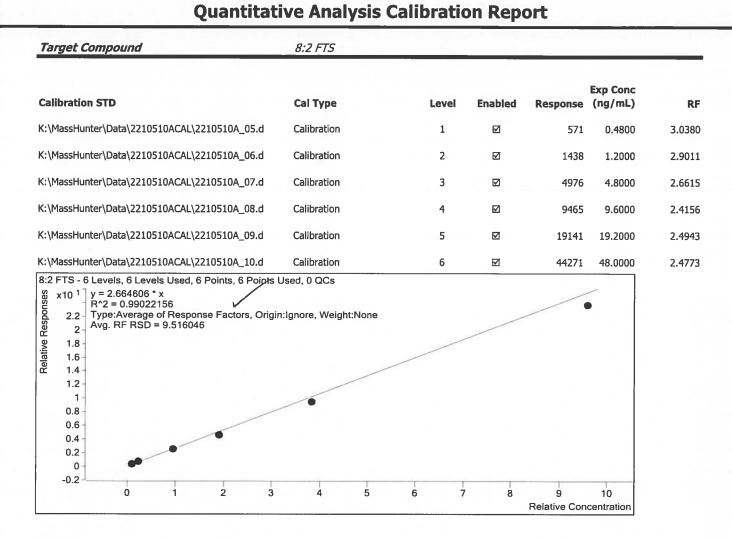

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	Rf
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	1112031	25.0000	44481.2490
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	1099345	25.0000	43973.8075
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3		1117924	25.0000	44716.9506
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	1108402	25.0000	44336.074
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	1138542	25.0000	45541.689
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	N	1018316	25.0000	40732.6434
<pre>% x10 6</pre>	n:Ignore, Weight:None					
1.03 - 1.02 - 1.01 -	•					




Extracted ISTD

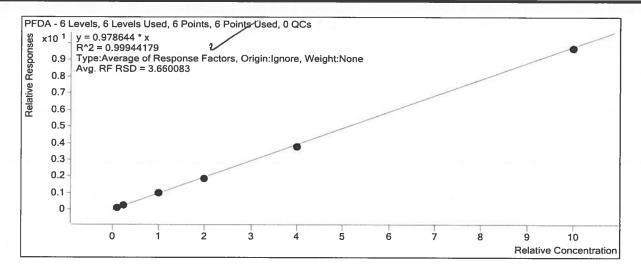
M9PFNA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	49347	5.0000	9869.3952
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	49750	5.0000	9950.0053
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	N	49356	5.0000	9871.2466
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	N	49515	5.0000	9902.9225
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	N	50450	5.0000	10089.9722
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	48688	5.0000	9737.6926
Target Compound	PFNA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	5087	0.5000	1.0309



Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	V	32723	20.0000	1636.1316
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	V	33053	20.0000	1652.6636
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	\square	33080	20.0000	1653.9827
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	30461	20.0000	1523.0378
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	N	33012	20.0000	1650.6203
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	28402	20.0000	1420.0969

M4PFOS

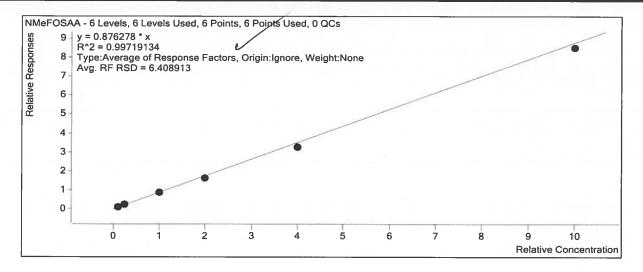

Instrument ISTD

Target Compound

PFDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	N	5108	0.5000	1.0252
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	R	12681	1.2500	1.0064
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	M	48857	5.0000	0.9924
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	M	93544	10.0000	0.9369
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	M	191448	20.0000	0.9402
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	V	467227	50.0000	0.9707

Target Compound	PFNS					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	F
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		776	0.4810	1.083
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	2018	1.2025	1.08
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	7747	4.8100	1.05
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	14849	9.6200	1.010
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	29626	19.2400	0.978
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	R	71952	48.1000	1.003
PFNS - 6 Levels, 6 Levels Used, 6 Points, 6 Points U x10 ¹ y = 1.036565 * x R*2 = 0.99767186 0.9 Type:Average of Response Factors, Origi Avg. RF RSD = 4.329968 0.6 0.5 0.4 0.3 0.2 0.1 0						
0 1 2 3	4 5	6 7	8	9 Relative Cor	10 centration	

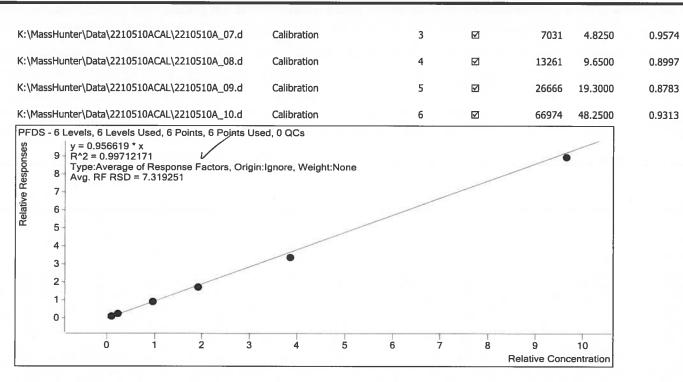

Extra	icted	ISTD

M6PFDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	V	49826	5.0000	9965.2757
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	50401	5.0000	10080.2250
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	49229	5.0000	9845.8353
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	N	49925	5.0000	9984.9134
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	50905	5.0000	10181.0944
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	48131	5.0000	9626.2912
Instrument ISTD	M2PFDA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	208493	20.0000	10424.6606	
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	210262	20.0000	10513.1199	

Pace Guir Coast Report#: 22105041



Extracted ISTD	M8FOSA						
Calibration STD	Cal Type		Level	Enabled	Response	Exp Conc (ng/mL)	R
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration		1	図	17437	5.0000	3487.428
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration		2	Ø	17044	5.0000	3408.713
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration		3		17757	5.0000	3551.310
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration		4	N	17297	5.0000	3459.445
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration		5	V	17921	5.0000	3584.182
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration		6	Ø	16827	5.0000	3365.360
Target Compound	FOSA						
Calibration STD	Cal Type		Level	Enabled	Response	Exp Conc (ng/mL)	RI
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration		1	Ø	2027	0.5000	1.162
(:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration		2	Ø	4760	1.2500	1.117
(:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration		3	Ø	18282	5.0000	1.029
(:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration		4	Ø	34590	10.0000	0.999
(:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration		5	Z	71587	20.0000	0.998
:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration		6	Ø	175990	50.0000	1.0459
FOSA - 6 Levels, 6 Levels Used, 6 Points, 6 Points So x10 ¹ y = 1.058901 * x R^2 = 0.99883305 Type:Average of Response Factors, Origin: So 0.9 Avg. RF RSD = 6.296805 0.7 0.7 0.6		ne					
0.0		/					
0.5 - 0.4 -							
0.3							
0.2							
0.1							
0 1 2 3	4 5	6	7	8	9 1	0	

Target Compound

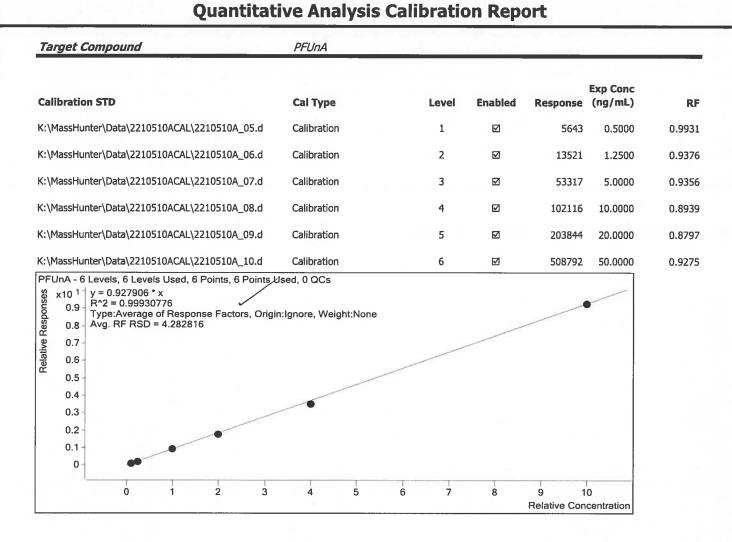
PFDS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	766	0.4825	1.0659
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	R	1879	1.2063	1.0071

Extracted ISTD	d5-NEtFOSAA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	V	10068	5.0000	2013.6919
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2		9903	5.0000	1980.5473
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3		9714	5.0000	1942.8429
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4		9655	5.0000	1930.9859
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	9840	5.0000	1968.0069
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	9106	5.0000	1821.1466
Extracted ISTD	M7PFUnA					
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1		56817	5.0000	11363.4372
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	M	57684	5.0000	11536.7042
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	M	56985	5.0000	11397.0840
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	N	57121	5.0000	11424.1848
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	M	57932	5.0000	11586.4971

QOO3 2210513A GCAL Levelity Lemp.xisx Pace Guir Coast Report#: 221050411

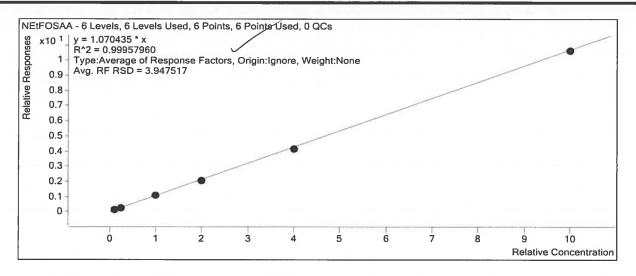
K:\MassHunter\Data\2210510ACAL\2210510A_10.d


6

 \square

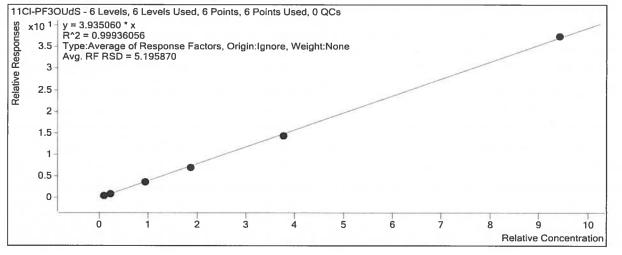
54855

Calibration


5.0000 10970.9068

Target Compound

NEtFOSAA

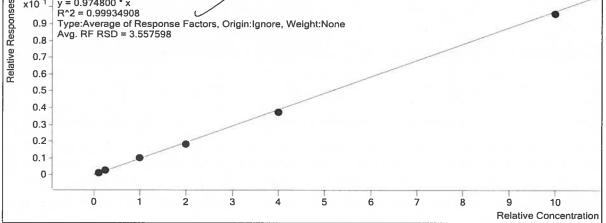

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	V	1145	0.5000	1.1377
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	2709	1.2500	1.0943
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	10399	5.0000	1.0705
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	N	19710	10.0000	1.0207
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	M	40687	20.0000	1.0337
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	97042	50.0000	1.0657

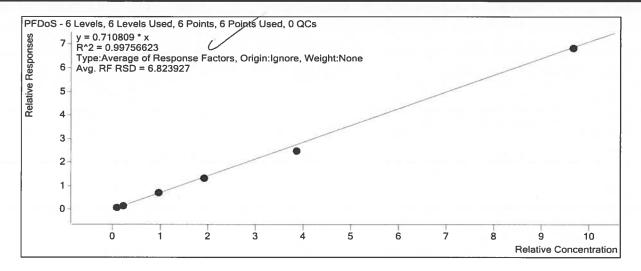
Target Compound

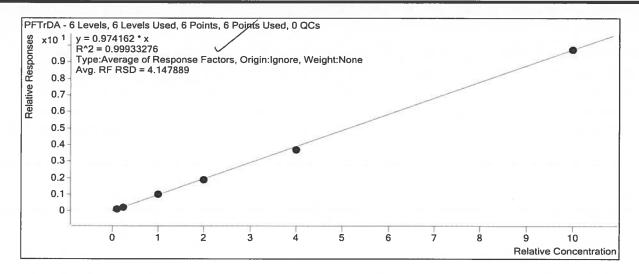
11CI-PF3OUdS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	Ø	3015	0.4715	4.2935
K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2	Ø	7149	1.1788	3.9219
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3		28211	4.7150	3.9309
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	53164	9.4300	3.6913
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	112644	18.8600	3.7965
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	279422	47.1500	3.9762

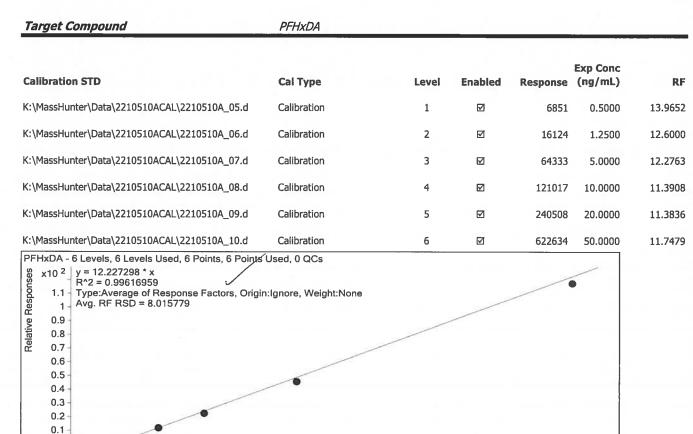
Extracted ISTD


MPFDoA


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Calibration	1	R	61983	5.0000	12396.5861	


QP03 2210513A GCAL LEVELTY TEMP.XISX


Printed at: 11:41 AM op: 6/9/2021 Page 2/03 of 4387


K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration	2		64785	5.0000	12956.9986
K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration	3	Ø	62942	5.0000	12588.4761
K:\MassHunter\Data\2210510ACAL\2210510A_08.d	Calibration	4	Ø	64149	5.0000	12829.7477
K:\MassHunter\Data\2210510ACAL\2210510A_09.d	Calibration	5	Ø	65807	5.0000	13161.3780
K:\MassHunter\Data\2210510ACAL\2210510A_10.d	Calibration	6	Ø	64278	5.0000	12855.5001
Target Compound	PFDoA					
Calibration STD	Cal Type	1 ovel	Enabled	Pasponsa	Exp Conc	DE
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
Calibration STD K:\MassHunter\Data\2210510ACAL\2210510A_05.d	Cal Type Calibration	Level	Enabled	Response 6227		RF 1.0046
K:\MassHunter\Data\2210510ACAL\2210510A_05.d					(ng/mL)	
	Calibration	1	Ø	6227	(ng/mL) 0.5000	1.0046
K:\MassHunter\Data\2210510ACAL\2210510A_05.d K:\MassHunter\Data\2210510ACAL\2210510A_06.d K:\MassHunter\Data\2210510ACAL\2210510A_07.d	Calibration Calibration	1 2	2 2	6227 16119	(ng/mL) 0.5000 1.2500	1.0046 0.9952 1.0140
K:\MassHunter\Data\2210510ACAL\2210510A_05.d K:\MassHunter\Data\2210510ACAL\2210510A_06.d	Calibration Calibration Calibration	1 2 3	2 2 2	6227 16119 63826	(ng/mL) 0.5000 1.2500 5.0000	1.0046 0.9952

Ô.

ż

3

4

5

0 -0.1

6

7

8

9

10 **Relative Concentration**

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/13/2021 19:39	Lab File ID:	2210513A_21.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711161

ANALYTE	UNITS	TRUE	FOUND	% REC /	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	8830	93 /	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9480	99	70	130	
NEtFOSAA	ng/L	10000	9410	94	70	130	
NMeFOSAA	ng/L	10000	9420	94	70	130	
Perfluorobutanoic acid	ng/L	10000	9360	94	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8280	93	70	130	
Perfluorodecanoic acid	ng/L	10000	9470	95	70	130	
Perfluorododecanoic acid	ng/L	10000	9380	94	70	130	
Perfluoroheptanoic acid	ng/L	10000	9620	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9410	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8890	97	70	130	
Perfluorononanoic acid	ng/L	10000	9300	93	70	130	
Perfluorooctanoic acid	ng/L	10000	9230	92	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8750	94	70	130	
Perfluoropentanoic acid	ng/L	10000	9460	95	70	130	-
Perfluorotetradecanoic acid	ng/L	10000	9620	96	70	130	
Perfluorotridecanoic acid	ng/L	10000	9420	94	70	130	
Perfluoroundecanoic acid	ng/L	10000	9710	97	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/14/2021 08:40	Lab File ID:	2210513A_73.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711161

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	8870	93	70	130	<u> </u>
8:2 Fluorotelomersulfonic acid	ng/L	9600	8900	93	70	130	
NEtFOSAA	ng/L	10000	9410	94	70	130	
NMeFOSAA	ng/L	10000	9320	93	70	130	<u> </u>
Perfluorobutanoic acid	ng/L	10000	9270	93	70	130	<u> </u>
Perfluorobutanesulfonic acid	ng/L	8870	8400	95	70	130	
Perfluorodecanoic acid	ng/L	10000	9650	96	70	130	1
Perfluorododecanoic acid	ng/L	10000	9550	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9460	95	70	130	
Perfluorohexanoic acid	ng/L	10000	9380	94	70	130	<u> </u>
Perfluorohexanesulfonic acid	ng/L	9140	8910	97	70	130	
Perfluorononanoic acid	ng/L	10000	9390	94	70	130	
Perfluorooctanoic acid	ng/L	10000	9460	95	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8710	94	70	130	<u> </u>
Perfluoropentanoic acid	ng/L	10000	9430	94	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9690	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9690	97	70	130	
Perfluoroundecanoic acid	ng/L	10000	9570	96	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/14/2021 11:36	Lab File ID:	2210513A_85.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	711161

ANALYTE	UNITS	TRUE	FOUND	% REC /	_ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9080	95	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9870	103	70	130	
NEtFOSAA	ng/L	10000	9360	94	70	130	1.1
NMeFOSAA	ng/L	10000	9250	92	70	130	
Perfluorobutanoic acid	ng/L	10000	9260	93	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	8330	94	70	130	
Perfluorodecanoic acid	ng/L.	10000	9650	97	70	130	
Perfluorododecanoic acid	ng/L	10000	9650	96	70	130	
Perfluoroheptanoic acid	ng/L	10000	9610	96	70	130	
Perfluorohexanoic acid	ng/L	10000	9360	94	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	8810	96	70	130	
Perfluorononanoic acid	ng/L	10000	9450	95	70	130	
Perfluorooctanoic acid	ng/L	10000	9380	94	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	8720	94	70	130	
Perfluoropentanoic acid	ng/L	10000	9440	94	70	130	
Perfluorotetradecanoic acid	ng/L	10000	9720	97	70	130	
Perfluorotridecanoic acid	ng/L	10000	9630	96	70	130	
Perfluoroundecanoic acid	ng/L	10000	9620	96	70	130	

FORM 7E - ORG

81

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	05/10/21 14:44	_ Lab File ID:	2210510A_09.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711477

		M2PFD/	۹.	M2PFHx	A	M2PFOA		M4PFO	s
		Area		Area		Area		Area	
STANDARD		203872		327393		162813		33012	
CLIENT SAMPLE ID	LAB SAMP ID		#	/	#	V	#		#
MB2183946	2183946	206505		300142		161692		32014	
LCS2183947	2183947	210424		314940		168591		32979	
LCSD2183948	2183948	209395		314656		168649		32759	
AOI01-01-SB-00-02	22105041101	208320		305490		163929		32080	
AOI01-01-SB-05-07	22105041102	217045		322138		173051		33652	
AOI01-02-SB-00-02	22105041103	223145		307739		166079		33421	
AOI01-02-SB-04-06	22105041104	197924		315264		168076		31353	
AOI01-09-SB-00-02	22105041127	222229		320637		172431		33688	
AO101-09-SB-00-02-D	22105041128	220525		315243		169216		33426	
AOI01-09-SB-05-07	22105041129	212909		309576		167914		32663	
AOI01-09-SB-08-10	22105041130	209795		307517		166209		32140	
AOI01-04-GWDL	22105041141DL	250410		364909		197245		37900	
AOI01-03-GW-DDL	22105041142DL	211167		303298		163802		31339	

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits * Value outside QC limits

FORM 8I - ORG

81

INJECTION INTERNAL STANDARD AREA SUMMARY

Report No:	221050411	Standard ID:	1205 (ICAL Midpoint)
Analyst:	RXJ	Instrument ID:	QQQ3
Analysis Date:	05/10/21 14:44	Lab File ID:	2210510A_09.d
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711722

		M2PFDA		M2PFHx/	Ą	M2PFOA		M4PFO	s
		Area		Area		Area		Area	
STANDARD		203872		327393		162813		33012	
CLIENT SAMPLE ID	LAB SAMP ID		#	/	#		#	/	#
MB2184338RE	2184338RE	232078		331283		183169		34850	Τ
LCS2184339RE	2184339RE	229987		312846		175526		34568	1
AOI01-03-SB-00-02RE	22105041105RE	270987		360720		203900		41300	
AOI01-03-SB-03-05RE	22105041106RE	216788		286302		162252		32399	\top
AOI01-03-SB-05-07RE	22105041107RE	260756		346332		195875		38910	
AOI01-04-SB-00-02RE	22105041108RE	189627		257346		144817		28675	
AOI01-04-SB-03-05RE	22105041109RE	225518		303089		168073		33968	1
AOI01-05-SB-00-02RE	22105041111RE	251220		326792		186324		37866	
AOI01-05-SB-02-04RE	22105041113RE	226876		294704		163765		33347	1
AOI01-05-SB-04-06RE	22105041114RE	210393		286679		160831		31871	\top
A0101-06-SB-00-02RE	22105041116RE	227360		301140		166759		34090	
AOI01-06-SB-03-05	22105041117	208581		284685		157778		31778	1
AOI01-07-SB-00-02RE	22105041118RE	256237		337901		190900		38507	1
AOI01-07-SB-00-02-DRE	22105041119RE	271767		358633		204118		40821	\uparrow
A0101-07-SB-02-04RE	22105041120RE	265522		365430		200822		40321	1
AOI01-07-SB-04-06RE	22105041121RE	247232		338893		187371		37517	1
AOI01-08-SB-00-02	22105041122	254743		314066		181122		37164	1
AOI01-08-SB-00-02 MS	22105041123	339327	*	421665		247398	+	49044	1
AOI01-08-SB-00-02 MSD	22105041124	276169		334691		202149		39521	1
AOI01-08-SB-02-04DL	22105041125DL	222925		343754		192470		33582	\top
AOI01-08-SB-02-04RE	22105041125RE	275009		382319		214289		37468	1
AOI01-08-SB-04-06RE	22105041126RE	237093		324813		181848		35423	\uparrow
AOI01-10-SB-00-02-DRE	22105041132RE	252582		327769		184723		37266	1

* for information only

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits

* Value outside QC limits

Page 4326 of 4387

10 10

-

	Comment RXJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3,Cal point RXJ,QQQ3,Cal point RXJ,QQQ3,Cal point RXJ,QQQ3,Cal point RXJ,QQQ3,Cal point RXJ,QQQ3,Cal point RXJ,QQQ3,Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle	RXJ,QQQ3,BLANK RXJ,QQQ3,BLANK MRA,QQQ3,CCV MRA,QQQ3,CCV MRA,QQQ3,710037 MRA,QQQ3,710037 MRA,QQQ3,710037 MRA,QQQ3,710037 MRA,QQQ3,710037 MRA,QQQ3,710037 MRA,QQQ3,710037 MRA,QQQ3,710037 MRA,QQQ3,710037
	Acq. Date-Time 5/3/2021 17:14 5/3/2021 17:28 5/3/2021 17:28 5/3/2021 17:58 5/3/2021 18:12 5/3/2021 18:12 5/3/2021 19:09 5/3/2021 19:23 5/3/2021 19:23 5/3/2021 19:23	5/5/2021 12:50 5/5/2021 12:50 5/5/2021 13:05 5/5/2021 13:20 5/5/2021 14:54 5/5/2021 14:54 5/5/2021 15:23 5/5/2021 15:23 5/5/2021 15:23
HBN: 710369 5/7/2021 6/30/2025 8/24/2021 8/2/2021 10/23/2021 10/26/2021	Type Blank Cal Cal Cal Cal Blank Blank Sample Sample	sample Sample Sample QC QC Sample CQC QC
QQQ3 2210505A 2210503ACAL 016-66-4 2130147 016-64-4 016-54-3 016-64-3 016-64-5	Data File 2210503A_1.d 2210503A_2.d 2210503A_3.d 2210503A_5.d 2210503A_5.d 2210503A_6.d 2210503A_6.d 2210503A_10.d 2210503A_10.d 2210503A_11.d 2210503A_11.d	2210505A_3.d 2210505A_3.d 2210505A_5.d 2210505A_6.d 2210505A_6.d 2210505A_8.d 2210505A_9.d 2210505A_10.d 2210505A_110.d 2210505A_112.d
Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix IIS Mix	Name 18 1201 1202 1204 1206 1206 1206 18 1450 18 18 18	1500 1450 1204test 1204test 18 2179810 2179811 2179812 22104223501 10x 22104223502 10x 222104223503 10x

Dil.

-

-

Pace Gulf Coast Report#: 221050411

MRA, QQQ3, 710037	MRA, QQ3, CCV	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, CCV	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710037	MRA, QQQ3, 710145	MRA, QQQ3, 710145	MRA, QQQ3, 710145	MRA,QQQ3,710145	MRA, QQQ3, CCV	MRA,QQQ3,710145	MRA, QQQ3, 710145	MRA,QQQ3,710145	MRA, QQQ3, 710145	MRA,QQQ3,710145					
5/5/2021 16:21	5/5/2021 16:36	5/5/2021 16:51	5/5/2021 17:05	5/5/2021 17:20	5/5/2021 17:34	5/5/2021 17:49	5/5/2021 18:04	5/5/2021 18:18	5/5/2021 18:33	5/5/2021 18:47	5/5/2021 19:02	5/5/2021 19:17	5/5/2021 19:31	5/5/2021 19:46	5/5/2021 20:01	5/5/2021 20:15	5/5/2021 20:30	5/5/2021 20:44	5/5/2021 20:59	5/5/2021 21:14	5/5/2021 21:28	5/5/2021 21:43	5/5/2021 21:57	5/5/2021 22:12	5/5/2021 22:27	5/5/2021 22:41	5/5/2021 22:56	5/5/2021 23:10	5/5/2021 23:25	5/5/2021 23:40	5/5/2021 23:54	5/6/2021 0:09	5/6/2021 0:23
2210505A_13.d Sample	2210505A_14.d QC	2210505A_15.d Sample	2210505A_16.d Sample	2210505A_17.d Sample	2210505A_18.d Sample	2210505A_19.d QC	2210505A_20.d QC	2210505A_21.d Sample	2210505A_22.d Sample	2210505A_23.d Sample	2210505A_24.d Sample	2210505A_25.d QC	2210505A_26.d Sample	2210505A_27.d QC	2210505A_28.d QC	2210505A_29.d Sample	2210505A_30.d Sample	2210505A_31.d Sample	2210505A_32.d Sample	2210505A_33.d QC	2210505A_34.d QC	2210505A_35.d Sample	2210505A_36.d QC	2210505A_37.d Sample	2210505A_38.d Sample	2210505A_39.d Sample	2210505A_40.d Sample	2210505A_41.d Sample	2210505A_42.d Sample	2210505A_43.d Sample	2210505A_44.d Sample	2210505A_45.d Sample	2210505A_46.d Sample
22104260614	1400	22104305901	22105010801	22105010802	22105010803	22105010804	22105010805	22105010806	22104302644	22104302645	22105041147	1400	22104302647	22104302648	22104302649	22104302650	22104302651	22104302652	2180348	2180349	2180350	22104260102	1400	22104260103	22104260114	22104260117	22104283101	22104283102	22104283103	22104283104	22104283105	22104283106	22104283107

MRA, QQQ3, 710145 MRA, QQQ3, CCV MRA, QQQ3, CCV MRA, QQQ3, CCV 5/6/2021 0:38 5/6/2021 0:53 5/6/2021 1:36 5/6/2021 2:06 5/6/2021 2:35 5/6/2021 2:49 5/6/2021 3:04 5/6/2021 3:19 5/6/2021 3:48 5/6/2021 4:03 5/6/2021 4:18 5/6/2021 5:16 5/6/2021 1:07 5/6/2021 1:22 5/6/2021 1:51 5/6/2021 2:20 5/6/2021 3:34 5/6/2021 4:32 5/6/2021 5:02 5/6/2021 5:45 5/6/2021 6:00 5/6/2021 6:15 5/6/2021 4:47 5/6/2021 5:31 Sample g g В 2210505A_47.d 2210505A_71.d 2210505A_48.d 2210505A_49.d 2210505A_50.d 2210505A_52.d 2210505A_55.d 2210505A_58.d 210505A_61.d 2210505A_62.d 2210505A_63.d 210505A_64.d 2210505A_65.d 2210505A_66.d 210505A_67.d 2210505A_68.d 2210505A_69.d 2210505A_70.d 2210505A_51.d 2210505A_53.d 2210505A_54.d 2210505A_56.d 2210505A_57.d 2210505A_60.d 22104273306 22104283109 22104283110 22104273303 22104273305 22104283108 22104273302 22104273304 22104273307 22104273301 1400 1400 1400 B 8 <u>____</u>

XXJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle 3XJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle 3XJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle 3XJ,QQQ3, Instrument blank/Instrument Idle 3XJ,QQQ3, Instrument blank/Instrument Idle RXJ,QQQ3, Instrument blank/Instrument Idle

7S

ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/05/2021 11:05	Lab File ID:	2210505A_4.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	3.81	3.95	104 ~	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	3.84	3.57	93	70	130	
NEtFOSAA	ng/L	4.00	3.99	100	70	130	
NMeFOSAA	ng/L	4.00	4.64	116	70	130	
Perfluorobutanoic acid	ng/L	4.00	4.23	106	70	130	
Perfluorobutanesulfonic acid	ng/L	3,55	3.58	101	70	130	
Perfluorodecanoic acid	ng/L	4.00	4.12	103	70	130	
Perfluorododecanoic acid	ng/L	4.00	3.99	100	70	130	
Perfluoroheptanoic acid	ng/L	4.00	4.05	101	70	130	
Perfluorohexanoic acid	ng/L	4.00	4.35	109	70	130	
Perfluorohexanesulfonic acid	ng/L	3.66	3.77	103	70	130	
Perfluorononanoic acid	ng/L	4.00	4.05	101	70	130	
Perfluorooctanoic acid	ng/L	4.00	4.32	108	70	130	
Perfluorooctanesulfonic acid	ng/L	3.71	4.14	112	70	130	
Perfluoropentanoic acid	ng/L	4.00	4.12	103	70	130	
Perfluorotetradecanoic acid	ng/L	4.00	4.15	104	70	130	
Perfluorotridecanoic acid	ng/L	4.00	3.94	99	70	130	
Perfluoroundecanoic acid	ng/L	4.00	4.14	103	70	130	

41

ORGANICS INSTRUMENT BLANK

Report No:	221050411	instrument ID:	QQQ3
Analysis Date:	05/03/2021 17:23	Lab File ID:	2210503A_9.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

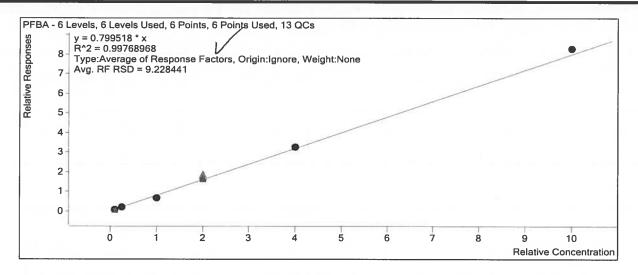
ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	<u> </u>
Perfluorobutanoic acid	ng/L	(1.24)	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	υ	0.88	2.00	4.00	-
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	1
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	

* - Result greater than 1/2 LOQ

4I ORGANICS INSTRUMENT BLANK

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/05/2021 10:50	Lab File ID:	2210505A_3.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
6:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.94	2.00	4.00	
8:2 Fluorotelomersulfonic acid	ng/L	2.00	U	0.90	2.00	4.00	
NEtFOSAA	ng/L	4.00	U	0.97	4.00	8.00	
NMeFOSAA	ng/L	4.00	U	0.90	4.00	8.00	
Perfluorobutanesulfonic acid	ng/L	2.00	U	0.62	2.00	4.00	
Perfluorobutanoic acid	ng/L	1.25	J	0.90	2.00	4.00	
Perfluorodecanoic acid	ng/L	2.00	U	0.86	2.00	4.00	
Perfluorododecanoic acid	ng/L	2.00	U	0.88	2.00	4.00	
Perfluoroheptanoic acid	ng/L	2.00	U	0.48	2.00	4.00	
Perfluorohexanesulfonic acid	ng/L	2.00	U	0.95	2.00	4.00	
Perfluorohexanoic acid	ng/L	2.00	U	0.94	2.00	4.00	
Perfluorononanoic acid	ng/L	2.00	U	0.78	2.00	4.00	
Perfluorooctanesulfonic acid	ng/L	2.00	U	0.76	2.00	4.00	
Perfluorooctanoic acid	ng/L	2.00	U	0.84	2.00	4.00	
Perfluoropentanoic acid	ng/L	2.00	U	0.85	2.00	4.00	
Perfluorotetradecanoic acid	ng/L	2.00	U	0.98	2.00	4.00	
Perfluorotridecanoic acid	ng/L	2.00	U	0.99	2.00	4.00	
Perfluoroundecanoic acid	ng/L	2.00	U	0.95	2.00	4.00	


* - Result greater than 1/2 LOQ

Batch Data Path Analysis Time Report Time Last Calib Update	J:\MassHunter\Data\2210503ACAL\ 5/6/2021 3:41 PM Analyst N 5/7/2021 1:52 PM Reporter 5/4/2021 2:01 PM Batch State		Name r Name	sults\221050 GCAL\awg GCAL\icms ResultsClea		n
Calibration Info Extracted ISTD	MPFBA					
					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1	Ø	32153	5.0000	6430.5110
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		32929	5.0000	6585.757
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	M	31941	5.0000	6388.2429
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	$\mathbf{\nabla}$	31372	5.0000	6274.4029
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	M	33423	5.0000	6684.6181
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	Ø	32669	5.0000	6533.7348
Instrument ISTD	M3PFBA					
Colliburation CTD	6-1 T	1			Exp Conc	
Calibration STD K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Cal Type Calibration	Level 1	Enabled	Response	(ng/mL)	20.000
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	N	195 208	5.0000 5.0000	38.9986
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		193	5.0000	41.6591 38.5862
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	4		214	5.0000	42.758
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		217	5.0000	43.4980
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		217	5.0000	42.8587
M3PFBA - 6 Levels, 6 Levels Used, 6 Points, 6 Points \$\$ x10 ² y = 41.393234 * x R ² = 0.00000000 Type:Average of Response Factors, Original 2.1 - Avg. RF RSD = 5.082074 2 - 1.9 - 1.8 - 1.7 - 1.6 - 1.5 - 1.4 - 1.3 - 1.2 -	4					
-90 -80 -70 -60 -50 -40 -30	-20 -10 0 10 20	0 30 40	50 60	70 80 Concentrati	90 100 on (ng/ml)	

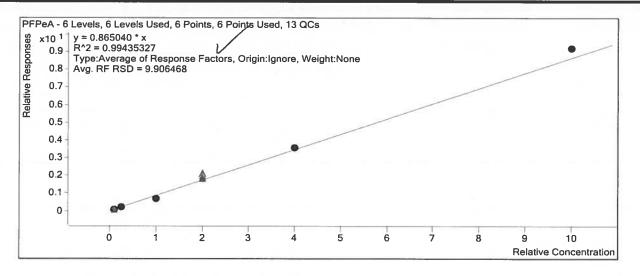
Target Compound

PFBA

					Exp Conc		
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF	
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		2720	0.5000	0.8460	
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		6780	1.2500	0.8236	
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		20777	5.0000	0.6505	
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	Z	52351	10.0000	0.8344	
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	A	108883	20.0000	0.8144	
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	M	270590	50.0000	0.8283	

Target Compound

PFMPA


Calil	bratio	n STD						Cal Typ	e	Level	Enabled	Response	Exp Conc (ng/mL)	
K:\M	assHu	nter\Data	22105	03ACAL	221050	3A_2.d	1	Calibratio		1		411	0.5000	0
K:\M	assHu	nter\Data	22105	03ACAL	221050	3A_3.d	1	Calibratio	on	2		1083	1.2500	0
K:\M	assHu	nter\Data	22105	03ACAL	221050	3A_4.d	ł	Calibratio	on	3		3415	5.0000	0.
K:\M	assHu	nter\Data	22105	03ACAL	221050	3A_5.d	t	Calibratio	n	4		8588	10.0000	0.
K:\M	assHu	nter\Data	22105	03ACAL	221050	3A_6.d	1	Calibratio	on	5	Ø	18041	20.0000	0.
K:\M	assHur	nter\Data	22105	03ACAL	221050	3A_7.d	1	Calibratio	on	6		44327	50.0000	0.:
8	1.2						/							
Relative Responses	1.1 - 1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 -		erage			ctors, (origin:I	gnore, We	eight:None	/			•	
Helative Hespons	1 - 0.9 - 0.8 - 0.7 -	Type:Av	erage	of Respo		ctors, (Origin:I	gnore, We	aight:None				•	
Sindsay aviibian	1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 -	Type:Av	erage	of Respo		ctors, (Origin:I	gnore, We	eight:None	_			•	
	1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 -	Type:Av	erage	of Respo		ctors, C	Origin:I	gnore, We	eight:None				•	
Relative Respons	1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 -	Type:Av	erage	of Respo		ctors, (Origin:I	gnore, We	eight:None	/			•	
Relative Response	1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 -	Type:Av	erage	of Respo		ctors, (Origin:I	gnore, We	aight:None				•	

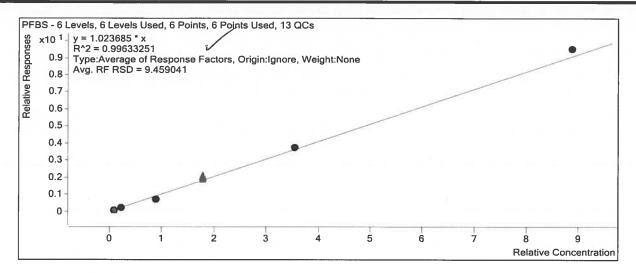
Target Compound

PFPeA

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		3425	0.5000	0.8912
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		8594	1.2500	0.8556
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		26792	5.0000	0.6981
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	$\mathbf{\nabla}$	69186	10.0000	0.9303
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		145097	20.0000	0.8970
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	Ø	356038	50.0000	0.9179

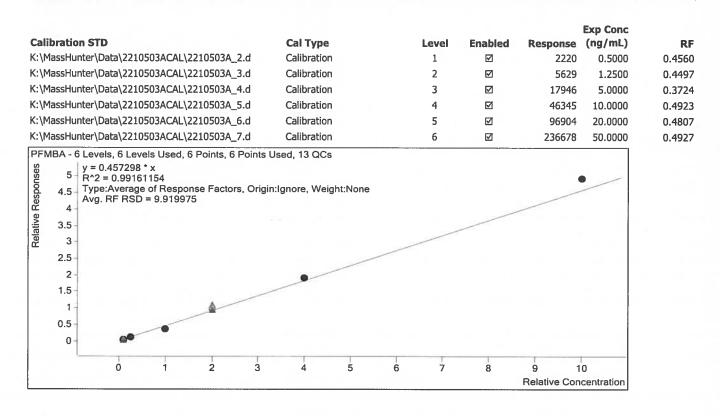
QQQ3_2210505A_GCAL_LEVEITY_temp.xlsx Pace Guil Coast Repont: 221050411 Printed at: 11:35 AM op: 6/9/2021 Page 2517 of 4387

Extracted ISTD


Target Compound

M5PFPeA

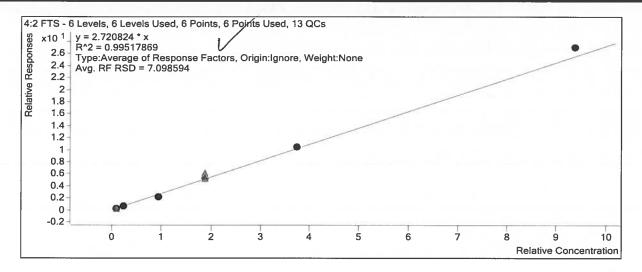
Calibration STD	Cal Type	Level	Enabled	Decreates	Exp Conc (ng/mL)	DE
		Level		Response		RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		38430	5.0000	7685.9752
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		40177	5.0000	8035.4661
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	Ø	38377	5.0000	7675.4211
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		37184	5.0000	7436.7246
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	$\mathbf{\nabla}$	40439	5.0000	8087.8896
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	Ø	38786	5.0000	7757.2399
Extracted ISTD	M3PFBS					
					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		11502	5.0000	2300.4010
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	M	11726	5.0000	2345.2653
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		11433	5.0000	2286.6050
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		11111	5.0000	2222.2592
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	V	11816	5.0000	2363.2274
Kal Maral Junta / Data / 22105024 CAL / 22105024 Jul						
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	R	11339	5.0000	2267.8885

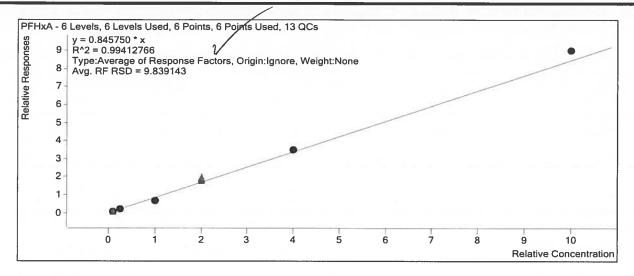

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1	$\mathbf{\nabla}$	1082	0.4435	1.0601
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	\mathbf{N}	2710	1.1088	1.0423
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	$\mathbf{\nabla}$	8393	4.4350	0.8276
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	\mathbf{N}	21262	8.8700	1.0787
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	$\overline{\mathbf{A}}$	44524	17.7400	1.0620
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		107765	44.3500	1.0714

PFBS

Target Compound

PFMBA




Target Compound

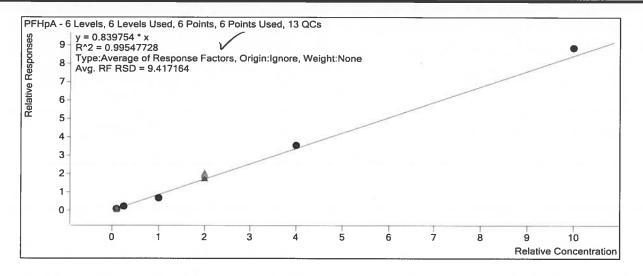
PFEESA

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		2771	0.4450	3.4913
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	N	7176	1.1125	3.5750
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	N	22918	4.4500	2.9621
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	$\overline{\mathbf{N}}$	57679	8.9000	3.8509
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	N	121506	17.8000	3.8185
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	Ø	295890	44.5000	3.9096

QPO3 2210505A GCAL Levelly temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:35 AM op: 6/9/2021 Page 2519 of 4387

Target Compound

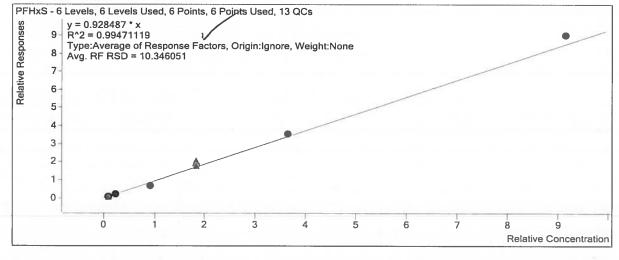
PFPeS


						Exp Conc
Calibratio	on STD	Cal Type	Level	Enabled	Response	(ng/mL)
:\MassHu	inter\Data\2210503ACAL\2210503A_2.d	Calibration	1		1036	0.4705
:\MassHu	inter\Data\2210503ACAL\2210503A_3.d	Calibration	2		2755	1.1763
:\MassHu	Inter\Data\2210503ACAL\2210503A_4.d	Calibration	3		8056	4.7050
:\MassHu	Inter\Data\2210503ACAL\2210503A_5.d	Calibration	4	Ø	20349	9.4100
:\MassHu	nter\Data\2210503ACAL\2210503A_6.d	Calibration	5	$\overline{\mathbf{v}}$	42495	18.8200
:\MassHu	nter\Data\2210503ACAL\2210503A_7.d	Calibration	6	Ø	104910	47.0500
PFPeS - 6	Levels, 6 Levels Used, 6 Points, 6 Point	ts Used, 13 QCs				
x10 ¹	R^2 = 0.99611825					
0.0	Type: Average of Response Eactors, Or	rigin:Ignore Meight:None				
0.8	Type:Average of Response Factors, O Avg. RF RSD = 9.954686	rigin:Ignore, Weight:None				
0.8		rigin:Ignore, Weight:None				
0.8 0.8 0.7 0.7		rigin:Ignore, Weight:None				
0.8 0.8 0.8 0.7 0.7 0.6		rigin:Ignore, Weight:None				
0.8 0.8 0.7 0.7		rigin:Ignore, Weight:None				
0.5		rigin:Ignore, Weight:None				
0.5 0.4 0.3		rigin:Ignore, Weight:None				
0.5 0.4 0.3 0.2		rigin:Ignore, Weight:None				
0.5 0.4 0.3 0.2 0.1		rigin:Ignore, Weight:None				
0.5 0.4 0.3 0.2		rigin:Ignore, Weight:None				
0.5 0.4 0.3 0.2 0.1		rigin:Ignore, Weight:None	6	7 8	9	10

Extracted ISTD

M3HFPODA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		11316	10.0000	1131.5938	
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		11749	10.0000	1174.9074	
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		11574	10.0000	1157.4305	
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	$\mathbf{\nabla}$	11670	10.0000	1166.9777	
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		12329	10.0000	1232.9337	
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		11188	10.0000	1118.7768	
					A STREET, STRE		


2003 2210505A GCAL LevelTV Lemp.xlsx Pace Gui Coast Report#: 221050411 Printed at: 11:35 AM op: 6/9/2021 Page 2524 of 4387

Exp Conc Calibration STD Cal Type Level Enabled Response (ng/mL)K:\MassHunter\Data\2210503ACAL\2210503A_2.d Calibration 1 ً 8917 5.0000 K:\MassHunter\Data\2210503ACAL\2210503A_3.d Calibration 2 \blacksquare 9021 5.0000 K:\MassHunter\Data\2210503ACAL\2210503A_4.d Calibration 3 \square 8693 5.0000 K:\MassHunter\Data\2210503ACAL\2210503A_5.d Calibration 4 Ø 8415 5.0000 K:\MassHunter\Data\2210503ACAL\2210503A_6.d Calibration 5 Ø 8938 5.0000 K:\MassHunter\Data\2210503ACAL\2210503A_7.d Calibration 6 Ø 8504 5.0000 PFHxS Target Compound

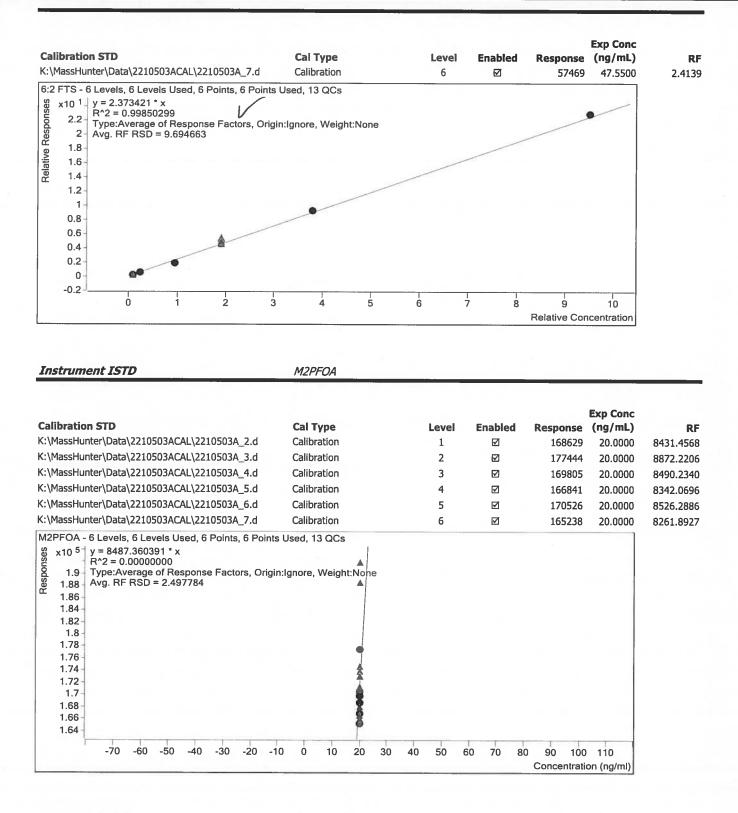
M3PFHxS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		787	0.4570	0.9656
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	\square	1938	1.1425	0.9402
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		5839	4.5700	0.7349
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	$\mathbf{\nabla}$	15088	9.1400	0.9809
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	\square	31584	18.2800	0.9665
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	☑	76389	45.7000	0.9828

Extracted ISTD

RF

1783.4891

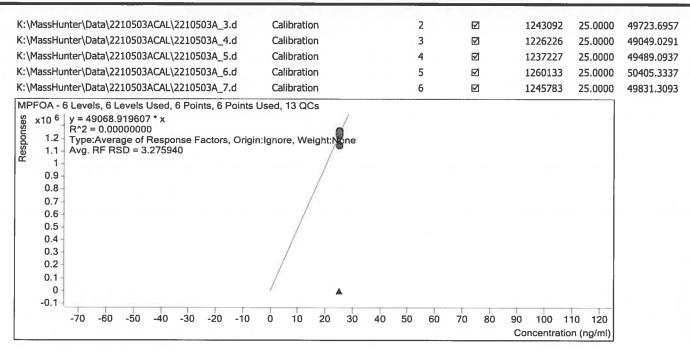

1804.2004

1738.6453

1682.9083

1787.6422

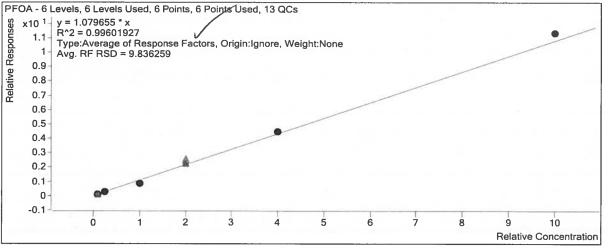
1700.7333


Instrument ISTD

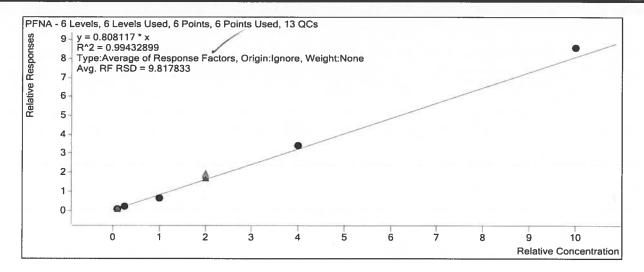
MPFOA

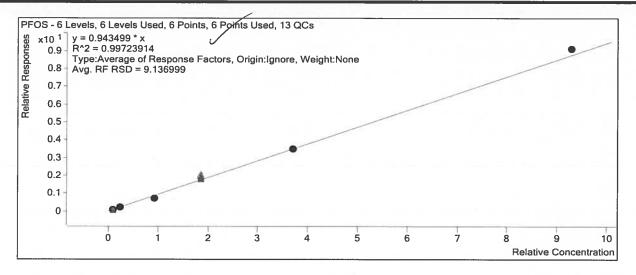
		Exp Conc						
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF		
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		1147876	25.0000	45915.0561		

QQQ3 2210505A GCAL LEVEILY TEMP.xlsx


Printed at: 11:35 AM op: 6/9/2021 Page 2528 of 4387

Target Compound


PFOA

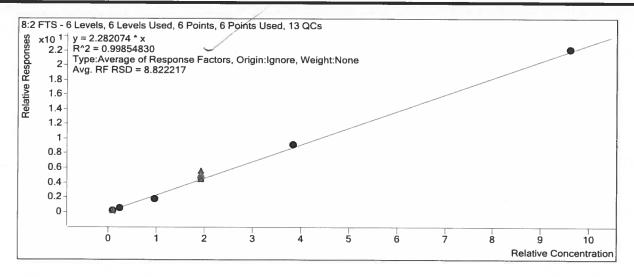

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		5284	0.5000	1.1202
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	Ø	13270	1.2500	1.0912
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	Ø	40572	5.0000	0.8670
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	M	104290	10.0000	1.1533
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		213908	20.0000	1.1136
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		520429	50.0000	1.1326

Extracted ISTD	M8PFOA			_			
Calibration STD K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Cal Type Calibration	Level 1	Enabled ☑	Response 47169	Exp Conc (ng/mL) 5.0000	RF 9433.8768	
QQQ3 2210505A GCAL Levelty temp.xlsx	Pag	ge 14 of 37		Printed a	t: 11:35 AM	Page 2529 of	4387

Target Compound

9CI-PF3ONS

						Exp Conc	
Calibratio		Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHu	nter\Data\2210503ACAL\2210503A_2.d	Calibration	1	$\mathbf{\nabla}$	5052	0.4665	5.6219
K:\MassHu	nter\Data\2210503ACAL\2210503A_3.d	Calibration	2	$\mathbf{\nabla}$	12562	1.1663	5.5235
K:\MassHu	nter\Data\2210503ACAL\2210503A_4.d	Calibration	3	Ø	38843	4.6650	4.4052
K:\MassHu	nter\Data\2210503ACAL\2210503A_5.d	Calibration	4	\checkmark	99697	9.3300	5.7665
K:\MassHu	nter\Data\2210503ACAL\2210503A_6.d	Calibration	5	$\mathbf{\nabla}$	208637	18.6600	5.6499
K:\MassHu	nter\Data\2210503ACAL\2210503A_7.d	Calibration	6		504083	46.5500	5.7677
	NS - 6 Levels, 6 Levels Used, 6 Points, 6 P y = 5.455772 * x	01113 0300, 10 003					
x 10 1 5 - 5 - 4.5 - 4 - 4 - 3.5 - 3 - 2.5 - 2 -	R^2 = 0.99504209 Type:Average of Response Factors, Origi Avg. RF RSD = 9.585702	in:Ignore, Weight:None				•	
3-	R^2 = 0.99504209 Type:Average of Response Factors, Origi	in:Ignore, Weight:None					
3 - 2.5 - 2 - 1.5 -	R^2 = 0.99504209 Type:Average of Response Factors, Origi	in:Ignore, Weight:None					
3 - 2.5 - 2 - 1.5 - 1 -	R^2 = 0.99504209 Type:Average of Response Factors, Origi	in:Ignore, Weight:None					
3 - 2.5 - 2 - 1.5 - 1 - 0.5 -	R^2 = 0.99504209 Type:Average of Response Factors, Origi Avg. RF RSD = 9.585702	in:Ignore, Weight:None	6	7 8	3 9	10	


Target Compound

8:2 FTS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		611	0.4800	2.2300
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	Ø	1515	1.2000	2.3837
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		4830	4.8000	1.9063
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		11673	9.6000	2.4699
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		23744	19.2000	2.3935
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		54478	48.0000	2.3092

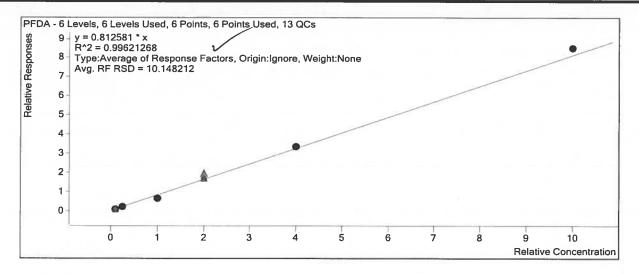
QP03 2210505A GCAL Levelly temp.xlsx

Printed at: 11:35 AM op: 6/9/2021 Page 2534 of 4387

Extracted ISTD

M2 8:2 FTS

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		2853	5.0000	570.5709
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		2648	5.0000	529.5691
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	V	2639	5.0000	527.8777
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		2461	5.0000	492.2994
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		2583	5.0000	516.6894


Calibratic K:\MassHu	on STD Inter\Data\2210503ACAL\2210503A_7.d	Cal Type Calibration		Level 6	Enabled ⊠	Response 2458	Exp Conc (ng/mL) 5.0000	RF 491.5073
Target (Compound	PFNS						
							Eve Cone	
Calibratio	on STD	Cal Type		Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHu	inter\Data\2210503ACAL\2210503A_2.d	Calibration		1		765	0.4810	0.8252
K:\MassHu	inter\Data\2210503ACAL\2210503A_3.d	Calibration		2		1977	1.2025	0.8430
K:\MassHu	inter\Data\2210503ACAL\2210503A_4.d	Calibration		3	$\mathbf{\nabla}$	6614	4.8100	0.7275
K:\MassHu	inter\Data\2210503ACAL\2210503A_5.d	Calibration		4	N	16227	9.6200	0.9103
K:\MassHu	inter\Data\2210503ACAL\2210503A_6.d	Calibration		5	V	33566	19.2400	0.8816
K:\MassHu	Inter\Data\2210503ACAL\2210503A_7.d	Calibration		6	\mathbf{N}	81199	48.1000	0.8991
- 9 - 8	R^2 = 0.99460203 Type:Average of Response Factors, Origi Avg. RF RSD = 7.947329	n:Ignore, Weight:No	ine				•	
1- 0-	00							
	0 1 2 3	4	5 6	7	8	9 Relative Cor	10 ncentration	

Extracted ISTD

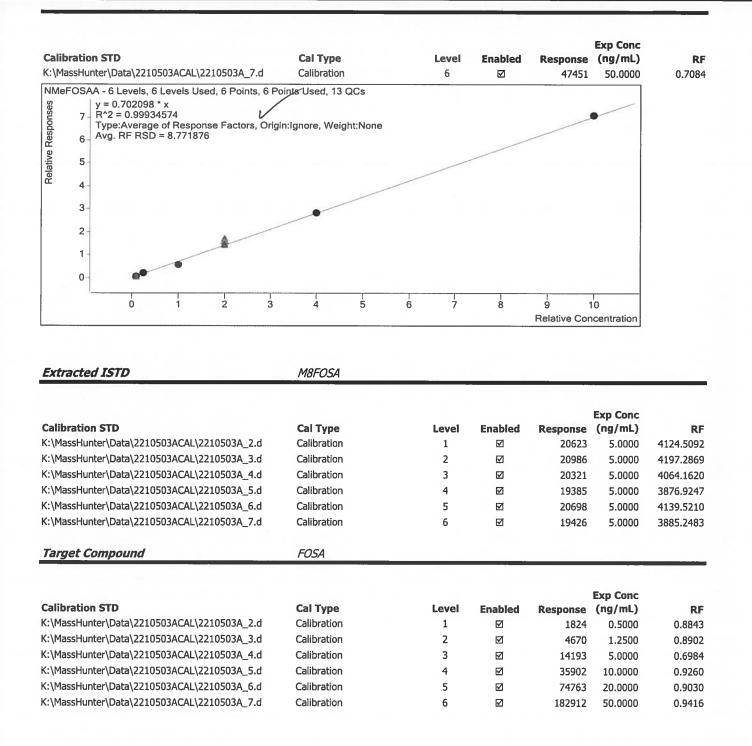
M6PFDA

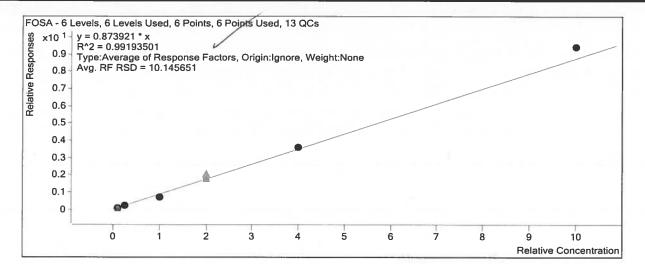
					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		64237	5.0000	12847.4948
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	$\mathbf{\nabla}$	63938	5.0000	12787.5872
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	\blacksquare	62456	5.0000	12491.1767
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		58624	5.0000	11724.8059
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	$\mathbf{\nabla}$	64268	5.0000	12853.6614
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	R	60381	5.0000	12076.1510
Target Compound	PFDA					

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		5215	0.5000	0.8118
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2	$\mathbf{\overline{M}}$	13215	1.2500	0.8268
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	\square	40839	5.0000	0.6539
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	\square	104719	10.0000	0.8931
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	$\mathbf{\nabla}$	216217	20.0000	0.8411
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	$\mathbf{\nabla}$	512521	50.0000	0.8488

Instrument ISTD

M2PFDA

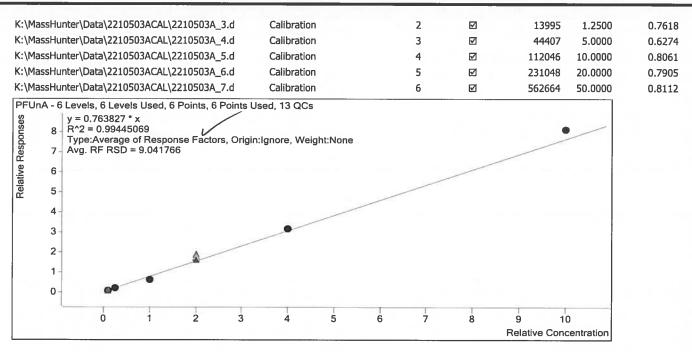

					Exp Conc	
Calibration STD	Cai Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		202847	20.0000	10142.3441
K:\MassHunter\Data\2210503ACAL\2210503A 3.d	Calibration	2		206610	20.0000	10330.5084
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	M	199169	20.0000	9958.4434
		-	_			
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	\square	196615	20.0000	9830.7310
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		199382	20.0000	9969.1015
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	☑	193288	20.0000	9664.3898
M2PFDA - 6 Levels, 6 Levels Used, 6 Points, 6 Point	s Used, 13 QCs					
<pre>\$\$ x10⁵ y = 9982.586364 * x 2 2.175 R^2 = 0.0000000 2 .15 Type:Average of Response Factors, Orig 2 .125 Avg. RF RSD = 2.334929 2.1 2.075 - 2.05 - 2.025 - 2.025 - 2.025 - 1.975 - 1.95 - 1.95 - 1.95 - 1.85 - 1.</pre>	in:Ignore, Weight:None	40 50	1 I 60 70 8	0 90 100	110	
				Concentrati	on (ng/ml)	
······					(


Extracted ISTD

d3-NMeFOSAA

					Exp Conc		
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF	
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		6676	5.0000	1335.2070	
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		6665	5.0000	1333.0980	
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	Ø	6102	5.0000	1220.4761	
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		6318	5.0000	1263.5384	
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		6812	5.0000	1362.3125	
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		6699	5.0000	1339.7689	

QOO3 2210505A GCAL Levelty temp.xisx Pace Guil Coast Report#: 221050411 Printed at: 11:35 AM op: 6/9/2021 Page 2537 of 4387

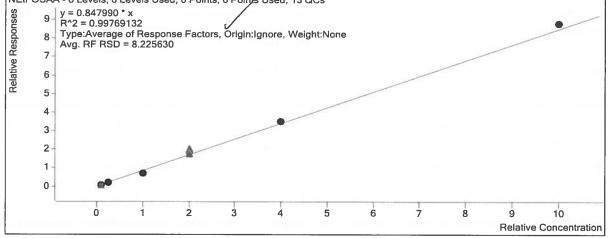

Targ	et Compound	PFDS					
						Exp Conc	
	ation STD	Cal Type	Level	Enabled	Response	(ng/mL)	R
	sHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		704	0.4825	0.757
	sHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		1792		0.761
	sHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	\square	5731	4.8250	0.628
K:\Mas	sHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	$\mathbf{\nabla}$	14378	9.6500	0.804
	sHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		29371	19.3000	0.769
K:\Mas	sHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	$\mathbf{\nabla}$	71609	48.2500	0.790
esponse	8 y = 0.751956 * x R^2 = 0.99598822 7 Type:Average of Response Factors, Origi Avg. RF RSD = 8.390284	in:Ignore, Weight:None				•	
Relative Response:	R ² = 0.99598822 7 Type:Average of Response Factors, Origi	in:Ignore, Weight:None				•	
Relative Response:	R^2 = 0.99598822 V 7 - Type:Average of Response Factors, Origi Avg. RF RSD = 8.390284 6 - 5 - 4 - 3 -	in:Ignore, Weight:None				•	
Relative Response:	R^2 = 0.99598822 V 7 - Type:Average of Response Factors, Origination Avg. RF RSD = 8.390284 6- 5 - 4 - 4 5 - 4	in:Ignore, Weight:None					
Relative Response:	R^2 = 0.99598822 V 7 - Type:Average of Response Factors, Origi Avg. RF RSD = 8.390284 6 - 5 - 4 - 3 -	in:Ignore, Weight:None					
Relative Response:	 R[*]2 = 0.99598822 Type:Average of Response Factors, Origi Avg. RF RSD = 8.390284 5- 4- 3- 2- 	in:Ignore, Weight:None					
Relative Responses	R ² = 0.99598822 7 - Type:Average of Response Factors, Origi Avg. RF RSD = 8.390284 6 5 4 - 3 -	in:Ignore, Weight:None	6 7	8	9	10	

Extracted ISTD

d5-NEtFOSAA

Calibration STD K:\MassHunter\Data\2210503ACAL\2210503A 2.d	Cal Type Calibration	Levei 1	Enabled	Response 5615	Exp Conc (ng/mL) 0,5000	RI 0.7855
Target Compound	PFUnA			100		
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		69360	5.0000	13871.922
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		73070	5.0000	14613.905
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		69500	5.0000	13899.986
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	R	70780	5.0000	14155.942
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		73480	5.0000	14696.051
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		71451	5.0000	14290.115
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	R
Extracted ISTD	M7PFUnA					
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6	M	11625	5.0000	2325.021
<:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		12377	5.0000	2475.386
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		11503	5.0000	2300.556
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		11594	5.0000	2318.761
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		12167	5.0000	2433.345
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1	Ø	12421	5.0000	2484.199
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	R

QOO3 2210505A GCAL Levelty temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:35 AM up: 6/9/2021 Page 2541 of 4387

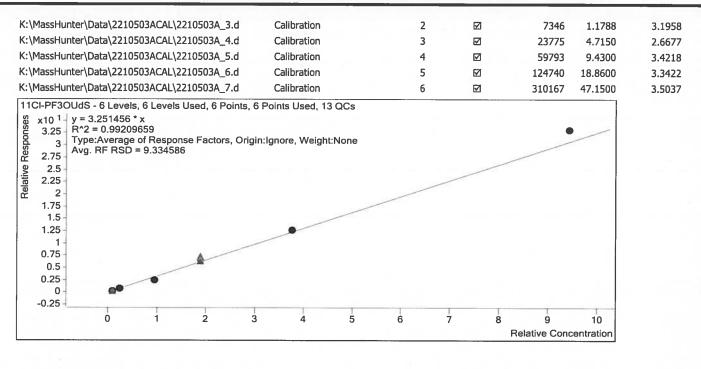


Target Compound

NEtFOSAA

RF
0.8511
0.8694
0.7098
0.9034
0.8776
0.8765

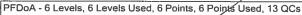
NEtFOSAA - 6 Levels, 6 Levels Used, 6 Points, 6 Points Used, 13 QCs

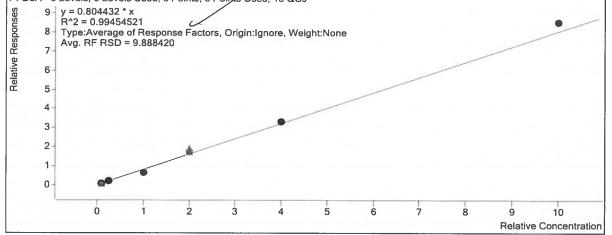

Target Compound

11CI-PF3OUdS

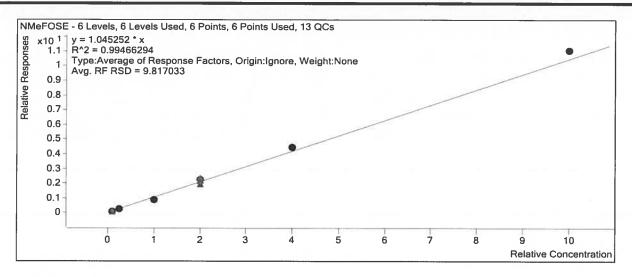
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1	M	3068	0.4715	3.3775

Pace-Guil Coast Report#: 221050411


Printed at: 11:35 AM op: 6/9/2021 Page 2542 of 4387



Target Compound

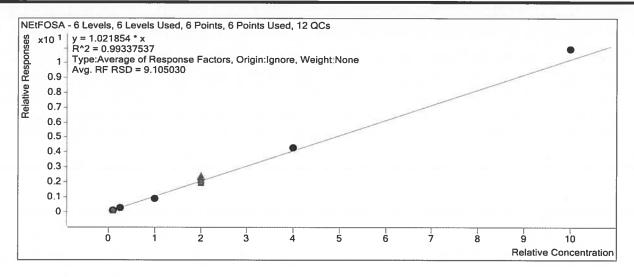

PFDoA

				Exp Conc	
Cal Type	Level	Enabled	Response	(ng/mL)	RF
Calibration	1		6495	0.5000	0.8186
Calibration	2	$\mathbf{\nabla}$	16371	1.2500	0.8030
Calibration	3		51492	5.0000	0.6502
Calibration	4		131786	10.0000	0.8730
Calibration	5	M	271453	20.0000	0.8292
Calibration	6		684698	50.0000	0.8525
	Calibration Calibration Calibration Calibration Calibration	Calibration1Calibration2Calibration3Calibration4Calibration5	Calibration1Image: CalibrationCalibration2Image: CalibrationCalibration4Image: CalibrationCalibration5Image: Calibration	Calibration1Image: Constraint of the second s	Cal Type Level Enabled Response (ng/mL) Calibration 1 1 6495 0.5000 Calibration 2 16371 1.2500 Calibration 3 1 51492 5.0000 Calibration 4 131786 10.0000 Calibration 5 271453 20.0000

Extracted ISTD	MPFDoA						
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		79338	5.0000	15867.5311	
29922-Gail 05851 Report - 2216504 1 Pmp.xlsx	P	age 28 of 37		Printed a	L: 11:35 AN	1 00: 6/9/2021	4387

Target Compound

PFTrDA

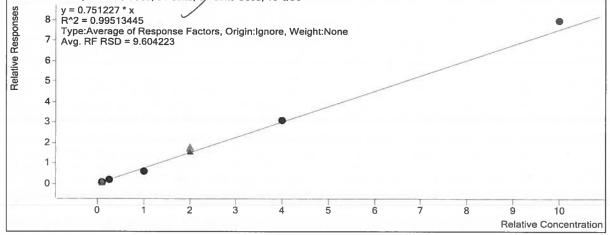

-								Exp Conc	
	bratior		Cal Type		Level	Enabled	Response	(ng/mL)	
		nter\Data\2210503ACAL\2210503A_2.c			1		6256	0.5000	0
K:\/	lassHun	nter\Data\2210503ACAL\2210503A_3.c	Calibration		2		16251	1.2500	0
K:\№	1assHun	nter\Data\2210503ACAL\2210503A_4.c	Calibration		3		51933	5.0000	0
K:\№	1assHun	ter\Data\2210503ACAL\2210503A_5.c	Calibration		4	\square	130131	10.0000	0
K:\№	lassHun	ter\Data\2210503ACAL\2210503A_6.c	Calibration		5		271387	20.0000	0
K:\№	1assHun	ter\Data\2210503ACAL\2210503A_7.c	Calibration		6		669267	50.0000	0
еR	7 -	Avg. RF RSD = 9.176734							
Relative Responses	6- 5- 4- 3- 2- 1- 0-	000	_						
Relativ	5- 4- 3- 2- 1-		•	5 6	7	8	9 1	0	

Extracted ISTD

d9-NEtFOSE

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1	\square	4457	5.0000	891.4915
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		4371	5.0000	874.2662
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3		4222	5.0000	844.3383
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		4130	5.0000	826.0163
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		4442	5.0000	888.3898
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		4419	5.0000	883.8215

QQQ3 2210505A GCAL LevelTy temp.xlsx Pace Guil Coast Report#: 221050411 Printed at: 11:35 AM on: 5/9/2021 Page 2548 of 4387


Extracted ISTD

M2PFTA

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1		82422	5.0000	16484.4465
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		84406	5.0000	16881.1401
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	\square	81386	5.0000	16277.2705
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4	Ø	79472	5.0000	15894.3412
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5		86061	5.0000	17212.2442
K:\MassHunter\Data\2210503ACAL\2210503A_7.d	Calibration	6		84005	5.0000	16800.9152
Target Compound	PFTA					

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
K:\MassHunter\Data\2210503ACAL\2210503A_2.d	Calibration	1	\square	6461	0.5000	0.7839
K:\MassHunter\Data\2210503ACAL\2210503A_3.d	Calibration	2		15666	1.2500	0.7424
K:\MassHunter\Data\2210503ACAL\2210503A_4.d	Calibration	3	$\overline{\mathbf{N}}$	49735	5.0000	0.6111
K:\MassHunter\Data\2210503ACAL\2210503A_5.d	Calibration	4		128252	10.0000	0.8069
K:\MassHunter\Data\2210503ACAL\2210503A_6.d	Calibration	5	Ø	264754	20.0000	0.7691
K:\MassHunter\Data\2210503ACAL\2210503A 7.d	Calibration	6	M	666940	50,0000	0 7939

PFTA - 6 Levels, 6 Levels Used, 6 Points, 6 Points Used, 13 QCs

7E ORGANICS CALIBRATION VERIFICATION

Report No: 221050411 Applying Data 05/05/2024 44/20		Instrument ID:	QQQ3
Analysis Date:	05/05/2021 14:36	Lab File ID:	2210505A_14.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9930	104	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10300	107	70	130	
NEtFOSAA	ng/L	10000	10500	105	70	130	
NMeFOSAA	ng/L	10000	10800	108	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9330	105	70	130	
Perfluorodecanoic acid	ng/L	10000	10800	108	70	130	
Perfluorododecanoic acid	ng/L	10000	11000	110	70	130	
Perfluoroheptanoic acid	ng/L	10000	10500	105	70	130	<u> </u>
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9610	105	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9800	106	70	130	
Perfluoropentanoic acid	ng/L	10000	10800	108	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10600	106	70	130	
Perfluorotridecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroundecanoic acid	ng/L	10000	11000	110	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/05/2021 17:17	Lab File ID:	2210505A_25.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

1

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9620	101	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9940	104	70	130	
NEtFOSAA	ng/L	10000	10800	108	70	130	
NMeFOSAA	ng/L	10000	10400	104	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9480	107	70	130	
Perfluorodecanoic acid	ng/L	10000	10600	106	70	130	
Perfluorododecanoic acid	ng/L	10000	10800	108	70	130	
Perfluoroheptanoic acid	ng/L	10000	10600	106	70	130	
Perfluorohexanoic acid	ng/L	10000	10800	108	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9770	107	70	130	
Perfluorononanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanoic acid	ng/L	10000	10600	106	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9720	105	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotridecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroundecanoic acid	ng/L	10000	10700	107	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/05/2021 19:57	Lab File ID:	2210505A_36.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	9490	100 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10300	107	70	130	
NEtFOSAA	ng/L	10000	10500	105	70	130	
NMeFOSAA	ng/L	10000	11000	110	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9480	107	70	130	
Perfluorodecanoic acid	ng/L	10000	10500	105	70	130	
Perfluorododecanoic acid	ng/L	10000	10900	109	70	130	
Perfluoroheptanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanoic acid	ng/L	10000	10500	105	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9770	107	70	130	
Perfluorononanoic acid	ng/L	10000	10800	108	70	130	
Perfluorooctanoic acid	ng/L	10000	10500	105	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9750	105	70	130	
Perfluoropentanoic acid	ng/L	10000	10600	106	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10600	106	70	130	
Perfluorotridecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroundecanoic acid	ng/L	10000	11000	110	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/05/2021 22:38	Lab File ID:	2210505A_47.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10100	106 /	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	10400	109	70	130	
NEtFOSAA	ng/L	10000	10500	105	70	130	
NMeFOSAA	ng/L	10000	10400	104	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9420	106	70	130	
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10600	106	70	130	
Perfluoroheptanoic acid	ng/L	10000	10600	106	70	130	
Perfluorohexanoic acid	ng/L	10000	10600	106	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9790	107	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10500	105	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9900	107	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotetradecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotridecanoic acid	ng/L	10000	10500	105	70	130	
Perfluoroundecanoic acid	ng/L	10000	10700	107	70	130	

7E

ORGANICS CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	QQQ3
Analysis Date:	05/06/2021 01:19	Lab File ID:	2210505A_58.d
Analytical Method:	EPA 537 Mod Isotope Dilution	Analytical Batch:	710369

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
6:2 Fluorotelomersulfonic acid	ng/L	9510	10100	106 V	70	130	
8:2 Fluorotelomersulfonic acid	ng/L	9600	9900	103	70	130	
NEtFOSAA	ng/L	10000	10700	107	70	130	-
NMeFOSAA	ng/L	10000	10600	106	70	130	
Perfluorobutanoic acid	ng/L	10000	10500	105	70	130	
Perfluorobutanesulfonic acid	ng/L	8870	9420	106	70	130	
Perfluorodecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorododecanoic acid	ng/L	10000	10800	108	70	130	<u> </u>
Perfluoroheptanoic acid	ng/L	10000	10600	106	70	130	
Perfluorohexanoic acid	ng/L	10000	10700	107	70	130	
Perfluorohexanesulfonic acid	ng/L	9140	9750	107	70	130	
Perfluorononanoic acid	ng/L	10000	10700	107	70	130	
Perfluorooctanoic acid	ng/L	10000	10500	105	70	130	
Perfluorooctanesulfonic acid	ng/L	9280	9690	104	70	130	
Perfluoropentanoic acid	ng/L	10000	10700	107	70	130	-
Perfluorotetradecanoic acid	ng/L	10000	10700	107	70	130	
Perfluorotridecanoic acid	ng/L	10000	10700	107	70	130	
Perfluoroundecanoic acid	ng/L	10000	10600	106	70	130	

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	port No: 221032903			2162464			
Matrix:	Water		Instrument ID:	QQQ2			
Sample Amt:	125 mL		Lab File ID:	2210405A_27.0	d		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:			Analysis Date:	04/05/21	Time:	1659	
Prep Batch:	707127		Analytical Batch:	707851			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

	CLIENT SAMPLE ID	GCAL SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1.	LCS2162465	2162465	22100401A_43.d	04/01/21	2236
2.	WL-DECON-01	22103290301	22100401A_63.d	04/02/21	0323
3.	LCS2162465RE	2162465RE	2210405A_28.d	04/05/21	1712
4.	WL-DECON-01RE	22103290301RE	2210405A_32.d	04/05/21	1805

FORM IV SV

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221032903				Client Sample ID:	MB2162464RE			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	2162464RE			
Matrix:	Water	% Moisture:	NA		Instrument ID:	QQQ2			
Sample Amt:	125	mL			Lab File ID:	2210405A_27.	d		
Injection Vol.:	1.0			(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000			(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:					Analysis Date:	04/05/21	Time:	1659	
Prep Batch:	707127				Analytical Batch:	707851			
Prep Method:	PFAS ID Q	SM B15 Prep			Analytical Method:	PFAS Isotope I	Dilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	2.00	U	0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	2.00	U	0.900	2.00	4.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	(1.97)	J	0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	2.00	U	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	2.00	U	0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	2.00	U	0.810	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221032903							
Prep Method:	PFAS ID QSM B15 F	PFAS ID QSM B15 Prep			Prep Batch:			
Analytical Method:	PFAS Isotope Dilutio	PFAS Isotope Dilution QSM B15		Analytical Batch:		707851		
GCAL QC ID: 2 ANALYTE	2162465	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	#	QC LIMITS
6:2 Fluorotelomers	sulfonic acid	ng/L	76.1	0	73.3	962		64 - 140
8:2 Fluorotelomers	sulfonic acid	ng/L	76.8	0	77.9	101		67 - 138
Perfluorobutanesu	lfonic acid	ng/L	71	0	68.6	97		72 - 130
Perfluorobutanoic	acid	ng/L	80	0	77.2	97		73 - 129
Perfluorodecanoic	acid	ng/L	80	0	80	100		71 - 129
Perfluorododecano	pic acid	ng/L	80	0	84	105		72 - 134
Perfluorohexanesu	Ifonic acid	ng/L	73.1	0	75.9	104		68 - 131
Perfluorohexanoic	acid	ng/L	80	0	74.6	93		72 - 129
Perfluorononanoic	acid	ng/L	80	0	81.3	102		69 - 130
Perfluorooctanesu	Ifonic acid	ng/L	74.2	0	69.5	94		65 - 140
Perfluorooctanoic	acid	ng/L	80	0	76.4	95		71 - 133
Perfluoropentanoio	acid	ng/L	80	0	76.5	96		72 - 129
Perfluorotetradeca	noic acid	ng/L	80	0	75.8	95		71 - 132
Perfluoroundecand	pic acid	ng/L	80	0	74.6	93		69 - 133

RPD : 0 out of 0 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 14 outside limits

* Values outside of QC limits

FORM III SV-1

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	221032903		Method Blank ID:	2162464			
Matrix:	Water		Instrument ID:	QQQ1			
Sample Amt:	125 mL		Lab File ID:	22100401A_42	.d		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:			Analysis Date:	04/01/21	Time:	2222	
Prep Batch:	707127		Analytical Batch:	707996			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	LCS2162465	2162465	22100401A_43.d	04/01/21	2236
2.	WL-DECON-01	22103290301	22100401A_63.d	04/02/21	0323
З.	LCS2162465RE	2162465RE	2210405A_28.d	04/05/21	1712
4.	WL-DECON-01RE	22103290301RE	2210405A_32.d	04/05/21	1805

FORM IV SV

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221032903	Client Sample ID:	MB2162464
Collect Date:	NA Time: NA	GCAL Sample ID:	2162464
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ1
Sample Amt:	125 mL	Lab File ID:	22100401A_42.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:		Analysis Date:	04/01/21 Time: 2222
Prep Batch:	707127	Analytical Batch:	707996
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15

CONCENTRATION UNITS: ng/L

				/		
CAS	ANALYTE	RESULT	Q,	DL	LOD	LOQ
2991-50-6	NEtFOSAA	4.00	UV	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-85-9	Perfluoroheptanoic acid	2.00	U	0.480	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	Report No: 221032903									
Prep Method: PFAS ID QSM B15 Pre		P		Prep Batch: 7		707127				
Analytical Method:	PFAS Isotope Dilution	QSM B1	5	Analytical Batch:		707996				
GCAL QC ID: 2 ANALYTE	2162465	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	#	QC LIMITS		
NEtFOSAA		ng/L	80	0	100	125 V		61 - 135		
NMeFOSAA		ng/L	80	0	69.7	87		65 - 136		
Perfluoroheptanoio	acid	ng/L	80	0	74.1	93		72 - 130		
Perfluorotridecano	ic acid	ng/L	80	0	65.5	82		65 - 144		

RPD : 0 out of 0 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: _____ out of _____ outside limits

* Values outside of QC limits

FORM III SV-1

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	221050411		Method Blank ID:	2179328			
Matrix:	Water		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210507B_29.0	b l		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M		2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/04/21		Analysis Date:	05/07/21	Time:	2357	
Prep Batch:	709960		Analytical Batch:	710901			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

	CLIENT SAMPLE ID	GCAL SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1.	LCS2179329	2179329	2210507B_30.d	05/08/21	0012
2.	LCSD2179330	2179330	2210507B_31.d	05/08/21	0026
3.	AOI01-01-GW	22105041138	2210507B_44.d	05/08/21	0337
4.	AOI01-02-GW	22105041139	2210507B_45.d	05/08/21	0352
5.	AOI01-03-GW	22105041140	2210507B_46.d	05/08/21	0406
6.	AOI01-04-GW	22105041141	2210507B_47.d	05/08/21	0421
7.	AOI01-03-GW-D	22105041142	2210507B_48.d	05/08/21	0436
8.	AOI01-05-GW	22105041143	2210507B_49.d	05/08/21	0450
9.	AOI01-06-GW	22105041144	2210507B_50.d	05/08/21	0505
10.	AOI01-02-GWDL	22105041139DL	2210515A_15.d	05/15/21	1420
11.	AOI01-03-GWDL1	22105041140DL1	2210517A_12.d	05/17/21	1919
12.	AOI01-04-GWDL	22105041141DL	2210517A_13.d	05/17/21	1934
13.	AOI01-03-GW-DDL	22105041142DL	2210517A_14.d	05/17/21	1949
14.	AOI01-03-GWDL	22105041140DL	2210527A_31.d	05/28/21	0033

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	MB2179328			
Collect Date:	NA Time: NA		GCAL Sample ID:	2179328	_		
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210507B_29.0	ł		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/04/21		Analysis Date:	05/07/21	Time:	2357	
Prep Batch:	709960		Analytical Batch:	710901			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q,	DL	LOD	LOQ		
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	UV	1.50	3.00	4.00		
39108-34-4	8:2 Fluorotelomersulfonic acid	2.00	U	0.900	2.00	4.00		
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00		
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00		
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.810	2.00	4.00		
375-22-4	Perfluorobutanoic acid	2.00	U	0.900	2.00	4.00		
335-76-2	Perfluorodecanoic acid	2.00	U	0.860	2.00	4.00		
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00		
375-85-9	Perfluoroheptanoic acid	2.00	U	0.480	2.00	4.00		
355-46-4	Perfluorohexanesulfonic acid	3.00	U	1.24	3.00	4.00		
307-24-4	Perfluorohexanoic acid	2.00	U	0.990	2.00	4.00		
375-95-1	Perfluorononanoic acid	2.00	U	0.780	2.00	4.00		
1763-23-1	Perfluorooctanesulfonic acid	2.00	U	0.760	2.00	4.00		
335-67-1	Perfluorooctanoic acid	2.00	U	0.950	2.00	4.00		
2706-90-3	Perfluoropentanoic acid	2.00	U	0.850	2.00	4.00		
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00		
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00		
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00		

/

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411			
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	709960	
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	710901	

GCAL QC ID: 2179329 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	#	QC	LIMITS
6:2 Fluorotelomersulfonic acid	ng/L	76.1	0	89.3	117)		64	- 140
8:2 Fluorotelomersulfonic acid	ng/L	76.8	0	92.2	120		67	- 138
NEtFOSAA	ng/L	80	0	98.5	123		61	- 135
NMeFOSAA	ng/L	80	0	95.6	120		65	- 136
Perfluorobutanesulfonic acid	ng/L	71	0	84.8	120		72	- 130
Perfluorobutanoic acid	ng/L	80	0	96	120		73	- 129
Perfluorodecanoic acid	ng/L	80	0	97.3	122		71	- 129
Perfluorododecanoic acid	ng/L	80	0	98.1	123	_	72	- 134
Perfluoroheptanoic acid	ng/L	80	0	96.7	121		72	- 130
Perfluorohexanesulfonic acid	ng/L	73.1	0	89.8	123		68	- 131
Perfluorohexanoic acid	ng/L	80	0	96.5	121		72	- 129
Perfluorononanoic acid	ng/L	80	0	96.9	121		69	- 130
Perfluorooctanesulfonic acid	ng/L	74.2	0	87.6	118		65	- 140
Perfluorooctanoic acid	ng/L	80	0	94.7	118		71	- 133
Perfluoropentanoic acid	ng/L	80	0	97.1	121		72	- 129
Perfluorotetradecanoic acid	ng/L	80	0	95.3	119		71	- 132
Perfluorotridecanoic acid	ng/L	80	0	95.8	120		65	- 144
Perfluoroundecanoic acid	ng/L	80	0	99.8	125	\rightarrow	69	- 133

RPD : 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 36 outside limits

* Values outside of QC limits

FORM III SV-1

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411		
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	709960
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	710901

GCAL QC ID: 2179330		SPIKE	LCSD	LCSD	%	QC L	IMITS
ANALYTE	UNITS	ADDED	RESULT	% REC		# REC	RPD
6:2 Fluorotelomersulfonic acid	ng/L	76.1	89.1	117 V	.21	64 - 140	0 - 30
8:2 Fluorotelomersulfonic acid	ng/L	76.8	91.5	119	.8	67 - 138	0 - 30
NEtFOSAA	ng/L	80	97.6	122	1	61 - 135	0 - 30
NMeFOSAA	ng/L	80	99.4	124	4	65 - 136	0 - 30
Perfluorobutanesulfonic acid	ng/L	71	85.1	120	.3	72 - 130	0 - 30
Perfluorobutanoic acid	ng/L	80	95.5	119	.5	73 - 129	0 - 30
Perfluorodecanoic acid	ng/L	80	98.4	123	1	71 - 129	0 - 30
Perfluorododecanoic acid	ng/L	80	97.7	122	.5	72 - 134	0 - 30
Perfluoroheptanoic acid	ng/L	80	96.2	120	.5	72 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73.1	90.2	123	.4	68 - 131	0 - 30
Perfluorohexanoic acid	ng/L	80	96.2	120	.3	72 - 129	0 - 30
Perfluorononanoic acid	ng/L	80	99	124	2	69 - 130	0 - 30
Perfluorooctanesulfonic acid	ng/L	74.2	89.9	121	3	65 - 140	0 - 30
Perfluorooctanoic acid	ng/L	80	96.1	120	1	71 - 133	0 - 30
Perfluoropentanoic acid	ng/L	80	98.2	123	1	72 - 129	0 - 30
Perfluorotetradecanoic acid	ng/L	80	97.6	122	2	71 - 132	0 - 30
Perfluorotridecanoic acid	ng/L	80	96	120	.2	65 - 144	0 - 30
Perfluoroundecanoic acid	ng/L	80	100	125	.5	69 - 133	0 - 30

RPD: 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 36 outside limits

* Values outside of QC limits

FORM III SV-1

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	221050411		Method Blank ID:	2179810			
Matrix:	Water		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210513A_07.0	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/03/21		Analysis Date:	05/13/21	_ Time:	1559	
Prep Batch:	710037		Analytical Batch:	711161			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	AOI01-09-GW	22105041147	2210505A_24.d	05/05/21	1702
2.	LCS2179811	2179811	2210513A_08.d	05/13/21	1614
3.	LCSD2179812	2179812	2210513A_09.d	05/13/21	1628
4.	AOI01-09-GWRE	22105041147RE	2210527A_30.d	05/28/21	0018

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411				Client Sample ID:	MB2179810			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	2179810			
Matrix:	Water	% Moisture:	NA		Instrument ID:	QQQ3			
Sample Amt:	125	mL			Lab File ID:	2210513A_07.0	d		
Injection Vol.:	1.0			(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000			(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/03/21				Analysis Date:	05/13/21	Time:	1559	
Prep Batch:	710037				Analytical Batch:	711161			
Prep Method:	PFAS ID C	SM B15 Prep			Analytical Method:	PFAS Isotope I	Dilution QS	M B15	

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q /	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	2.00		0.940	2.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	2.00	U	0.900	2.00	4.00
2991-50-6	NEtFOSAA	4.00	U	0.970	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.910	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.810	2.00	4.00
375-22-4	Perfluorobutanoic acid	2.00	U	0.900	2.00	4.00
335-76-2	Perfluorodecanoic acid	2.00	U	0.860	2.00	4.00
307-55-1	Perfluorododecanoic acid	2.00	U	0.880	2.00	4.00
375-85-9	Perfluoroheptanoic acid	2.00	U	0.480	2.00	4.00
355-46-4	Perfluorohexanesulfonic acid	2.00	U	0.950	2.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.990	2.00	4.00
375-95-1	Perfluorononanoic acid	2.00	U	0.780	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	2.00	U	0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.950	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.850	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	2.00	U	0.980	2.00	4.00
72629-94-8	Perfluorotridecanoic acid	2.00	U	0.990	2.00	4.00
2058-94-8	Perfluoroundecanoic acid	2.00	U	0.950	2.00	4.00

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411			
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710037	_
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711161	

GCAL QC ID: 2179811 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC #	Q	C LIN	IITS
6:2 Fluorotelomersulfonic acid	ng/L	76.1	0	67.2	88	64	-	140
8:2 Fluorotelomersulfonic acid	ng/L	76.8	0	65.9	86	67		138
NEtFOSAA	ng/L	80	0	64.4	81	61	-	135
NMeFOSAA	ng/L	80	0	67.4	84	65	-	136
Perfluorobutanesulfonic acid	ng/L	71	0	56.8	80	72	-	130
Perfluorobutanoic acid	ng/L	80	0	65	81	73	-	129
Perfluorodecanoic acid	ng/L	80	0	67.2	84	71	-	129
Perfluorododecanoic acid	ng/L	80	0	67.8	85	72	-	134
Perfluoroheptanoic acid	ng/L	80	0	66.1	83	72	-	130
Perfluorohexanesulfonic acid	ng/L	73.1	0	62	85	68	-	131
Perfluorohexanoic acid	ng/L	80	0	65.1	81	72	-	129
Perfluorononanoic acid	ng/L	80	0	66.3	83	69	-	130
Perfluorooctanesulfonic acid	ng/L	74.2	0	62.2	84	65	-	140
Perfluorooctanoic acid	ng/L	80	0	64.8	81	71	-	133
Perfluoropentanoic acid	ng/L	80	0	67	84	72	-	129
Perfluorotetradecanoic acid	ng/L	80	0	68.6	86	71	-	132
Perfluorotridecanoic acid	ng/L	80	0	66.8	84	65	-	144
Perfluoroundecanoic acid	ng/L	80	0	66.7	83	69		133

RPD : 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 36 outside limits

FORM III SV-1

* Values outside of QC limits

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411		
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710037
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711161

GCAL QC ID: 2179812		SPIKE	LCSD	LCSD		%		QC L	IMITS
ANALYTE	UNITS	ADDED	RESULT	% REC	#	RPD	#	REC	RPD
6:2 Fluorotelomersulfonic acid	ng/L	76.1	72.2	95 🗸	ÍΤ	71		64 - 140	0 - 30
8:2 Fluorotelomersulfonic acid	ng/L	76.8	76	99		14		67 - 138	0 - 30
NEtFOSAA	ng/L	80	72.5	91		12		61 - 135	0 - 30
NMeFOSAA	ng/L	80	74.9	94		11		65 - 136	0 - 30
Perfluorobutanesulfonic acid	ng/L	71	64.8	91		13		72 - 130	0 - 30
Perfluorobutanoic acid	ng/L	80	72.3	90		11		73 - 129	0 - 30
Perfluorodecanoic acid	ng/L	80	74.9	94		11		71 - 129	0 - 30
Perfluorododecanoic acid	ng/L	80	74.8	94		10		72 - 134	0 - 30
Perfluoroheptanoic acid	ng/L	80	74	92		11		72 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73.1	68.4	94		10		68 - 131	0 - 30
Perfluorohexanoic acid	ng/L	80	74.2	93		13		72 - 129	0 - 30
Perfluorononanoic acid	ng/L	80	74	92		11		69 - 130	0 - 30
Perfluorooctanesulfonic acid	ng/L	74.2	68.1	92		9		65 - 140	0 - 30
Perfluorooctanoic acid	ng/L	80	72.5	91		11		71 - 133	0 - 30
Perfluoropentanoic acid	ng/L	80	73.9	92		10		72 - 129	0 - 30
Perfluorotetradecanoic acid	ng/L	80	74.3	93		8		71 - 132	0 - 30
Perfluorotridecanoic acid	ng/L	80	74.4	93		11		65 - 144	0 - 30
Perfluoroundecanoic acid	ng/L	80	74.3	93		11		69 - 133	0 - 30

RPD : 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 36 outside limits

FORM III SV-1

* Values outside of QC limits

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	221050411		Method Blank ID:	2183139			
Matrix:	Water		Instrument ID:	QQQ3			
Sample Amt:	125 mL		Lab File ID:	2210508A_07.0	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	D	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/07/21		Analysis Date:	05/08/21	Time:	1858	
Prep Batch:	710580		Analytical Batch:	710724			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

	GCAL	LAB	DATE	TIME
CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1. LCS2183140	2183140	2210508A_08.d	05/08/21	1913
2. LCSD2183141	2183141	2210508A_09.d	05/08/21	1927
3. LCS2183140RE	2183140RE	2210525A_57.d	05/26/21	0602
4. LCSD2183141RE	2183141RE	2210525A_58.d	05/26/21	0617
5. WL-FRB-01	22105041110	2210525A_59.d	05/26/21	0632
6. AOI01-07-GW	22105041145	2210525A_60.d	05/26/21	0646
7. AOI01-08-GW	22105041146	2210525A_61.d	05/26/21	0701
8. AOI01-10-GW	22105041148	2210525A_62.d	05/26/21	0715
9. AOI01-10-GW-MS	22105041149	2210525A_63.d	05/26/21	0730
0. AOI01-10-GW-MSD	22105041150	2210525A_64.d	05/26/21	0745
1. WL-ERB-02	22105041151	2210525A_65.d	05/26/21	0759
2. WL-ERB-03	22105041152	2210525A_66.d	05/26/21	0814
3. WL-ERB-04	22105041153	2210525A_67.d	05/26/21	0829
4. WL-ERB-01	22105041154	2210525A_69.d	05/26/21	0858
5. WL-FRB-01RE	22105041110RE	2210602C_40.d	06/03/21	0357

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	MB2183139
Collect Date:	NA Time: NA		GCAL Sample ID:	2183139
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3
Sample Amt:	125 mL		Lab File ID:	2210508A_07.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/07/21		Analysis Date:	05/08/21 Time: 1858
Prep Batch:	710580		Analytical Batch:	710724
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	3.00	U	1.50	3.00	4.00
39108-34-4	8:2 Fluorotelomersulfonic acid	3.00	U	1.06	3.00	4.00
2991-50-6	NEtFOSAA	4.00	U	1.58	4.00	8.00
2355-31-9	NMeFOSAA	4.00	U	0.900	4.00	8.00
375-73-5	Perfluorobutanesulfonic acid	2.00	U	0.620	2.00	4.00
375-22-4	Perfluorobutanoic acid	3.50	U	1.52	3.50	4.00
335-76-2	Perfluorodecanoic acid	3.00	U	1.44	3.00	4.00
307-55-1	Perfluorododecanoic acid	3.00	U	1.30	3.00	4.00
375-85-9	Perfluoroheptanoic acid	3.00	U	1.16	3.00	4.00
355-46-4	Perfluorohexanesulfonic acid	3.00	U	1.24	3.00	4.00
307-24-4	Perfluorohexanoic acid	2.00	U	0.940	2.00	4.00
1763-23-1	Perfluorooctanesulfonic acid	0.830	J	0.760	2.00	4.00
335-67-1	Perfluorooctanoic acid	2.00	U	0.840	2.00	4.00
2706-90-3	Perfluoropentanoic acid	2.00	U	0.880	2.00	4.00
376-06-7	Perfluorotetradecanoic acid	3.00	U	1.14	3.00	4.00
72629-94-8	Perfluorotridecanoic acid	3.00	U	1.23	3.00	4.00
2058-94-8	Perfluoroundecanoic acid	3.00	U	1.24	3.00	4.00

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411			
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710580	
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	710724	_

GCAL QC ID: 2183140 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC #	QC	LIMITS
6:2 Fluorotelomersulfonic acid	ng/L	76.1	0	95.2	125	64	- 140
8:2 Fluorotelomersulfonic acid	ng/L	76.8	0	102	132	67	- 138
NEtFOSAA	ng/L	80	0	103	128	61	- 135
NMeFOSAA	ng/L	80	0	106	133	65	- 136
Perfluorobutanesulfonic acid	ng/L	71	0	90.5	128	72	- 130
Perfluorobutanoic acid	ng/L	80	0	99.7	125	73	- 129
Perfluorodecanoic acid	ng/L	80	0	101	127	71	- 129
Perfluorododecanoic acid	ng/L	80	0	105	131	72	- 134
Perfluoroheptanoic acid	ng/L	80	0	102	127	72	- 130
Perfluorohexanesulfonic acid	ng/L	73.1	0	92.9	127	68	- 131
Perfluorohexanoic acid	ng/L	80	0	103	129	72	- 129
Perfluorooctanesulfonic acid	ng/L	74.2	0	95.7	129	65	- 140
Perfluorooctanoic acid	ng/L	80	0	102	127	71	- 133
Perfluoropentanoic acid	ng/L	80	0	102	128	72	- 129
Perfluorotetradecanoic acid	ng/L	80	0	103	129	71	- 132
Perfluorotridecanoic acid	ng/L	80	0	106	133	65	- 144
Perfluoroundecanoic acid	ng/L	80	0	105	131	69	- 133

RPD : 0 out of 17 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 34 outside limits

FORM III SV-1

* Values outside of QC limits

3C

WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411		
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710580
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	710724

GCAL QC ID: 2183141		SPIKE	LCSD	LCSD		%		QC L	IMITS
ANALYTE	UNITS	ADDED	RESULT	% REC	#	RPD	#	REC	RPD
6:2 Fluorotelomersulfonic acid	ng/L	76.1	97	127	ĹТ	2		64 - 140	0 - 30
8:2 Fluorotelomersulfonic acid	ng/L	76.8	98.1	128		4		67 - 138	0 - 30
NEtFOSAA	ng/L	80	104	130		1		61 - 135	0 - 30
NMeFOSAA	ng/L	80	106	132		.3		65 - 136	0 - 30
Perfluorobutanesulfonic acid	ng/L	71	90	127		.6		72 - 130	0 - 30
Perfluorobutanoic acid	ng/L	80	101	126		.8		73 - 129	0 - 30
Perfluorodecanoic acid	ng/L	80	102	127		.4		71 - 129	0 - 30
Perfluorododecanoic acid	ng/L	80	104	130		.8		72 - 134	0 - 30
Perfluoroheptanoic acid	ng/L	80	104	129		2		72 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73.1	93.1	127		.3		68 - 131	0 - 30
Perfluorohexanoic acid	ng/L	80	103	129		.2		72 - 129	0 - 30
Perfluorooctanesulfonic acid	ng/L	74.2	94.7	128		1		65 - 140	0 - 30
Perfluorooctanoic acid	ng/L	80	104	129		2		71 - 133	0 - 30
Perfluoropentanoic acid	ng/L	80	103	129		1		72 - 129	0 - 30
Perfluorotetradecanoic acid	ng/L	80	105	131		1		71 - 132	0 - 30
Perfluorotridecanoic acid	ng/L	80	107	134		1		65 - 144	0 - 30
Perfluoroundecanoic acid	ng/L	80	107	133		2		69 - 133	0 - 30

RPD : _____ out of _____ outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 34 outside limits

FORM III SV-1

* Values outside of QC limits

Report No:	221050411		Method Blank ID:	2184338			
Matrix:	Solid		Instrument ID:	QQQ1			
Sample Amt:	<u>5 g</u>		Lab File ID:	2210515A_18.0	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	DI	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	1428	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS isotope I	Dilution QS	M B15	

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZE
	LCS2184339	2184339	2210515A_19.d	05/15/21	1445
:.	AOI01-03-SB-00-02	22105041105	2210515A_22.d	05/15/21	1537
ι.	AOI01-03-SB-03-05	22105041106	2210515A_23.d	05/15/21	1554
	AOI01-03-SB-05-07	22105041107	2210515A_24.d	05/15/21	1611
ι.	AOI01-04-SB-00-02	22105041108	2210515A_25.d	05/15/21	1629
	AOI01-04-SB-03-05	22105041109	2210515A_26.d	05/15/21	1646
	AOI01-05-SB-00-02	22105041111	2210515A_27.d	05/15/21	1703
	AOI01-05-SB-02-04	22105041113	2210515A_28.d	05/15/21	1721
ι.	AOI01-05-SB-04-06	22105041114	2210515A_29.d	05/15/21	1738
١.	AOI01-06-SB-00-02	22105041116	2210515A_31.d	05/15/21	1813
	AOI01-07-SB-00-02	22105041118	2210515A_33.d	05/15/21	1847
	AOI01-07-SB-00-02-D	22105041119	2210515A_34.d	05/15/21	1905
	AOI01-07-SB-02-04	22105041120	2210515A_35.d	05/15/21	1922
	AOI01-07-SB-04-06	22105041121	2210515A_36.d	05/15/21	1939
	AOI01-08-SB-02-04	22105041125	2210515A_40.d	05/15/21	2049
	AOI01-08-SB-04-06	22105041126	2210515A_42.d	05/15/21	2123
	AOI01-10-SB-00-02	22105041131	2210515A_43.d	05/15/21	2140
	AOI01-10-SB-00-02-D	22105041132	2210515A_44.d	05/15/21	2158
	LCS2184339RE	2184339RE	2210520A_44.d	05/21/21	0421
	AOI01-03-SB-00-02RE	22105041105RE	2210520A_46.d	05/21/21	0451
	AOI01-03-SB-03-05RE	22105041106RE	2210520A_47.d	05/21/21	0505
	AOI01-03-SB-05-07RE	22105041107RE	2210520A_48.d	05/21/21	0520
	AOI01-04-SB-00-02RE	22105041108RE	2210520A_49.d	05/21/21	0534
	AOI01-04-SB-03-05RE	22105041109RE	2210520A_50.d	05/21/21	0549
	AOI01-05-SB-00-02RE	22105041111RE	2210520A_52.d	05/21/21	0619
	AOI01-05-SB-02-04RE	22105041113RE	2210520A_53.d	05/21/21	0633
•	AOI01-05-SB-04-06RE	22105041114RE	2210520A_54.d	05/21/21	0648
	AOI01-06-SB-00-02RE	22105041116RE	2210520A_55.d	05/21/21	0703
	AOI01-06-SB-03-05	22105041117	2210520A_56.d	05/21/21	0717
	AOI01-07-SB-00-02RE	22105041118RE	2210520A_57.d	05/21/21	0732
	AOI01-07-SB-00-02-DRE	22105041119RE	2210520A_58.d	05/21/21	0747

Report No:	221050411		Method Blank ID:	2184338			
Matrix:	Solid		Instrument ID:	QQQ1			
Sample Amt:	5 g		Lab File ID:	2210515A_18.0	1		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	1428	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope I	Dilution QS	M B15	

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
32 .	AOI01-07-SB-02-04RE	22105041120RE	2210520A_59.d	05/21/21	0801
33.	AOI01-07-SB-04-06RE	22105041121RE	2210520A_60.d	05/21/21	0816
34.	AO101-08-SB-00-02	22105041122	2210520A_61.d	05/21/21	0831
35.	AOI01-08-SB-00-02 MS	22105041123	2210520A_62.d	05/21/21	0845
36.	AOI01-08-SB-00-02 MSD	22105041124	2210520A_63.d	05/21/21	0900
37.	AOI01-08-SB-02-04RE	22105041125RE	2210520A_66.d	05/21/21	0944
38.	AOI01-08-SB-04-06RE	22105041126RE	2210520A_67.d	05/21/21	0958
39.	AOI01-10-SB-00-02-DRE	22105041132RE	2210520A_69.d	05/21/21	1028
40.	AOI01-08-SB-02-04DL	22105041125DL	2210520A_80.d	05/21/21	1308

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	MB2184338			
Collect Date:	NA Time: NA		GCAL Sample ID:	2184338			
Matrix:	Solid % Moisture: NA		Instrument ID:	QQQ1			
Sample Amt:	5 g		Lab File ID:	2210515A_18.0	ł		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	
Prep Date:	05/11/21		Analysis Date:	05/15/21	Time:	1428	
Prep Batch:	710837		Analytical Batch:	711275			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.200	U	0.060	0.200	1.00
39108-34-4	8:2 Fluorotelomersulfonic acid	0.100	U	0.030	0.100	1.00
2991-50-6	NEtFOSAA	0.100	U	0.030	0.100	1.00
2355-31-9	NMeFOSAA	0.050	U	0.020	0.050	1.00
375-73-5	Perfluorobutanesulfonic acid	(0.041)	J	0.020	0.050	1.00
375-22-4	Perfluorobutanoic acid	0.100	U	0.040	0.100	1.00
335-76-2	Perfluorodecanoic acid	0.100	υ	0.040	0.100	1.00
307-55-1	Perfluorododecanoic acid	0.050	U	0.020	0.050	1.00
375-85-9	Perfluoroheptanoic acid	0.050	U	0.020	0.050	1.00
307-24-4	Perfluorohexanoic acid	0.050	U	0.020	0.050	1.00
375-95-1	Perfluorononanoic acid	0.050	U	0.020	0.050	1.00
1763-23-1	Perfluorooctanesulfonic acid	0.200	U	0.050	0.200	1.00
335-67-1	Perfluorooctanoic acid	0.200	U	0.080	0.200	1.00
2706-90-3	Perfluoropentanoic acid	0.050	U	0.020	0.050	1.00
376-06-7	Perfluorotetradecanoic acid	0.050	U	0.020	0.050	1.00
72629-94-8	Perfluorotridecanoic acid	0.100	U	0.030	0.100	1.00
2058-94-8	Perfluoroundecanoic acid	0.050	U	0.020	0.050	1.00

3D SOIL SEMIVOLATILE LCS/LCSD RECOVERY

Report No: 22	21050411								
Prep Method: Pl	FAS ID QSM B1	5 Prep		Prep Batch:	710837				
Analytical Method: Pl	FAS Isotope Dilu	tion QSM B	15	Analytical Batch:	711275				
GCAL QC ID: 218433 ANALYTE	39 UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	C LIMITS			
6:2 Fluorotelomersulfonio	c acid ug/kg	1.9	0	1.88	99	64 - 140			
8:2 Fluorotelomersulfonio	c acid ug/kg	1.92	0	1.73	90	65 - 137			
NEtFOSAA	ug/kg	2	0	2.54	127	61 - 139			
NMeFOSAA	ug/kg	2	0	2.08	104	63 - 144			
Perfluorobutanesulfonic a	acid ug/kg	1.77	0	1.82	102	72 - 128			
Perfluorobutanoic acid	ug/kg	2	0	2.01	101	71 - 135			
Perfluorodecanoic acid	ug/kg	2	0	2	100	69 - 133			
Perfluorododecanoic acid	d ug/kg	2	0	2.14	107	69 - 135			
Perfluoroheptanoic acid	ug/kg	2	0	2.01	100	71 - 131			
Perfluorohexanesulfonic	acid ug/kg	1.83	0	1.89	104	67 - 130			
Perfluorohexanoic acid	ug/kg	2	0	1.96	98	70 - 132			
Perfluorononanoic acid	ug/kg	2	0	2.16	108	72 - 129			
Perfluorooctanesulfonic a	acid ug/kg	1.86	0	1.69	91	68 - 136			
Perfluorooctanoic acid	ug/kg	2	0	1.91	96	69 - 133			
Perfluoropentanoic acid	ug/kg	2	0	1.94	97	69 - 132			
Perfluorotetradecanoic a	cid ug/kg	2	0	2.04	102	69 - 133			
Perfluorotridecanoic acid	ug/kg	2	0	1.94	97	66 - 139			
Perfluoroundecanoic acid		2	0	2.08	104	64 - 136			

RPD: 0 out of 0 outside limits

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 18 outside limits

3D SOIL SEMIVOLATILE LCS/LCSD RECOVERY

Report No: 221050	411								
Prep Method: PFAS	D QSM B1	5 Prep		Prep Batch:	710838				
Analytical Method: PFAS	sotope Dilu	ition QSM B	15	Analytical Batch:	711275				
GCAL QC ID: 2184341 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC /#	QC LIMITS			
6:2 Fluorotelomersulfonic acid	ug/kg	1.9	0	1.83	96]	64 - 140			
8:2 Fluorotelomersulfonic acid	ug/kg	1.92	0	1.69	88	65 - 137			
NEtFOSAA	ug/kg	2	0	2.64	132	61 - 139			
NMeFOSAA	ug/kg	2	0	1.82	91	63 - 144			
Perfluorobutanesulfonic acid	ug/kg	1.77	0	1.82	102	72 - 128			
Perfluorobutanoic acid	ug/kg	2	0	2.01	100	71 - 135			
Perfluorodecanoic acid	ug/kg	2	0	2.01	100	69 - 133			
Perfluorododecanoic acid	ug/kg	2	0	2.09	104	69 - 135			
Perfluoroheptanoic acid	ug/kg	2	0	2	100	71 - 131			
Perfluorohexanesulfonic acid	ug/kg	1.83	0	2.02	111	67 - 130			
Perfluorohexanoic acid	ug/kg	2	0	2.05	102	70 - 132			
Perfluorononanoic acid	ug/kg	2	0	2.11	105	72 - 129			
Perfluorooctanesulfonic acid	ug/kg	1.86	0	1.75	94	68 - 136			
Perfluorooctanoic acid	ug/kg	2	0	2.03	102	69 - 133			
Perfluoropentanoic acid	ug/kg	2	0	1.97	99	69 - 132			
Perfluorotetradecanoic acid	ug/kg	2	0	2	100	69 - 133			
Perfluorotridecanoic acid	ug/kg	2	0	1.94	97	66 - 139			
Perfluoroundecanoic acid	ug/kg	2	0	2.07	104	64 - 136			

RPD : 0 out of 0 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 18 outside limits

FORM III SV-2

* Values outside of QC limits

Report No:	221050411		Method Blank ID:	2184340				
Matrix:	Solid	Instrument iD:	QQQ1					
Sample Amt:	<u>5 g</u>		Lab File ID:	2210515A_71.d				
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M		2.1	(mm)	
Prep Final Vol.:	1000	(µL)	Dilution Factor:	<u>1</u> An	alyst:	MRA		
Prep Date:	05/12/21		Analysis Date:	05/16/21	Time:	0545		
Prep Batch:	710838		Analytical Batch:	711275				
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilut	tion QSI	M B15		

	CLIENT SAMPLE ID	GCAL SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1.	LCS2184341	2184341	2210515A_72.d	05/16/21	0603
2.	AOI01-10-SB-03-05	22105041135	2210515A_73.d	05/16/21	0620
З.	AOI01-10-SB-03-05-MS	22105041136	2210515A_74.d	05/16/21	0638
4.	AOI01-10-SB-03-05-MSD	22105041137	2210515A_75.d	05/16/21	0655
5.	LCS2184341RE	2184341RE	2210521A_73.d	05/22/21	0413

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411				Client Sample ID:	MB2184340			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	2184340			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	QQQ1			
Sample Amt:	5	<u>g</u>			Lab File ID:	2210515A_71.0	ł		
Injection Vol.:	1.0			(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000			(µL)	Dilution Factor:	1	Analyst:	MRA	5
Prep Date:	05/12/21				Analysis Date:	05/16/21	Time:	0545	
Prep Batch:	710838				Analytical Batch:	711275			
Prep Method:	PFAS ID Q	SM B15 Prep			Analytical Method:	PFAS Isotope Dilution QSM B15			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.200	U	0.060	0.200	1.00
39108-34-4	8:2 Fluorotelomersulfonic acid	0.100	U	0.030	0.100	1.00
2991-50-6	NEtFOSAA	0.100	U	0.030	0.100	1.00
2355-31-9	NMeFOSAA	0.050	U	0.020	0.050	1.00
375-73-5	Perfluorobutanesulfonic acid	0.035	J	0.020	0.050	1.00
375-22-4	Perfluorobutanoic acid	0.100	U	0.040	0.100	1.00
335-76-2	Perfluorodecanoic acid	0.100	U	0.040	0.100	1.00
307-55-1	Perfluorododecanoic acid	0.050	U	0.020	0.050	1.00
375-85-9	Perfluoroheptanoic acid	0.050	U	0.020	0.050	1.00
355-46-4	Perfluorohexanesulfonic acid	0.100	U	0.030	0.100	1.00
307-24-4	Perfluorohexanoic acid	0.023	J	0.020	0.050	1.00
375-95-1	Perfluorononanoic acid	0.050	U	0.020	0.050	1.00
1763-23-1	Perfluorooctanesulfonic acid	0.200	U	0.050	0.200	1.00
335-67-1	Perfluorooctanoic acid	0.200	U	0.080	0.200	1.00
2706-90-3	Perfluoropentanoic acid	0.050	U	0.020	0.050	1.00
376-06-7	Perfluorotetradecanoic acid	0.050	U	0.020	0.050	1.00
72629-94-8	Perfluorotridecanoic acid	0.100	U	0.030	0.100	1.00
2058-94-8	Perfluoroundecanoic acid	0.050	U	0.020	0.050	1.00

3D SOIL SEMIVOLATILE MS/MSD RECOVERY

Report No:	22105041	1			Parent Sample ID:	AOI01-10-SB-	03-05		
Prep Method:	PFAS ID	QSM B15 Prep ptope Dilution QSM B15			Prep Batch:	710838			
Analytical Method:	PFAS Iso				Analytical Batch:	711275			
GCAL QC ID: 221 ANALYTE	05041136	UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS % REC	#	QC	LIMITS
6:2 Fluorotelomersulf	onic acid	ug/kg	2.35	.011	2.27	96		64	- 140
8:2 Fluorotelomersulfo	onic acid	ug/kg	2.37	.000805	1.68	71		65	- 137
NEtFOSAA		ug/kg	2.47	.00284	3.11	126		61	- 139
NMeFOSAA		ug/kg	2.47	.0000761	2.3	93		63	- 144
Perfluorobutanesulfor	nic acid	ug/kg	2.19	.012	2.27	103		72	- 128
Perfluorobutanoic acid	b	ug/kg	2.47	.067	2.43	96		71	- 135
Perfluorodecanoic aci	d	ug/kg	2.47	.036	2.32	93		69	- 133
Perfluorododecanoic a	acid	ug/kg	2.47	.00263	2.63	107		69	- 135
Perfluoroheptanoic ac	id	ug/kg	2.47	.033	2.56	102		71	- 131
Perfluorohexanesulfor	nic acid	ug/kg	2.26	.297	11.2	484	*	67	- 130
Perfluorohexanoic aci	d	ug/kg	2.47	.089	2.71	106		70	- 132
Perfluorononanoic aci	d	ug/kg	2.47	.141	2.6	99		72	- 129
Perfluorooctanesulfon	ic acid	ug/kg	2.3	.795	2.52	75		68	- 136
Perfluorooctanoic acid	ł	ug/kg	2.47	.105	16.2	651	*	69	- 133
Perfluoropentanoic ac	id	ug/kg	2.47	.043	2.51	100		69	- 132
Perfluorotetradecanoi	c acid	ug/kg	2.47	.01	2.5	101		69	- 133
Perfluorotridecanoic a	cid	ug/kg	2.47	.015	2.34	94		66	- 139
Perfluoroundecanoic a	acid	ug/kg	2.47	.012	2.5	101		64	- 136

RPD : 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

36 outside limits Spike Recovery: 4 out of

FORM III SV-2

* Values outside of QC limits

RPD : 0 out of 18 outside limits

Spike Recovery: ____4 out of ____36 outside limits

3D SOIL SEMIVOLATILE MS/MSD RECOVERY

Report No: 221050411		Parent Sample ID:	AOI01-10-SB-03-05
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710838
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711275

GCAL QC ID: 22105041137 ANALYTE	UNITS	SPIKE ADDED	MSD RESULT	MSD % REC	#	% RPD	#	QC REC	LIMITS RPD
6:2 Fluorotelomersulfonic acid	ug/kg	2.27	2.21	97		2 V	Í	64 - 140	0 - 30
8:2 Fluorotelomersulfonic acid	ug/kg	2.3	1.92	83		13	İ –	65 - 137	0 - 30
NEtFOSAA	ug/kg	2.4	2.79	116		11		61 - 139	0 - 30
NMeFOSAA	ug/kg	2.4	2.3	96		.07	_	63 - 144	0 - 30
Perfluorobutanesulfonic acid	ug/kg	2.13	2.16	101		5		72 - 128	0 - 30
Perfluorobutanoic acid	ug/kg	2.4	2.41	98		1		71 - 135	0 - 30
Perfluorodecanoic acid	ug/kg	2.4	2.27	94		2		69 - 133	0 - 30
Perfluorododecanoic acid	ug/kg	2.4	2.4	100		9		69 - 135	0 - 30
Perfluoroheptanoic acid	ug/kg	2.4	2.51	103		2		71 - 131	0 - 30
Perfluorohexanesulfonic acid	ug/kg	2.19	13.5	600	*	18		67 - 130	0 - 30
Perfluorohexanoic acid	ug/kg	2.4	2.51	101		7		70 - 132	0 - 30
Perfluorononanoic acid	ug/kg	2.4	2.58	102		.4		72 - 129	0 - 30
Perfluorooctanesulfonic acid	ug/kg	2.22	2.53	78		.6		68 - 136	0 - 30
Perfluorooctanoic acid	ug/kg	2.4	18.8	778	*	14		69 - 133	0 - 30
Perfluoropentanoic acid	ug/kg	2.4	2.41	99		4	110	69 - 132	0 - 30
Perfluorotetradecanoic acid	ug/kg	2.4	2.4	100		4		69 - 133	0 - 30
Perfluorotridecanoic acid	ug/kg	2.4	2.15	89		9	100	66 - 139	0 - 30
Perfluoroundecanoic acid	ug/kg	2.4	2.46	102		2		64 - 136	0 - 30

* Values outside of QC limits

Column to be used to flag recovery and RPD values with an asterisk

Report No:	221050411		Method Blank ID:	2183946				
Matrix:	Solid	Instrument ID:	QQQ3					
Sample Amt:	<u>5 g</u>		Lab File ID:	2210517A_16.d				
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	D ID	2.1	(mm)	
Prep Final Vol.:	1000	(µL)	Dilution Factor:	Ana	alyst:	RXJ		
Prep Date:	05/10/21		Analysis Date:	05/17/21 1	Time:	2024		
Prep Batch:	710742		Analytical Batch:	711477				
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Diluti	on QSI	M B15		

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	LCS2183947	2183947	2210517A_17.d	05/17/21	2038
2.	LCSD2183948	2183948	2210517A_18.d	05/17/21	2053
3.	AOI01-01-SB-00-02	22105041101	2210517A_45a.d	05/18/21	0329
4.	AOI01-01-SB-05-07	22105041102	2210517A_46.d	05/18/21	0344
5.	AOI01-02-SB-00-02	22105041103	2210517A_47.d	05/18/21	0359
6.	AOI01-02-SB-04-06	22105041104	2210517A_48.d	05/18/21	0413
7.	AOI01-09-SB-00-02	22105041127	2210517A_49.d	05/18/21	0428
8.	AOI01-09-SB-00-02-D	22105041128	2210517A_50.d	05/18/21	0443
9.	AOI01-09-SB-05-07	22105041129	2210517A_51.d	05/18/21	0457
10.	AOI01-09-SB-08-10	22105041130	2210517A_52.d	05/18/21	0512

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411				Client Sample ID:	MB2183946			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	2183946			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	QQQ3			
Sample Amt:	5	g			Lab File ID:	2210517A_16.0	ł		
Injection Vol.:	1.0			(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000			(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/10/21				Analysis Date:	05/17/21	Time:	2024	
Prep Batch:	710742				Analytical Batch:	711477			
Prep Method:	PFAS ID Q	SM B15 Prep			Analytical Method:	PFAS Isotope I	Dilution QS	M B15	

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
27619-97-2	6:2 Fluorotelomersulfonic acid	0.200	U	0.060	0.200	1.00
39108-34-4	8:2 Fluorotelomersulfonic acid	0.100	U	0.030	0.100	1.00
2991-50-6	NEtFOSAA	0.100	U	0.030	0.100	1.00
2355-31-9	NMeFOSAA	0.050	U	0.020	0.050	1.00
375-73-5	Perfluorobutanesulfonic acid	0.230	J	0.020	0.050	1.00
375-22-4	Perfluorobutanoic acid	0.100	U	0.040	0.100	1.00
335-76-2	Perfluorodecanoic acid	0.100	U	0.040	0.100	1.00
307-55-1	Perfluorododecanoic acid	0.050	U	0.020	0.050	1.00
375-85-9	Perfluoroheptanoic acid	0.050	U	0.020	0.050	1.00
355-46-4	Perfluorohexanesulfonic acid	0.100	U	0.030	0.100	1.00
307-24-4	Perfluorohexanoic acid	0.050	U	0.020	0.050	1.00
375-95-1	Perfluorononanoic acid	0.050	U	0.020	0.050	1.00
1763-23-1	Perfluorooctanesulfonic acid	(0.071)	J	0.050	0.200	1.00
335-67-1	Perfluorooctanoic acid	0.200	U	0.080	0.200	1.00
2706-90-3	Perfluoropentanoic acid	0.050	U	0.020	0.050	1.00
376-06-7	Perfluorotetradecanoic acid	0.050	U	0.020	0.050	1.00
72629-94-8	Perfluorotridecanoic acid	0.100	U	0.030	0.100	1.00
2058-94-8	Perfluoroundecanoic acid	0.050	U	0.020	0.050	1.00

3D SOIL SEMIVOLATILE LCS/LCSD RECOVERY

Report No: 2210	50411								
Prep Method: PFA	S ID QSM B1	5 Prep		Prep Batch:	710742				
Analytical Method: PFA	S Isotope Dilu	ition QSM B	15	Analytical Batch:	711477				
GCAL QC ID: 2183947 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	ŧ	QC	LIMI	TS
6:2 Fluorotelomersulfonic a	cid ug/kg	1.9	0	1.84	97		64	-	140
8:2 Fluorotelomersulfonic a	cid ug/kg	1.92	0	1.93	101		65	-	137
NEtFOSAA	ug/kg	2	0	1.96	98		61	-	139
NMeFOSAA	ug/kg	2	0	1.97	99		63	-	144
Perfluorobutanesulfonic aci	d ug/kg	1.77	0	1.82	102		72	-	128
Perfluorobutanoic acid	ug/kg	2	0	1.96	98		71	-	135
Perfluorodecanoic acid	ug/kg	2	0	1.95	97		69	-	133
Perfluorododecanoic acid	ug/kg	2	0	2.03	102		69	-	135
Perfluoroheptanoic acid	ug/kg	2	0	1.98	99		71	-	131
Perfluorohexanesulfonic ac	d ug/kg	1.83	0	1.85	101		67	-	130
Perfluorohexanoic acid	ug/kg	2	0	1.94	97		70	-	132
Perfluorononanoic acid	ug/kg	2	0	1.99	99		72	-	129
Perfluorooctanesulfonic aci	d ug/kg	1.86	0	1.98	107		68	-	136
Perfluorooctanoic acid	ug/kg	2	0	1.92	96		69	-	133
Perfluoropentanoic acid	ug/kg	2	0	2	100		69	-	132
Perfluorotetradecanoic acid	ug/kg	2	0	2.03	102		69	-	133
Perfluorotridecanoic acid	ug/kg	2	0	2.03	102		66	-	139
Perfluoroundecanoic acid	ug/kg	2	0	2.01	100		64	-	136

RPD : 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 36 outside limits

3D

SOIL SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	22105041	1											
Prep Method:	PFAS ID QSM B15 Prep			Prep Batch:		71074	710742						
Analytical Method:	PFAS Iso	FAS Isotope Dilution QSM B15			Analytical Batch:		711477						
GCAL QC ID: 218 ANALYTE	3948	UNITS	SPIKE ADDED	LCSD RESULT	LCSD % REC	#	% RPD	#		QC REC	LIMI	TS RPI	D
6:2 Fluorotelomersulf	onic acid	ug/kg	1.9	2.09	110	ĹΤ	12 1		64	- 140	0	-	30
8:2 Fluorotelomersulf	onic acid	ug/kg	1.92	2.13	111		10		65	- 137	0	-	30
NEtFOSAA		ug/kg	2	2.08	104		6	1	61	- 139	0	Ι.	30
NMeFOSAA		ug/kg	2	2.12	106		7		63	- 144	0	-	30
													-

NMeFOSAA	ug/kg	2	2.12	106	7	63	144	0	-	30
Perfluorobutanesulfonic acid	ug/kg	1.77	2.02	114	10	72	128	0	-	30
Perfluorobutanoic acid	ug/kg	2	2.18	109	11	71 -	135	0	-	30
Perfluorodecanoic acid	ug/kg	2	2.14	107	9	69	133	0	-	30
Perfluorododecanoic acid	ug/kg	2	2.14	107	5	69	135	0	-	30
Perfluoroheptanoic acid	ug/kg	2	2.12	106	7	71	131	0	-	30
Perfluorohexanesulfonic acid	ug/kg	1.83	1.96	107	6	67	130	0	-	30
Perfluorohexanoic acid	ug/kg	2	2.11	105	8	70	132	0	-	30
Perfluorononanoic acid	ug/kg	2	2.1	105	6	72	129	0	-	30
Perfluorooctanesulfonic acid	ug/kg	1.86	2.01	108	1	68	136	0	-	30
Perfluorooctanoic acid	ug/kg	2	2.1	105	9	69	133	0	-	30
Perfluoropentanoic acid	ug/kg	2	2.16	108	8	69	132	0	-	30
Perfluorotetradecanoic acid	ug/kg	2	2.18	109	7	69	133	0	-	30
Perfluorotridecanoic acid	ug/kg	2	2.13	107	5	66	139	0	-	30
Perfluoroundecanoic acid	ug/kg	2	2.17	108	8	64	136	0	-	30

RPD: 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 36 outside limits

FORM III SV-2

* Values outside of QC limits

Report No:	221050411		Method Blank ID:	2184338	_		
Matrix:	Solid		Instrument ID:	QQQ3			
Sample Amt:	<u>5 g</u>		Lab File ID:	2210520A_74.d			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	_ ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	<u>1</u> An	alyst:	RXJ	
Prep Date:	05/11/21		Analysis Date:	05/21/21	Time:	1141	
Prep Batch:	710837		Analytical Batch:	711722			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilut	ion QSI	VI B15	

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZEL
1.	LCS2184339	2184339	2210515A_19.d	05/15/21	1445
2.	AOI01-03-SB-00-02	22105041105	2210515A_22.d	05/15/21	1537
3.	AOI01-03-SB-03-05	22105041106	2210515A_23.d	05/15/21	1554
4.	AOI01-03-SB-05-07	22105041107	2210515A_24.d	05/15/21	1611
5.	AOI01-04-SB-00-02	22105041108	2210515A_25.d	05/15/21	1629
6.	AOI01-04-SB-03-05	22105041109	2210515A_26.d	05/15/21	1646
7.	AOI01-05-SB-00-02	22105041111	2210515A_27.d	05/15/21	1703
8.	AOI01-05-SB-02-04	22105041113	2210515A_28.d	05/15/21	1721
9.	AOI01-05-SB-04-06	22105041114	2210515A_29.d	05/15/21	1738
Ο.	AOI01-06-SB-00-02	22105041116	2210515A_31.d	05/15/21	1813
1.	AOI01-07-SB-00-02	22105041118	2210515A_33.d	05/15/21	1847
2.	AOI01-07-SB-00-02-D	22105041119	2210515A_34.d	05/15/21	1905
3.	AO101-07-SB-02-04	22105041120	2210515A_35.d	05/15/21	1922
4.	AOI01-07-SB-04-06	22105041121	2210515A_36.d	05/15/21	1939
5.	AOI01-08-SB-02-04	22105041125	2210515A_40.d	05/15/21	2049
5.	AOI01-08-SB-04-06	22105041126	2210515A_42.d	05/15/21	2123
7.	AOI01-10-SB-00-02	22105041131	2210515A_43.d	05/15/21	2140
Β.	AOI01-10-SB-00-02-D	22105041132	2210515A_44.d	05/15/21	2158
9.	LCS2184339RE	2184339RE	2210520A_44.d	05/21/21	0421
Ο.	AOI01-03-SB-00-02RE	22105041105RE	2210520A_46.d	05/21/21	0451
1.	AOI01-03-SB-03-05RE	22105041106RE	2210520A_47.d	05/21/21	0505
2.	AOI01-03-SB-05-07RE	22105041107RE	2210520A_48.d	05/21/21	0520
3.	AOI01-04-SB-00-02RE	22105041108RE	2210520A_49.d	05/21/21	0534
4.	AOI01-04-SB-03-05RE	22105041109RE	2210520A_50.d	05/21/21	0549
5.	AOI01-05-SB-00-02RE	22105041111RE	2210520A_52.d	05/21/21	0619
δ.	AOI01-05-SB-02-04RE	22105041113RE	2210520A_53.d	05/21/21	0633
7.	AOI01-05-SB-04-06RE	22105041114RE	2210520A_54.d	05/21/21	0648
Β.	AOI01-06-SB-00-02RE	22105041116RE	2210520A_55.d	05/21/21	0703
9.	AOI01-06-SB-03-05	22105041117	2210520A_56.d	05/21/21	0717
D .	AOI01-07-SB-00-02RE	22105041118RE	2210520A_57.d	05/21/21	0732
1.	AOI01-07-SB-00-02-DRE	22105041119RE	2210520A_58.d	05/21/21	0747

Report No:	221050411		Method Blank ID:	2184338			
Matrix:	Solid		Instrument ID:	QQQ3			
Sample Amt:	5 g		Lab File ID:	2210520A_74.0	b		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M		2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/11/21		Analysis Date:	05/21/21	Time:	1141	
Prep Batch:	710837		Analytical Batch:	711722			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
32.	AOI01-07-SB-02-04RE	22105041120RE	2210520A_59.d	05/21/21	0801
33.	AOI01-07-SB-04-06RE	22105041121RE	2210520A_60.d	05/21/21	0816
34.	AOI01-08-SB-00-02	22105041122	2210520A_61.d	05/21/21	0831
35.	AOI01-08-SB-00-02 MS	22105041123	2210520A_62.d	05/21/21	0845
36.	AOI01-08-SB-00-02 MSD	22105041124	2210520A_63.d	05/21/21	0900
37.	AOI01-08-SB-02-04RE	22105041125RE	2210520A_66.d	05/21/21	0944
38.	AOI01-08-SB-04-06RE	22105041126RE	2210520A_67.d	05/21/21	0958
39.	AOI01-10-SB-00-02-DRE	22105041132RE	2210520A_69.d	05/21/21	1028
40.	AO101-08-SB-02-04DL	22105041125DL	2210520A_80.d	05/21/21	1308

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411	Client Sample ID:	MB2184338RE
Collect Date:	NA Time: NA	GCAL Sample ID:	2184338RE
Matrix:	Solid % Moisture: NA	Instrument ID:	QQQ3
Sample Amt:	5g	Lab File ID:	2210520A_74.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/11/21	Analysis Date:	05/21/21 Time: 1141
Prep Batch:	710837	Analytical Batch:	711722
Prep Method:	PFAS ID QSM B15 Prep	Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ug/kg		
CAS	ANALYTE	RESULT Q	DL LOD LOQ

0.100

Q

UV

0.030

0.100

1.00

355-46-4

Perfluorohexanesulfonic acid

3D SOIL SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411					
Prep Method:	PFAS ID QSM E	15 Prep		Prep Batch:	710837	
Analytical Method:	PFAS Isotope D	ilution QSM I	315	Analytical Batch:	711722	
GCAL QC ID: 210 ANALYTE	34339 UNIT	SPIKE S ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	# QC LIMITS
Perfluorohexanesulfo	nic acid ug/k	1.83	0	1.8	99	67 - 130

RPD : 0 out of 0 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 1 outside limits

* Values outside of QC limits

RPD : 0 out of 18 outside limits

Spike Recovery: 2 out of 36 outside limits

FORM III SV-2

* Values outside of QC limits

Column to be used to flag recovery and RPD values with an asterisk

Pace G	ulf Coast	Report#:	221050411

3D
SOIL SEMIVOLATILE MS/MSD RECOVERY

Report No:	221050411			Parent Sample ID:	AOI01-08-SB-00-02					
Prep Method:	PFAS ID QSM B1	5 Prep		Prep Batch:	710837					
Analytical Method:	PFAS Isotope Dil	ution QSM B	15	Analytical Batch:	711722					
GCAL QC ID: 22105 ANALYTE	5041123 UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS % REC	#	QC	LIMITS		
6:2 Fluorotelomersulfor	nic acid ug/kg	2.03	.035	2.02	98		64	- 140		
8:2 Fluorotelomersulfor	nic acid ug/kg	2.06	.01	2.06	99		65	- 137		
NEtFOSAA	ug/kg	2.14	.00704	2.06	96		61	- 139		
NMeFOSAA	ug/kg	2.14	.00975	2.02	94		63	- 144		
Perfluorobutanesulfonic	acid ug/kg	1.89	.015	1.87	98		72	- 128		
Perfluorobutanoic acid	ug/kg	2.14	.109	2.19	97		71	- 135		
Perfluorodecanoic acid	ug/kg	2.14	.081	2.24	101		69	- 133		
Perfluorododecanoic ac	id ug/kg	2.14	.046	2.16	99	15 m	69	- 135		
Perfluoroheptanoic acid	ug/kg	2.14	.049	2.15	98		71	- 131		
Perfluorohexanesulfoni	c acid ug/kg	1.96	.217	2.25	104		67	- 130		
Perfluorohexanoic acid	ug/kg	2.14	.087	2.17	98		70	- 132		
Perfluorononanoic acid	ug/kg	2.14	.039	2.16	99		72	- 129		
Perfluorooctanesulfonic	acid ug/kg	1.99	4.28	7.42	(158)	*	68	- 136		
Perfluorooctanoic acid	ug/kg	2.14	.155	2.22	96		69	- 133		
Perfluoropentanoic acid	ug/kg	2.14	.097	2.25	101		69	- 132		
Perfluorotetradecanoic	acid ug/kg	2.14	.016	2.14	99		69	- 133		
Perfluorotridecanoic aci		2.14	.067	2.23	101		66	- 139		
Perfluoroundecanoic ac	id ug/kg	2.14	.283	2.49	103		64	- 136		

3D SOIL SEMIVOLATILE MS/MSD RECOVERY

Report No:	221050411	Parent Sample ID:	AOI01-08-SB-00-02
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710837
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	711722

GCAL QC ID: 22105041124 ANALYTE	UNITS	SPIKE ADDED	MSD RESULT	MSD % REC	#	% RPD	#	QC REC	LIMITS RPD
6:2 Fluorotelomersulfonic acid	ug/kg	2.03	2.02	98		.05 1		64 - 140	0 - 30
8:2 Fluorotelomersulfonic acid	ug/kg	2.06	2.13	103		4		65 - 137	0 - 30
NEtFOSAA	ug/kg	2.14	2.04	95		.6		61 - 139	0 - 30
NMeFOSAA	ug/kg	2.14	2	93		1		63 - 144	0 - 30
Perfluorobutanesulfonic acid	ug/kg	1.89	1.89	99		1		72 - 128	0 - 30
Perfluorobutanoic acid	ug/kg	2.14	2.22	99		1		71 - 135	0 - 30
Perfluorodecanoic acid	ug/kg	2.14	2.25	101		.2		69 - 133	0 - 30
Perfluorododecanoic acid	ug/kg	2.14	2.21	101		2		69 - 135	0 - 30
Perfluoroheptanoic acid	ug/kg	2.14	2.14	98		.3		71 - 131	0 - 30
Perfluorohexanesulfonic acid	ug/kg	1.95	2.3	107		3		67 - 130	0 - 30
Perfluorohexanoic acid	ug/kg	2.14	2.21	99		1		70 - 132	0 - 30
Perfluorononanoic acid	ug/kg	2.14	2.17	100		.8		72 - 129	0 - 30
Perfluorooctanesulfonic acid	ug/kg	1.98	8.62	(219)		15		68 - 136	0 - 30
Perfluorooctanoic acid	ug/kg	2.14	2.23	97		.3		69 - 133	0 - 30
Perfluoropentanoic acid	ug/kg	2.14	2.29	103		2		69 - 132	0 - 30
Perfluorotetradecanoic acid	ug/kg	2.14	2.19	102		3		69 - 133	0 - 30
Perfluorotridecanoic acid	ug/kg	2.14	2.28	104		3	_	66 - 139	0 - 30
Perfluoroundecanoic acid	ug/kg	2.14	2.6	108		4		64 - 136	0 - 30

RPD : 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 2 out of 36 outside limits

* Values outside of QC limits

Report No:	221050411		Method Blank ID:	2188447				
Matrix:	Solid		Instrument ID:	QQQ1				
Sample Amt:	5 g		Lab File ID:	2210521A_22.c	i			
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID.	2.1	(mm)	
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	MRA	2	
Prep Date:	05/19/20		Analysis Date:	05/21/21	Time:	1819		
Prep Batch:	711505		Analytical Batch:	711941				
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15		

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	LCS2188448	2188448	2210521A_23.d	05/21/21	1836
2.	AOI01-10-SB-03-05 (RE)	22105041155	2210521A_26.d	05/21/21	1928
3.	AOI01-10-SB-03-05-MS (RE)	22105041156	2210521A_27.d	05/21/21	1945
4.	AOI01-10-SB-03-05-MSD (RE)	22105041157	2210521A_28.d	05/21/21	2003
5.	LCS2188448RE	2188448RE	2210524A_36.d	05/24/21	2038

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	MB2188447
Collect Date:	NA Time:	NA	GCAL Sample ID:	2188447
Matrix:	Solid % Moisture:	NA	Instrument ID:	QQQ1
Sample Amt:	5 g		Lab File ID:	2210521A_22.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: MRA
Prep Date:	05/19/20		Analysis Date:	05/21/21 Time: 1819
Prep Batch:	711505		Analytical Batch:	711941
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q		LOD	LOQ
355-46-4	Perfluorohexanesulfonic acid	0.100	υV	0.030	0.100	1.00
335-67-1	Perfluorooctanoic acid	0.200	U	0.080	0.200	1.00

3D SOIL SEMIVOLATILE MS/MSD RECOVERY

Report No:	eport No: 221050411			Parent Sample ID:	AOI01-10-SE	AOI01-10-SB-03-05 (RE)				
Prep Method:	PFAS ID QSI	VI B15 Prep		Prep Batch:	711505					
Analytical Method:	PFAS Isotope	e Dilution QSM B	15	Analytical Batch:	711941					
GCAL QC ID: 22 ANALYTE	105041156 Ul	SPIKE NITS ADDED	SAMPLE RESULT	MS RESULT	MS % REC	#	QC LIMITS			
Perfluorohexanesulfo	onic acid u	g/kg 2.26	.261	2.9	117	r – T	67 - 130			

GCAL QC ID: 22105041157		SPIKE	MSD	MSD %		%			oc	LIM	TS	
ANALYTE	UNITS /	ADDED	RESULT	REC	#	RPD	#		REC		RF	
Perfluorohexanesulfonic acid	ug/kg	2.26	3.06	124	ſ	5		67	- 130	0	-	30
Perfluorooctanoic acid	ug/kg	2.47	2.85	112		2		69	- 133	0	-	30

RPD : 0 out of 2 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 4 outside limits

* Values outside of QC limits

3D SOIL SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411						
Prep Method:	PFAS ID QSM	B15 Prep		Prep Batch:	711505		
Analytical Method:	PFAS Isotope I	Isotope Dilution QSM B15		Analytical Batch:	711941		
GCAL QC ID: 210 ANALYTE	38448 UNI	SPIKE TS ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	#	QC LIMITS
Perfluorohexanesulfo	nic acid ug/l	(g 1.83	0	1.9	104		67 - 130
Perfluorooctanoic ac	id ug/l	(g 2	0	2.16	108		69 - 133

RPD : 0 out of 0 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 2 outside limits

* Values outside of QC limits

Report No:	221050411		Method Blank ID:	2183139	
Matrix:	Water		Instrument ID:	QQQ3	
Sample Amt:	125 mL		Lab File ID:	2210525A_56.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	<u>2.1</u> (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	RXJ
Prep Date:	05/07/21		Analysis Date:	05/26/21 Time:	0548
Prep Batch:	710580		Analytical Batch:	712118	
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QS	M B15

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	LCS2183140	2183140	2210508A_08.d	05/08/21	1913
2.	LCSD2183141	2183141	2210508A_09.d	05/08/21	1927
3.	LCS2183140RE	2183140RE	2210525A_57.d	05/26/21	0602
4.	LCSD2183141RE	2183141RE	2210525A_58.d	05/26/21	0617
5.	WL-FRB-01	22105041110	2210525A_59.d	05/26/21	0632
6.	AOI01-07-GW	22105041145	2210525A_60.d	05/26/21	0646
7.	AOI01-08-GW	22105041146	2210525A_61.d	05/26/21	0701
8.	AOI01-10-GW	22105041148	2210525A_62.d	05/26/21	0715
9.	AOI01-10-GW-MS	22105041149	2210525A_63.d	05/26/21	0730
10.	AOI01-10-GW-MSD	22105041150	2210525A_64.d	05/26/21	0745
11.	WL-ERB-02	22105041151	2210525A_65.d	05/26/21	0759
12.	WL-ERB-03	22105041152	2210525A_66.d	05/26/21	0814
13.	WL-ERB-04	22105041153	2210525A_67.d	05/26/21	0829
14.	WL-ERB-01	22105041154	2210525A_69.d	05/26/21	0858
15.	WL-FRB-01RE	22105041110RE	2210602C_40.d	06/03/21	0357

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411		Client Sample ID:	MB2183139RE
Collect Date:	NA Time: NA		GCAL Sample ID:	2183139RE
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ3
Sample Amt:	125 mL		Lab File ID:	2210525A_56.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: RXJ
Prep Date:	05/07/21		Analysis Date:	05/26/21 Time: 0548
Prep Batch:	710580		Analytical Batch:	712118
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope Dilution QSM B15
CONCENTRATI	ON UNITS: ng/L			

 CAS
 ANALYTE
 RESULT
 Q
 DL
 LOD
 LOQ

 [375-95-1]
 Perfluorononanoic acid
 2.00
 U
 0.980
 2.00
 4.00

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411								
Prep Method:	PFAS ID QSM B15 Prep			Prep Batch:		710580			
Analytical Method:	PFAS Isotope Dilution QSM B15		5	Analytical Batch:		712118			
GCAL QC ID: 2	2183140	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	# QC LIMITS		
Perfluorononanoic	acid	ng/L	80	0	95.3	119	69 - 130		
GCAL QC ID: 21 ANALYTE	83141	UNITS	SPIKE ADDED		CSD 6 REC #	% RPD # F	QC LIMITS REC RPD		
Perfluorononanoic	acid	ng/L	80	95.3	119	.08 69	- 130 0 - 30		
					<u></u>				

RPD : _____ out of _____ outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 2 outside limits

* Values outside of QC limits

3C

WATER SEMIVOLATILE MS/MSD RECOVERY

Report No:	221050411	Parent Sample ID:	AOI01-10-GW
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710580
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	712118

ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS % REC #	QC LIMITS
6:2 Fluorotelomersulfonic acid	ng/L	76.1	.568	97.5	127 V	64 - 14
8:2 Fluorotelomersulfonic acid	ng/L	76.8	.431	94.3	122	67 - 13
NEtFOSAA	ng/L	80	.277	89.7	112	61 - 13
NMeFOSAA	ng/L	80	.217	92.8	116	65 - 13
Perfluorobutanesulfonic acid	ng/L	71	3.21	88.8	121	72 - 13
Perfluorobutanoic acid	ng/L	80	2.56	98.2	120	73 - 12
Perfluorodecanoic acid	ng/L	80	.423	95	118	71 - 12
Perfluorododecanoic acid	ng/L	80	.308	97.8	122	72 - 13
Perfluoroheptanoic acid	ng/L	80	3.42	97.4	117	72 - 13
Perfluorohexanesulfonic acid	ng/L	73.1	60.6	141	110	68 - 13
Perfluorohexanoic acid	ng/L	80	8.28	103	119	72 - 12
Perfluorononanoic acid	ng/L	80	.734	96.9	120	69 - 13
Perfluorooctanesulfonic acid	ng/L	74.2	9.88	95.3	115	65 - 14
Perfluorooctanoic acid	ng/L	80	11.5	106	118	71 - 13
Perfluoropentanoic acid	ng/L	80	3.37	101	122	72 - 12
Perfluorotetradecanoic acid	ng/L	80	.305	94.9	118	71 - 13
Perfluorotridecanoic acid	ng/L	80	.328	97.5	121	65 - 14
Perfluoroundecanoic acid	ng/L	80	.514	99.5	124	69 - 13

RPD : _____ out of ____8_outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: _____ out of _____ outside limits

FORM III SV-1

* Values outside of QC limits

3C

WATER SEMIVOLATILE MS/MSD RECOVERY

Report No:	221050411	Parent Sample ID:	A0101-10-GW	
Prep Method:	PFAS ID QSM B15 Prep	Prep Batch:	710580	
Analytical Method:	PFAS Isotope Dilution QSM B15	Analytical Batch:	712118	

GCAL QC ID: 22105041150 ANALYTE	UNITS	SPIKE ADDED	MSD RESULT	MSD % REC	# RPD	#	QC L REC	IMITS RPD
	011110	ADDED	ALCOL!	1120		/"	ALC	IN D
6:2 Fluorotelomersulfonic acid	ng/L	76.1	94.7	124 🖌	31		64 - 140	0 - 30
8:2 Fluorotelomersulfonic acid	ng/L	76.8	103	133	9		67 - 138	0 - 30
NEtFOSAA	ng/L	80	92.5	115	3		61 - 135	0 - 30
NMeFOSAA	ng/L	80	94.7	118	2		65 - 136	0 - 30
Perfluorobutanesulfonic acid	ng/L	71	88.6	120	.2		72 - 130	0 - 30
Perfluorobutanoic acid	ng/L	80	99.2	121	1		73 - 129	0 - 30
Perfluorodecanoic acid	ng/L	80	97.9	122	3		71 - 129	0 - 30
Perfluorododecanoic acid	ng/L	80	96.3	120	2		72 - 134	0 - 30
Perfluoroheptanoic acid	ng/L	80	99.4	120	2		72 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73.1	149	122	6		68 - 131	0 - 30
Perfluorohexanoic acid	ng/L	80	103	118	.6		72 - 129	0 - 30
Perfluorononanoic acid	ng/L	80	96.7	120	.1		69 - 130	0 - 30
Perfluorooctanesulfonic acid	ng/L	74.2	95.3	115	.001		65 - 140	0 - 30
Perfluorooctanoic acid	ng/L	80	106	118	.09		71 - 133	0 - 30
Perfluoropentanoic acid	ng/L	80	99.8	121	.9	_	72 - 129	0 - 30
Perfluorotetradecanoic acid	ng/L	80	95.2	119	.3		71 - 132	0 - 30
Perfluorotridecanoic acid	ng/L	80	99.3	124	2	Ξ.	65 - 144	0 - 30
Perfluoroundecanoic acid	ng/L	80	98.2	122	1		69 - 133	0 - 30

RPD : 0 out of 18 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: _____ out of _____ outside limits

FORM III SV-1

* Values outside of QC limits

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	221050411		Method Blank ID:	2191137			
Matrix:	Solid		Instrument ID:	QQQ3			
Sample Amt:	<u>5 g</u>		Lab File ID:	2210528A_38.0	b		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/26/21		Analysis Date:	05/28/21	Time:	2203	
Prep Batch:	711984		Analytical Batch:	712509			
Prep Method:	PFAS ID QSM B15 Prep		Analytical Method:	PFAS Isotope [Dilution QS	M B15	

	CLIENT SAMPLE ID	GCAL SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1.	LCS2191138	2191138	2210528A_39.d	05/28/21	2217
2.	AOI01-08-SB-00-02 (RE)	22105041158	2210528A_40.d	05/28/21	2232
3.	AOI01-08-SB-00-02 MS(RE)	22105041159	2210528A_41.d	05/28/21	2246
4.	AOI01-08-SB-00-02 MSD(RE)	22105041160	2210528A_42.d	05/28/21	2301

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	221050411				Client Sample ID:	MB2191137			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	2191137			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	QQQ3			
Sample Amt:	5	g			Lab File ID:	2210528A_38.0	d		
Injection Vol.:	1.0			(µL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)
Prep Final Vol.:	1000			(µL)	Dilution Factor:	1	Analyst:	RXJ	
Prep Date:	05/26/21				Analysis Date:	05/28/21	Time:	2203	
Prep Batch:	711984				Analytical Batch:	712509			
Prep Method:	PFAS ID Q	SM B15 Prep			Analytical Method:	PFAS Isotope I	Dilution QS	M B15	

CONCENTRATION UNITS: ug/kg

				1		
CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
375-73-5	Perfluorobutanesulfonic acid	0.050	UI	0.020	0.050	1.00
335-76-2	Perfluorodecanoic acid	0.100	U	0.040	0.100	1.00
307-55-1	Perfluorododecanoic acid	0.050	U	0.020	0.050	1.00
355-46-4	Perfluorohexanesulfonic acid	0.100	U	0.030	0.100	1.00
375-95-1	Perfluorononanoic acid	0.050	U	0.020	0.050	1.00
1763-23-1	Perfluorooctanesulfonic acid	0.200	U	0.050	0.200	1.00
335-67-1	Perfluorooctanoic acid	0.200	U	0.080	0.200	1.00
376-06-7	Perfluorotetradecanoic acid	0.050	U	0.020	0.050	1.00
72629-94-8	Perfluorotridecanoic acid	0.100	U	0.030	0.100	1.00
2058-94-8	Perfluoroundecanoic acid	0.050	U	0.020	0.050	1.00

3D
SOIL SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	221050411	1							
Prep Method:	PFAS ID C	SM B1	5 Prep		Prep Batch:	711984			
Analytical Method:	PFAS Isot	ope Dilu	pe Dilution QSM B15		Analytical Batch:	712509			
GCAL QC ID: 219 ANALYTE)1138	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC #	QC LIMITS		
Perfluorobutanesulfo	nic acid	ug/kg	1.77	0	1.82	103	72 - 128		
Perfluorodecanoic ac	id	ug/kg	2	0	2.16	108	69 - 133		
Perfluorododecanoic	acid	ug/kg	2	0	2.21	111	69 - 135		
Perfluorohexanesulfo	nic acid	ug/kg	1.83	0	2	109	67 - 130		
Perfluorononanoic ac	id	ug/kg	2	0	2.19	110	72 - 129		
Perfluorooctanesulfor	nic acid	ug/kg	1.86	0	1.96	106	68 - 136		
Perfluorooctanoic aci	d	ug/kg	2	0	2.12	106	69 - 133		
Perfluorotetradecano	ic acid	ug/kg	2	0	2.17	109	69 - 133		
Perfluorotridecanoic a	acid	ug/kg	2	0	2.22	111	66 - 139		
Perfluoroundecanoic	acid	ug/kg	2	0	2.21	111	64 - 136		

RPD : 0 out of 0 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 10 outside limits

FORM III SV-2

* Values outside of QC limits

Pace Gulf Coast Report#: 221050411

3	D	
SOIL SEMIVOLATILE	MS/MSD	RECOVERY

Report No:	ep Method: PFAS ID QSM B15 Prep		Parent Sample ID:	AOI01-08-SB-00-02 (RE)								
Prep Method:	PFAS ID QS	SM B1	SPIKE SAMPLE TS ADDED RESULT kg 1.89 .054 kg 2.14 .151 kg 2.14 .059 kg 2.14 .079 kg 2.14 .079 kg 2.14 .079 kg 2.14 .256		Prep Batch:	711984						
Analytical Method:	PFAS Isotope Dilution QSM B15 2105041159 UNITS ADDED RESULT	15	Analytical Batch:	712509								
GCAL QC ID: 221 ANALYTE		INITS			MS RESULT	MS % REC	# QC LIMITS					
Perfluorobutanesulfor	nic acid L	ug/kg	1.89	.054	2.03	104	72 - 128					
Perfluorodecanoic aci	id L	ug/kg	2.14	.151	2.49	109	69 - 133					
Perfluorododecanoic	acid L	ug/kg	2.14	.125	2.54	113	69 - 135					
Perfluorohexanesulfor	nic acid 🛛 🛛 L	ug/kg	1.96	.591	2.79	113	67 - 130					
Perfluorononanoic aci	id ι	ug/kg	2.14	.079	2.45	111	72 - 129					
Perfluorooctanesulfon	lic acid L	ug/kg	1.99	9.14	11.2	106	68 - 136					
Perfluorooctanoic acid	d L	Jg/kg	2.14	.256	2.52	106	69 - 133					
Perfluorotetradecanoi	c acid u	ug/kg	2.14	.037	2.4	110	69 - 133					
Perfluorotridecanoic a	icid u	ug/kg	2.14	.171	2.59	113	66 - 139					
Perfluoroundecanoic a	acid u	ug/kg	2.14	.647	2.98	109	64 - 136					

GCAL QC ID: 22105041160		SPIKE	MSD	MSD %		%		QC LIMITS				
ANALYTE	UNITS	ADDED	RESULT	REC	#	RPD	#	REC	RPD			
Perfluorobutanesulfonic acid	ug/kg	1.89	2.02	104		.3 🗸		72 - 128	0 - 30			
Perfluorodecanoic acid	ug/kg	2.14	2.54	111		2		69 - 133	0 - 30			
Perfluorododecanoic acid	ug/kg	2.14	2.5	111		1		69 - 135	0 - 30			
Perfluorohexanesulfonic acid	ug/kg	1.96	2.75	110		2		67 - 130	0 - 30			
Perfluorononanoic acid	ug/kg	2.14	2.47	112		.7		72 - 129	0 - 30			
Perfluorooctanesulfonic acid	ug/kg	1.99	12.1	(148)		7		68 - 136	0 - 30			
Perfluorooctanoic acid	ug/kg	2.14	2.43	102		3		69 - 133	0 - 30			
Perfluorotetradecanoic acid	ug/kg	2.14	2.43	112		1		69 - 133	0 - 30			
Perfluorotridecanoic acid	ug/kg	2.14	2.62	114		1		66 - 139	0 - 30			
Perfluoroundecanoic acid	ug/kg	2.14	3.04	112		2		64 - 136	0 - 30			

RPD : 0 out of 10 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 1 out of 20 outside limits

* Values outside of QC limits

8E EXTRACTED INTERNAL STANDARD RECOVERY

Report No: 2210	32903	Recovery Limits: 50 - 150															
Client Sample ID	LAB SampleID	EIS1	, #	EIS2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	-		
WL-DECON-01RE	22103290301	95		105		86		68		87		83	Π				
WL-DECON-01	22103290301		П		Γ						Γ		П	79	t		
MB2162464RE	2162464	_	П	108		99		78		83	T	82	П	92	t		
MB2162464	2162464	86	П								T		П	80	t		
LCS2162465RE	2162465		Π	121		99		96	Γ	97	Γ	93	Π	105	T		
LCS2162465	2162465	80											Π	80	İ		
Client Sample ID	LAB SampleID	EIS8	#	EIS9	#	EIS 10	#	E1911	#	EIS12	#	EIS13	#	EIS14			
WL-DECON-01RE	22103290301	92		92		89		88		79		97	Π	80	Τ		
WL-DECON-01	22103290301		Π						Γ				Π		t		
MB2162464RE	2162464	93	П	93		91		93		80		95		83	T		
MB2162464	2162464		Π				Π								T		
LCS2162465RE	2162465	109	П	109	Γ	103		103		91	Γ	116	Π	100	T		
LCS2162465	2162465		П												T		
Client Sample ID	LAB SampleID	EIS15	#	EIS16	#	EIS17	#	EIS18	#	J EIS19	#						
WL-DECON-01RE	22103290301	91	Π	86		85					Γ		Π		Τ		
WL-DECON-01	22103290301		П			74		83		64	Γ		Π		T		
MB2162464RE	2162464	90	П	90	Γ	87							П		T		
MB2162464	2162464		Π			81		78		61	Г		П		T		
LCS2162465RE	2162465	102	П	104		96							П		T		
LCS2162465	2162465		\Box			85		83		64							
EIS1: M2 4:2 FTS	EIS2: M2 6:2 FTS	6	EIS			EIS3: M2 8:2 FTS				EIS4: M2PFTA							
EIS5: M3PFBS	EIS6: M3PFHxS	EIS6: M3PFHxS			EIS7: M4PFHpA						EIS8: M5PFHxA						
EIS9: M5PFPeA	EIS10: M6PFDA	EIS10: M6PFDA				EIS11: M7PFUnA						EIS12: M8FOSA					
EIS13: M8PFOA	EIS14: M8PFOS	EIS14: M8PFOS				EIS15: M9PFNA						EIS16: MPFBA					
EIS17: MPFDoA	EIS18: d3-NMeFC	DSAA	EIS19: d5-NEtFOSAA														

8E EXTRACTED INTERNAL STANDARD RECOVERY

Report No: 2	21050411						F	leco	overy Lin	nits	: 50 -	15	0			
		LAB		/					1		,					,
Client Sample ID		SampleID	EIS1	#	EIS2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	
AOI01-01-SB-00-02		22105041101	86	Π	80	Г	98	Γ	90	Γ	93	Γ	82		82	Τ
AOI01-01-SB-05-07		22105041102	84	Π	81	Γ	92	Γ	92	Γ	94	Γ	93	Π	94	1
AOI01-02-SB-00-02		22105041103	112	Π	107	Γ	113	Γ	93		97	T	90	Π	92	-
AOI01-02-SB-04-06		22105041104	83	Π	79	Γ	(44)	*	94	Γ	97		96	Π	100	
AOI01-03-SB-00-02		22105041105	103	П	117	Γ	97		88	Γ	63		88	П	84	-
AOI01-03-SB-00-02RE		22105041105		Π		Γ				Γ	129			Π		1
AOI01-03-SB-03-05		22105041106	105		115	Γ	98	Γ	94	Γ	83	Γ	84	Π	77	1
AOI01-03-SB-03-05RE		22105041106				Γ				Γ	106	T		П		1
AOI01-03-SB-05-07	_	22105041107	102	Π	99		98		91	T	82	T	90	Π	85	1
AOI01-03-SB-05-07RE		22105041107									127					1
		LAB			1	80= 1					1		1			
Client Sample ID		SampleID	EISB	#	EIS9	#	EIS10	#	EI\$11	#	EIS12	#	EIS13	#	EIS14	!
AOI01-01-SB-00-02		22105041101	80		91		92		91	Π	92		87	Π	82	Ţ
AOI01-01-SB-05-07		22105041102	92		97		91		100	T	94		95	Π	95	1
AOI01-02-SB-00-02		22105041103	91	П	101		103		98		95		94	Π	90	1
AOI01-02-SB-04-06		22105041104	96	П	91	Γ	82		100		92	П	93	П	99	1
AOI01-03-SB-00-02		22105041105	83	П	88		95		88		69		78	Ħ	82	1
A0101-03-SB-00-02RE		22105041105		П				Π						Π		1
AOI01-03-SB-03-05		22105041106	72	Π	94		97	Π	86		71		76	Π	71	1
A0101-03-SB-03-05RE		22105041106		Π				Π				Π		Π		1
AOI01-03-SB-05-07		22105041107	84	Π	91	Π	96	Π	88		56		81	Π	83	1
AOI01-03-SB-05-07RE		22105041107		Π										Π		t
		LAB	2		1											1
Client Sample ID		SampleID	EIS15	#	EIS16	#	EIS17	#								
AOI01-01-SB-00-02		22105041101	91	Π	76	Π	81	Π				Π		Π		T
AOI01-01-SB-05-07		22105041102	92	H	78		83	Η				Η				1
AOI01-02-SB-00-02		22105041103	104		84	H	92	Η		H				H		t
AOI01-02-SB-04-06		22105041104	70	H	77		77	Η				Η		\mathbb{H}		t
AOI01-03-SB-00-02		22105041105	101		94	Η	48	*				Η				t
AOI01-03-SB-00-02RE		22105041105				Η	138					Η		H		t
AOI01-03-SB-03-05		22105041106	98		95	Η	76							H		t
AOI01-03-SB-03-05RE		22105041106		H		Η				Η		Η				t
AOI01-03-SB-05-07		22105041107	103	H	86		65	H		Η		Η		H		t
AOI01-03-SB-05-07RE		22105041107		H		Η		Η		Η		Η		H		t
																+
	E	EIS2: M2 8:2 FTS			EIS3:	M	2PFTA				EIS4: N	13P	FBS			
EIS1: M2 6:2 FTS					EIS7:	M	5PFHxA				EIS8: N	15P	FPeA			
EIS1: M2 6:2 FTS EIS5: M3PFHxS	E	EIS6: M4PFHpA														
		EISO: MAPPHIDA			EIS1	1: N	/I8PFOA				EIS12:	M8	PFOS			
EIS5: M3PFHxS	E						18PFOA 1PFDoA						PFOS NMeFOS			

FORM 8E - ORG

	1		_			R	eco	overy Lin	nits	: 50 -	150)			
	140				-	1		/	1					1	
Client Sample ID	LAB SampleID	EIS1	#	EIS2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	
AOI01-04-SB-00-02	22105041108	95	Π	71	Π	88	Π	90		80		83	Π	79	I
AOI01-04-SB-00-02RE	22105041108		Π		П		П			94	Π		Π		Î
AOI01-04-SB-03-05	22105041109	101	П	87	Π	88	П	94		87	П	95	П	94	t
AOI01-04-SB-03-05RE	22105041109		П		Π		Π			109	Π		П	1.0	t
WL-FRB-01	22105041110		П	122	Π	105	Π	109		110	Π	105	Π	108	t
WL-FRB-01RE	22105041110	84	П		Π		Π		Γ		П		П		t
AOI01-05-SB-00-02	22105041111	115	П	97	П	103	Π	97		54	Π	96	П	91	t
AOI01-05-SB-00-02RE	22105041111		Π		П		Π			123	Π		Π		t
AOI01-05-SB-02-04	22105041113	102	Π	93	Π	99	Π	87	Π	80		87	Π	82	Ī
AOI01-05-SB-02-04RE	22105041113		Π				Π			103		_			ľ
	LAB	,				1		/				1			-
Client Sample ID	SampleID	EIS8	#	EIS9	#	EIS10	#	EIS11	#	EIS12	#	EIS13	#	EIS14	
AOI01-04-SB-00-02	22105041108	77	Π	87	Π	89	П	83		71	П	78	П	79	Г
AOI01-04-SB-00-02RE	22105041108		H		╢						Η		Η		t
AOI01-04-SB-03-05	22105041109	92	Ħ	92	H	86	H	99		(22)		63	H	93	t
AOI01-04-SB-03-05RE	22105041109		H		┠┤		H			112			H		t
WL-FRB-01	22105041110	110	Ħ	112	H	110	H	111		107	H	108	H	109	t
WL-FRB-01RE	22105041110		Ħ		H		H								t
AOI01-05-SB-00-02	22105041111	89	\mathbf{H}	98	H	97	╞┼╏	91	Η	58	H	82	H	87	t
AOI01-05-SB-00-02RE	22105041111	-	11		H		H		Η		H		H		t
AOI01-05-SB-02-04	22105041113	80	11	88	H	100	H	90		61	Η	77	H	79	t
AOI01-05-SB-02-04RE	22105041113		Ħ		H		Ħ		Π		H		H		t
						1									-
	LAB														
Client Sample ID	SampleID	EIS15	#	EIS16	#	EIS17	#								
Client Sample ID	SampleID	EIS 15 89	#		#	EIS17 73	#						П	-	Г
AOI01-04-SB-00-02	SampleID 22105041108		#	EIS 16 87	#	EIS17 73	#						Π		F
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE	SampleID 22105041108 22105041108		#		#		#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05	SampleID 22105041108 22105041108 22105041108 22105041109	89	#	87	#	73	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE	SampleID 22105041108 22105041108	89	#	87	#	73	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE ML-FRB-01	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110	89 91	#	87 94	#	73 70	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110 22105041110 22105041110	89 91 106	#	87 94 106	#	73 70 106	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110 22105041110 22105041110 22105041110 22105041110	89 91	#	87 94	#	73 70	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE AOI01-05-SB-00-02	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110 22105041110 22105041110 22105041110 22105041111 22105041111	89 91 106 107	#	87 94 106 86	#	73 70 106 71	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE AOI01-05-SB-00-02 AOI01-05-SB-00-02RE AOI01-05-SB-02-04	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110 22105041110 22105041110 22105041111 22105041111 22105041111 22105041111 22105041111	89 91 106	#	87 94 106	#	73 70 106	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE AOI01-05-SB-00-02 AOI01-05-SB-00-02RE	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110 22105041110 22105041110 22105041110 22105041111 22105041111	89 91 106 107	#	87 94 106 86	#	73 70 106 71	#								
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE AOI01-05-SB-00-02 AOI01-05-SB-00-02RE AOI01-05-SB-02-04 AOI01-05-SB-02-04RE	SampleID 22105041108 22105041108 22105041109 22105041109 22105041110 22105041110 22105041110 22105041110 22105041111 22105041111 22105041111 22105041111 22105041113 22105041113	89 91 106 107 102	#	87 94 106 86 89		73 70 106 71 73	#			EIS4: M		FBS			
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE AOI01-05-SB-00-02 AOI01-05-SB-00-02RE AOI01-05-SB-02-04 AOI01-05-SB-02-04 EIS1: M2 6:2 FTS	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110 22105041110 22105041111 22105041111 22105041113 22105041113	89 91 106 107 102	#	87 94 106 86 89 EIS3		73 70 106 71 73 2PFTA				EIS4: M					
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE AOI01-05-SB-00-02 AOI01-05-SB-00-02RE AOI01-05-SB-02-04 AOI01-05-SB-02-04RE EIS1: M2 6:2 FTS EIS5: M3PFHxS	SampleID 22105041108 22105041108 22105041109 22105041109 22105041110 22105041110 22105041111 22105041111 22105041111 22105041113 22105041113 EIS2: M2 8:2 FTS EIS6: M4PFHpA	89 91 106 107 102	#	87 94 106 86 89 EIS3 EIS7		73 70 106 71 73 2PFTA 5PFHxA				EIS8: N	15P	FPeA			
AOI01-04-SB-00-02 AOI01-04-SB-00-02RE AOI01-04-SB-03-05 AOI01-04-SB-03-05RE WL-FRB-01 WL-FRB-01RE AOI01-05-SB-00-02 AOI01-05-SB-00-02RE AOI01-05-SB-02-04 AOI01-05-SB-02-04 EIS1: M2 6:2 FTS	SampleID 22105041108 22105041108 22105041109 22105041109 22105041109 22105041110 22105041110 22105041111 22105041111 22105041113 22105041113	89 91 106 107 102	#	87 94 106 86 89 EIS3 EIS7 EIS1	: M2	73 70 106 71 73 2PFTA				EIS8: M EIS12: I	15P M81	FPeA			

8E EXTRACTED INTERNAL STANDARD RECOVERY

Report No: 221050411						R	ece	overy Lin	nits	: 50 -	150)			
Client Sample ID	LAB SampleID	EIS1	#	EIS2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	ES7	*
AOI01-05-SB-04-06	22105041114	94	Π	82		84		92		86	Π	91		87	Г
AOI01-05-SB-04-06RE	22105041114		F			-	F			106	Π		Н	_	F
AOI01-06-SB-00-02	22105041116	111	Н	107		99		92		76		78	Η	81	F
A0101-06-SB-00-02RE	22105041116		П		П					113			Η		F
AOI01-06-SB-03-05	22105041117	96	П	90	Η	97		103		101	Н	101	Η	103	F
AOI01-07-SB-00-02	22105041118	105	Ħ	102	Η	97		91		73	Η	91	H	81	F
AOI01-07-SB-00-02RE	22105041118		П		Н					122			H		F
AOI01-07-SB-00-02-D	22105041119	104	Н	95	Η	96		94		78	Н	88	H	79	F
AOI01-07-SB-00-02-DRE	22105041119		Η		Η					134	Н				F
AOI01-07-SB-02-04	22105041120	99	Π	91		88		93		83		92		91	
Client Sample ID	LAB SampleID	EIS8	#	EIS9	#	FIS10	#	EIS11	#	F1912	#	FIS13	#	EIS14	×
AOI01-05-SB-04-06	22105041114	89	Π	89		93	Π	92		80	Π	81	ΓT	90	Ē
A0101-05-SB-04-06RE	22105041114		H		Н		Η			00			Η		┢
AOI01-06-SB-00-02	22105041116	79	Η	90	H	97		85		70	Н	76	H	78	
AOI01-06-SB-00-02RE	22105041116		Η		Н	0,					Η		H		F
AOI01-06-SB-03-05	22105041117	102	Η	107	Η	103	Η	110		105	H	105		106	F
AOI01-07-SB-00-02	22105041118	79	H	96	H	97		86		64	\square	79		81	-
A0I01-07-SB-00-02RE	22105041118		H				Η				Η		H		F
AOI01-07-SB-00-02-D	22105041119	76	Η	91	Η	76		88		52	Η	79	H	76	F
AOI01-07-SB-00-02-DRE	22105041119		Η		Η						H				-
AOI01-07-SB-02-04	22105041120	90		91		98		95		64		80		91	-
	LAB					1									
Client Sample ID	SampleID	EIS15	#	EIS16	#	EIS17	#								
AOI01-05-SB-04-06	22105041114	90	Π	88		77									- -
AOI01-05-SB-04-06RE	22105041114		Π								Π				
AOI01-06-SB-00-02	22105041116	93	Π	95		69									
AOI01-06-SB-00-02RE	22105041116													_	
AOI01-06-SB-03-05	22105041117	98	Π	88		92									
AOI01-07-SB-00-02	22105041118	106	Π	84		65									
AOI01-07-SB-00-02RE	22105041118		Π					1771							
AOI01-07-SB-00-02-D	22105041119	99	Π	93		50									
AOI01-07-SB-00-02-DRE	22105041119		Π												
AOI01-07-SB-02-04	22105041120	91		84		73									
EIS1: M2 6:2 FTS	EIS2: M2 8:2 FTS			FIS3.	M	2PFTA				EIS4: M	30	ERS			
EIS5: M3PFHxS	EIS6: M4PFHpA					5PFHxA				EIS8: M					
EIS9: M6PFDA	EIS10: M7PFUnA					18PFOA				EIS12: 1					
EIS13: M9PFNA	EIS14: MPFBA					1PFDoA						MeFOS	AA		
EIS17: d5-NEtFOSAA															

FORM 8E - ORG

8E

EXTRACTED INTERNAL STANDARD RECOVERY

Report	No:	
--------	-----	--

221050411

Recovery Limits: 50 - 150

Client Sample ID	LAB SampleID	EIS1	#	EIS2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	#
A0101-07-SB-02-04RE	22105041120								Γ	132	Γ	[Π		Γ
AOI01-07-SB-04-06	22105041121	97	T	75		85		91		81	Γ	91	Π	89	F
AOI01-07-SB-04-06RE	22105041121		Γ							123	Γ		Π		Γ
AOI01-08-SB-00-02	22105041122	130	Γ	152	*	146		121		118		110	Π	112	Γ
AOI01-08-SB-00-02 MS	22105041123	255	*	(426)	*	192	*	159	*	(158)	*	141		141	Γ
AOI01-08-SB-00-02 MSD	22105041124	202		(325)	*	(154)	*	129		127	Γ	113	Π	111	Γ
AOI01-08-SB-02-04	22105041125	106	Γ	80		90		97		88		98		100	F
AOI01-08-SB-02-04RE	22105041125									141	\square		Π		Γ
AOI01-08-SB-02-04DL	22105041125		Γ												Γ
AOI01-08-SB-04-06	22105041126	102		80		81		92		82		94	Π	95	Γ
Client Sample ID	LAB SampleID	EIS8	#	EIS9	#	EIS10	#	EIS11	#	EIS12	#	EIS13	#	EIS14	#

Client Sample ID	SampleiD	EISB	Ŧ	E159	Ŧ	EIS10	Ŧ	EISTI	Ħ	EIS12	Ŧ	EIS13	#	EIS14	#
AOI01-07-SB-02-04RE	22105041120														\square
AOI01-07-SB-04-06	22105041121	90		92		94		96		64		82		91	\square
AOI01-07-SB-04-06RE	22105041121		Π												\square
AOI01-08-SB-00-02	22105041122	109		131		136		127		124		122		109	\square
AOI01-08-SB-00-02 MS	22105041123	133		175	*	183	* 1	168	*	(166)	*	161	*	131	\square
AOI01-08-SB-00-02 MSD	22105041124	103	Π	140		148		137		133	1	129		101	
AOI01-08-SB-02-04	22105041125	97	Π	99		98		104				84		99	
AOI01-08-SB-02-04RE	22105041125		Π												\square
AOI01-08-SB-02-04DL	22105041125		Π							136					
AOI01-08-SB-04-06	22105041126	93	Π	90		91		97		71		80		95	\square

LAB							
SampleID	EIS15	#	EIS16	#	EIS17	#	

Client Sample ID	SampleID	EIS15	#	EIS16	#	EIS17	#				
A0I01-07-SB-02-04RE	22105041120								Γ	Γ	
AOI01-07-SB-04-06	22105041121	91		82		69					
A0I01-07-SB-04-06RE	22105041121										
AOI01-08-SB-00-02	22105041122	138		120		135				Γ	
AOI01-08-SB-00-02 MS	22105041123	187	*	240	*	253	•		Γ		
AOI01-08-SB-00-02 MSD	22105041124	(151)	*	182	*	196	*				
AOI01-08-SB-02-04	22105041125	94		89		76				Γ	
A0I01-08-SB-02-04RE	22105041125								Γ		
A0101-08-SB-02-04DL	22105041125						\square			Γ	
AOI01-08-SB-04-06	22105041126	84		79		63				Γ	

EIS1: M2 6:2 FTS	EIS2: M2 8:2 FTS	EIS3: M2PFTA	EIS4: M3PFBS
EIS5: M3PFHxS	EIS6: M4PFHpA	EIS7: M5PFHxA	EIS8: M5PFPeA
EIS9: M6PFDA	EIS10: M7PFUnA	EIS11: M8PFOA	EIS12: M8PFOS
EIS13: M9PFNA	EIS14: MPFBA	EIS15: MPFDoA	EIS16: d3-NMeFOSAA
EIS17: d5-NEtFOSAA			

FORM 8E - ORG

Report No: 2210504	11		_			R	ec	overy Lim	nits	: 50 -	15(D			
						,									
Client Sample ID	LAB SampleID	EIS1	#	EK2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	1
AOI01-08-SB-04-06RE	2210504112	_	Π	800/00)			Γ		Γ	118			Π	1	Г
AOI01-09-SB-00-02	2210504112		Ħ	108		118	F	96	┢	97		92	H	93	t
AOI01-09-SB-00-02-D	2210504112	8 103	Ħ	110	П	125	\vdash	105		106		100	H	102	F
AOI01-09-SB-05-07	2210504112	9 89	П	87	П	93	F	99		100		99	H	100	F
AOI01-09-SB-08-10	2210504113	0 98	Н	91	Ħ	104	F	108		110		110	Η	111	ſ
AOI01-10-SB-00-02	2210504113	1 117	П	114		109	F	99		79		89	Η	84	ſ
AOI01-10-SB-00-02-D	2210504113	2 125	П	126	П	123	\vdash	112		87		99	Π	92	Γ
A0I01-10-SB-00-02-DRE	2210504113	2	П		П		Γ			122			Π		F
AOI01-10-SB-03-05	2210504113	5 104	П	79	П	87		99		85		102	Π	99	ſ
AOI01-10-SB-03-05-MS	2210504113	6 94		90		83		92		86		94		92	Ĺ
	LAB	/				/		,		1		/		/	
Client Sample ID	SampleID	EISB	#	E1\$9	#	EI\$10	#	EI\$11	#	EIS12	#	EIS13	#	EIS14	ħ
A0101-08-SB-04-06RE	2210504112	6											Π		Γ
AOI01-09-SB-00-02	2210504112	7 93	Π	102		107		100		98		95	П	92	Γ
AOI01-09-SB-00-02-D	2210504112	8 101	Π	108		112		111		105		104	П	100	Γ
AO101-09-SB-05-07	2210504112	9 100	Π	104	Π	98	Γ	106		98		101	Π	102	Γ
AOI01-09-SB-08-10	2210504113	0 110		112	П	107		118		109		112	Π	113	Γ
AOI01-10-SB-00-02	2210504113	1 84	Π	98	Π	100		86		66		86	Π	83	Γ
AOI01-10-SB-00-02-D	2210504113	2 90		104		113		95		77		88		88	Γ
AOI01-10-SB-00-02-DRE	2210504113	2													
AOI01-10-SB-03-05	2210504113	5 100		101		101		105		76		83		102	
AOI01-10-SB-03-05-MS	2210504113	6 94		92		93		93		70		81		95	
	LAB	. /		1		1									
Client Sample ID	SampleID	EIS15	#	EIS16	#	EIS17	#								
AOI01-08-SB-04-06RE	2210504112	6	Π										Π		Г
AOI01-09-SB-00-02	2210504112	7 107	П	85	П	95							П		Γ
AOI01-09-SB-00-02-D	2210504112	8 113	Π	94	Π	103		1 1					Π		Γ
AOI01-09-SB-05-07	2210504112	9 94	П	84	П	86							Π		Γ
AOI01-09-SB-08-10	2210504113	0 104	Π	92	Π	97							П		Γ
AOI01-10-SB-00-02	2210504113	1 110	П	91	Π	74	Γ						Π		Γ
AOI01-10-SB-00-02-D	2210504113	2 123	П	100	Π	81							П		Γ
AOI01-10-SB-00-02-DRE	2210504113	2	П		П								П		Γ
AOI01-10-SB-03-05	2210504113	5 92	П	92	Π	67							П		Γ
AOI01-10-SB-03-05-MS	2210504113	6 84		75		61						1, II.		-	
EIS1: M2 6:2 FTS	EIS2: M2 8:2 F	тз		EIS3	: M	2PFTA				EIS4: N	13P	FBS			
		A		EIS7	· M	5PFHxA				EIS8: N	15P	FPeA			
EIS5: M3PFHxS	EIS6: M4PFHp														
EIS5: M3PFHxS EIS9: M6PFDA	EIS6: M4PFHp EIS10: M7PFU			EIS1		M8PFOA				EIS12:	M8	PFOS			
		nA			1: N	M8PFOA						PFOS NMeFOS	;AA		

	LAB	/		/			/	/	/	/				1	
Client Sample ID	SampleID	EIS1	#	EIS2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	Å
AOI01-10-SB-03-05-MSD	22105041137	92	Ц	74	Ц	82		94		81		93		92	
AOI01-01-GW	22105041138	77		69		67		70		68		70		69	
AOI01-02-GW	22105041139			63	Ш	66		72		70		73		72	
AOI01-02-GWDL	22105041139	105				1									
AOI01-03-GW	22105041140	82		68		69		74			Ш	74		75	
AOI01-03-GWDL	22105041140									78					
AOI01-04-GW	22105041141	80		71		70		77		74		77		76	
AOI01-04-GWDL	22105041141									F T					
A0101-03-GW-D	22105041142	82		73		69		75				75		75	
AOI01-03-GW-DDL	22105041142									51					
	LAB	1	,,		,,		,,	EIS11	"		"	V			
Client Sample ID	SampleID	EIS8	#		# 		#		#		#		#	EIS14	ň
AOI01-10-SB-03-05-MSD	22105041137	94	\square	90	\mathbb{H}	92	\square	92	Η	66	Н	80	Η	94	╀
AOI01-01-GW	22105041138	69	\square	72	Н	67	Н	74		68		70		68	╀
AOI01-02-GW	22105041139	72	\square	71	Ц	70	Ц	76		68		71	Н	70	Ļ
AOI01-02-GWDL	22105041139		\square		\square	_	Ц						\square		₽
AOI01-03-GW	22105041140	73	Ц	76	Ц	72	Ц	79	Ц	74	Н	74	Ц	69	╞
AOI01-03-GWDL	22105041140		\square		\square		\square		\square		Ц		\square		╞
AOI01-04-GW	22105041141	75	\square	74	Ц	74	Ц	79	\square			74		72	╞
AOI01-04-GWDL	22105041141	_	Ц	_		_	Ц		\square	92			Ц		╞
A0101-03-GW-D	22105041142	73	Ц	75	Ц	74	Ц	79	Ц	73		75	Ц	70	╞
AOI01-03-GW-DDL	22105041142								Ц					_	
	LAB	1		1		V									
Client Sample ID	SampleID	EIS15	#	EIS16	#	EIS17	#								
AOI01-10-SB-03-05-MSD	22105041137	87		71		59									
A0I01-01-GW	22105041138	67		67		66									
A0101-02-GW	22105041139	69	Π	70	Π	69									
AOI01-02-GWDL	22105041139		Π		П		Π		Π				Π		Γ
AOI01-03-GW	22105041140	71		70		74			Π				Π		Г
AOI01-03-GWDL	22105041140		Π		П		П	1.1.5	П	1.1			Π		Г
A0101-04-GW	22105041141	70	П	71	Π	71	П		П				П		Γ
AOI01-04-GWDL	22105041141				Π		П		П				Π	-	T
AOI01-03-GW-D	22105041142	73	Π	72	П	72	П		Π				П		T
AOI01-03-GW-DDL	22105041142		Π		Π		Π		Π				Π		T
						-									
EIS1: M2 6:2 FTS	EIS2: M2 8:2 FTS	;		EIS3	: M2	2PFTA				EIS4: N	13P	FBS			
EIS5: M3PFHxS	EIS6: M4PFHpA			EIS7	: M	5PFHxA				EIS8: N	15P	FPeA			
LIGS. MOTITIKO										E1040	1.40	0500			
EIS9: M6PFDA	EIS10: M7PFUnA			EIS1	1: N	18PFOA				EIS12:	NIS	PFUS			
	EIS10: M7PFUnA EIS14: MPFBA					18PFOA 1PFDoA						PFOS NMeFOS	SAA		

Report No: 2	21050411						F	Reco	overy Lin	nits	: 50 -	150)			
		LAB	/		~		1		El\$4		~				-V	
Client Sample ID		SampleID	EIS1	#		#		#	1.000	#		#		#	EIS7	i T
AOI01-05-GW		22105041143	87	Н	75		63	\square	77		72		77	Ц	77	1
A0101-06-GW		22105041144	80		70	Ц	68		75		74		75	Ц	75	Ļ
A0101-07-GW		22105041145	118	Ц	108	\square	87		93	Ц	93		77	Ц	80	ļ
A0101-08-GW		22105041146	118		109		92		94	Ц	94		92	Ц	95	Ļ
AOI01-09-GW		22105041147	103	Ц	81	Ц	67		80		77		81	Ц	79	1
AOI01-09-GWRE		22105041147				\square								Ц		Ļ
A0101-10-GW		22105041148	118		107	Ц	89		93	Ц	94		85		88	ļ
A0101-10-GW-MS		22105041149	114		106		93		98		101	L	92		95	
AOI01-10-GW-MSD		22105041150	117	Ц	99	Ц	93		99		98		87	Ц	90	
WL-ERB-02		22105041151	123		102		88		90		92		91		94	
		LAB	1		1		1		./		/		\checkmark		/	
Client Sample ID		SampleID	EIS8	#	EIS9	#	EIS10	#	EIŠ11	#	EIS12	#	EIS13	#	EIŠ14	
A0101-05-GW		22105041143	74		74		70		77		71		72		70	
A0101-06-GW		22105041144	74		75		73		80		72		75		74	Ι
AOI01-07-GW		22105041145	81		87		88		82		91		83		79	Т
40101-08-GW		22105041146	96		95	Π	96	Π	95		89	Γ	93	Π	96	T
A0101-09-GW		22105041147	79	П	78	П	74		83				78	П	76	T
AOI01-09-GWRE		22105041147		Π		П				Π	95	Π		П		T
AOI01-10-GW		22105041148	89	П	91	Π	93		88		93	П	87	П	88	t
AO101-10-GW-MS		22105041149	95	П	95	П	94	Π	94	П	97	П	92	П	94	t
AOI01-10-GW-MSD		22105041150	92	П	92	П	93	П	91	П	98	П	90	П	90	t
WL-ERB-02		22105041151	93	Π	94	Π	91		95	Π	91	Π	92	Π	92	t
		LAB	/	,			/									
Client Sample ID		SampleID	EIS 15	#	EIS16	#	EIS17	#								
A0101-05-GW		22105041143	70	Π	70		69	Π		Π				Π		Т
A0101-06-GW		22105041144	71	Н	69		71	Н		Π		Π		Η		t
AOI01-07-GW		22105041145	84	Π	83	Π	87	Π		H		Η	71 T I)	H		t
A0101-08-GW		22105041146	91	Η	93	H	98	\vdash		Η		Η	_	H		t
A0101-09-GW		22105041147	73	Η	73	Η	73	Η		Η		H		H		t
A0101-09-GWRE		22105041147	1	Η		H		Η	_			Η		H		t
AOI01-10-GW		22105041148	89	Ħ	85	H	90	Η		Η		Η		H		t
AOI01-10-GW-MS		22105041149	94		89	Η	95	Η		Η		H		H		t
AOI01-10-GW-MSD		22105041150	94	H	86	H	92	H		Η	2	Η		H		t
WL-ERB-02		22105041151	84	Η	88	H	90	H				H		H		t
		1								_			-			-
EIS1: M2 6:2 FTS	E	IS2: M2 8:2 FTS	5		EIS3	: M	2PFTA				EIS4: N	/3P	FBS			
EIS5: M3PFHxS		IS6: M4PFHpA					5PFHxA				EIS8: N					
											EIS12:					
EIS9: M6PFDA					EIQ I	1: N	/18PFOA	۱. 			LIO 12.	1410				
EIS9: M6PFDA EIS13: M9PFNA		IS10: M7PFUnA					/IPFDoA						NMeFOS	SAA		

Report No: 221050411			_			F	(ecc	overy Lin	nits	: 50 -	150)			
Client Sample ID	LAB SampleID	EIS1	#	EIS2	#	EIS3	#	EIS4	#	ÉIS5	#	EIS6	#	EIS7	i
ML-ERB-03	22105041152	106	Π	100	Π	88		94	Π	97	Π	82	Π	87	Т
ML-ERB-04	22105041153	128		108	┮	93		95	П	97	Ħ	90		93	t
WL-ERB-01	22105041154	126	П	110	T	88	Π	96	П	94	Г	85	Ħ	87	t
AOI01-10-SB-03-05 (RE)	22105041155				Γ				П	83	Г		11		t
AOI01-10-SB-03-05-MS (RE)	22105041156		Π		Г				П	81	Г		П		t
AOI01-10-SB-03-05-MSD (RE)	22105041157				Γ		Π		П	79	Π		П		T
AOI01-08-SB-00-02 (RE)	22105041158		П		Γ	107	Π	97		93	Π		\square		T
AOI01-08-SB-00-02 MS(RE)	22105041159		П		T	120		112	П	103	Г	1 - 1	П		t
AOI01-08-SB-00-02 MSD(RE)	22105041160		П		Γ	107		97	П	90	Π		П		t
MB2179328	2179328	84		70		74		77		77		75		74	İ
	LAB				м	E IGAO		EIS 11	-4			E LEAD			
Client Sample ID	SampleID	EIS8	#		#	-	#		#		#		"		T
WL-ERB-03	22105041152	87	+	86	┢	85		88		93	-	85	H	88	╀
WL-ERB-04	22105041153	94	\mathbb{H}	95	-	96		95	Н	96	H	95	╀┤	93	╀
WL-ERB-01	22105041154	88	+	90	\vdash	90		89	Н	94	\vdash	88	\mathbb{H}	86	╀
AOI01-10-SB-03-05 (RE)	22105041155		-		+		H	95	H	_		-	\mathbb{H}		╋
AOI01-10-SB-03-05-MS (RE)	22105041156		+		┢		\square	89	Н		\vdash		+	_	╀
AOI01-10-SB-03-05-MSD (RE)	22105041157		+		⊢	100		90	Н				$\left \right $		╀
40101-08-SB-00-02 (RE)	22105041158		\square	105	\vdash	109		104		94		98	\square		-
AOI01-08-SB-00-02 MS(RE)	22105041159		\square	119	⊢	125	L	117	\square	106		110	\square		╇
AOI01-08-SB-00-02 MSD(RE)	22105041160		\square	104	-	109		103	Ц	92		96	\square	_	∔
MB2179328	2179328	73		77		77		81		76		76		75	L
Client Sample ID	LAB SampleID	EIS 15	#	EIS16	#	EIS17	#								
WL-ERB-03	22105041152	84	Π	80	Π	84							П		Т
WL-ERB-04	22105041153	92	Н	90	\top	94	T		П		Ħ	-			t
WL-ERB-01	22105041154	88	Η	84	+	90	\top	-	Ħ				Ħ	-	t
AOI01-10-SB-03-05 (RE)	22105041155		Η		t		$^{+}$		Н				H		t
AOI01-10-SB-03-05-MS (RE)	22105041156		H		┢						H		H		t
AOI01-10-SB-03-05-MSD (RE)	22105041157		H	1	H		┢		Η		H		H		╈
AOI01-08-SB-00-02 (RE)	22105041158	109			H		+		Η						t
AOI01-08-SB-00-02 MS(RE)	22105041159	123	Ħ				+		Η		H		Ħ		t
AOI01-08-SB-00-02 MSD(RE)	22105041160	109	H		Ħ		┢				H		Η		t
MB2179328	2179328	75	Н	76	T	74			Ħ	1.1			Π		t
EIS1: M2 6:2 FTS	EIS2: M2 8:2 FTS	6		EIS3	8: M	2PFTA				EIS4: N	//3F	FBS			
EIS5: M3PFHxS	EIS6: M4PFHpA			EIS7	7: M	5PFHxA				EIS8: N	/15F	FPeA			
EIS9: M6PFDA	EIS10: M7PFUnA	`		EIS1	1: 1	M8PFOA	1			EIS12:	M8	PFOS			
EIS13: M9PFNA	EIS14: MPFBA			EIS1	15: 1	MPFDoA				EIS16:	d3-	NMeFO	SAA		
EIS17: d5-NEtFOSAA															
EIS17: d5-NEtFOSAA		F	ORN	1 8E - O	RG										

Recovery Limits: 50 - 150

Client Sample ID	LAB SampleID	EIS1	#	EIS2	#	EIS3	#	EIŠ4	#	EIS5	#	EIS6	#	els7
LCS2179329	2179329	76	Π	71	Π	74		72		71		75	Ϊ	72
LCSD2179330	2179330	80	Н	70		71		75		72	┢	76	┢	75
MB2179810	2179810	119	Ħ	105		107	H	122		118		122	t	126
LCS2179811	2179811	105	П	93		95		113		106		112		115
LCSD2179812	2179812	120	П	100	Π	108		120		118		119	h	121
MB2183139	2183139	67	Ħ	60	Η	64		65		66	Π	64		62
MB2183139RE	2183139		H		Π						Π		Π	
LCS2183140	2183140	65	Π	59	Π	65		67	Π	69		59	Ħ	55
LCS2183140RE	2183140		Ħ		Π		Π						Π	
LCSD2183141	2183141	69	П	61	Π	65	П	68	П	69	Γ	57	Π	55
Client Sample ID	LAB SampleID		#	EIS9	#	EIŠ 10	#	EI\$11	#	EIS 12	#	EI\$13	#	EIS14
LCS2179329	2179329	72	Π	75	П	73	Π	80		72	\square	75	Ē	73
												10	1 1	
LCSD2179330	2179330	74	Π	75	Π	72		80		71		75	Η	75
	2179330 2179810	74 128	П	75 118		72 112		80 129	_	71 115				
MB2179810												75		75
MB2179810	2179810	128		118		112		129		115		75 121		75 127
MB2179810 LCS2179811 LCSD2179812	2179810 2179811	128 117		118 110		112 105		129 118		115 104		75 121 110		75 127 118
MB2179810 LCS2179811 LCSD2179812 MB2183139	2179810 2179811 2179812	128 117 127		118 110 117		112 105 114		129 118 127		115 104 114		75 121 110		75 127 118 124
MB2179810 LCS2179811 LCSD2179812 MB2183139 MB2183139RE	2179810 2179811 2179812 2183139	128 117 127		118 110 117		112 105 114		129 118 127		115 104 114		75 121 110 119		75 127 118 124
MB2179810 LCS2179811	2179810 2179811 2179812 2183139 2183139	128 117 127 61		118 110 117 65		112 105 114 65		129 118 127 68		115 104 114 64		75 121 110 119		75 127 118 124 62

Client Sample ID	SampleID	EIS 15	#	EIS 16	#	EIS17	#				
LCS2179329	2179329	73		74		73	Γ		Т		Т
LCSD2179330	2179330	73		75		74					Т
MB2179810	2179810	106		105		104					Т
LCS2179811	2179811	98		98		100	—				Т
LCSD2179812	2179812	108		104		104					T
MB2183139	2183139	64		64		62					T
MB2183139RE	2183139						1			Π	T
LCS2183140	2183140	60		56		55				П	 T
LCS2183140RE	2183140									П	T
LCSD2183141	2183141	61		56		56				 Π	 Ť

EIS1: M2 6:2 FTS	EIS2: M2 8:2 FTS	EIS3: M2PFTA	EIS4: M3PFBS
EIS5: M3PFHxS	EIS6: M4PFHpA	EIS7: M5PFHxA	EIS8: M5PFPeA
EIS9: M6PFDA	EIS10: M7PFUnA	EIS11: M8PFOA	EIS12: M8PFOS
EIS13: M9PFNA	EIS14: MPFBA	EIS15: MPFDoA	EIS16: d3-NMeFOSAA
EIS17: d5-NEtFOSA	A		

FORM 8E - ORG

Report No:

Report No:	221050411			_			R	leco	overy Lin	nits	: 50 -	150)			
		LAB		-		•			/	-						/
Client Sample ID		SampleID	EIS1	#			EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	7
LCSD2183141RE		2183141		Π		Π		Π		Г				Π		Τ
MB2183946		2183946	88		79	Г	85	Ħ	87	t	87		82	Ħ	81	t
LCS2183947		2183947	92	П	84	П	93	П	94	Г	95		90	П	89	t
LCSD2183948		2183948	82	Г	74	П	86	÷	87	T	88		83	Γ	82	t
MB2184338		2184338	89	П	75	Ħ	79	П	81	T	(45)	*	71	Π	68	t
MB2184338RE		2184338		П		Π		П		T	109			Γ		t
LCS2184339		2184339	87	Π	81	Π	80	П	82	T	75		72	Π	70	t
LCS2184339RE		2184339		Π		Π		Π			116			Π		t
MB2184340		2184340	102	П	86	П	79	П	92	Γ	80	Γ	78	Γ	73	t
LCS2184341		2184341	89	Π	69	Π	78		89		72		77		73	I
		LAB		-	1		/		/		1		./		1	
Client Sample ID		SampleID	EIS8	#	EIS9	#	EIS10	#	EIS11	#	EIS12	#	EI\$13	#	EIS14	7
LCSD2183141RE		2183141		Ц				Ц					75			
MB2183946		2183946	80	Ц	87	Ц	84	Ц	89		89		85		85	L
LCS2183947		2183947	87		96	Ц	92		99		96		93		90	L
LCSD2183948		2183948	79		87	Ц	84	Ц	90		88		87		81	L
MB2184338		2184338	65	Ц	83	Ц	82	Ц	75		63		74		65	Ļ
MB2184338RE		2184338		Ц		Ц					107					
LCS2184339		2184339	66		77	Ц	80	Ц	79		75		71	Ц	63	L
LCS2184339RE		2184339	5 I I I	Ц							113				= -	
MB2184340		2184340	72	Ц	85	Ц	88	Ц	83		65		79		72	
LCS2184341		2184341	70		79		85		79		67		72		70	
		LAB	V				/									
Client Sample ID		SampleID	EIS15	#	EIS16	#	EIS17	#								_
LCSD2183141RE		2183141						Ц								
MB2183946		2183946	84		75		77									
LCS2183947		2183947	91		82		83									
LCSD2183948		2183948	86		74		76									
MB2184338		2184338	80		75		65									
MB2184338RE		2184338														
LCS2184339		2184339	81		69	\Box	61									
LCS2184339RE		2184339				Ц		Ц								
MB2184340		2184340	84		76		63									
LCS2184341		2184341	79		74		54									
EIS1: M2 6:2 FTS	F	IS2: M2 8:2 FTS	5		EIS3	: M	2PFTA				EIS4: N	13P	FBS			
EIS5: M3PFHxS		IS6: M4PFHpA					5PFHxA				EIS8: N					
		IS10: M7PFUnA					/I8PFOA				EIS12:					
EIS9: M6PFDA																
EIS9: MOPPDA EIS13: M9PFNA	E	IS14: MPFBA			EIS1	5: N	/IPFDoA				EIS16:	d3-	NMeFOS	SAA		

8E

Report No:	221050411						F	Reco	overy Lin	nits	: 50 -	150)			
Client Sample ID		LAB SampleID	EIS1	#	EIS2	#	EIS3	#	EIS4	#	EIS5	#	EIS6	#	EIS7	#
MB2188447		2188447						T		Π	85	Γ	-	Π		Г
LCS2188448		2188448		Τ		Γ		Γ		T	84	Γ		Π		T
MB2191137		2191137		Π			94		100	Γ	97			Π		Γ
LCS2191138		2191138					92		97		92					
Client Sample ID		LAB SampleID	EIS8	#	EIS9	#	EI\$10	#	EIŠ11	. #	EIS12	#	EIS 13	#	EIS14	#
MB2188447		2188447							85					Π		Г
LCS2188448		2188448		Π					85					Π		Г
MB2191137		2191137		П	91	Γ	94		91	Γ	95	Γ	87	П		Г
LCS2191138		2191138	-		89		91		86		94	Γ	85			
Client Sample ID		LAB SampleID	EIS15		EIS16	#	EIS17	#								
MB2188447		2188447								Γ				Π		Γ
LCS2188448		2188448														Γ
MB2191137		2191137	91													
LCS2191138		2191138	90				_									
EIS1: M2 6:2 FTS	EI	S2: M2 8:2 FT	s		EIS3	: M	2PFTA				EIS4: N	/3F	FBS			
EIS5: M3PFHxS	EI	S6: M4PFHpA			EIS7	: M	5PFHxA				EIS8: N	/15F	FPeA			
EIS9: M6PFDA	E	S10: M7PFUn/	٩		EIS1	1: N	18PFOA				EIS12:	M8	PFOS			
EIS13: M9PFNA	E	S14: MPFBA			EIS1	5: N	/IPFDoA				EIS16:	d3-	NMeFO	SAA		
EIS17: d5-NEtFOS/	٩A															

XIV

ANALYSIS RUN LOG

Report No:	221050411	Analytical Batch:	710425	Start Date:	05/06/21
Instrument ID:	PH METER WATERS	Analytical Method:	EPA 9045D	End Date:	05/06/21

	LAB			ANALYTES
CLIENT SAMPLE ID	SAMPLE ID	DILUTION	TIME	рН
ICV	1600	1	1345	Х
AOI01-05-SB-00-02	22105041111	1	1350	Х
AO101-05-SB-00-02-D	22105041112	1	1352	Х
AOI01-10-SB-00-02	22105041131	1	1354	Х
CCV	1800	1	1403	Х

FORM XIV - GENCHEM

11

CONTINUING CALIBRATION VERIFICATION

Report No:	221050411	Instrument ID:	TOC6	
Analysis Date:	05/12/21 1214	Lab File ID:	8958	
Analytical Method:	EPA 9060A	Analytical Batch:	710972	

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
Total Organic Carbon	mg/kg	10000	10900	109	90	110	
				V			

FORM II - GENCHEM

||

CONTINUING CALIBRATION VERIFICATION

Report No:	221050411		Instrument ID:	TOC6	
Analysis Date:	05/12/21 1504		Lab File ID:	8958	
Analytical Method:	EPA 9060A		Analytical Batch:	710972	

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
Total Organic Carbon	mg/kg	10000	10200	102	90	110	

FORM II - GENCHEM

||

CONTINUING CALIBRATION VERIFICATION

Report No:	221050411			Instrument ID:	TOC6		
Analysis Date:	05/12/21 1636			Lab File ID:	8958		
Analytical Method:	EPA 9060A	EPA 9060A		Analytical Batch:	710972		
ANALYTE		UNITS	TRUE	FOUND	% REC / LCL	UCL	Q
Total Organic Carl	oon	mg/kg	10000	10800	108 90	110	
					1		

FORM II - GENCHEM

III METHOD BLANK

Report No:	221050411	Blank ID:	MB2185125
Matrix:	Solid	Instrument ID:	TOC6
Analysis Date:	05/12/21 1226	Lab File ID:	8958
Analytical Method:	EPA 9060A	Analytical Batch:	710972

ANALYTE	RESULT	UNITS	Q	/ DL	LOD	LOQ
Total Organic Carbon	200	mg/kg	U	153	200	250
			-			

FORM III - GENCHEM

111

CONTINUING CALIBRATION BLANK

Report No:	221050411	Blar	Blank ID:		CCB for HBN 710972			
Matrix:	Solid		Inst	Instrument ID:		TOC6		
Analysis Date:	05/12/21 1514		Lab	File ID:	8958			
Analytical Method: EPA 9060A			Analytical Bat		n: 710972			
					/			
ANALYTE		RESULT	UNITS	Q /	DL	LOD	LOQ	
Total Organic	: Carbon	200	mg/kg	U	153	200	250	

FORM III - GENCHEM

III

CONTINUING CALIBRATION BLANK

Report No:	221050411	Blank ID:	CCB for HBN 710972
Matrix:	Solid	Instrument ID:	TOC6
Analysis Date:	05/12/21 1650	Lab File ID:	8958
Analytical Method:	EPA 9060A	Analytical Batch:	710972

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Total Organic Carbon	200	mg/kg	U	153	200	250
			V			

FORM III - GENCHEM

V MS/MSD RECOVERY

Report No:	221050411	Parent Sample ID:	AOI01-10-SB-00-02
Prep Date:	NA	Parent LAB ID:	22105041131
Prep Batch:	NA	Analytical Batch:	710972
Prep Method:	NA	Analytical Method:	EPA 9060A

Analysis Date:	05/12/21 1605	SPIKE	SAMPLE	MS	MS %	
Analyst: Analysis Date:	JGD 05/12/21 1605		Lab File ID: Dilution:	0906		
LAB QC ID:	22105041133 MS		Instrument ID:	TOC6 8958		

10500

26600

85

69 - 128

21800

mg/kg

LAB QC ID:	22105041134 MSD	Instrument ID:	TOC6
Analyst:	JGD	Lab File ID:	8958
Analysis Date:	05/12/21 1624	Dilution:	1

ANALYTE	UNITS	SPIKE ADDED	MSD RESULT	MSD % REC	# % # RPD #	%REC LIMITS	RPD LIMITS
Total Organic Carbon	mg/kg	21800	28200	93	6	69 - 128	0 - 20
		al al a secondaria de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de		V	V		

Total Organic Carbon

VI

DUPLICATES

Report No:	221050411	Parent Sample ID:	AOI01-05-SB-00-02
Prep Method:	NA	Parent LAB ID:	22105041111
Prep Date:	NA	Prep Batch:	NA
Analytical Method:	EPA 9060A	Analytical Batch:	710972

LAB QC ID:	2185127 DUP	Instrument ID:	TOC6	
Analyst:	JGD	Lab File ID:	NA	
Analysis Date:	05/12/21 1416	Dilution:	1	

ANALYTE	UNITS	SAMPLE RESULT	Q	DUP RESULT	Q	RPD #	RPD LIMITS
Total Organic Carbon	mg/kg	11700		11100		5	0 - 25
						V	

VI DUPLICATES

Report No:	221050411	Parent Sample ID:	AOI01-05-SB-00-02
Prep Method:	NA	Parent LAB ID:	22105041111
Prep Date:	NA	Prep Batch:	NA
Analytical Method:	EPA 9060A	Analytical Batch:	710972

LAB QC ID:	2185129 DUP	Instrument ID:	TOC6	
Analyst:	JGD	Lab File ID:	NA	
Analysis Date:	05/12/21 1451	Dilution:	1	Condition of the state of the

ANALYTE	UNITS	SAMPLE RESULT	Q	DUP RESULT	Q	RPD #	RPD LIMITS
Total Organic Carbon	mg/kg	11700		11200		4	0 - 25
						1/	

VII LABORATORY CONTROL SPIKE

Report No:	221050411	LAB ID:	LCS2185126
Matrix:	Solid	Instrument ID:	TOC6
Analyst:	JGD	Lab File ID:	8958
Prep Date:	NA	Analysis Date:	05/12/21 1236
Prep Batch:	NA	Analytical Batch:	710972
Prep Method:	NA	Analytical Method:	EPA 9060A

ANALYTE	UNITS	TRUE	FOUND	%REC Q	% REC LIMITS
Total Organic Carbon	mg/kg	2000	2160	108	69 - 128
				V	

FORM VII - GENCHEM

XIV ANALYSIS RUN LOG

Report No:	221050411	Analytical Batch:	710972	Start Date:	05/12/21
Instrument ID:	TOC6	Analytical Method:	EPA 9060A	End Date:	05/12/21

	LAB			ANALYTES
CLIENT SAMPLE ID	SAMPLE ID	DILUTION	TIME	тос
CCV	1800	1	1214	Х
MB2185125	2185125	1	1226	Х
LCS2185126	2185126	1	1236	Х
AOI01-05-SB-00-02	22105041111	1	1401	Х
AOI01-05-SB-00-02DUP	2185127	1	1416	Х
AOI01-05-SB-00-02DUP	2185129	1	1451	X
CCV	1800	1	1504	Х
CCB	1900	1	1514	Х
AOI01-05-SB-00-02-D	22105041112	1	1529	Х
AOI01-10-SB-00-02	22105041131	1	1545	Х
AOI01-10-SB-00-02-MS	22105041133	1	1605	X
AOI01-10-SB-00-02-MSD	22105041134	1	1624	X
CCV	1800	1	1636	Х
ССВ	1900	1	1650	X

SSM ICAL PLH/JGD ICAL SSM ICAL05-08-19.2021_03_24_10_50_27.cal Completed

Cal. Curve

Sample Name: Sample ID: Cal. Curve: Status

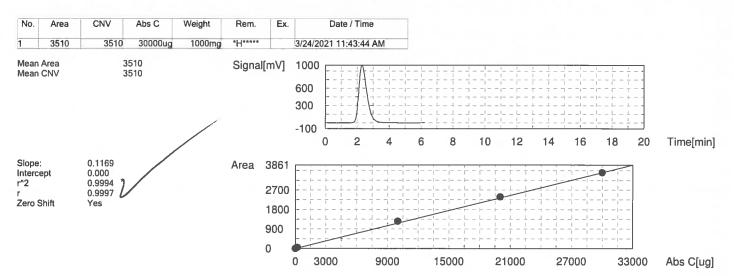
Туре	Anal.
Standard	SSM-TC

AbsC: 0.000ug

No.	Area	CNV	Abs C	Weight	Rem.	Ex.		Date / Time									
1	0.000	0.000	0.000ug	1000mg	******		3/2	4/2021 10:57:20 AM									
Mean Mean			0.000 0.000		Signal(mV]	10 6 3 -1										
							'	0 2 4	6	8	10	12	14	16	18	20	Time[min]

AbsC: 200.0ug

No.	Area	CNV	Abs C	Weight	Rem.	Ex.	Date / Time									
1	45.45	45.45	200.0ug	1000mg	*******		3/24/2021 11:07:06 AM									
Vlean Vlean			5.45 5.45		Signal[mV]	20 14 7 									
							0 2 4	6	8	10	12	14	16	18	20	Time[mi


AbsC: 10000ug

No.	Area	CNV	Abs C	Weight	Rem.	Ex.	Date / Time				
	1259	1259	10000ug	1000mg	******		3/24/2021 11:17:56 AM				
Mean (Mean (259 259		Signal[I	mV]	$\begin{array}{c} 400\\ 300\\ 200\\ 100\\ -40\\ 0 \\ 2 \\ 4 \\ 0 \\ 2 \\ 4 \\ 0 \\ 2 \\ 4 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$	12 14	16	18 20	Time[min]
	20000ug										
No.	Area	CNV	Aba C	Weight	Rem.	E L	Date / Time				
		Citt	Abs C	weight	rioni.	Ex.	Dater Time				
1	2387	2387	20000ug	1000mg	******	EX.	3/24/2021 11:31:24 AM				
1 Mean / Mean (2387 Area	2387									

AbsC: 30000ug

3/24/2021 12:59:27 PM

Origin: SSM	UGD ICAL ICAL05-08-19.2021_03_24_10_50_27.cal pleted
-------------	--

Туре	Anal.	Manual Dilution	Density	Result
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:0.000ppm

1. Det

No.	Area	CNV	Abs C	Conc.	Weight	Volume	Ex.			Cal	Curve				Date / T	ime	
1	0.000	0.000	0.000ug	0.000ppm	1000m	g 1000u	L	SSM IC	AL05-0	8-19.202	21_03_24	10_50_	27.cal	3/24/202	21 12:06:	48 PM	
Mean Mean Mean			0.000 0.000 0.000ppm	Sigr		10 +											
						-1 0	2	4	6	8	10	12	14	16	18	20	Time[min]

Sample Name: Sample ID: Origin: Status Chk. Result	CS1 200 PLH/JGD ICAL SSM ICAL05-08-19.2021_03_24_10_50_27.cal Completed
--	--

Туре	Anal.	Manual Dilution	Density	Result
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:199.7ppm

1. Det

No.	Area	CNV	Abs C	Conc.	Weight	Volume	Ex.		Cal	. Curve			Date /	Time	
1	23.34	23.34	199.7ug	199.7ppm	1000mg	1000uL		SSM ICALO	5-08-19.202	21_03_24	_10_50_27.c	al 3/24/	2021 12:37	:50 PM	
/lean	Area CNV Conc.		23.34 23.34 199.7ppm	Sign	ial[mV] 1 6 3	- + - +									
						0 2	2	4 6	8	10	12 1	4 16	5 18	20	Time[mir

Sample Name: Sample ID: Origin: Status Chk. Result	ICV 10,000 PLH/JGD ICAL SSM ICAL05-08-19.2021_03_24_10_50_27.cal Completed
Status	

Туре	Anal.	Manual Dilution	Density	Result
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:10231ppm

1. Det

No.	Area	CNV	Abs C	Conc.	Weight	Volume	Ex.			Cal. C	urve				Date / T	ïme	
1	1196	1196	10231ug	10231ppm	1000mg	1000uL		SSM ICAL	.05-08-19	.2021	03_24	10_50_2	7.cal	3/24/202	21 12:46:	13 PM	
Mean Mean Mean			1196 1196 10231ppm	Sign	3 2 1	00 00 100 100 100 100 100 100 1											
						0	2	4	6	8	10	12	14	16	18	20	Time[min

Sample Name: Sample ID: Origin: Status Chk. Result		ICV 20,01 PLH/JGE SSM ICA Complete	0 ICAL L05-08-19.2021_0	03_24_10_50_27.cal
Trace	A			1

Туре	Anal.	Manual Dilution	Density	Result
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC: 19889ppm

1. Det

No.	Area	CNV	Abs C	Conc.	Weight	Volume	Ex.			Cal. C	Curve				Date / T	ïme	
1	2325	2325	19889ug	19889ppm	1000mg	1000uL		SSM ICA	L05-08-	19.2021	03_24	10_50	27.cal	3/24/202	1 12:56:	36 PM	
Mean Mean Mean	CNV	:	2325 2325 19889ppm	Sigr	6 4												
						0	2	4	6	8	10	12	14	16	18	20	Timeſmi

Sample Summary

LAB ID	Client ID	Matrix	Collect Date	Receive Date
22103290301	WL-DECON-01	Water	03/26/2021 08:35	03/27/2021 12:30

Sample Summary

Lab ID	Client ID	Matrix	Collect Date	Receive Date
22105041101	AOI01-01-SB-00-02	Solid	4/27/21 12:45	4/30/21 10:02
22105041102	AOI01-01-SB-05-07	Solid	4/27/21 12:50	4/30/21 10:02
22105041103	AOI01-02-SB-00-02	Solid	4/27/21 10:35	4/30/21 10:02
22105041104	AOI01-02-SB-04-06	Solid	4/27/21 11:00	4/30/21 10:02
22105041105	AOI01-03-SB-00-02	Solid	4/29/21 08:00	4/30/21 10:02
22105041106	AOI01-03-SB-03-05	Solid	4/29/21 08:05	4/30/21 10:02
22105041107	AOI01-03-SB-05-07	Solid	4/29/21 08:10	4/30/21 10:02
22105041108	AOI01-04-SB-00-02	Solid	4/29/21 08:55	4/30/21 10:02
22105041109	AOI01-04-SB-03-05	Solid	4/29/21 09:00	4/30/21 10:02
22105041110	WL-FRB-01	Water	4/29/21 07:50	4/30/21 10:02
22105041111	AOI01-05-SB-00-02	Solid	4/28/21 12:20	4/30/21 10:02
22105041112	AOI01-05-SB-00-02-D	Solid	4/28/21 12:20	4/30/21 10:02
22105041113	AOI01-05-SB-02-04	Solid	4/28/21 12:23	4/30/21 10:02
22105041114	AOI01-05-SB-04-06	Solid	4/28/21 12:25	4/30/21 10:02
22105041116	AOI01-06-SB-00-02	Solid	4/28/21 09:40	4/30/21 10:02
22105041117	AOI01-06-SB-03-05	Solid	4/28/21 10:00	4/30/21 10:02
22105041118	AOI01-07-SB-00-02	Solid	4/28/21 08:45	4/30/21 10:02
22105041119	AOI01-07-SB-00-02-D	Solid	4/28/21 08:45	4/30/21 10:02
22105041120	AOI01-07-SB-02-04	Solid	4/28/21 08:50	4/30/21 10:02
22105041121	AOI01-07-SB-04-06	Solid	4/28/21 08:55	4/30/21 10:02
22105041122	AOI01-08-SB-00-02	Solid	4/28/21 07:50	4/30/21 10:02
22105041123	AOI01-08-SB-00-02 MS	Solid	4/28/21 07:50	4/30/21 10:02
22105041124	AOI01-08-SB-00-02 MSD	Solid	4/28/21 07:50	4/30/21 10:02
22105041125	AOI01-08-SB-02-04	Solid	4/28/21 07:55	4/30/21 10:02
22105041126	AO101-08-SB-04-06	Solid	4/28/21 08:00	4/30/21 10:02
22105041127	AOI01-09-SB-00-02	Solid	4/27/21 14:00	4/30/21 10:02
22105041128	AOI01-09-SB-00-02-D	Solid	4/27/21 14:00	4/30/21 10:02
22105041129	AOI01-09-SB-05-07	Solid	4/27/21 14:10	4/30/21 10:02
22105041130	AOI01-09-SB-08-10	Solid	4/27/21 14:11	4/30/21 10:02
22105041131	AOI01-10-SB-00-02	Solid	4/28/21 14:05	4/30/21 10:02
22105041132	AOI01-10-SB-00-02-D	Solid	4/28/21 14:05	4/30/21 10:02
22105041133	A0101-10-SB-00-02-MS	Solid	4/28/21 14:05	4/30/21 10:02
22105041134	AOI01-10-SB-00-02-MSD	Solid	4/28/21 14:05	4/30/21 10:02
22105041135	AOI01-10-SB-03-05	Solid	4/28/21 14:10	4/30/21 10:02
22105041136	AOI01-10-SB-03-05-MS	Solid	4/28/21 14:10	4/30/21 10:02
22105041137	AOI01-10-SB-03-05-MSD	Solid	4/28/21 14:10	4/30/21 10:02
22105041138	A0I01-01-GW	Water	4/27/21 15:25	4/30/21 10:02
22105041139	AOI01-02-GW	Water	4/28/21 08:50	4/30/21 10:02
22105041140	A0101-03-GW	Water	4/29/21 10:05	4/30/21 10:02
22105041141	A0101-04-GW	Water	4/29/21 11:30	4/30/21 10:02
22105041142	A0101-03-GW-D	Water	4/29/21 10:05	4/30/21 10:02
22105041143	A0101-05-GW	Water	4/28/21 14:35	4/30/21 10:02

Sample Summary (Continued)

Lab ID	Client ID	Matrix	Collect Date	Receive Date
22105041144	A0I01-06-GW	Water	4/28/21 12:45	4/30/21 10:02
22105041145	A0I01-07-GW	Water	4/28/21 11:40	4/30/21 10:02
22105041146	A0I01-08-GW	Water	4/28/21 10:10	4/30/21 10:02
22105041147	A0I01-09-GW	Water	4/27/21 16:20	4/30/21 10:02
22105041148	A0I01-10-GW	Water	4/29/21 08:20	4/30/21 10:02
22105041149	AOI01-10-GW-MS	Water	4/29/21 08:20	4/30/21 10:02
22105041150	AOI01-10-GW-MSD	Water	4/29/21 08:20	4/30/21 10:02
22105041151	WL-ERB-02	Water	4/28/21 14:30	4/30/21 10:02
22105041152	WL-ERB-03	Water	4/29/21 09:00	4/30/21 10:02
22105041153	WL-ERB-04	Water	4/29/21 10:00	4/30/21 10:02
22105041154	WL-ERB-01	Water	4/28/21 13:25	4/30/21 10:02
22105041155	AOI01-10-SB-03-05 (RE)	Solid	4/28/21 14:10	4/30/21 10:02
22105041156	AOI01-10-SB-03-05-MS (RE)	Solid	4/28/21 14:10	4/30/21 10:02
22105041157	AOI01-10-SB-03-05-MSD (RE)	Solid	4/28/21 14:10	4/30/21 10:02
22105041158	AOI01-08-SB-00-02 (RE)	Solid	4/28/21 07:50	4/30/21 10:02
22105041159	AOI01-08-SB-00-02 MS(RE)	Solid	4/28/21 07:50	4/30/21 10:02
22105041160	AOI01-08-SB-00-02 MSD(RE)	Solid	4/28/21 07:50	4/30/21 10:02

Case Narrative

Client: AECOM Report: 221032903

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.3 as specified in the contract.

No anomalies were found in the analyzed sample(s).

Perfluoroundecanoic acid

MISCELLANEOUS

PFAS Abbreviations

PFUnA

Abbreviation	Analyte Name	Abbreviation	Analyte Name
PFBA	Perfluorobutanoic acid	11CI-PF3OUdS	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid
PFBS			
	Perfluorobutanesulfonic acid	4:2 FTS	4:2 Fluorotelomer sulfonic acid
PFDA	Perfluorodecanoic acid	6:2 FTS	6:2 Fluorotelomer sulfonic acid
PFDS	Perfluorodecane sulfonic acid	8:2 FTS	8:2 Fluorotelomer sulfonic acid
PFDoA	Perfluorododecanoic acid	9CI-PF3ONS	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid
PFEESA	Perfluoro(2-ethoxyethane)sulfonic acid	ADONA	Dodecafluoro-3H-4,8-dioxanonanoic acid
PFHpA	Perfluoroheptanoic acid	FOSA	Perfluorooctane Sulfonamide
PFHpS	Perfluoro-1-heptanesulfonic acid	HFPO-DA	Perfluoro-2-proxypropanoic acid
PFHxA	Perfluorohexanoic acid	NEtFOSAA	N-ethylperfluorooctanesulfonamidoacetic acid
PFHxS	Perfluorohexanesulfonic acid	NFDHA	Nonafluoro-3,6-dioxaheptanoic acid
PFMBA	Perfluoro-4-methoxybutanoic acid	NMeFOSAA	N-methylperfluorooctanesulfonamidoacetic acid
PFMPA	Perfluoro-3-methoxypropanoic acid		
PFNA	Perfluorononanoic acid		
PFNS	Perfluorononanesulfonic acid		
PFOA	Perfluorooctanoic acid		
PFOS	Perfluorooctanesulfonic acid		
PFPeA	Perfluoropentanoic acid		
PFPeS	Perfluoropentanesulfonic acid		
PFTA	Perfluorotetradecanoic acid		
PFTeDA	Perfluorotetradecanoic acid		
PFTrDA	Perfluorotridecanoic acid		

Case Narrative

Client: AECOM Report: 221050411

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.3 as specified in the contract.

SEMI-VOLATILES MASS SPECTROMETRY

- In the PFAS Isotope Dilution QSM B15 analysis, samples 22105041135 (AOI01-10-SB-03-05), 22105041136 (AOI01-10-SB-03-05-MS), and 22105041137 (AOI01-10-SB-03-05-MSD) were re-extracted outside holding time for high recoveries for PFHxS and PFOA. Sample results between both extractions were similar but the MS/MSD recovery for PFHxS and PFOA were within control limits in the second extraction. Both data sets are being reported to the client.
- ★In the PFAS Isotope Dilution QSM B15 analysis, samples 22105041122 (AOI01-08-SB-00-02), 22105041123 (AOI01-08-SB-00-02 MS), and 22105041124 (AOI01-08-SB-00-02 MSD) were re-extracted outside holding time for extracted internal standard failure. The re-extracted samples are within control limits; therefore, both sets of results are being reported.

In the PFAS Isotope Dilution QSM B15 analysis, the recovery for the extracted internal standard M2 8:2 FTS is outside the control limits for sample 22105041122 (AOI01-08-SB-00-02).

In the PFAS Isotope Dilution QSM B15 analysis, the recovery for the extracted internal standard d3-NMeFOSAA, d5-NEtFOSAA, M2 6:2 FTS, M2 8:2 FTS, M2PFTA, M3PFBS, M3PFHxS, M6PFDA, M7PFUnA, M8PFOA, M8PFOS, M9PFNA, and MPFDoA is outside the control limits for sample 22105041123 (AOI01-08-SB-00-02 MS).

In the PFAS Isotope Dilution QSM B15 analysis, the recovery for the extracted internal standard d3-NMeFOSAA, d5-NEtFOSAA, M2 6:2 FTS, M2 8:2 FTS, M2PFTA, and MPFDoA is outside the control limits for sample 22105041124 (AOI01-08-SB-00-02 MSD).

In the PFAS Isotope Dilution QSM B15 analysis for prep batch 710837, 710838, and 711984, the MS/MSD exhibited recovery failures. All LCS recoveries were acceptable.

In the PFAS Isotope Dilution QSM B15 analysis, the recoveries for extracted internal standards are outside control limits for sample 22105041104 (AOI01-02-SB-04-06). The sample was re-extracted and analyzed with similar recoveries for these EIS.

Pace Analytical

SAMPLE RECEIVING CHECKLIST

-	_	_	_	=	
_				÷.	
_		_	_	-	
	_	-	_	ĒM	
	_	_			
-	_				
-	-	-	_		
=	_	-	-	0	
	_		-	5	
-				5	
-	-		-	ĕ∩u	
-					
				m	
	_			- M	
-	_	_	_		
				0	
	_	_	_		
-		_			
=	_	_	_	- T	
=				N	
_	-				
-				N	
			_	= NI -	
				*	
				24	
		_	_	- 1	
				-	

SAMPLE DELIVERY GROUP	JP 221032903				2
				8	2
Client PM AEC 4838 - AECOM	Transport Method FEDEX	Samples received with proper thermal preservation?	ż	>	
		Radioactivity is <1600 cpm? If no, record cpm value in notes section.	e in notes section.	5	
Profile Number	Received By MrOme Dote N	COC relinquished and complete (including sampleIDs, collect times, and sampler)?	Ds, collect times, and sampler)?	5	
		All containers received in good condition and within hold time?	hold time?	>	
Line Item(s)	Receive Date(s)	All sample labels and containers received match the chain of custody?	he chain of custody?	>	
2 - GW - 18 compounds	03/2//21	Preservative added to any containers?			>
		If received, was headspace for VOC water containers < 6mm?	as < 6mm?	Σ	
		Samples collected in containers provided by Pace Gulf Coast?	Gulf Coast?	>	
COOLERS		DISCREPANCIES	LAB PRESERVATIONS		
Airbill Thermometer ID:	ter ID: E26 Temp °C	Nbne	Nbne		
785234648930	26				
NOTES					
Revision 1.6					Page 1 of 1

Pace Gulf Coast Report#: 221032903

Page 419 of 419

Pace Analytical

SAMPLE RECEIVING CHECKLIST

-			
_		_	*
			-
		<u> </u>	-
			4
_	- 10 - 10 - 10 - 10		
=	-		5
=			0
_			-
			N
			N
=			
			= <u> </u>

SAMPLE DELIVERY GROUP	UP 221050411	CHECKLIST		YES	Q
Client PM AEC 4838 - AECOM	Transport Method FEDEX	Samples received with proper thermal preservation?		Σ	
		Radioactivity is <1600 cpm? If no, record cpm value in notes section.	section.	>	
Profile Number	Received By Janking Mark A	COC relinquished and complete (including sampleIDs, collect times, and sampler)?	ct times, and sampler)?	D	
		All containers received in good condition and within hold time?	e?	5	
Line Item(s)	Receive Date(s)	All sample labels and containers received match the chain of custody?	of custody?	>	
1 - Soil - 18 compounds 2 - GW - 18 compounds	04/30/21	Preservative added to any containers?			>
		If received, was headspace for VOC water containers < 6mm?	15	>	
		Samples collected in containers provided by Pace Gulf Coast?	st?	>	
COOLERS		DISCREPANCIES	LAB PRESERVATIONS		
Airbill Thermometer ID:	ster ID: E38 Temp °C	22105041115 - AOI01-05-SB-08-10:	None		
991 2612 3212	6.0	Missing sample			
NOTES					
Revision 1.6					Page 1 of 1

Pace Gulf Coast Report#: 221050411

Page 4387 of 4387

Pace Gulf Coast Report#: 221032903

	8 - AECOM	903		** Preservative Types. (1) nitric acid. (2) suffuric acid. (3) hydrochloric acid. (4) sodkim hydroxida (5) zin-zootata	(6) methanol. (7) sodium bisulfate, (8) sodium thiosuffate, (9) hexane, (A) ascorbic acid. (8) ammonium sulfate, (C) ammonium hedroxide. (D) TSP (11) Innecessed (P) Orbe.	indija/i ina:	tab Sample Receipt Checkligt:	Custody Seals Present/Intact Y N NA Custody Signatures Present Y N NA Collector Signature Present Y N NA	Bottles Intact Y N NA Correct Bottles Y N NA Sufficient Volume Y N NA	ble YN YN	Late Y N esent Y N Y N	Sulfide Prosent Y N NA Load Acatate Strips:	LAB USE ONLY: Lab Sample # / Comments:	1.11	10 19					4.2 C21	80	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			Lab Sample Temperature Info:	Temp Blank Received: Y N NA Therm ID#: Cooler 1 Terron Incon Descript.		Comments:	- 2. ie 62 le 43 cpm	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: // YES / ND of:
	Client ID: 4838 - AECOM	SDG: 221032903	PM: AEC	cid, (3) hvdrochloric acid	osulfate, (9) hexane, (A) a	lah p	Lab	50 Cfr	Bot Cor	VOA VUSA	San Rea C1 San PH	1	LAB	Z			Þ		2.02	The stand		1	L.	1	Y N N/A	0 LT	er Pace Courier	MTJL LAB USE ONLY		÷.	
LAB USE ONLY- Affix Wor		ALL SHAC	Container Preservative T	nitric acid, (2) sulfuric a	isulfate, (8) sodium thi (D) TSP. (U) Honreson	Analyses						5.0	1494 				10		and the second se		3				SHORT HOLDS PRESENT (<72 hours):	2635747	vla: 5 Client Courler	M Tahla H.	Acctnum:	Template: Prelogin:	PM:
LAB USE C			Container	Preservative Types: (1)	methanol, (7) sodium b ammonium hydroxide.		(J)-	9.3995	4.81	5° W/S	10 SW/S	¥}27	·)5t	(J)	2	1000	7					1011	14114		SHORT HOLDS PRE	Lab Tracking #:	Samples received via: FEDEX UPS	Date/Time:	Date (Timo.	3/24/21	Date/Time:
Iment	fields			-		1	ited: J CT (pd.ET			ce:	(e):		Res # of CI Cros		2		4 2 5 m	0121			LI ANY D		Y. Willing	-/-	None	30	N NA	gnature)	(autire)	Ch Hins	(nature)
CHAIN-OF-CUSTODY Analytical Request Document	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields		1 00R76	and a le	I GVALTIZ LU PULITURI	~	NUTY/LITY: Time Zone Collected:	Compliance Monitoring?	DW PWS ID #; DW Location Code:	Immediately Packed on Ice PsJ.Yes [] No	Field Filtered (if applicable):] Yes Analysis:	Wastewater (WW), or (V), Other (OT)	-	Date Time	1	113		Chine	11 2 4				arti	3. 1	Bine Dry	164 8930	Radchem sampie(s) screened (<500 cpm): Y	2/ Received by/Company: (Signature)	Received hv/Comnany: (Signature)	mark lor	Received by/Company: (Signature)
Y Analytical	AL DOCUMENT - Co	Billing Information:	northun MD	WI W	Site Collection Info/Address:	122 1.641 1	Winchartar			Immedi PMLYes	Day Field Filt Day 1 Yes y [] 5 Day Analysis:	ound Water (GW), Bioassay (B), Vapo	Collected (or Composite Start) Cr	+	21.210835 -				T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-		X	1			Ahe ni ire nsea: Me	S2 34 RUY			2	1230	Receiv
DF-CUSTOD	-Custody is a LEG	Billing	R. Dr., German	Email To:	Site Co	65-	52 172 CT/WI		104397	e Required:	tush: [] Same Day [] Next Day [] 2 Day [] 3 Day [] 4 Day [[Expedite Charges Apply]	, Water (DW), Gr (AR), Tissue (TS),	Comp / Coll Grab Comp	Date	(J 23.26.	-				1						Packing Materia 7853	Radcherr	Date/Time: 03/26	Date/Time:	12/12/2	Date/Time:
CHAIN-C	Chain-of-		Milertone Cent	avia + 2 : c	11411	-	Locks 60552172	Site/Facility ID #:	Purchase Order #: 104397	Turnaround Date Required	Rush: [] Same [] 2 Day [] (Expe	(below): Drinking), Wipe (WP), Air	Matrix *		WQ				1		T			There is a second	ns / Possible Haz	1.1	414		R		1
Ce	Pace Analytical	Company:	12420	Report To: Manuan Tava	1	Clistomer Project Name (Number	ARNG-PEAS-WARDELock	Phone 9 19 - 461 - 1178 Email:	Collected By (print):	Collected By (signature):	Sample Disposal: M bispose as appropriate [] Return [] Archive: [] Hold:	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Soild (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID		NL-UECON-01	1							11/19	Cistomer Remarks / Smaring Conditions / Provided - 1		LUCI Pasto Agrico	A.C.	Kelinquished by/company: (Signature)	Relinguished by/Company: (Signature)	ACOCK	weiniquistied by/Lompany: ()ignature)

Page 418 of 419

Blepm 9 ç 3 5 SA 8 8 8 Y N NA N NA NA NA NA NA NA NA NA NA NA NA NA NA NA MA NA Other 0 X H 2 2 2 X N Cooler 1 Therm Corr. Factor: 2 Page: Cooler 1 Temp Upon Receipt: Custody Seals Fresent/Intact Y Custody Stantures Present Collector Signatures Present Soltles Intact Bottles Intact Sufficient Volume Samples Recolved on Ice VOA - Headspace Acceptable VOA - Headspace Acceptable VOA - Headspace Acceptable Samples in Holding Time Residual chlorine Present Sample Present Sufficie Present Cooler 1 Corrected Temp: _____ ** Preservative Types: (1) nitric acid, (2) suffuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (8) ammonium suffate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other Lab Sample Temperature Info: ij Trip Blank Received: Y Lab Sample Receipt Checklist Temp Blank Received: TSP Non Conformance(s): YES / NO LAB USE ONLY: Lab Sample # / Comments: Lead Acctate Strips: 0AE38 HCL MeOH Therm ID#: Comments: Client ID: 4838 - AECOM Lab Profile/Line: SDG: 221050411 Pace Courier MTJL LAB USE ONLY AEC Y N N/A 3 PN 264114 Courier Template: Acctnum: Table #: Prelogin: SHORT HOLDS PRESENT (<72 hours): :Wd BB: LAB USE ONLY- Affly Wo ALL SHAL **Container Preservative 1** Client SINNED 155-121 2040 WISH Analyses Date/Time: 1002 amples received vla: FEDEX UPS OSHOW 40906-4d3)H 0+ Date/Time: 201 Lab Tracking #: Date/Time: 51-8792E'S W.SO SW/SW/57) 54/20 nauron tavanters daean war State: Country/City: Time Zone Collected: Packing Material Used Maril 2002 3212 Billing Information: AECON 124:20 Milestone Cantr Dr. GETMATOLIN, MO 20876 Clarken, MO 20876 # of Ctns Radchern sample(s) screened (<500 cpm): Y N NA Received by/Company: (Signature) CHAIN-OF-CUSTODY Analytical Request Document None Date/Time: ムヤルイ,ス | |Received by/Company: (Signature) Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields ci Res ield Filtered (if applicable): mmediately Packed on Ice: Compliance Monitoring? * Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Dry [] No [] No Product (P), Soll/Solid (SL), Oll (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT) on [DW Location Code: Composite End Time l l (١ (l Sig collection into/Address: Lave DW PWS ID #: Blue [] Yes] Yes Analysis: [] Yes Date Wet [] 2 Day [] 3 Day [] 4 Day [] 5 Day 4,27,21 (250 428.21 0750 Composite Start) 2801 4,29.21 0805 +29.21 D855 Time 4.27.21 1100 4.29.21 0800 r.29,21 0810 4.29.210900 4.27.21 1245 Collected (or Type of ice Used: [] Same Day [] Next Day 4.27.21 U-302 Date (Expedite Charges Apply) 1400 Date/Time: **Turnaround Date Required**; Comp / Grab Minday Lacks AASP/60552172 Address: 12420 Milestone Center Dr. Customer Remarks / Special Conditions / Possible Hazards: 0 0 0 00 9 0 5 0 0 9 Purchase Order #: Site/Facility ID #: Report Toi Cormandam, MD 208 Matrix * N S Copy To: NaOUM Tavan t2,3 Customer Project Nyme/Number: 2 05 So 20 S S Quote #: Sc S g Rush: by/Company: (Signature) Relinquished by/Company: (Signature) Aquished by/Company: (Signature) REAM] Dispose as appropriate [] Return AOIO- 50-50-50-00-02 10-20-85- 10-10-Tak ADIO1-02-079 - 00:02 ADZ01-03-68-03-05 20201-04-50 -03-05 ADIA-04-58-00:02 1-2201-02-JB-24-06 40201-93 NB - 00-02 A0201-03-58-05-07 Pace Analytical AECOM WL-FRB-DI Collected By (signature) Customer Sample ID Collected By (print): VIPINA Sample Disposal:] Archive: ____ teling hisheld 201 Company: 0 Phone:] Hold Email:

Page 4380 of 4387

Pace Gulf Coast Report#: 221050411

	-	T	T	-		T											F		1.	1									200		1
AECOM			Preservative Types: (1) nitrice acid. (2) suffuris acid. (3) hydrochlorice acid. (4) sodium bydrovide. (5) nitre acid. (2) suffuris acid. (2) hydrochlorice acid. (3) hydrochl	(6) methanol. (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate,		Lab Pronne/Line: Lab Sample Receipt Checklist;	Custody Seals Present/Intact Y N NA Custody Signatures Present y N Na	or Signature Present Y N	Correct Bothles Y N NA Sufficient Volume Y N NA	Samples Received on ICe Y N NA VOÀ - Hendspace Acceptable Y N NA USDA Regulated Soils Y N NA	ing Time Y N ne Present Y N table Y N	Sulfide Present Y N NA Lead Acetate Strips:	USE ONLY: Sample # / Comments:		11		2	<u>N1</u>	5	3	[]	81	61	02	Lab Sample Temperature info:	Termp Blank Received: Y N NA Therm ID#: Contert Tamn Ilong Decelar:		Cooler 1 Corrected Temp: oC	Dalata 21r	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: 2 YES / NO of: 6
Client		PW: AEC	sulfuric acid. (3) hvdrochloric acid.	dium thiosulfate, (9) hexane, (A) as	npreserved, (O) Other	LaD Pr	Cus	Col	Suf	Sam VOA USD	Sam Res San San DH	Šul. Leav	LAB												ours): Y N N/A	2641144		MTILLAR USE ONLY	Table #:	Acctnum: Template: Prefoein:	PM: PB:
LAB USE ONLY- Affly L	ALL SH,	Container Preservativ	eservative Types: (1) nitric acid, (2)	lethanol, (7) sodium bisulfate, (8) so	mmonium hydroxide, (D) TSP, (U) Ur	C Vidayses					2 (42 9 26 4 da) HO		e2	1 1					/	1		j		SHORT HOLDS PRESENT (<72 hours):	Lab Tracking #: 264	iii	Date/Time:		Date/Time: 102	Date/Time:
CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Com.	10276	···	(e)		County/City: Time Zone Collected:	Compliance Monitoring?	[] Yes [] No	DW PWS ID #: DW Location Code:	Immediately Packed on Ice: [] Yes [] No	field Filtered (If applicable): [] Yes [] No Analysis:	W), Wastewater (WW), anor (V) Other (OT)	Composite End Cl Ctms		2 ()	1220 11 1			-		1	- (wet Blue Dry None	7911 2U12 3212	ened (<500 cpm); Y N NA	Received by/Company: (Signature)		Received by/Comparty: ([Signature)	Received by/Company: (Signature)
IAIN-OF-CUSTODY Analytical Request Docume Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Billing Information: ACCAW	Gernandaun, MO	Email To:	Site Collection Info / Ad	85-152 Linht	State: County/City:		-			ay []5Day	/ater (DW), Ground Water (G) R). Tissue (TS). Bloassav (B). V	Comp / Collected (or Grab Composite Start)	Date	- 1	4.24.21 1223	4.20.21 122	4.28.21 121	15	4.28.21	201 12.92.4	6g	4-28.21 064	4/178/17 108:50		Packing Material Used	Radchem sample(s) screened (<500 cpm);	Date/Timeh / / Re	007	Date/Time: 1002 Pb	Date/Time:
CHAIN-OF Chain-of-Cu		Center Dr.		40010	2, NS		Site/Facility ID #:		Purchase Order #: Quote #:	Turnaround Date Required:	Rush: [] 2 Day	ox below): Drinking W OL), Wipe (WP), Air (Al	Matrix * Gr		20	05		0.5	SO	25	3	0.0		0 01	Itions / Possible Hazard			ure)	J.		
Pace Analytical	Company: AE CON	Address: 12420 Mlestone	Report To: MO	Conv To:	Naoum Tawantis	Customer Project Name/Number		Email:	-collected By (print):	Collected By (signature):	Sample Disposal: [] Dispose as appropriate [] Return [] Archive:	 Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Gound Water (GW), Wastewater (WW), Product (P), Soll/Solld (S1), Oil (OL), Wipe (WP), Air (AR), Tissue (TS). Bloaseav (B). Vanor (V). Other (OT) 	Customer Sample ID		ADZ01-05-58-00-02	ADI01-65-58-30-62-0	40-20-82-SB-02-0#		01-80-88-50-107CV	AD 701-06-111- 00-02	10-00-11-40-10-07	AU101-01-10-00-02	1220,00-19-10-10-10-10-10-10-10-10-10-10-10-10-10-	40-20-10-10-00-014	Customer Memory Special Conditions / Possible Hazards;			relinquished/b//Company: (Signature)	NOULIN AF 40	Reluguished by/Company: (Signature)	Relinquished by/Company: (Signature

Page 4381 of 4387

Pace Gulf Coast Report#: 221050411

Page 4382 of 4387

4
0
ŭ
0
-
Ó.
Ň.
1.1
48
12
5
2
9
W
œ
سب
ŝ
3
ö
0
~
-
- 3
()
~
e
ace
00
۵.

s - AECOM				1 (1) cordiant hudeovida (5) dae nortan	ascorbic acid. (B) ammonium sulfate.		tab Profile/Line: Lab Sample Receipt Checklist;	Custody Seals Present/Intact Y N NA Custody Signatures Present Y N NA Collector Signature Present Y N NA	Bottles Intact Y N NA Correct Bottles Y N NA Sufficient Volume Y N NA	oles Received on Ice Y N - Headspace Acceptable Y N A Regulated Soils Y N	ing Time Y N ne Present Y N table Y N	Sulfide Present Y N NA Lead Acetate Strips:	LAB USE ONLY: Lab Sample # / Comments;		21	24	<u>50</u>	50	-10	L'L	16	50	2	Lab Sample Temperature Info:	Temp Blank Received: Y N NA Therm (D#: Cooler 1 Tamp I have Bacalaet		Comments:	-10.91838, 34 nous	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: 2 YES / NO of: 2
Affix W. Client ID: 4838 - AECOM	SDG: 221050411	ALL SHA PM. AFC		cid. (2) sulfuric acid. (3) hvdror hloric acid	(B) sodium thiosulfate, (9) hexane, (A)	Unpreserved, (O) Other		2224			MT2A).			0										(<72 hours): Y N N/A	2641140	Client Courier Pace Courier	MTJLLA	Table #:	C Template: Prelogin:	PM: PB:
LAB USE ONLY- Affix W.		ALL	Container Preservative	** Preservative Types: (1) nitric ac	(6) methanol, (7) sodium bisulfate	(C) ammonlum hydroxide, (D) TSP	Analyses		(csh - 8:9		10906 \$	03) h	10/7	21		+ + + +	, , ,		1	/	()	1	SHORT HOLDS PRESENT (<72 hours):	Lab Tracking #:	Samples received via: FEDEX UPS C	ime:		130.24	Date/Time:
t Document	relevent fields			-00-	Com		City: Time Zone Collected: Locdes []PT[]MT[]CT [74ET	Aonitoring? [] No	ode:	acked on Ice: I No	(if applicable): [] No	er (WW), r (OT)	nd Res # of Cl Ctns	Time					~	~) .			Dry None	2412 3212	m): Y N NA	Received by/Company: (Signature)		Approximative (Algenature)	Received by/Company: (Signature)
tical Request	INT - Complete all I	ACLOM No. (Sunter Dr		HI IS ALOM. LOW	tris Callen	Address:	City: Time Zo Locks []PT[Compliance Monitoring? [] Yes [] No	DW PWS ID #: DW Location Code:	Immediately Packed on Ice	Field Filtered ([] Yes Analysis:	er (GW), Wastewater (W) (B), Vapor (V), Other (OT)	Composite End	Date)	1	1	(i	(1	1		Wet Blue	211100: pasn	s) screened (<500 cpm):	Received by/Com		Received by/Com	Received by/Com
CHAIN-OF-CUSTODY Analytical Request Document	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	BUILTING MILESLON ACLON	Germantain, r	Email To:	napum. Huvan	35-152 Linkt Land	State: County/City: CT / Nindsor Loc			ed:	<pre>[] Next Day [] 4 Day [] 5 Day arges Apply)</pre>	(DW), Ground Wate issue (TS), Bioassay (E	Collected (or Composite Start)		11.10.21 2023	300	075	4.26.2 0755	4128-21 0800	0h) 12.0.4	4.12.2 (400	4.27.21 1410	422211411	Type of Ice Used:	Packing Material Us	Radchem sample(s)	Date(Time:01,7 /	14021	30,2,00	Date/Time:
CHAIN-OF-CL	Chain-of-Custod		L 0.	100	91207		172	Site/Facility ID #:	Purchase Order #: Quote #:	Turnaround Date Required:	ush: [] Same Day [] Next Da [] 2 Day [] 3 Day [] 4 Day [Expedite Charges Apply]	w): Drinking Water e (WP), Air (AR), T	Matrix * Grab	+	200			50 0	+	0.0	0	2	0	ossible Hazards:			Ra	1		Date
Pace Analytical	Commun.	ACOM	Address: 12420 Milestok Center	Report To: 1 AA		variant avantzis	Customer Project Name/Number: Windor Locks AASF/605522172			Collected By (signature): Turna	Sample Disposal: Rush: [] Dispose as appropriate [] Return [] Archive: [] Hold: [] 2	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Soild (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID	-	ANTA-NA-10-10-00	5	0		9		2	-	DU 01-80-618-10-10204	Customer Remarks / Special Conditions / Possible Hazards:		U U	Relinquished by/Company: (Signature)	HOMMM HEON	Any addition of the second and the s	keiinquisned by/company: (>ignature)

Page 4383 of 4387

- AECOM		[•• Preservative Types: (1) nitric acid, (2) sulfucie acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol. (7) codium hieufista f81 codium sites discritication for termer 2000,000	(c) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Lab Profile/Line: Lab Sample Receipt Checklist:	Custody Seals Present/Intact Y N HA	* * *	Bottles Intact Y N NA Correct Bottles Y N NA Sufficient Volume v N NA	plos Received on Ice Y N	N X N N X	sampuss in molarly Time Y N NA Residual Cinorine Present Y N NA Ci Stripe: Sample pi Acceptable Y N NA Pi Stripe:	Sulfide Present Y N NA Lead Acetate Strips:	LAB USE ONLY: Lab Sample # / Comments:		10	10	10	12	25	112	1	24	24	(40	Lab Sample Temperature Info:	NN	Cooler 1 Temp Upon Receipt: oC Cooler 1 Therm Corr. Factor: oC		The	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: 4
Client ID: 4838 - AECOM	SDG: 221050411	PM: AEC		 Sulfuric acid, (3) hydrochloric acid sodium thioculate (a) by the control (a) 	Unpreserved, (O) Other	Lab	Cu																			hours): Y N N/A	2641139		S	MTJL LAB USE ONLY Table #:	Acctnum: Template: Prelogio:	:Wd
LAB USE ONLY- Affix V	ALL SH	Container Preservativ		Preservative Types: (1) nitric acid, (7 methanol. (7) sortium bloutster (8)	ammonium hydroxide, (D) TSP, (U)	Co Analyses	(79	(C	7 0425	6/1	501		2 41	1+2	101	1/1/1	1		1 XX	/			2	~	2	SHORT HOLDS PRESENT (<72 hours):	Lab Tracking #: 26	Samples received via:	FEDEX UPS Client	Date/Time:	Pare/Time: 202	Date/Time:
Chain-OF-CUSIOUY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields	0 M	, Center Dr.		5	25:	Time Zone Collected:	0	Compliance Monitoring?	DW PWS ID #: DW Location Code:	Immediately Packed on Ice:	es []No	Field Filtered (if applicable): [] Yes [] No Analysis:	Wastewater (WW), rr (V), Other (OT)	Composite End Res # of Ctns	Date Time	1			1 - 1		1	1	2	2	2	Blue Dry None	Used 0911 2UP2 3212	od (<500 cnm)· V N NA	WAL ALL I Shinds on the	Received by/Company: (Signature)	Acceived by/Company (Algenetyre)	Received by/Company! (signature)
chair-Or-CUO31 OUT Analytical Request Docume Chair-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Billing Information: AG CO M	bernandown, MD 20276	clarce mitchell @	Email To: Aboun + fourty; 2 Percon. Un	Site Collection Info/Addre	State: County/City:	CILIS WINGEOF LOCKS	Con []	MQ			[] Next Day [] 4 Day [] 5 Day srges Apply]	ater (DW), Ground Water (GW), i), Tissue (TS), Bioassay (B), Vapc	omp / Collected (or Composite Start) C	Time	418il/1405	4.2Bir 140	4.28.21 1405	42.8.2 LY	4,28.2/	- C141 128C4	- 4.20.21 1410 -	4.27.21 1525 -	4.28.21 0850	+,20,21 (Das -	Type of Ice Used	Packing Material Used:	Radchem sample(s) screened (<500 cnm).		Deletiment of 21 Receiv	pate/Time: 1002 Accel	Date/Time: Receiv
Chain-of-Cu			Center Drive	20876		1 10000	Statescitture 1.2	Site/racility in #:	Purchase Order #: Quote #:	Turnaround Date Required:		Rush: [] 2 [] 2 Day	ox below): Drinking W DL), Wipe (WP), Air (AR	Matrix * Grab		500	5000	0000	1	50 6	2	0 20 0	NG G	MG Q	WG C	tions / Possible Hazard						
Pace Analytical	Company: AE COM		0 Hilestone		COPYTO: Napun Tenantzis	Customer Project Name/Number	2000	Email:	Collected By (print):	Collected By (signature):	ž	Sample Disposal: Dispose as appropriate Return Archive: Hold:	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID		ADIO -60-58-00-02	124-10-10-10-10-02-0	2M-20-00-81-101-1020	40201-10-1B-00-02-MUD	NID-10-50-03-05	SM-SC-CO-NO-NICO	174-50-(0-8/201-1010)	ADTAL-01-GW	40201-02- GW	427201-03-6W	Customer Remarks / Special Conditions / Possible Hazards:			Man Allen ici	Manuel ABCOM	Moulshed by/Company: (Signature)	elinquished by/Company: (Signature)

Pace Gulf Coast Report#: 221050411

Page 4384 of 4387

· ·
and a
N .
Ś.
<u> </u>
10
-
~
÷.
CV.
2.7
LVI.
-
-86
تنه
5
~
0
ā
باسد
11
w.
N
LL.
_
-
ີ
-
- 60
0
· •
13
UJ.
~
them.
-
_
2 B
11
d)
ė
Se
ee l
ace
Dace (

- AECOM				•• Preservative Types: (1) nitric acid, (2) suffuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) mothanol (7) codium hieriteta (0) codium ettoruica etid, (4) codium hydroxide, (5) zinc acetate,	corbic acid, (B) ammonium sulfate,	Lab Profile/Line; Lab Sample Receipt Chacklist;	Custody Seals Present/Intact Y N NA Custody Signatures Present Y N NA Collector Signature Present Y N NA	N R N	Jes Received on Ice Y - Headspace Acceptable Y Reculated Soils	ing Time Y N a Present Y N table Y N	Sulfide Present Y N NA Lead Acetate Strips:	LAB USE ONLY: Lab Sample # / Comments:		2	100	() N	5h	-7h	63	3/1	44	O ل Lab Sample Temperature Info:	NN		Comments:	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: 2
Client ID: 4838 - AECOM	SDG: 221050411	PM: AEC		urle acid, (3) hydrochloric acid,	n unosunate, (9) nexane, (A) as served, (0) Other	Lab Pro	Cust Cust Cust	Boti Cori Sufi	Same VOA USDA	Samp Rest C1 S Samp PH S	Sulf	LAB										5): Y N N/A	2641141	Courles Bare Courles	TLA	Acctnum: Template: Prelogin:	
LAB USE ONLY- Affix Wc		ALL SHA	Container Preservative 1	ervative Types: (1) nitric acid, (2) suit banof: (7) sodium bisultate. (9) sodium	nonium hydroxide, (D) TSP, (U) Unpre	Analyses	(13	b/80			H& PC H& PC	01		10		2			20		SHORT HOLDS PRESENT (<72 hours);	Lab Tracking #: 264	Samples received via: FEDFX 11PS Cliant	me:	Pate/Time: 202 Acc	Date/Time: PM: PB: PB:
CHAIN-OF-CUSTODY Analytical Request Document	Chain-of Custody is a LEGAL DOCUMENT - Complete all relevent fields	Acconn Lenter Dr.	10 04874			ty: Time Zone Collected: outes [] PT [] MT [] CT-fyg ET	Yes	DW PWS ID #: DW Location Code:	Immediately Packed on Ice:	tered (if applicable): [] No ::		Res # of Cl Ctns	Date Time	70 11	1 1				1 1	1	1 1 2 2	Wet Blue Dry None S	OP11 2412 3212	Y N NA	Received by/Company: (Signature)	Received by/Company: [Signature]	Received by/Company: (Signature)
F-CUSTODY Analyti	ustody is a LEGAL DOCUMEN	13430 Miledtone Recom	Claire mitchell @	Email TO: Reven. foundzis @ Accom. 1	Site Collection Info/	State: County/City: CT /WindSor Lours	-		Required:	iame Day [] Next Day [] 3 Day [] 4 Day [] 5 Day (Expedite Charges Apply)	Vater (DW), Ground Water (\R), Tissue (TS), Bioassay (B),	Comp / Collected (or Grab Composite Start)	Date 14.20.3.1	2 4	12.82.4	12	0411 12:824 S	4.18.21 101	4,27,21 16	C 14.0001 C 1010	12.9210 B	ds: Type of Ice Used:	Packing Material Used:	Radchem sample(s) screened (<500 cpm):	12 profilinger	Date/Time: 1002 1	Date/Time:
CHAIN-OI	Chain-of-C		center Online	20576	5	160552172		Purchase Order #: Quote #:	Turnaround Date Required:	Rush: []S []2 Day	box below): Drinking V (OL), Wipe (WP), Air (A	Matrix * G	1.10	200	W6 (we c	5		0/1		ditions / Possible Hazar			ture)	ture)	ture)
Pace Analytical	Company	ACOM	2420 Mileston	Report TO: Cormantann, NO	Copy To, Nagura Tavantes	<u></u>		Collected By (print):	Collected By (signature):	Sample Disposal: [Dispose as appropriate] Return [] Archive: [] Hold:	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Soild (SL), Oil (OL), Wipe (WP), Alr (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID	Andres all Chi	NZD1-03-6W-D	10201-05-6W.	A02-206-6W	AD201-07-6W	ADTON-DU- GW	40201-04-6W	Manipa Rid - Mrs		Customer Remarks / Special Conditions / Possible Hazards:		V . V	Retinquiched My Company: (Signature)	Reinpolished w/Company: (Signature	Keiinquished by/Company: (Signature)

			-		_	1 1	-				_										12	32	-								
MOC) sodium hydroxide, (5) zinc acetate,	orbic acid, (B) ammonium sulfate,	b Profile/Line:		custory seals resent/intact Y N NA Custody Signatures Present Y N NA Collector Signature Present Y N NA	Intact Y N Bottles Y N	on Ice Y N oceptable Y N	NX		Sulfide Present Y N NA Load Acetato Strips:	LAB USE ONLY: Tab Samala # / Amarata	monthe a / COMMUTE!		2	15	h3	te	SU	81	F	Sá	1 at Sampa Tamparting Info.	Temp Blank Received: Y N NA Therm ID#:	Cooler 1 Temp Upon Receipt: oC		Comments:	Trip Blank Received: Y N NA HCL MeOH TSP Other	onformance(s): Pag ES / NO of:
Client ID: 4838 - AECOM	SDG: 221050411	-Md		** Preservative Types: (1) nitrite actd, (2) suffuric actd, (3) hydrochloric actd, (4) sodium hydroxide, (5) zinc acetate.	tor) mechanicu, (r) socium ossunate, (s) socium thiosulfate, (9) hexane, (A) ascorbic acid, (8) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Ses Lab Profile/Line	22.5		Rottles Correct Suffici	Sam		CAST	Sulfi Sulfi		in the second se	2									<72 hours): Y N N/A	0110	1+++10	Client Courier Pace Courier	MTJL LAB USE ONLY Table #:	Acctnum: Template: Declosion	PM: PM: PB:
LAB USE ONLY- AF		ALL	Container Preserv	** Preservative Types: (1) nitric aci	(C) ammonium hydroxide, (D) TSP,			-OS 7199			520	9 (sw,	э) (1sw):		2-3		10	2	17						SHORT HOLDS PRESENT (<72 hours):	tab Tracking #:		JPS	Date/Time:	r U.30,21	Date/Time:
al Request Document	- Complete all relevent fields	is cont	then, no 20876 Cr.	ontais Queran con	idress:		ectes []PT[]MT[]CT [dren	Compliance Monitoring? [] Yes [] No	DW PWS ID #: DW Location Code:	Immediately Packed on Ice:	[] Yes [] No	freed intered in applicable): [] Yes [] No Analysis:	W), Wastewater (WW), Janor (V), Other (OT)	Res	posite End		× × (1 1 2	2 11				/		Wet Blue Dry None	472 211/2 1166	50.00	Radchem sample(s) screened (<500 cpm): Y N NA	Received by/Company: (Signature)	Received by/Company: (\$16]nature)	Received by/Company: (Signature)
CHAIN-OF-CUSTODY Analytical Request Document	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Building intormation: AG CONT	the t		Site Collection Info/Address	State: Codinty/City:	CT I Windsor (er #:	ate Required:		[] Same Day [] Next Day [] 2 Day [] 3 Day [] 4 Day [] 5 Day (Exordite Charaese Androl	ing Water (DW), Ground Water (G Nr (AR), Tissue (TS), Bloassav (R), V	Comp / Collected (or	Grab Composite Start)	11.7 0.71	6 42912/02/02	4.29.21	G 428-21 1325				>		Type of Ice Used:	Packing Material Used		Radchem sample(s) scr	1 400 Ist	Patertime: 1002 Rd	Date/Time: Re
Pace Analytical CHAIN		RECOM	Address: 134,20 Milestape Center Oc.	Report TO: Cerran have, MD 2087C	Capy To: Marian Tauarty:5	Customer Project Name/Number:	Son Locks AAST 1	Frione: Email:	Collected By (print): Purchase Order #: Quote #:	Collected By (signature): Turnaround Date Required:	Sample Disposal: Rush:	opriate [] Return	 Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassev (B), Vamor (V), Orbez (CT), 		- UNL- TE ROD OL N Matrix *	-FER 02	B	4 W	WL-ERUJI WQ						Customer Remarks / Special Conditions / Possible Hazards:			blinguithed hyllomnany. (Signature)	NU	(pulshed by/Company: (Signature)	Relinquished by/Company: (Signature)

Page 4385 of 4387

Pace Gulf Coast Report#: 221050411

Data Qualifying Codes

Two types of data qualifying codes or flags are applied in the course of the data review. The data validation flags indicate data that are not usable for decision-making, more than normally biased and/or variable, or not representative of field conditions. These codes and their definitions are presented below in the hierarchy stipulated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic (August 2014) Data Review and the USEPA Region III Guidelines for Organic (September 1994) for blank qualifications only.

Flag	Interpretation
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
В	The analyte was analyzed for, but not detected at a level greater than or equal to the level of the adjusted Detection Limit (DL) for sample and method.
J+	Reported value may not be accurate or precise, but the result may be biased high.
J-	Reported value may not be accurate or precise, but the result may be biased low.
l	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the Limit of Detection (LOD).
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
С	This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by gas Chromatograph/Mass Spectrometer (GC/MS)
X	This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful.

Data Validation Flags

The other type of code used by AECOM is a "Reason Code". The reason code indicates the type of quality control failure that led to the application of the data validation flag.

Code Description Code Description Tracer recovery (radiochemical data only) ld Laboratory duplicate RPDs (matrix duplicate, MSD, LCSD) а Laboratory control sample/laboratory control sample duplicate be Equipment blank contamination lp RPDs Matrix spike recovery bf Field blank contamination m Matrix spike/matrix spike duplicate RPD bi Bias indeterminate md Laboratory blank contamination Negative laboratory blank contamination bl nb Missing Blank Information Chemical preservation issue bm р Trip Blank Post Extraction Spike bt pe Performance Evaluation Sample Calibration issue С ps cl Clean-up standard recovery Quantitation issue a Insufficient in growth (radiochemical data only) Dual column RPD ср r Re-extraction precision issue [PAHs only] Chromatographic resolution cr rp Reporting limit raised due to chromatographic interference d SIM ions not within + 2 seconds rt Surrogate recovery dt Dissolved result > total over limit S Ether interference Sample collection issues е SC fd Sample preparation issue Field duplicate RPDs sp h Holding times Evidence of ion suppression su Sample headspace did not meet receiving requirements hs t **Temperature Preservation Issue** High combined sample result uncertainty (radiochemical data i. Internal standard areas only) u Injection internal standard area or retention time exceedance Compound identification issue ii v k **Estimated Maximum Possible Concentrations** Low % solids Х Т LCS recoveries V Serial dilution results Ic Labeled compound recovery ICS results z

Reason Codes

THIS PAGE INTENTIONALLY BLANK

Appendix B Field Documentation

THIS PAGE INTENTIONALLY BLANK

Appendix B1 Logs of Daily Notice of Field Activities

THIS PAGE INTENTIONALLY BLANK

Log of Daily Notice of Field Activity ARNG PFAS, Site Inspection Windsor Locks AASF, Connecticut

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
4/29/2021	- John Shannon (SSHO) - Max Meadows - Don Phillips - Devon Hughes	Rain showers early, steady rain in the afternoon, High 64°F, Low 50°F	 AECOM and CTS participated in a Tailgate SH&E meeting, reviewed the day's activities, SH&E documents and AHAs, daily PFAS sampling checklist, and AASF operation protocols. AECOM surveyors mobilized to the site and surveyed all ten monitoring well locations, both horizontal and vertical points. CTS completed drilling (DPT) and temporary monitoring well installation in AOI01-03 and AOI01-04. AECOM completed soil sampling at AOI01-03 and AOI01-04 and groundwater sampling at AOI01-03, AOI01-04, and AOI01-10. CTS abandoned all 10 temporary monitoring wells by removing the PVC and backfilling the borehole with bentonite chips. AASF personnel accompanied the team during monitoring well abandonment. CTS decontaminated their drilling equipment as required between boring locations. Two ERBs and one FRB were collected. Soil and groundwater samples were shipped via FedEx to the analytical laboratory under standard chain of custody procedures. The SI field work was completed. AECOM and CTS demobilized from the site. 	- None	 Soil Borings: 10/10 Soil Samples: 25/25*** Temporary Wells: 10/10 Groundwater Samples: 10/10 Surveying: 10/10 *** Groundwater was encountered at approximately 5 feet bgs at A0101-04, so only two soil samples were collected at this location in accordance with the SI QAPP Addendum 	- Blake Prusky, CTS - Jeff Vizoyan, CTS
4/28/2021	- John Shannon (SSHO) - Max Meadows	Cloudy, High 78°F, Low 48°F	 AECOM and CTS participated in a Tailgate SH&E meeting, reviewed the day's activities, SH&E documents and AHAs, daily PFAS sampling checklist, and AASF operation protocols. CTS completed drilling (DPT) and temporary monitoring well installation in AOI01-05, AOI01-06, AOI01-07, AOI01-08, and AOI01-10. AECOM completed soil sampling at AOI01-05, AOI01-06, AOI01-07, AOI01-08, and AOI01-10 and groundwater sampling at AOI01-02, AOI01-05, AOI01-07, and AOI01-08. AASF personnel accompanied the team during activities at AOI01-08 and AOI01-07, as those locations were along the edge of the tarmac. CTS decontaminated their drilling equipment as required between boring locations. Two ERBs were collected. 		 Soil Borings: 8/10 Soil Samples: 20/26** Temporary Wells: 8/10 Groundwater Samples: 7/10 Surveying: 0/10 ** Groundwater was encountered at approximately 6 feet bgs at A0I01-06 & AOI01- 10, so only two soil samples were collected at each location in accordance with the SI QAPP Addendum 	- Blake Prusky, CTS - Jeff Vizoyan, CTS
4/27/2021	- John Shannon (SSHO) - Max Meadows	Cloudy in morning, partly cloudy in afternoon, High 70°F, Low 41°F	 Underground Surveying mobilized to the site. AECOM, CTS, Underground Surveying, and CTARNG participated in a Tailgate SH&E meeting, reviewed the day's activities, SH&E documents and AHAs, daily PFAS sampling checklist, and AASF operation protocols. Underground Surveying completed utility clearance at all boring locations. AOI01-02 was adjusted ~19 feet east of original location due to water line, sewer line, and anomalies. AOI01-01 was adjusted ~6 feet east of the original location due to utilities. Minor adjustments were made at other borings (none in excess of 50 feet). J. Martin (CTARNG) accompanied utility clearance. AECOM completed utility clearance checklist in accordance with safety protocols. CTS completed drilling (DPT) and temporary monitoring well installation in AOI01-01, AOI01-02, and AOI01-09. AECOM completed soil sampling at AOI01-01, AOI01-02, and AOI101-09 and groundwater sampling at AOI101-01 and AOI101-09. CTS decontaminated their drilling equipment as required between boring locations. Underground Surveying demobilized from the site. 		 Soil Borings: 3/10 Soil Samples: 7/28* Temporary Wells: 2/10 Groundwater Samples: 2/10 Surveying: 0/10 * Groundwater was encountered at approximately 6 feet bgs at A0I01-01 & AOI01-02, so only two soil samples were collected at each location in accordance with the SI QAPP Addendum 	- Jordan Martin, CTARNG - Blake Prusky, CTS - Jeff Vizoyan, CTS - Johnnie Pereira, Underground Surveying

Log of Daily Notice of Field Activity ARNG PFAS, Site Inspection Windsor Locks AASF, Connecticut

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
4/26/2021	- John Shannon (SSHO) - Max Meadows	39°F	 AECOM held a combined kick-off meeting and Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E documents and AHAs, daily PFAS sampling checklist, and AASF operation protocols. AECOM checked the planned boring locations to confirm the utility clearance was complete (see "Issues" column for additional details) and escorted public locators for gas, electric, and water. CTS set up a staging area and decontamination pad at the location designated by CTARNG. 	 Upon assessing site conditions, the SSHO identified that the utility location and marking had not been completed by the Connecticut 811 (CBYD) public locator (ticket placed 10 days prior on 4/16/21). The SSHO contacted the utilities identified by CBYD and requested they mark utilities as soon as possible. CBYD public locators for gas, electric, and water arrived onsite to mark utilities; however, the team observed that they did not mark utilities for the full facility. Therefore, AECOM contacted a private utility locator to complete the utility clearance (scheduled for 4/27/21). 		- Jordan Martin, CTARNG - Blake Prusky, CTS - Jeff Vizoyan, CTS

Notes

AASF = Army Aviation Support Facility AECOM = AECOM Technical Services, Inc. AHA = activity hazard analysis AOI = area of interest ARNG = Army National Guard bgs = below ground surface CBYD = Call Before You Dig CTARNG = Connecticut Army National Guard CTS = Cascade Technical Services DPT = direct push technology ERB = equipment rinsate blank FRB = field reagent blank PFAS = per- and polyfluoroalkyl substances PVC = poly-vinyl chloride SH&E = Safety, Health, and Environment SSHO = Site Safety and Health Officer

Appendix B2 Sampling Forms

THIS PAGE INTENTIONALLY BLANK

Monitoring Well Sample Collection Form

LOCATION	Site: Wi	ndsor Locks AA	SF, Windsor L	ocks, CT		LOCID: AOJ	01-01				Date: 4/2	7/21	
LOCATION	Project Na	ame: ARNG P	FAS SI, Winds	or Locks, CT		Project Num	ber: 60552172					Y: M. Mealars	Checked By:
EQUIPMENT	Sampling Water Lev	Equipment - Pu el Indicator Typ	mp: Geotech	Series 1	One P	eristaltic Pi	mp ter Quality Mete			N/A Sonde ID: 45		Compressor: N/ Hands	4 set ID: R525716XM7
	PID Type/	ID#:	0.0707	Dipper			upment Decon:		-ditu		12001	T Idi Idis	erib. Kozj nijimi
WELL &		on: 1" PVC			Screen Int	terval (BTOC): (1.65-14.65					Ambient PID (p	pm):
SAMPLING INFO		ump Settings:				-				STOC): 11.0		Well Head PID	(ppm):
INFO	NOTE: H	of Well/Comme BPE & S:);	core tubin	g vsed. 5.	tick up	~ 3 ft	above gi	Height ade, F	oan tes) (ft): 3 fi t: negativ	t.		
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (bis/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
1/27/21	14:35	9.69		0.1	22.37	2.94	9.50	7.18	140.4	107			
	14:40	9.69'		0.1	12.18	289.45	7.40	6.70	189.7	81.6			
-	14:45	9.69		0.1	12.04	313.48	7.34	6.69	115.0	57.9			
	14:50	9.69'		0.1	11.55	345.51	7.27	6.78	96.6	32.5			
	14:55	9.69'		0.1	11.24	369.67	7.30	6.80	82.3	20.8			
	15:00	9.69		0.	11.14	392.87	7.38	6.81	76.7	17.4	(NWA)	tat	
	15:10	9.69'		0.1	11.03	412.07	7.49	6.80		11.1	- ula	Max)	
	15:15	9.69		0.1	11.32	416.55	7.54	6.81	67.7	3.01	- /		
	15:20	9.69	2.5	0.1	11.27	424.08	7.56	6.84	56.9 48.7	1.19			
	10 -0-	1.01		0.1	1.0.1	720.00	1.00	6.84	70.7	0.41			
Pumping Rate:	< 0.5L/min; 1	Measurements:	every 3 - 5 minut	les; Stabilizatic	n is defined	as the following	for three conse	cutive rea	dings: <u>+</u> 3%	Temp, <u>+</u> 3% Co	nductivity; + 10 ⁴	% DO; ± 0.1 pH; ± 1	10mV ORP; 10% Turb
Sample ID Nu	mbers and	Sample Time			Cor	ntainer Count,	Volume & Typ	e	Preservat	ive	Parar	meter(s)	
A0101-01-	GW CI	5:25			2×	125 ml	HOPE				PFAS	ſ	
										1		to 2 to 2	
						- Margaro				- Batt	0.00	in Station	- Summer
						- (16) Y					-0		
						A second	Section 1		10.20	and the fi			1
					100	CON 1982 11 6	N. S. P. L.	115	0.22672.5		1.0		

Monitoring Well Sample Collection Form

LOCATION	Site: Wi	ndsor Locks AA	SF, Windsor Lo	ocks, CT		LocID: Ao	01-02				Date: 4/28	1/21	
LOOATION	Project Na	ame: ARNG P	FAS SI, Winds	or Locks, CT		Project Num	ber: 60552172					1. M. Meadows	Checked By:
	Sampling	Equipment - Pu	mp: Geotech	Seces	Dia	Peristatic	Pump	C	ontroller:	(Compressor: -	-
EQUIPMENT	Water Lev	el Indicator Typ	e/ID#: Heron	Didder	T-2	Wa	ter Quality Met	er Type: 1,	-situ s	onde ID: 43			set ID: RE237 ICXM
	PID Type/	ID#: _	-	- (1			ipment Decon:						
	Descriptio	on: Low-Flow	J	*****	Screen Int	erval (BTOC):	<u>entre contra</u>	1		r (BTOC): 7	заразалагандлагана	Ambient PID (p	
WELL & SAMPLING	Historic P	ump Settings:	100 mL/n	nin						TOC): 7.		Well Head PID	(ppm):
INFO	Condition	of Well/Comme	nts: Installe	1 4/27/	21	171115			of stick-up		<u> </u>	1.1.1.1.1.1	
	NOTE: H	DPE + Sil,	cone Tubin	g used.	Foam T	Test: nega	tive					1.1.2.2	
Date	Time	Depth to	Volume	Pumping	Temp	Specific	DO		ORP	Turbidity	Pump Refill/	Pump	
(MM/DD/YY)	(24 hr)	Water (BTOC)	Removed (gallons)	Rate (Lpm)	(°C)	Conductivity (mS/cm)	(mg/L)	рН	(mV)	(NTU)	Discharge (seconds)	Pressure (PSI)	Comment
4/28/24	08:00	7.70		0.1	15.51	16.22	10.69	4.99	195.1	642			
	08:05	7.73		0.1	11.75	314.65	0.81	4.58	-218.0	676			
	08:10	7.75	i	0.1	11.56	253.05	0.49	6.45	-238.8	633			
	08:15	7.75		0.0	11.63	225.17	0.58	6.42	-2376	580	(NUM)		
See. m	08:20	7.75	- <u> </u>	0.1	11.36	215.41	0.60	6.39	-232.)	441	1 mili		
_	08:25	1.75		0.1	11.22	209.77	0.85	6.30	-2267	352	4/26/		
	08 30	7.75		0.1	11.48	197.66	0.97	4.37	- 223.3	224			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	08:35	7.75		0.1	11.31	191.32	0.98	6.39	-219.6	137		1	
	08:40	7.75		0.1	11.43	193.67	1.00	6.35	-212.9	62.2			Les and the second
	08:45	7.15	2.5	0.1	11.52	190.07	1.04	6.38	-209.9	18.3		$\left \right\rangle$	
Pumping Rate:	 ≤0.5L/min; I	Measurements: 6	every 3 - 5 minut	es; Stabilizatio	n is defined	as the following	for three const	cutive read	lings: + 3% T	emp, + 3% Co	nductivity; + 109	// DO: + 0.1 pH: + 1	10mV ORP; 10% Turb
Sample ID Nun						ntainer Count,			Preservati			neter(s)	
10101-02-0	SW Q	0850			2×	125 ml	HBRE		-		PFAS		
	_							Starting .					
					-						Contractor		
							17721	To Mu			in the part of the	190.00	(industrial)
					100			- 200					
						Difference in the		2012	10 mar		E Press		
						C Creation		1	1		11 P 13	200 F. 100	
											100		Sec. 1

Monitoring Well Sample Collection Form

LOCATION	Site: W	indsor Locks AA	SF, Windsor Lo	ocks, CT		LocID:	A0101-03				Date: 4/2	1/21	
LOCATION	Project N	ame: ARNG PI	FAS SI, Winds	or Locks, CT			Number: 60552	172		1 Service	Recorded By	M. Mealows	Checked By:
	Sampling	Equipment - Pu	mp: Geoter	Sectes	1 00	~ Revis	taltic Prov	o (Controller:	-		Compressor:	_
EQUIPMENT	Water Lev	el Indicator Type	e/ID#: Hecon	Dipper	T-2		Water Quality		5	Sonde ID: 48	15687	Hand	set ID: A525716XM7
	PID Type	'ID#: -					Equipment Dec	con: Alcon			CASIM TY		
WELL &	Descripti	on: Lov - Flo	W		Screen	Interval (BTO	C): (.3'-11.3	' Initial D	Depth to Wate	er (BTOC): 💲	5.72	Ambient PID (ppm): -
SAMPLING	Historic P	ump Settings:	100 ml/m	in					Inlet Depth (E	STOC): 5.8	r*	Well Head PID) (ppm): -
INFO	Condition	of Well/Commer	nts: Install	d 4/29	121			Heigh	t of stick-up	(ft): 0.5			
	NOTE: H	of Well/Commer	one Tubing	used. E	oom Te	3):							
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Speci Conduc (mS/c	tivity (mall		ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
4/29/21	0915	5.85		0.1	14.79	2.63	12.84	6.06	161.1	485			
	09:20	5.85		0.1	11.40	1499.		6.27	-152.0	411			
	09:25	5.85		J.1	11.31	1477.	3 0.12	6.81	-181.8	352			
	09:30	5.87		0.1	11.23	1416.	6 0.09	6.83	-199.4	231			
	09735	5.88		0.1	11.03	1406.	1 0.07	6.85	-189.6	189	(A)		
	09:40	5.90		0.1	11.09	1389.2	2 0.06	6.86	-188.3	112	(Jul) 4/29	2	
	09:45	5.91		0.1	11.09	1329.2	0.16	6.86	-206.2	86.3			
	09:50	5.92		0.1	11.10	1301.5	8.94	4.87	-2.2.4	41.7			
	09:55	5.93		0.1	11.07	1254.	0.04	687	- 219.8	25.5			
	10:00	5.93	1.75	0.1	11.00	1227.	4 0.04	4.87	-225.0	18.2			
Pumping Rate:	< 0.5L/min:	Measurements: 6	every 3 - 5 minut	es: Stabilizatio	n is defin	ed as the follo	wing for three c	onsecutive rea	dings: + 3%]	Temp + 3% Co	anductivity: + 10%	$\int \frac{1}{1 + 0 + 0} \frac{1}{1 + 0$	10mV ORP; 10% Turb
Sample ID Nu							unt, Volume &		Preservat			neter(s)	
A0JD1-03-	GW	0 10:05			2	+ 125	~L 40PE	-	-		PFA	5	
0101-03-0		~					L HOPE		-		PFAS	La Land	
-201-03-0	34-0	C 10.05						فبالمؤلي		and which		and the second second	
					-						1. Tenune		Constitent of a
								100					March 194
					_	T rtcs				-			the later of the
					_				-	-	10		
							Contraction of the second						t'ar

Monitoring Well Sample Collection Form

LOCATION	Site: Wir	ndsor Locks AA	SF, Windsor Lo	ocks, CT		LocID: Ao	T01-04				Date: 4/29/	21	
	Project Na	me: ARNG P	FAS SI, Windso	or Locks, CT		Project Nun	nber: 60552172				Recorded By	M. Meachus	Checked By:
	Sampling I	Equipment - Pu	mp: Gentrel	Server	Oala.	Puristalt	ic Pmo	C	Controller:	_	0	Compressor:	-
EQUIPMENT	Water Leve	el Indicator Typ	e/ID#: Heron	Dipper	T-2	W	ater Quality Met	er Type:	S	onde ID: 45	5687	Hands	et ID: R525116XM7/
	PID Type/I	D#:		- Ti		Ec	uipment Decon	Alconax	+ DI .	rater (As	TH Type I)	
	Descriptio	n: Low · Plo	V		Screen Int	erval (BTOC):	4.5'-9.5'	Initial D	epth to Wate	r (BTOC): ²	1.29	Ambient PID (p	pm): -
WELL & SAMPLING	Historic Pu	mp Settings: 1	00 ml/r	nin			11			TOC): 7.0		Well Head PID	(ppm):
INFO	Condition of	of Well/Comme	nts: Installe	1 4/29/	21			Height	t of stick-up	(ft): 0.5	•	1.41	
	NOTE: J	OPE a Si	licone Tub	ing used.	Foam	test:							
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
1/29/21	10:25	4.31		0.1	14.42	1.34	10.83	7.30	-16.1	389			
	10:30	41.33	_	0.1	12.77	1444.5	0.27	7.19	-232.5	324			
	10:38	4.37		0.1	12.61	1485 2	0.20	7.19	-242.5	251			
	10:40	4.39		0.1	12.50	1486.8	0.13	7.20	-249.1	170			
	12:45	4.39	<u> </u>	0.1	12.49	1471.7	9.24	7.21	- 257.9	203	let)		
	10:50	4.39		0.1	12.54	14328	8.24	7.21	-203.5	311	1/29/21		
	10:55	4.39		0.1	12.45	1406.6	0.11	7.20	-2671	404	91-		
	11:00	4.39		0.1	12.49	1344.8	0.06	7.20	-270.1	483			
	11:05	4.89		0.1	12.49	1334.6	0.05	7.20	-271.8	452			
-	11:10	4.39		0.1	12.49	1303.8	0.05	7.18	- 272.4	525			in the second second
	11:15	4.39		0.1	12.20	1278 3	0.07	7.17	- 272.8	214			
			every 3 - 5 minut	es; Stabilizatio									10mV ORP; 10% Turb
Sample ID Nur					Cor	ntainer Count	, Volume & Ty	pe	Preservati	ve	Param	neter(s)	
0501-24-0	w c	0 11:30			2x	125 ml	HDPE	- de	-	100	PFAS		
	1.80				15 18			1.1.1		1		100	
									1				
								_					Confident -
					0.5								
		100- 10013		Mar (40)		10.0	201-0-1			_		101-101	
							-				-		
						1011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	and the second second						

Monitoring Well Sample Collection Form

Page 2 of 1

LOCATION	Site: W:A	loor Locks	AASF W:	ndoor Lock	S. CT	LocID: AOI	01-04			-	Date: 4/29	/21	
LOOATION	Project Na	ame: ARNG	s AASF W: PFAs SI,	Windoor Loc	us ct	Project Numb	er: 605521	72			Recorded By:	M. Meado	Checked By:
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рH	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
4/29/24	11:20	4.39		0.1	12.25	1292.4	0.10	7.17	- 273.0	187		- aun	
	11:25	4.39	1.75	0.1	12.35	1257.0	0.18	1.17	- 274.1	148			
						•							
					11 2 3								
										-			
										-			
	• • •												
	-												
		**				e							
							17		59				
	-							4					
	0	12 - 1											
									-				
										-	· · · ·		
							. ,						

Monitoring Well Sample Collection Form

LOCATION	Site: Win	ndsor Locks A/	ASF, Windsor Lo	ocks, CT		LocID: Ad	ND1-05	1000	12.80		Date: 4/28	121	Sector and a sector
LOCATION	Project Na	me: ARNG F	PFAS SI, Windso	or Locks, CT		Project Nu	mber: 60552172				Recorded By	M.Meado	در Checked By:
	Sampling	Equipment - Pu	Imp: Geotec	n Serves	1 Dive	Reistaffi	c Pimp		controller:	-	0	Compressor:	_
EQUIPMENT	Water Lev	el Indicator Typ	pe/ID#: Human	Dipper	T-2		Vater Quality Met			onde ID: 4:		Ha	andset ID: RS2571GX147A
	PID Type/I	D#:				E	quipment Decon:	Alcons	J DI V	wher (AS	IM Type I)	
WELL &	Descriptio	n: Low-Ela	<u>ل</u> ر		Screen Inte	erval (BTOC)	58-10,8			r (BTOC): 4	1,73	Ambient PI	D (ppm): 🦳
SAMPLING	Historic Pu	Imp Settings:	100 ml/m	in					nlet Depth (B			Well Head	PID (ppm):
INFO		of Well/Comme	ents: Instal licone Tub	Led 4/28	121	T. J. AM	a arti ne	Height	t of stick-up	(ft): 0.5'		1	
			noone	ing voice	. Poam	Test . M	J = [15 =						
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivi (mS/cm)		рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
1/28/21	14:00	8.43		0.1	24.73	7.83	7.67	4.60	-121.6	890			
	14:05	10.80		0.05	18.93	232.64	3.14	6.77	-182.4	760			well ron dry flow
	14:10	18.80		0.05	18.51	348.95		6.98	-197.7	543			rade adjusted tubi
_	14:15	10.80	0.25	0.05	17.27	332.24	3.56	7.13	- 223.3	127	(Mul) -la		istake laverel.
											(Mul / 25 8		
	-											T	3 reading collected
										_			after to Well
													allowed to re-char
						1-1-2							before grabbing " sample
										2.2.2			
			every 3 - 5 minute	es; Stabilizatio							nductivity; + 10%	6 DO; ± 0.1 pH	l; <u>+</u> 10mV ORP; 10% Turb
Sample ID Nu		•			Cor	tainer Coun	t, Volume & Typ	e	Preservati	ve	Param	neter(s)	
toI01-05-	GW (2 14:35			2 ×	125 m	L HDPG		-		PFAS		
												•	
						Contraction of the			0	100			
						TEL PART							
						17195							
													1000
						100.00	are proven to		THE LOC	HS-1-			

Monitoring Well Sample Collection Form

LOCATION	Site: W	indsor Locks AA	SF, Windsor L	ocks, CT		LOCID: AOT	01-06				Date: 4/28	121	
LOCATION	Project N	ame: ARNG P	FAS SI, Winds	or Locks, CT		Project Num	ber: 60552172					M.M.cadono	Checked By:
EQUIPMENT	Sampling Water Let	Equipment - Pu vel Indicator Typ	mp: Geotech e/ID#: Heccor	Dipper 7	Drive 1	Peristettic P Wa	ter Quality Met		Controller:	- Sonde ID: 45		Compressor: Hands	- et ID: R525716XM
	PID Type	/ID#:	-			Equ	ipment Decon	Alconox	+ 0I	water (A	STA TYPE	Z)	und under
WELL &	Descripti	on: Low-Flow			Screen Int	erval (BTOC):		TATIATION TATIATION		A CALLED THE FAIL THE FAIL THE FAIL THE	0015 4.05°	Ambient PID (p	pm): –
SAMPLING	Historic P	ump Settings:	100 ml/mi	n						STOC): TOTO		Well Head PID	(ppm): -
INFO	Condition	of Well/Comme	nts: Instal	led 4/28	las			Heigh	t of stick-up	(ft):	0.5		
	NOTE: H	of Well/Comme	one Thing	used. Fo	am Test	: Negative							
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
4/28/21	12:00	4.73		0.1	12.93	755.10	6.17	5.89	51.7	699			
	12:05	4.73		0.1	11.88	762.92	5.78	5.84	40.6	2014			
	12:10	4.73		0.1	13.33	732.95	5.48	5.88	46.8	43.8			
	12:15	4.13		0.1	12.44	724.71	5.73	5.90	47.4	399			
	12:20	4.73		0.1	11.42	70833	5.72	5.76	43.6	521	aun y/a	28/21	
	12:25	4.73		0.1	11.37	707 29	5.62	6.74	35.6	748			
	12:30	4.73		0.1	11.43	705.96	5.39	5.79	28.6	785			
	12:35	4.73		0.1	11.35	702.80	5.25	5.83	24.2	643			
	12:40	4.73	2	0.1	11.30	699.30	5.22	5.85	21.8	691			
				14									
Pumping Rate: Sample ID Nui			every 3 - 5 minul	es; Stabilizatio		as the following ntainer Count,			dings: ± 3%			6 DO; <u>+</u> 0.1 pH; <u>+</u> 1 neter(s)	0mV ORP; 10% Turb
ADI01-06-	GW 1	Q 12:45			2×	125	HAPE		-		PFA.		
	1								1.2				
= x	12				-	1.000		1				State -	
	1.1				100 million	C plus plus	100	104		101210	L States		California -
1					10 m		Sec.			distant.			ALC: DOT
roeviden.								1			Man See 1		Cost of the second
						1.25							
									a la cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale de				10 mm
						- 102-11 C	Contraction of the	1 1 1 1 1 1	STATISTICS OF	1000			

Monitoring Well Sample Collection Form

LOCATION		ndsor Locks AA				LOCID: ADIC	01-07				Date: 4/28	121	
****	Project Na	ame: ARNG PI	FAS SI, Winds	or Locks, CT		Project Numb	per: 60552172				Recorded B	I.M. Mcadaws	Checked By:
<u>Jelletletletletletletletletlet</u> e	Sampling	Equipment - Pur	np: Geofect	Serves	1 Orive	Prostattic	Pump		Controller:	-		Compressor:	-
EQUIPMENT	Water Lev	el Indicator Type	=/ID#: Heros	Dipper	T-2	Wat	er Quality Met	er Type: 1,	~ situ s	Sonde ID: 45	5687	Hands	et ID: RS257IGKM
	PID Type/I	ID#:	/			Equ	ipment Decon:	Alconse	+ DI U	Vater (AST	MT.peH	5)	
	Descriptic	on: Low-Flow	N		Screen Inte	erval (BTOC):	*********************	I	<u>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>	er (BTOC): 10		Ambient PID (p	om): ~
WELL & SAMPLING	Historic Pu	ump Settings:	100 llm	'n						BTOC): 12.5		Well Head PID	
INFO	Condition	of Well/Commer	Its: Instally	1 4/28/2	4					(ft): 4.5			
	NOTE: H	of Well/Commer	icone Tub.	in used	Foam	Test: nega	tive						
		*****		9	*****	<u> </u>					****		
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
4/28/24	10:35	10.46		0.1	15.91	0.07	10.72	6.41	-10.4	475			
	10:40	10.44		0.1	12.22	34.78	9.85	6.00	10.5	367	/		
	10:45	10.46		0.)	11.04	22.59	10.31	5.87	15.0	221			
	10:50	10.46		0.)	11.94	13.94	10.79	5.84	28.9	172			
	10:55	10.46		0.1	11.87	7.67	10.91	5.87	34.7	119	(my h		
	11:00	10.46		01	12.13	1.42	10.86	5.91	35 8	86.8	4 28 2		
1.	11:05	10.46	and the second second	0.1	12.18	0.07	10.98	5.81	44.7	69.0	((,
	11:10	10.46		0.)	12.21	0.07	10.81	5.82	467	58.2			
	11:15	10.46		0.1	12.47	0.07	10.82	5.80	484	47.6			
	11:20	10.44		0.1	13.05	0.07	10.75	5.83	47.4	36.5			
Duran Inc. D. A.	11:25	10.44		0.1	11.30	13.29	11.04	5.86	46.1	31.2			
			ivery 3 - 5 minut	es; Stabilizati					dings: <u>+</u> 3% Preservati			% DO; <u>+</u> 0.1 pH; <u>+</u> 1 neter(s)	0mV ORP; 10% Turb
	nhors and	Sample Time			1100				FIESEIVAL		1 273731		
Sample ID Nur	_					ntainer Count, V					_	neter(s)	
	_		3	0.1		125 mL			-				

Monitoring Well Sample Collection Form

Page	2	of	2

LOCATION	Site: Win	Isor Locks	AASF Winds	for Locks.	СТ	LOCID: ACT	01-07				Date: 4/28	1/21	
LOOATION	Project Na	ame: ARNG F	FAS SI Win	loor Locks	ĊŢ	Project Numb	er: 6055217	2			Recorded By	M. Mindo	در Checked By:
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	pH	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
4/28/21	11:30	10.46		0.1	12.56	7.59	11.00	5.87	45.9	25.3			4
1. <u>1.</u> 1. 1.	11:35	10.46	3	0.1	12.73	0.07.	10.95	5.91	43.9	19.7		LUN yas	61
					-								
							-						
								-					
							-						
-													
			-										
							-						
						1-							
									-				
								s					
													*
					-		1						

Pumping Rate: < 0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ± 3% Temp, + 3% Conductivity; + 10% DO; + 0.1 pH; + 10mV ORP; 10% Turb

Monitoring Well Sample Collection Form

LOCATION	Site: Wi	ndsor Locks AA	SF, Windsor Lo	ocks, CT		LOCID: AOI	01-08				Date: 4/28	-121	
LOCATION	Project Na	me: ARNG P	FAS SI, Winds	or Locks, CT		Project Numb					Recorded By	M. Mendors	Checked By:
<u>analalalalalalalal</u>	Sampling	Equipment - Pu	mp: Geoterl	Series 1	Oi.~	Restaltic	Pimp	С	ontroller:	_	0	Compressor:	
EQUIPMENT	Water Lev	el Indicator Typ	e/ID#: Hem	Dipper	T-1	Wate	er Quality Meter	Type: In	-5:40 5	Sonde ID: 45	5687	Hands	set ID: RSZJ716XM7
	PID Type/	D#:									M Type I		
	Descriptio	In: Low - Flow	J		Screen Int	erval (BTOC): 9		1		er (BTOC):	*****	Ambient PID (p	. – – – – – – – – – – – – – – – – – – –
WELL & SAMPLING	Historic Pu	ump Settings:)	00 mL/mi	^				1		STOC): 12.3		Well Head PID	(ppm): ~
INFO	Condition	of Well/Comme	nts: Install.	ed 4/28/2	u					(ft): 4.4'			
	NOTE: H	DPE + Silic	one Tubin	y used.	Foam T	cot: Negatiu	Ľ						
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gailons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
1/28/21	09:25	10.40		0.1	17.20	2.36	10.15	4.32	-76.1	667			
	09:30	10.40		0.1	10.73	76.33	9.50	6.67	- 80.5	633			
	09:35	10.40		0.1	10.37	42.38	10.42	6.38	-58.3	604	S	2.5.0.3	
	09:40	10 40		0.1	10.19	60.08	10.67	6.33	-51.2	555	(11)		
	09:45	10.40		01	10.20	57.07	10.73	6.38	-52.0	516	4/2:6/2		
	09:50	10.40		0.)	10.36	54.68	10.83	6.41	- 49.1	387	4100		
	09:55	10.40		0.1	10.31	52.99	10.93	4.44	-454	261			
	10:00	10.40		0.1	10.17	53.98	11.03	6.46	-41.6	96.5			
9	10:05	10.40	.2	0.1	10.35	52.63	11.07	6.45	-371	34.4			
					1								
Pumping Rate:	< 0.51 /min: 1	leasurements:	every 3 - 5 minut	 	is defined	as the following	for three conce		dinge: + 3%	[[0mp + 2% Co	nductivity: + 10%		10mV ORP; 10% Turb
Sample ID Nu						tainer Count, V			Preservat			neter(s)	
ADI01-08-	GW (8 10:10				125 mL			-		PFAS		
					~	(ob) me					1110		
							S			4. C			1
					1.1			- 44		18.0			Contraine 1
							1.1.1			1.1			
						1.040				-			Contraction of the
							S					-	achter fait
					1.161	141-14	Second St.	112.22	TOTAL CLOSE	2.54			

Monitoring Well Sample Collection Form

LOCATION	Site: Wi	ndsor Locks AA	SF, Windsor Lo	ocks, CT	- A-	LocID: A OT	01-09				Date: 4/2-	1/21	
LOCATION	Project Na	me: ARNG PI	FAS SI, Windso	or Locks, CT			ber: 60552172				Recorded By	M. Mendans	Checked By:
	Sampling	Equipment - Pur	mp: Geotech	Serves 1	Onle P	eristaltic P	ump	C	ontroller: N	A		Compressor: N	/4
EQUIPMENT	Water Lev	el Indicator Type	e/ID#: Heron	Dipper T	-2	Wa	ter Quality Met	er Type:,	- 5:70 5	Sonde ID: 48			et ID: R525716XM7.
	PID Type/	ID#:				Equ	ipment Decon:						
WELL &	<u> </u>	on: 1" PVC			Screen Inte	erval (BTOC):	0'-15'	Initial D	epth to Wate	er (BTOC):	0.34'	Ambient PID (p	pm):
SAMPLING	Historic Pu	Imp Settings:	100 ml/min					Pump II	nlet Depth (E	STOC): 12.5	,L	Well Head PID	(ppm):
INFO	Condition	of Well/Commer	nts: Installe	d 4/27/	21			Height	of stick-up	(ft): 2 fr	6		
	NOTE: H	of Well/Commer)PG + S:1:ca	one tubing	used.	stick up	~2' a	bove grade	. Foam	test in	egative			
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
1/27/21	15:50	10.81		0.1	16.65	196.80	7.25	6.87	81.0	854	-		
	15:55	12.81		0.1	13.26	189.12	4.15	5.85	23.3	658			
	16:00	10.82		0.1	12.87	187.52	4.25	6.03	-53.8	603			
	16:05	10.83		0.1	12.44	184.50	4.41	4.06	- 65.5	689			
	16:10	10.84	212 - 12	0.1	12.74	184.94	4.54	6.05	-66.5	624	(
	14:15	10.84		0.1	12.51	187.03	4.70	6.06	-649	522			
	-										AND .		
								-			4/27/2		
	-										/		
1 m m													
oumping Rate:	 ≤0.5L/min; I	Veasurements: e	every 3 - 5 minute	es; Stabilizatio	n is defined	as the following	for three conse	ecutive read	 	 Temp, + 3% Co	nductivity: + 10%		0mV ORP; 10% Turb
Sample ID Nun							Volume & Typ		Preservat			neter(s)	
10I01-09-G	W Q	16:20			2x	125 mL	HBPE		-		PFAS		
					-						nd Margari		- Later and
						Contractor		1 1 2 34			1 - 2/-		and a second
							States 1					The second second	Sound ontes
											C. C. C. C. C. C. C. C. C. C. C. C. C. C		
						U. Salar				Tell		20.0	
					and the second								

Monitoring Well Sample Collection Form

LOCATION	Site: Wi	indsor Locks AA	ASF, Windsor Lo	ocks, CT		LocID: AaI	01-10				Date: 4/29	1/21	
LOCATION	Project Na	ame: ARNG F	PFAS SI, Winds	or Locks, CT			per: 60552172	la de la composition de la composition de la composition de la composition de la composition de la composition La composition de la co			Recorded By	M. Meadows	Checked By:
	Sampling	Equipment - Pu	imp: Geotecl	Serves 1	Ode.	Perstaltin	Pumo	C	ontroller:	-	0	Compressor:	-
EQUIPMENT	Water Lev	el Indicator Typ	pe/ID#: Heron	Dioper	T-2	Wat	ter Quality Met			Sonde ID: 4	55687	Hands	et ID: R52J716XM7
	PID Type/	1D#:		<u> </u>		Equ	ipment Decon:	Alconox	+ DI	water CA	STM Type T	I)	
14/711 0	Descriptio	on: Low - Flow	,		Screen Int	erval (BTOC): 4	<u></u>	<u></u>	1.	er (BTOC): 5	101010101010101010101	Ambient PID (p	ipm): —
WELL & SAMPLING	Historic P	ump Settings:	100 mL/m							BTOC): 7.1		Well Head PID	(ppm):
INFO	Condition	of Well/Comme	ents: Install	ed 4/281	21			Height	t of stick-up) (ft): 0.5'			
	NOTE: #	ope + sil	icone Tubin	3 used.	From T.	est: Negativ	r						
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
4/29/21	08:00	5.57	2	0.1	15.95	10.26	10.69	7.02	185.8	61.3			
	08:05	5.69		0.1	10.75	1, 355.3	5.13	5.64	95.2	45.4			
	01:10	5.69		0.1	10.50	1,350.9	5.85	5.70	73.0	31.4			
	0815	5.69	0.25	0.1	10.41	1,401.1	5.47	5.70	101.7	10.8			
									12.0		(nuch) los		
					_						4 Ala		
	_												
			1000					-					
										1 - 14			
	-				C								
Pumping Pate:	< 0.51 /min: 1	Massuramonte:	ovon/3 5 minut	on: Stabilizatio	n is defined	oo the fellowing	for three cores			T			I0mV ORP; 10% Turb
Sample ID Nur			every 5 - 5 minut			as the following tainer Count,			Preservat			bDO; ± 0.1 pH; ± 1	IOMV ORP; 10% Turb
0501-10-G	W	@ 28:2	0		2×	125 m	HOPE		7		PFAS		
DI01-10-6						125 mL	HDPE	1	-		PFAS		
0101.10-GL				- Provide -	2×	125 ml		C	-		PFAS	Sector III	
0101.10.00		C 08.20	Contraction of the second second second second second second second second second second second second second s		1.1			10.00		11,000	- 1 P	- Parent Col-	Collinson
			State State		-00-0							a l'hair	
						- Proved of the					N President		
										-			
					1010	Sec. 1	and the second						

Appendix B3 Nonconformance and Corrective Action Reports

THIS PAGE INTENTIONALLY BLANK

AECOM Technical Services Inc. **Nonconformance and Corrective Action Report**

Report Number:	NCR001		Location:	Windsor Locks AASF, Connecticut
Project Title:	ARNG PFAS		Contract Number:	W912DR-12-D-0014 DO: W912DR17F0192
Description of Nonconformance an Cause:	d	Upon review of field documentation, it was discovered that an equipment rinsate blank (ERB) was not collected from the hand auger used to collect the surface soil samples (0 to 2 feet below ground surface) during the Site Inspection at Windsor Locks AASF.		
Proposed Disposition:		The omission will be documented in the SI Report. The data validation will take a conservative approach when considering the hand auger samples by assuming all results are true positives. In the future, the field team will be reminded on pre-mobilization field kickoff calls that ERBs must be collected from hand auger used for soil sampling.		

Submitted by:	Amanda Martin	Date: 11 May 2021
---------------	---------------	-------------------

Approved by (Project Manager): <u>Claire Mitchell</u>

Actual Disposition approved by Project Manager:	The omission will be documented in the SI Report. The data validation will take a conservative approach when considering the hand auger samples by assuming all results are true positives. In the future, the field team will be reminded on pre-mobilization field kickoff calls that ERBs must be collected from hand auger used for soil sampling.
Implementation of	Amanda Martin (SI Task Manager) and Naoum Tavantzis (Project
Disposition assigned to:	Chemist)
Amanda	Martin/
Completed by: Naoum	Favantzis Date: 11 May 2021

Verified by (SI Task Manager): Amanda Martin Date: 11 May 2021

THIS PAGE INTENTIONALLY BLANK

Appendix B4 Survey Data

THIS PAGE INTENTIONALLY BLANK

DESC.	<u>NORTH</u>	<u>EAST</u>	<u>T.O.C. EL.</u>	GROUND EL.	<u>LAT.</u>	LONG.	SURVEYED
AOI 01-01	904500.9860'	1020340.0010'	161.21'	158.06'	N41° 56' 36.36"	W72° 40' 30.86"	4/29/2021
AOI 01-02	904738.7040'	1020720.5340'	157.95'	153.72'	N41° 56' 38.70"	W72° 40' 25.82"	4/29/2021
AOI 01-03	904961.3620'	1021212.5800'	153.58'	152.95'	N41° 56' 40.90"	W72° 40' 19.30"	4/29/2021
AOI 01-04	904923.8270'	1021015.6430'	153.60'	153.11'	N41° 56' 40.53"	W72° 40' 21.91"	4/29/2021
AOI 01-05	905219.2860'	1021036.6260'	152.80'	152.20'	N41° 56' 43.45"	W72° 40' 21.63"	4/29/2021
AOI 01-06	905684.6810'	1021143.4370'	152.55'	152.05'	N41° 56' 48.04"	W72° 40' 20.21"	4/29/2021
AOI 01-07	905134.5820'	1020321.9720'	160.71'	156.20'	N41° 56' 42.62"	W72° 40' 31.09"	4/29/2021
AOI 01-08	904853.3930'	1020124.9260'	161.85'	157.32'	N41° 56' 39.84"	W72° 40' 33.70"	4/29/2021
AOI 01-09	904040.2110'	1020380.1680'	171.38'	169.15'	N41° 56' 31.81"	W72° 40' 30.33"	4/29/2021
AOI 01-10	905295.2540'	1021399.1850'	155.55'	155.05'	N41° 56' 44.20"	W72° 40' 16.83"	4/29/2021

<u>NOTES</u>

1. Survey performed by AECOM - Newark, Delaware. 2. All coordinates and elevations relate to Connecticut state plane datum (NAD83/NAVD88-12B). 3. Coordinates and elevations established by: Trimble R8 - VRS RTK GPS system operating on the KEYNET VRS System. 4. All coordinates and elevations are in U.S. survey feet. 5. T.O.C. = Top of PVC (No outer casing present).

PROJECT

Windsor Locks AASF, CT Monitoring Wells

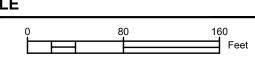
85-152 Light Lane Windsor Locks, CT

CLIENT

ARNG

CONSULTANT

AECOM 4051 Ogletown Road, Suite 300 Newark, Delaware, 19713 302.781.5900 tel 302.781.5901 fax www.aecom.com


LOCATION MAP

Google Earth

Not To Scale

EXISTING CONDITIONS LEGEND

 \bullet

SITE BENCHMARK BORING

ISSUE/REVISION

	i
2021-04-30	Issued
DATE	DESCRIPTION

KEY PLAN

SURVEYING & MAPPING NOTES

- 1. THIS PLAN REPRESENTS A PHYSICAL SURVEY OF THE SOIL BORING/GROUNDWATER
- LOCATIONS LOCATED AT THE WINDSOR LOCKS AASF IN WINDSOR LOCKS, CONNECTICUT. 2. THE CONDITIONS SHOWN ON THIS PLAN ARE BASED ON FIELD WORK PERFORMED BY AECOM, NEWARK, DE ON 4/29/2021.
- 3. BACKGROUND IMAGERY TAKEN FROM GOOGLE MAPS.
- 4. THIS PLAN IS DRAWN TO SCALE, HOWEVER STRETCHING MAY OCCUR DURING REPRODUCTION. IT IS THEREFOR NOT RECOMMENDED TO SCALE FROM THIS PLAN.
- 5. THIS PLAN IS NOT INTENDED FOR CONSTRUCTION PURPOSES. 6. STATE PLANE COORDINATES ESTABLISHED BY AECOM USING TRIMBLE GPS EQUIPMENT OPERATING ON THE KEYNET GPS NETWORK.
- 7. SYMBOLS ARE FOR ILLUSTRATING PURPOSES ONLY, THEY ARE NOT NECESSARILY OF THE SAME TYPE AND /OR SIZE OF THE OBJECT WHICH THEY REPRESENT.
- 8. HORIZONTAL DATUM: CONNECTICUT STATE PLANE (NAD 83) VERTICAL DATUM: NORTH AMERICAN VERTICAL DATUM (NAVD88-12B)

PROJECT NUMBER

60552172

SHEET TITLE

V-01

Mon. Wells

SHEET NUMBER

1 of 1

This page intentionally left blank.

Windsor Locks AASF

Boring Locations

Connecticut State Plane Coordinates (NAD83/NAVD88-12B)

DESC.	<u>NORTH</u>	EAST	<u>T.O.C. EL.</u>	GROUND EL.	<u>LAT.</u>	LONG.	SURVEYED
AOI 01-01	904500.9860'	1020340.0010'	161.21'	158.06'	N41° 56' 36.36"	W72° 40' 30.86"	4/29/2021
AOI 01-02	904738.7040'	1020720.5340'	157.95'	153.72'	N41° 56' 38.70"	W72° 40' 25.82"	4/29/2021
AOI 01-03	904961.3620'	1021212.5800'	153.58'	152.95'	N41° 56' 40.90"	W72° 40' 19.30"	4/29/2021
AOI 01-04	904923.8270'	1021015.6430'	153.60'	153.11'	N41° 56' 40.53"	W72° 40' 21.91"	4/29/2021
AOI 01-05	905219.2860'	1021036.6260'	152.80'	152.20'	N41° 56' 43.45"	W72° 40' 21.63"	4/29/2021
AOI 01-06	905684.6810'	1021143.4370'	152.55'	152.05'	N41° 56' 48.04"	W72° 40' 20.21"	4/29/2021
AOI 01-07	905134.5820'	1020321.9720'	160.71'	156.20'	N41° 56' 42.62"	W72° 40' 31.09"	4/29/2021
AOI 01-08	904853.3930'	1020124.9260'	161.85'	157.32'	N41° 56' 39.84"	W72° 40' 33.70"	4/29/2021
AOI 01-09	904040.2110'	1020380.1680'	171.38'	169.15'	N41° 56' 31.81"	W72° 40' 30.33"	4/29/2021
AOI 01-10	905295.2540'	1021399.1850'	155.55'	155.05'	N41° 56' 44.20"	W72° 40' 16.83"	4/29/2021

<u>NOTES</u>

1. Survey performed by AECOM - Newark, Delaware.

2. All coordinates and elevations relate to Connecticut state plane datum (NAD83/NAVD88-12B).

3. Coordinates and elevations established by: Trimble R8 - VRS RTK GPS system operating on the KEYNET VRS System.

4. All coordinates and elevations are in U.S. survey feet.

5. T.O.C. = Top of PVC (No outer casing present).

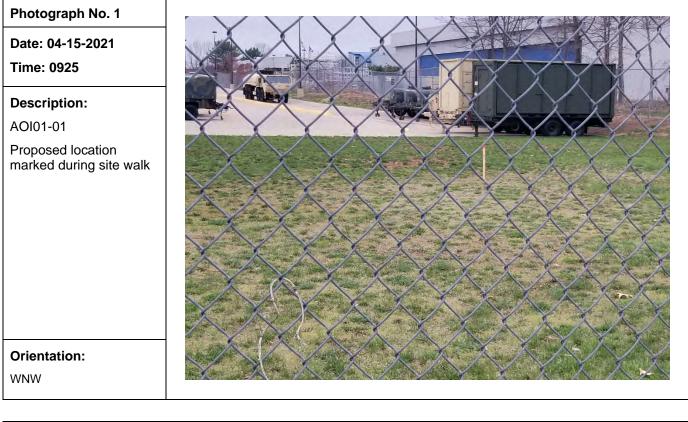
This page intentionally left blank.

Appendix B5 Investigation-Derived Waste Polygons

THIS PAGE INTENTIONALLY BLANK

cks_AASF_IDW dsor_Locks_SI_Fig s_AASF_Fig \SI_Re

THIS PAGE INTENTIONALLY BLANK


Appendix C Photographic Log

THIS PAGE INTENTIONALLY BLANK

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 2

Date: 04-15-2021

Time: 0915

Description:

AOI01-02

Proposed location marked during site walk

Orientation:

APPENDIX C – Photographic Log – Site Photos

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 3 Date: 04-15-2021 Time: 0945 Description: AOI01-03 Proposed location marked during site walk Orientation:

Photograph No. 4

Date: 04-15-2021

Time: 0950

SSW

Description:

AOI01-04

Proposed location marked during site walk

Orientation: West

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 5	
Date: 04-15-2021	
Time: 1000	
Description:	
AOI01-05	
Proposed location marked during site walk	
1. A A A A A A A A A A A A A A A A A A A	
Drientation:	
NNW	

Photograph No. 6

Date: 04-15-2021

Time: 1025

Description:

AOI01-05

Proposed location marked during site walk

Orientation: North

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 7	
Date: 04-15-2021	
Time: 1040	
Description:	
AOI01-06	
Proposed location marked during site walk	
Orientation: Northwest	
	<u> </u>

Photograph No. 8

Date: 04-15-2021

Time: 0910

Description:

AOI01-07

Proposed location marked during site walk

Orientation:

South

Site Inspection for PFAS

```
Windsor Locks AASF
```

Windsor Locks, Connecticut

Date: 04-15-2021

Time: 1010

Description:

AOI01-10

Proposed location marked during site walk

Orientation:

East

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 14

Date: 04-29-2021

Time: 0855

Description:

AOI01-02

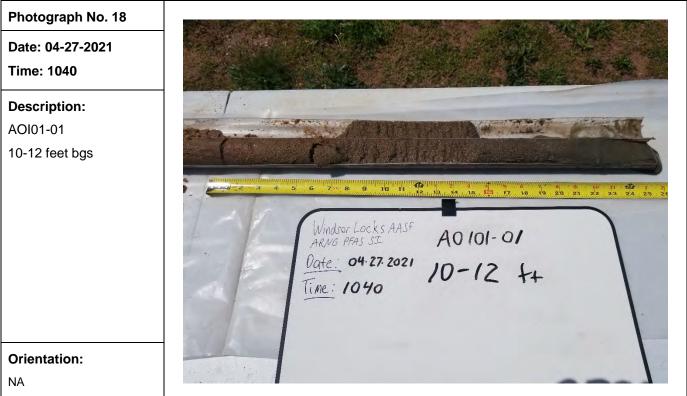
Adding bentonite for monitoring well abandonment

Orientation: South

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut


Photograph No. 16 Date: 04-27-2021 Time: 1040 Description: AOI01-01 0.0-2.5ft Orientation: NA

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 20

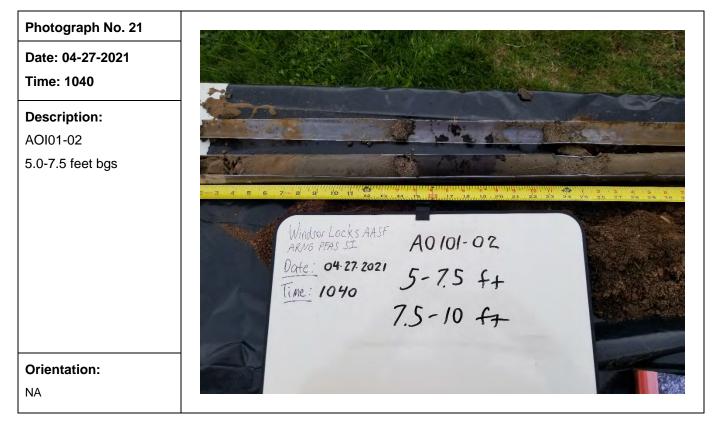
Date: 04-27-2021

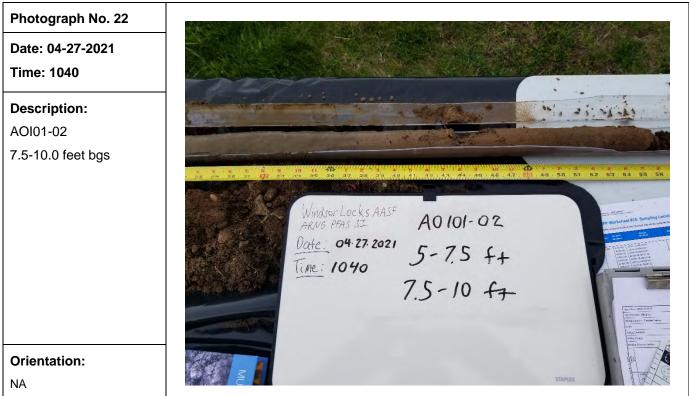
Time: 1040

Description:

AOI01-02

2-5 feet bgs

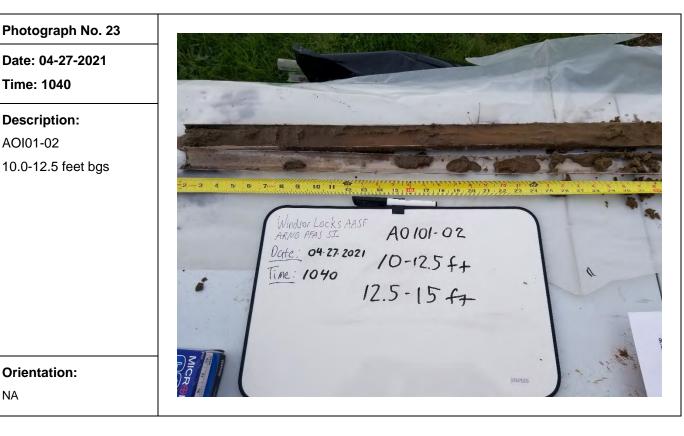

Orientation:

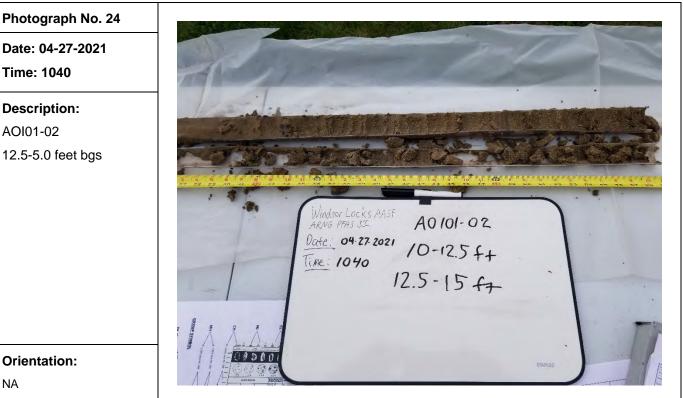

NA

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

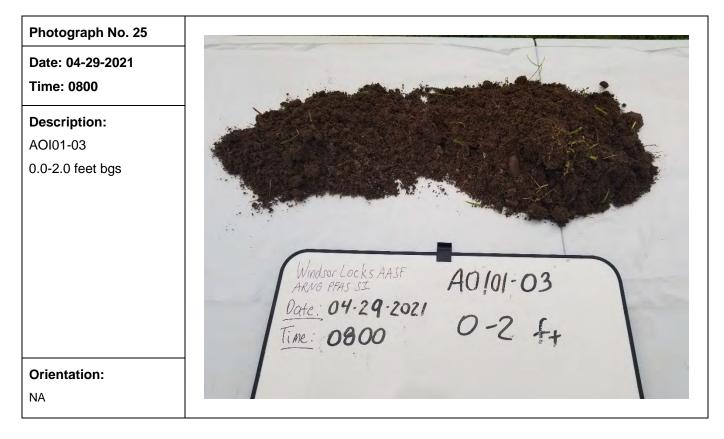




Site Inspection for PFAS

Windsor Locks AASF

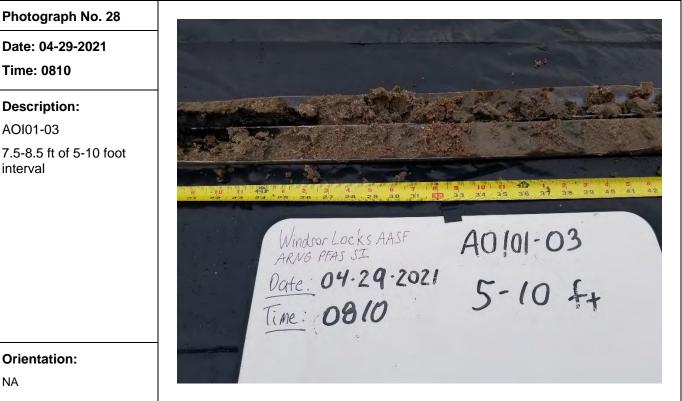
Windsor Locks, Connecticut



Site Inspection for PFAS

Windsor Locks AASF

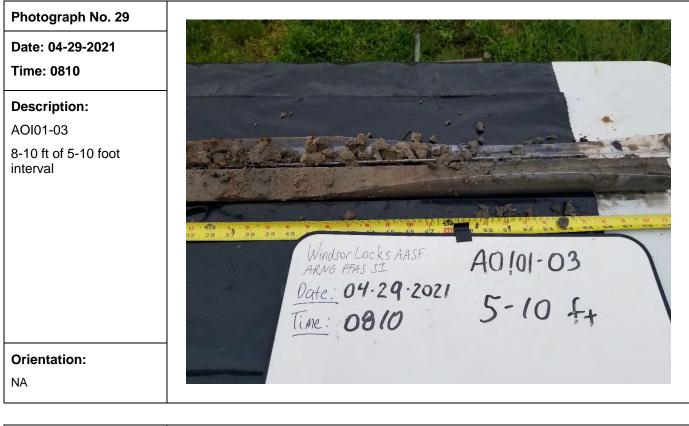
Windsor Locks, Connecticut

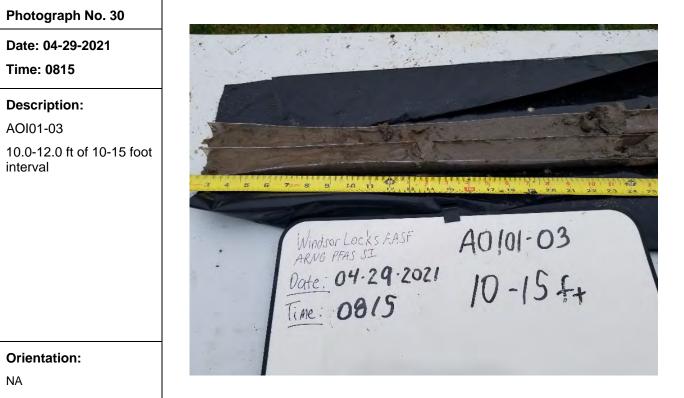


Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

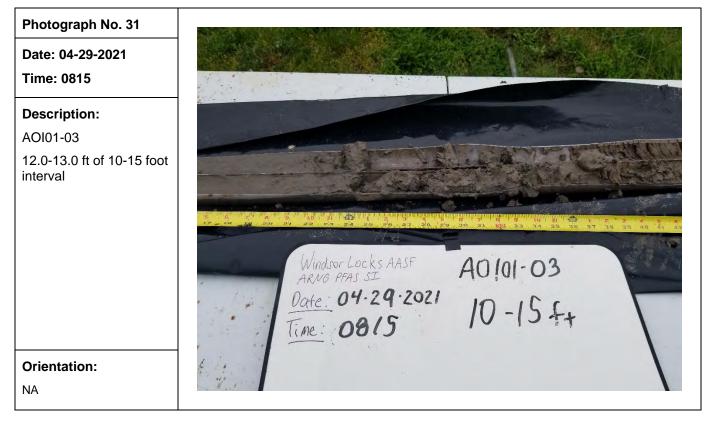




Site Inspection for PFAS

Windsor Locks AASF

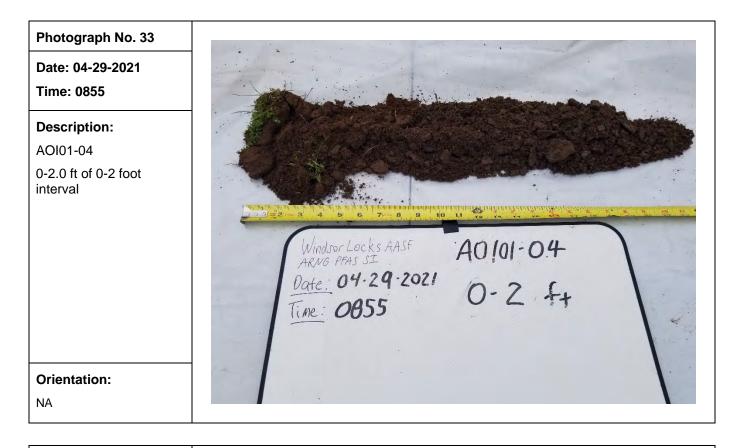
Windsor Locks, Connecticut



Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut



Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 34

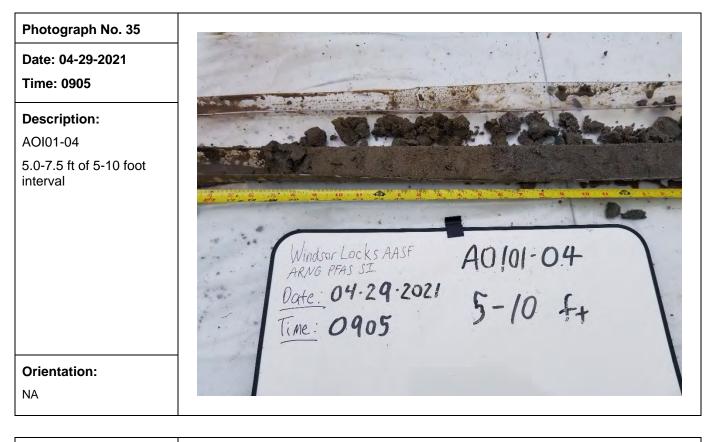
Date: 04-29-2021

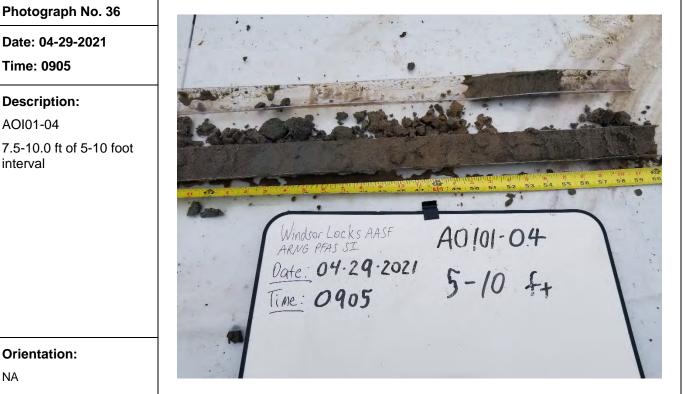
Time: 0855

Description:

AOI01-04

2.0-5.0 ft of 2-5 foot interval

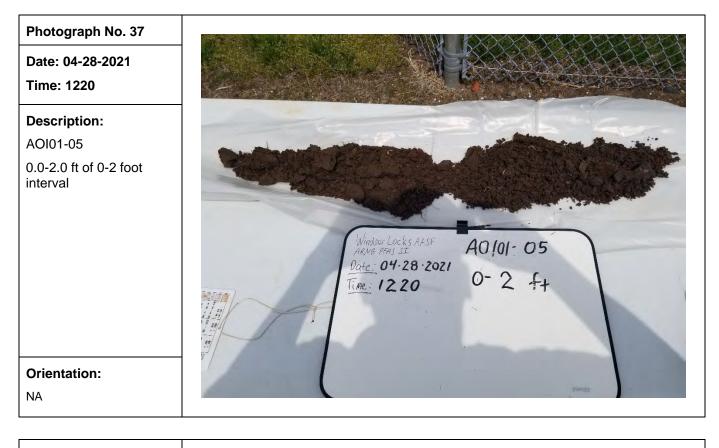

NA


Orientation:

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut



Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 38

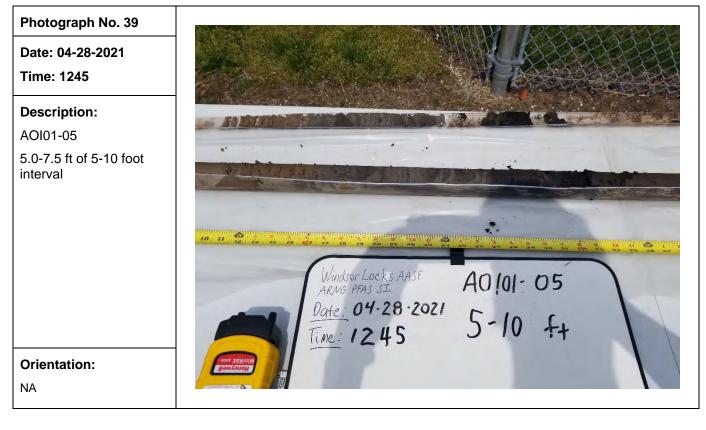
Date: 04-28-2021

Time: 1225

Description:

AOI01-05

2.0-5.0 ft of 2-5 foot interval

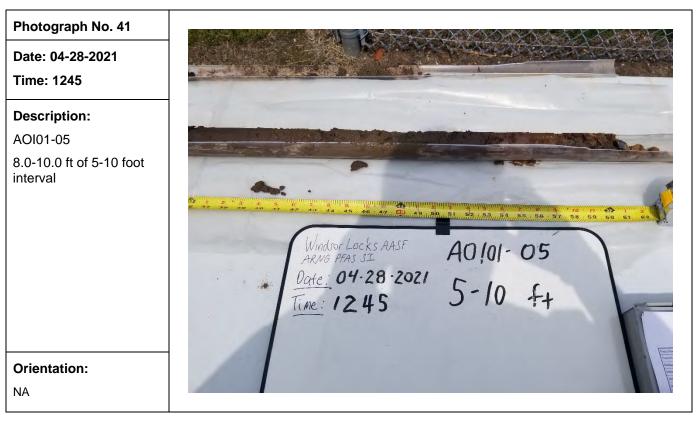

Orientation:

NA

Site Inspection for PFAS

Windsor Locks AASF

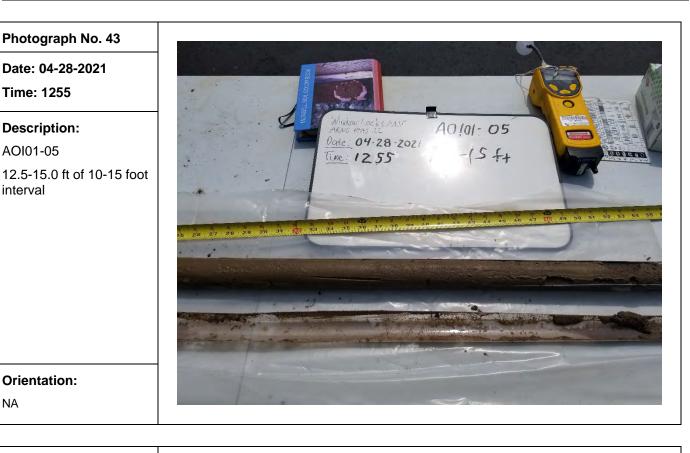
Windsor Locks, Connecticut



Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut



Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 44

Date: 04-28-2021

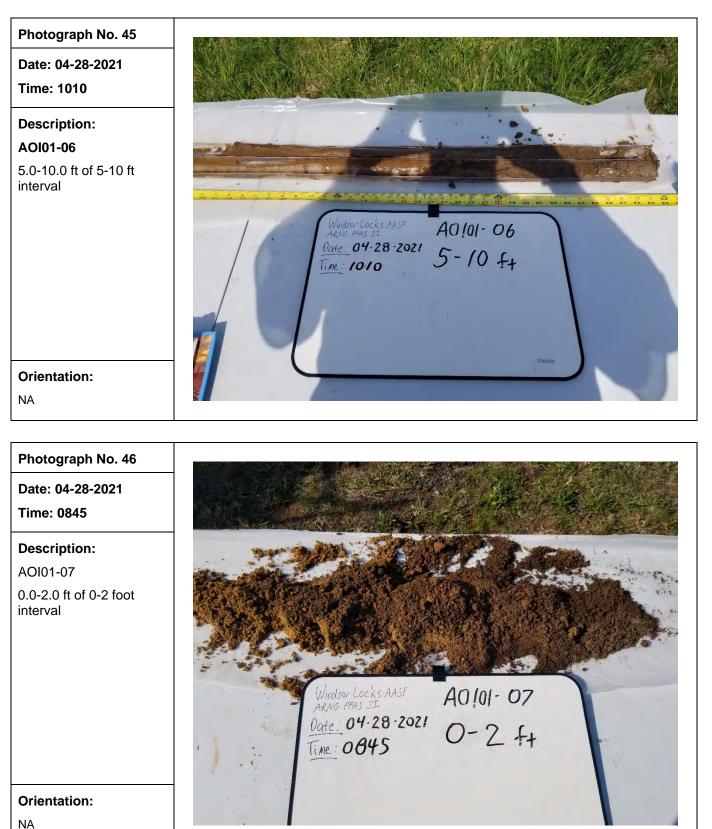
Time: 0940

Description:

AOI01-06

0.0-2.0 ft of 0-2 foot interval

AECOM


NA

Orientation:

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

.....

Site Inspection for PFAS

Windsor Locks AASF

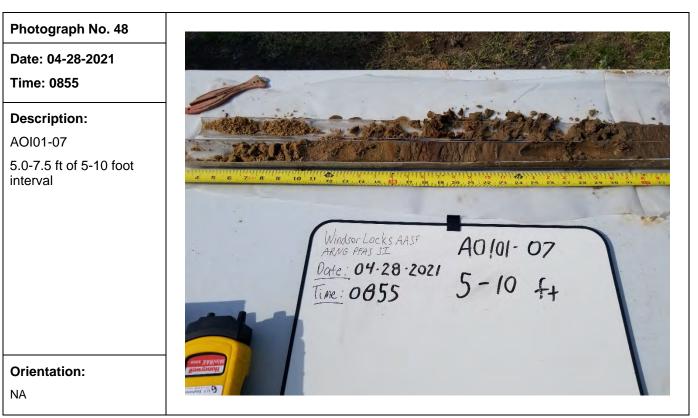
Windsor Locks, Connecticut

Photograph No.47

Date: 04-28-2021

Time: 0850

Description:


AOI01-07

2.0-5.0 ft of 2-5 foot interval

NA

Orientation:

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 49

Date: 04-28-2021

Time: 0855

Description:

AOI01-07

7.5-10.0 ft of 5-10 foot interval

Photograph No. 50

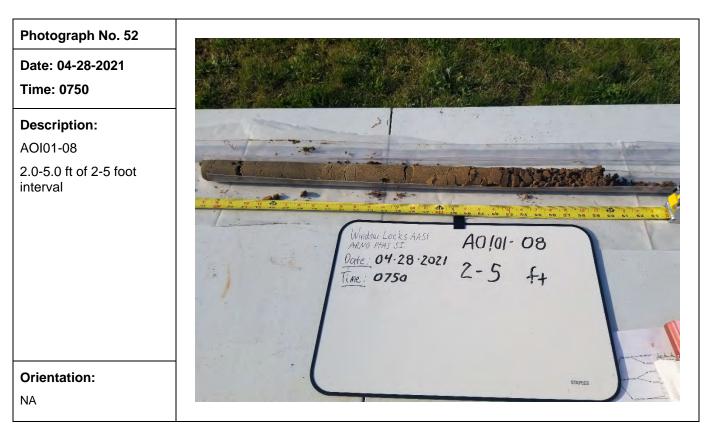
Date: 04-28-2021

Time: 0910

Orientation:

NA

Description:


AOI01-07 10-12.0 ft of 10-12 foot interval

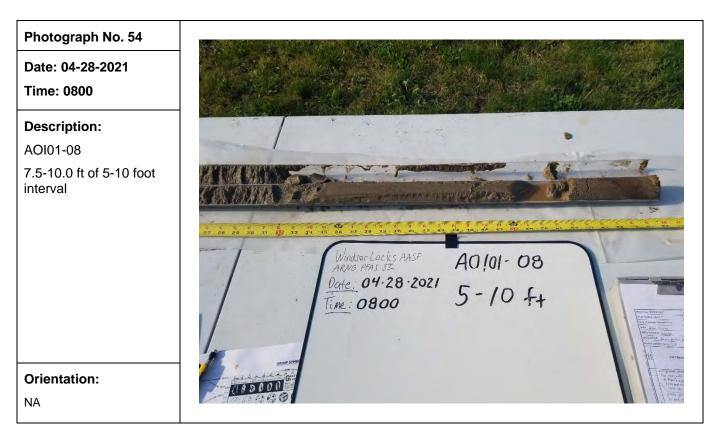
NA

Orientation:

APPENDIX C – Photographic Log Site Inspection for PFAS Windsor Locks AASF Windsor Locks, Connecticut Photograph No. 351 Date: 04-28-2021 Time: 0750 **Description:** AOI01-08 0.0-2.0 ft of 0-2 foot interval Windsor Locks AASF ARNG PEAS SI A0/01-08 Date: 04-28-2021 0-2f+ Time: **Orientation:** NA

APPENDIX C – Photographic Log

Site Inspection for PFAS


Windsor Locks AASF

Windsor Locks, Connecticut

Photograph No. 53 Date: 04-28-2021 Time: 0800 Description: AOI01-08 5.0-7.5 ft of 5-10 foot interval

APPENDIX C – Photographic Log Site Inspection for PFAS Windsor Locks AASF Windsor Locks, Connecticut

Photograph No. 55 Date: 04-27-2021

Time: 1405

Description:

AOI01-09 0.0-5.0 ft of 0-5 foot interval

Photograph No. 56

Date: 04-27-2021

Time: 1410

Orientation:

NA

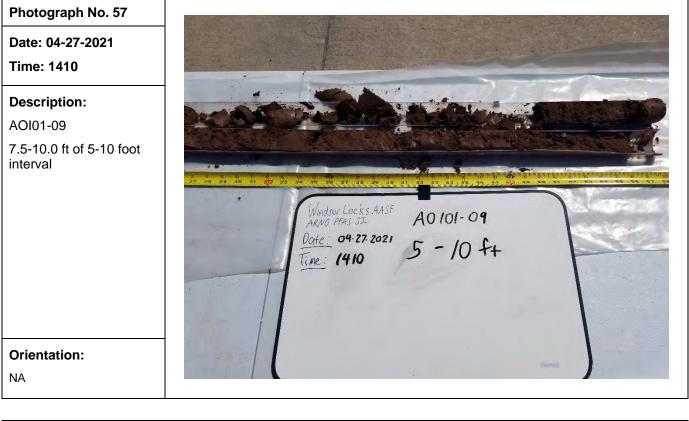
Description:

AOI01-09

5.0-7.5 ft of 5-10 foot interval

AECOM

NA

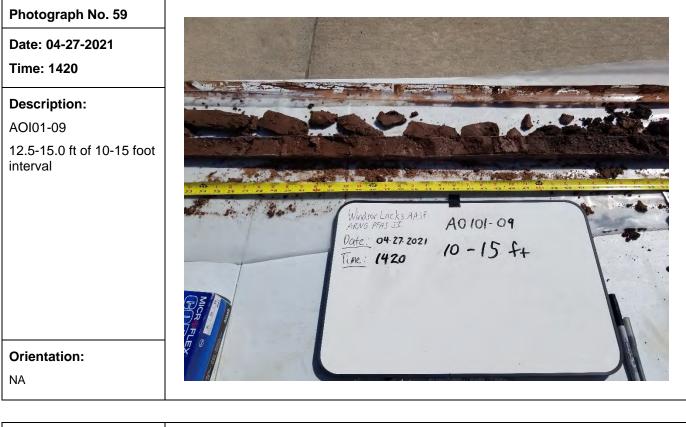

Orientation:

APPENDIX C – Photographic Log

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut




APPENDIX C – Photographic Log

Site Inspection for PFAS

Windsor Locks AASF

Windsor Locks, Connecticut

AECOM

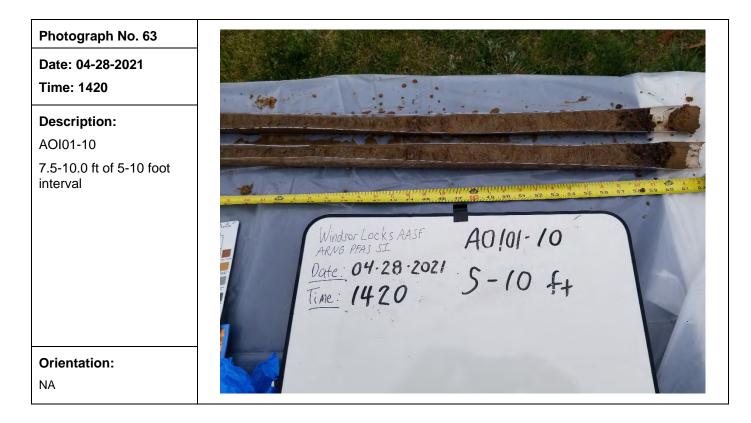
APPENDIX C – Photographic Log Site Inspection for PFAS Windsor Locks AASF Windsor Locks, Connecticut

Photograph No. 62

Date: 04-28-2021

Time: 1420

Description:


AOI01-10

5.0-7.5 ft of 5-10 foot interval

Orientation:

NA

Appendix D TPP Meeting Minutes

THIS PAGE INTENTIONALLY BLANK

Meeting Minutes Windsor Locks Army Aviation Support Facility – Site Inspection (SI) Technical Project Planning (TPP) – Meeting 3 Preliminary Assessments and Site Inspections (PA/SIs) for Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites Contract No. W912DR-12-D-0014, DO W912DR17F0192 Tuesday, 4 January 2022 1330-1440 EST

Participants				
Name	Affiliation*	Phone	E-Mail	
Bonnie Packer	ARNG G9	703-607-7977	bonnie.m.packer.ctr@army.mil	
Tim Peck	USACE	410-962-3416	timothy.j.peck@usace.army.mil	
Kim Berg	USACE	410-962-3656	Kimberly.A.Berg@usace.army.mil	
Jordan Martin	CTARNG	860-493-2727	jordan.e.martin4.nfg@army.mil	
Jade Barber	CTDEEP	-	Jade.Barber@ct.gov	
Shannon Pociu	CTDEEP	860-424-3546	Shannon.Pociu@ct.gov	
Naomi Ouellette	AECOM	508-562-0913	naomi.ouellette@aecom.com	
Joe Witte	AECOM	301-300-9873	joe.witte@aecom.com	

*ARNG G9 – Army National Guard G9; USACE – United States Army Corps of Engineers; CTARNG – Connecticut Army National Guard; CTDEEP – Connecticut Department of Energy and Environmental Protection

Mr. Joe Witte (AECOM) welcomed participants and reviewed the purpose of the meeting, outlined the agenda, and led a roundtable of introductions for everyone on the virtual Technical Project Planning (TPP) 3 meeting. The meeting purpose was to discuss the Army National Guard (ARNG) Per- and Polyfluoroalkyl Substance (PFAS) Preliminary Assessment (PA)/Site Inspection (SI) program and the results of the SI for PFAS at the Windsor Locks Army Aviation Support Facility (AASF) in Connecticut (CT).

Briefing slides are included as **Attachment A**. Key points discussed during the presentation are provided below. Additionally, a safety moment that discussed safe tips for driving during Winter was shared with the participants.

Programmatic Discussion (Slides 5-7):

- The meeting goals for the TPP meetings included in the ARNG PFAS program were presented.
 - The combined TPP 1 and 2 provided an overview of the ARNG PA/SI program, reviewed the PA findings, and discussed the approach of the SI at Windsor Locks AASF.
 - TPP 3 presented the SI results, resolved comments/concerns to gain concurrence on the SI Report, and discussed future actions at the Site.
- The program follows the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) progress. The CERCLA process was reviewed, and a CERCLA status overview of the site was provided:
 - The Final PA Report for Windsor Locks AASF was issued in February 2020.
 - The SI fieldwork was completed in April 2021.
 - The Draft Final SI Report was transmitted to the Connecticut Department of Energy and Environmental Protection in October 2021 and concurrence was received in November 2021.

PA Summary of Findings (Slides 8-10):

- A brief overview of the PA findings were presented. During the PA, two potential source areas were identified and grouped into one Area of Interest (AOI). The identified release areas included:
 - Wash Rack
 - Building 152 (South Hangar)
- The potential PFAS release areas were attributed to firefighting training and aqueous film forming foam (AFFF) storage in the hangar fire suppression system.
- The PA also identified offsite potential PFAS release areas within 4 miles of the Site, which included the Bradley International Airport terminal, runways, and fire department; private commercial

hangars located around the airport, the Connecticut Fire Academy, and the Connecticut Air National Guard Bradley Base.

The identified offsite, adjacent, potential PFAS release areas are considered generally upgradient of AOI 1 and were not investigated as part of the SI.

SI Data Quality Objectives and Screening Levels (Slides 11-12):

- The primary data quality objectives (DQOs) established for the SI included confirming the presence or absence of a release at the potential PFAS release areas, as well as gathering data to refine the CSM.
 - Enhanced DQOs for the SI included determining the presence/absence of PFAS at the facility boundary, checking for alternate sources, and measuring PFAS at/near receptors, if warranted.
- The Department of Defense (DoD) has adopted a policy to retain facilities in the CERCLA process based on risk-based screening levels (SLs) for soil and groundwater. Programmatically, the SLs used were established in a memorandum from the Office of the Secretary of Defense (OSD), dated 15 September 2021, and apply to three compounds: PFOA, PFOS, and perfluorobutane sulfonic acid (PFBS). The SLs were calculated using the USEPA Office of Superfund Sites On-Line Calculator, which was updated on 8 April 2021 based on the release of the final Human Health Toxicity Values for PFBS (USEPA, 2021).
 - If the maximum concentration for sampled media were to exceed the SLs established in the OSD memorandum, the AOI would proceed to the next phase under CERCLA, which is the Remedial Investigation (RI).

Conceptual Site Model (Slides 13-14):

- Mr. Witte provided a brief summary of the conceptual site model (CSM), including geology, hydrogeology, and hydrology of the Site.
 - The AASF is located within the Stoney Brook Watershed and is drained by Spencer Brook, which is located about 300 feet northwest of the site. Spencer brook subsequently flows into Stoney Brook, which then continues on to the Connecticut River about 5.3 miles further downstream. There is also a drainage swale near the eastern boundary of the facility that flows north off the facility.
 - Groundwater was encountered between 3 and 8 feet below ground surface (bgs) during the SI.
 - In general, groundwater at the facility flows northeast towards the drainage swale; however, groundwater east of the swale appears to flow west towards the swale. So, it is presumed that the swale acts as a local convergence for shallow groundwater before flowing north.

SI Summary of Approach (Slides 15-16):

- Fieldwork included the installation of temporary monitoring wells using direct push technology (DPT) for the collection grab groundwater samples.
- Soil samples were collected from each boring location at the surface, above the water table, and at the mid-point between except at locations where groundwater was encountered at or above 6 feet bgs.
- In total, 26 soil samples were collected from 10 locations, and 10 grab groundwater samples were collected from 10 temporary wells.

SI Summary of Findings (Slides 17-28):

- Groundwater elevation data collected from the 10 temporary wells demonstrated a convergence of groundwater flow around the drainage swale on the eastern half of the facility. Groundwater across the majority of the facility, west of the drainage swale, flows to the northeast. East of the swale, groundwater flows west towards it. It is presumed that the groundwater at the point of the swale follows surface water flow and topography and flows north.
- In the groundwater samples, PFOA and PFOS were detected above their respective SLs at AOI 1, and upgradient and downgradient facility boundary locations. The highest concentrations were found in samples east of the drainage swale (upgradient of known source areas) and west of the

facility tarmac (upgradient of known source areas). PFBS concentrations did not exceed its SL in groundwater samples.

- The PFAS concentrations detected at upgradient facility boundary locations are unlikely attributable to ARNG activities due to the observed groundwater flow direction.
- Figures showing the locations of detected PFAS concentrations in groundwater samples were presented.
- In soil, PFOA, PFOS and PFBS were detected; however, the detections were all below the SLs. The maximum concentrations of PFOA, PFOS and PFBS were 0.491 micrograms per kilogram (μg/kg), 41.5 μg/kg, and 0.177 μg/kg, respectively.
 - The maximum detected concentrations of PFAS in soil were not encountered at AOI 1; however, PFOS and PFBS were detected in shallow surface soil downgradient of the Wash Rack and Building 152. These detections indicate a likely release of PFAS-containing materials at the AOI attributable to ARNG activities.
 - Figures showing the locations of detected PFAS concentrations in soil samples were presented.
- Dr. Bonnie Packer (ARNG G9) discussed the Relative Risk Scoring Evaluation (RRSE) ranking process for all ARNG facilities moving forward to the Remedial Investigation (RI) stage, which heavily weighs the potential for drinking water receptors to be impacted, and invited CTDEEP to provide any materials or rationale that may inform the ranking of the Windsor Locks AASF.
 - Shannon Pociu (CTDEEP) asserted that CTDEEP will look into providing Geographic Information System (GIS) data that may be useful in identifying private wells in the vicinity of the facility and Spencer Brook. It is understood that the residential areas in the vicinity of the facility are serviced by public water, but it is possible that unlisted private wells exist.
 - Jordan Martin (CTARNG) stated that CTARNG will look into prior use of the facility property by the Air National Guard to help understand SI PFAS concentration data on the eastern side of the facility. CTDEEP may also assist in providing historical documents, if any can be identified, to this end. There is the potential for prior uses by ANG to have extended beyond the current ARNG facility boundaries.
 - Agricultural land has been identified north/northwest of the facility. ARNG stated that notifying downgradient agricultural properties within one mile of the property may be required moving forward.
- The group discussed the presence of high PFAS concentrations in AOI01-03, which is east of the drainage swale on facility and considered to be upgradient of the known AOI source areas.
 - A building formerly occupied by the CTARNG's Civil Support Team, which responds to biohazard and chemical emergencies, exists south of this sample location and in-line with a concrete culvert that discharges near the sample location. CTARNG will provide relevant historical information, if available, on the building's use.
- Dr. Bonnie Packer clarified that although groundwater concentration data shows exceedances of PFAS SLs at the facility boundary locations in an upgradient direction, the presence of PFAS in surface soil at the known release locations indicates a release occurred at the AOI that is likely attributable to ARNG activities. This facilitated the decision to move this facility forward to an RI.
- The revised CSM figure was presented for AOI 1. The sources of the releases at AOI 1 are the use of AFFF during firefighting training and the storage of AFFF in the Building 152 fire suppression system, which may have resulted in PFAS releases to surface or subsurface soil, and surface water. Through human activities, precipitation and runoff, or leaching and infiltration, the exposure pathways may be potentially complete for the following:
 - The inhalation of dust by site workers, construction workers, off-facility residents, and trespassers or downgradient recreational users.
 - Ingestion of surface soil by site workers, construction workers, and trespassers or downgradient recreational users.
 - The ingestion of surface water or sediment by site workers, construction workers, offfacility residents, and trespassers or downgradient recreational users.
 - The ingestion of subsurface soil by construction workers.
 - The potential ingestion of shallow impacted groundwater by construction workers, offfacility residents, and trespassers or downgradient recreational users.

Next Steps (Slide 29):

- The group reviewed the next steps and schedule to finalize the SI Report. Because CTDEEP concurrence was already received at the time of the TPP3, finalization of the SI Report was expected shortly.
- Based on the results of the SI, a Remedial Investigation (RI) is recommended at Windsor Locks AASF.

Open Discussion (Slide 30):

 ARNG will host a follow-up meeting with CTDEEP after the SI Report is final to discuss the relative risk ranking of the Windsor Locks AASF RI based on human drinking water receptors. This meeting is estimated to occur early in 2022. FINAL

Attachment A – TPP 3 Briefing Slides

Windsor Locks Army Aviation Support Facility Site Inspection Connecticut Army National Guard

Technical Project Planning (TPP) Meeting 3

Preliminary Assessments and Site Inspections (PA/SI) for Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites

4 January 2022

Agenda

- Introductions
- Safety Moment
- TPP Meeting Goals
- Army National Guard (ARNG) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Process Overview
- PA Overview
- SI Results
- Next Steps
- Questions and Open Discussion

Introductions

ARNG G9

- Dave Connolly, PFAS Program Manager
- Bonnie Packer, Nationwide Project Manager

United States Army Corps of Engineers (USACE)

- Tim Peck, Nationwide Program Manager
- Kim Berg, Baltimore District

Connecticut Army National Guard (CTARNG)

- Jordan Martin, Program Manager
- Robert Dollak, Environmental Manager

Connecticut Department of Energy and Environmental Protection (CTDEEP)

- Shannon Pociu, Environmental Analyst
- Jade Barber, Environmental Analyst

AECOM Technical Services, Inc.

- Naomi Ouellette, SI Senior Lead
- Joe Witte, SI Task Manager

"Safety for Life"

Safety Moment Winter Driving

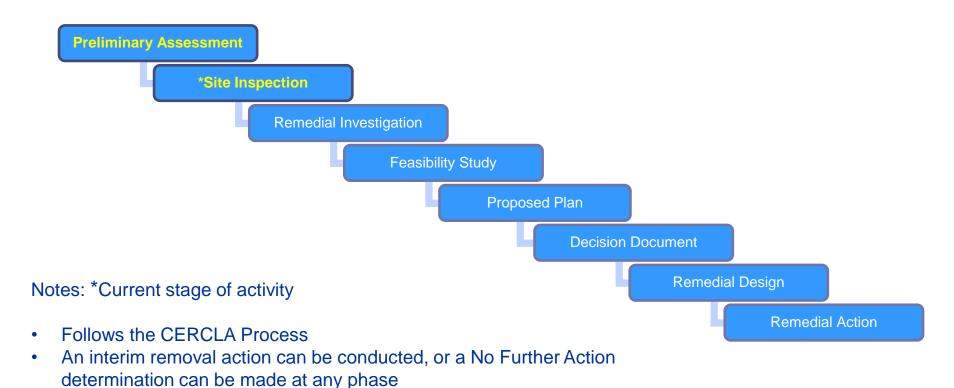
Don't brake on leaves

- Avoid sun glare
- Use your rain smarts
- Be careful on bridges
- Adjust your eyes
- Watch out for deer, turkey, etc.

AECOM

Thanks for making safety a personal priority. Let's make this our safest year ever!

Meeting Goals

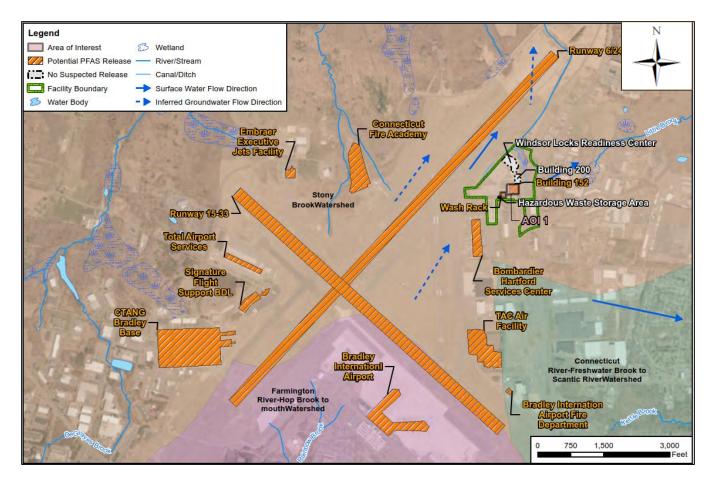

TPP 1/2 Review

- Provide an overview of ARNG PA/SI Program
- Define objectives for SI data collection
- Encourage stakeholder involvement
- Review project schedule
- Capture action items
- Discuss proposed SI approach

TPP 3

- ARNG CERCLA program overview
- Revisit the PA findings
- Present SI Results and revised conceptual site model (CSM)
- Resolve comments/concerns and gain concurrence on presentation of findings in Draft Final SI Report
- Discuss future actions at the site

- PA for Windsor Locks AASF completed by ARNG in February 2020
- SI fieldwork completed in April 2021
- Draft Final SI Report provided to CTDEEP in October 2021; results presented today
 - CTDEEP concurrence received in November 2021


- Potential Source Areas: 2 identified during the PA and grouped into 1 Area of Interest (AOI)
- PFAS releases attributed to firefighting training and aqueous film forming foam (AFFF) storage

- AOI1 Wash Rack and Building 152 (South Hangar)
 - Wash Rack
 - Fire training events using AFFF occurred approximately once per year between 2003-2015, and once between 2015-2020.
 - Building 152 (South Hangar)
 - Equipped with a fire suppression system that uses National Foam Aer-o-lite 3% AFFF.
 - Mobile fire extinguishers containing AFFF may have been discharged to the floor drains between 2003 and 2015.

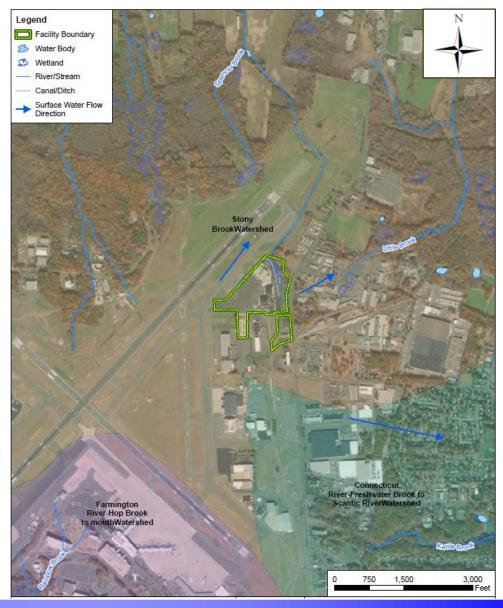
PA – Summary of Findings

Two potential PFAS release areas grouped into one AOI

- Primary SI Data Quality Objectives (DQOs)
 - Confirm the presence/absence of a release at a potential source area
 - Gather data for refinement of CSM:
 - Source-Pathway-Receptor relationships
- Enhanced SI DQOs
 - Determine the presence/absence at facility boundary
 - Check for alternate sources
 - Measure PFAS at/near receptor, if warranted

SI – Screening Levels

- Results compared to Office of the Secretary of Defense (OSD) Screening Levels (SLs) for soil and groundwater
 - Memorandum from the OSD dated 15 September 2021
 - SLs for groundwater based on direct ingestion
 - SLs for soil based on incidental ingestion; 0-2 feet (ft) compared to Residential SL, 2-15 ft compared to Industrial SL, >15 ft not compared to either SL
- AOIs exceeding OSD SLs will proceed to the next phase under CERCLA (i.e., Remedial Investigation)


Analyte	Residential (Soil) (μg/kg)ª 0-2 feet bgs	Industrial/ Commercial Composite Worker (Soil) (µg/kg) ^a 2-15 feet bgs	Tap Water (Groundwater) (ng/L)ª
PFOA	130	1,600	40
PFOS	130	1,600	40
PFBS	1,900	25,000	600

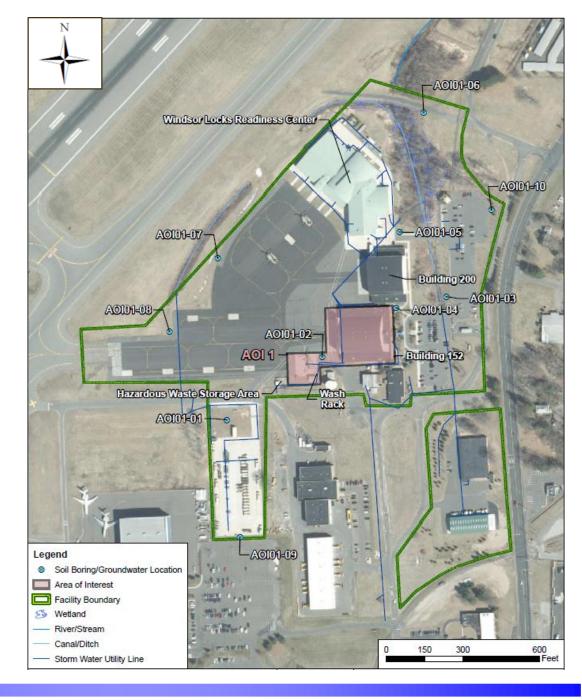
Notes:

a.) Assistant Secretary of Defense, 2021. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater and Soil using United States Environmental Protection Agency's (USEPA's) Regional Screening Level Calculator. Hazard Quotient (HQ) = 0.1. 15 September 2021.

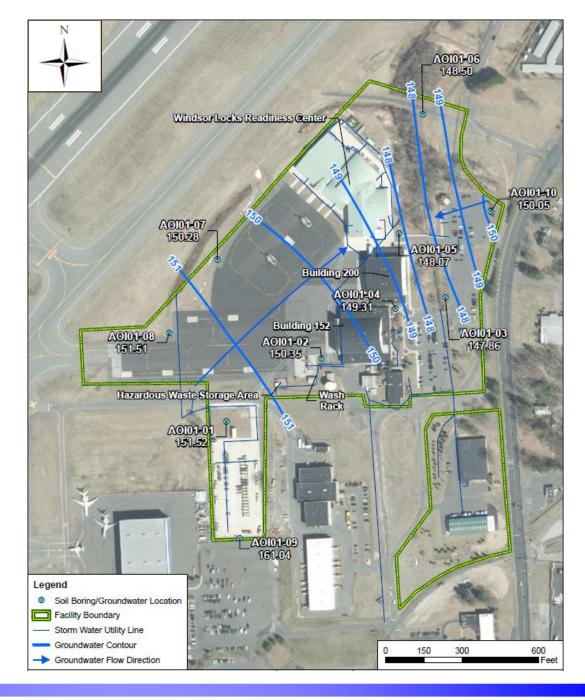
CSM – Surface Water Features

The drainage swale near the eastern boundary of the facility flows north off the facility.

CSM – Groundwater Features

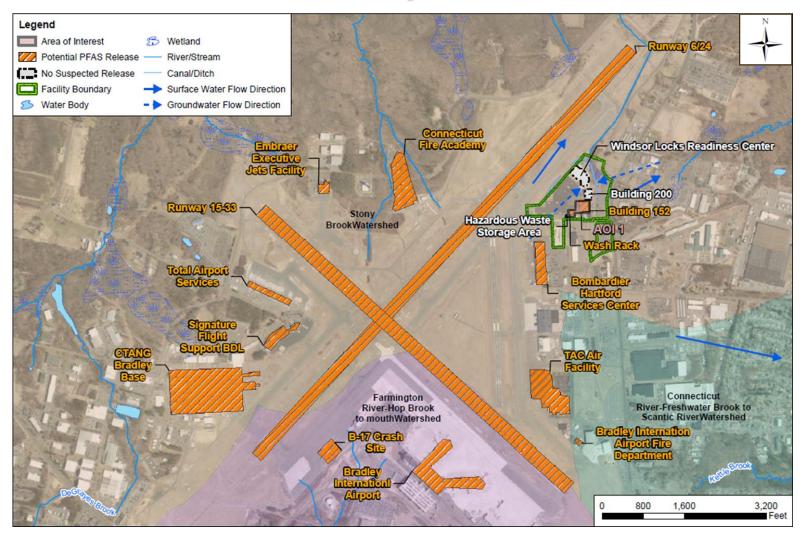


- Approach
 - Soil samples from each location: at source (0 to 2 ft), above water table (3 to 10 ft), and at mid-point, where practicable
 - Temporary monitoring wells for grab groundwater samples (ranging from 10 to 15 ft below ground surface)
- Total Samples
 - 26 soil samples from 10 boring locations
 - 10 GW grab samples from 10 temporary well locations

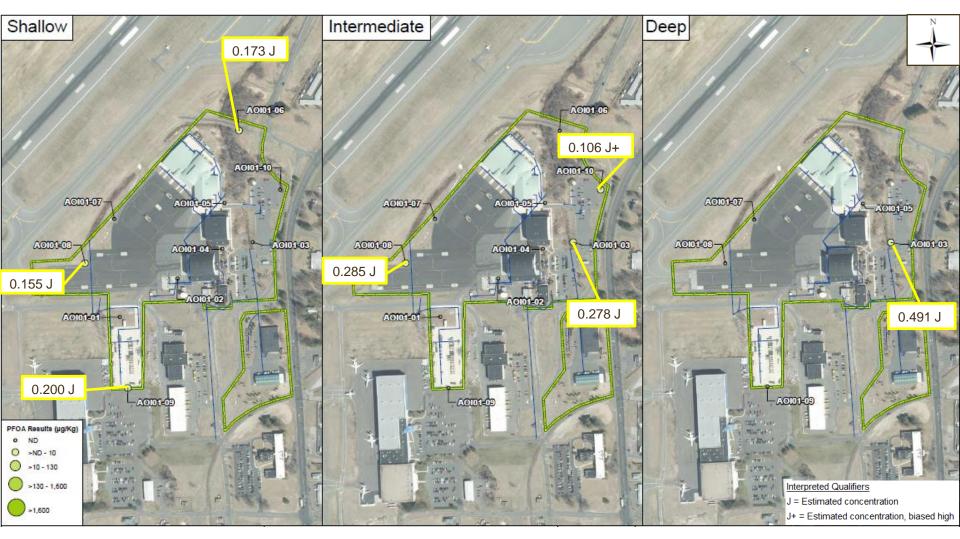


SI – Summary of Approach SI Investigation Locations

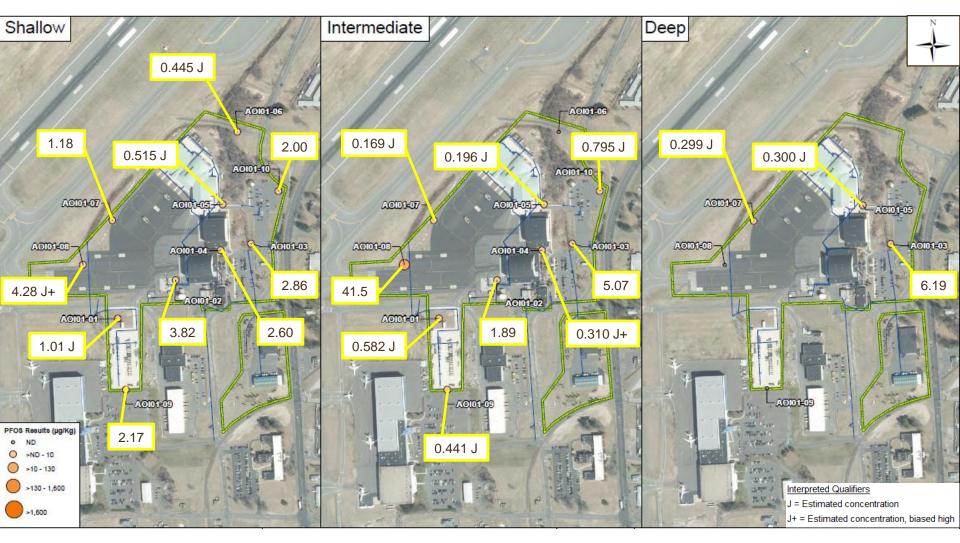
SI – Summary of Findings Groundwater Contours

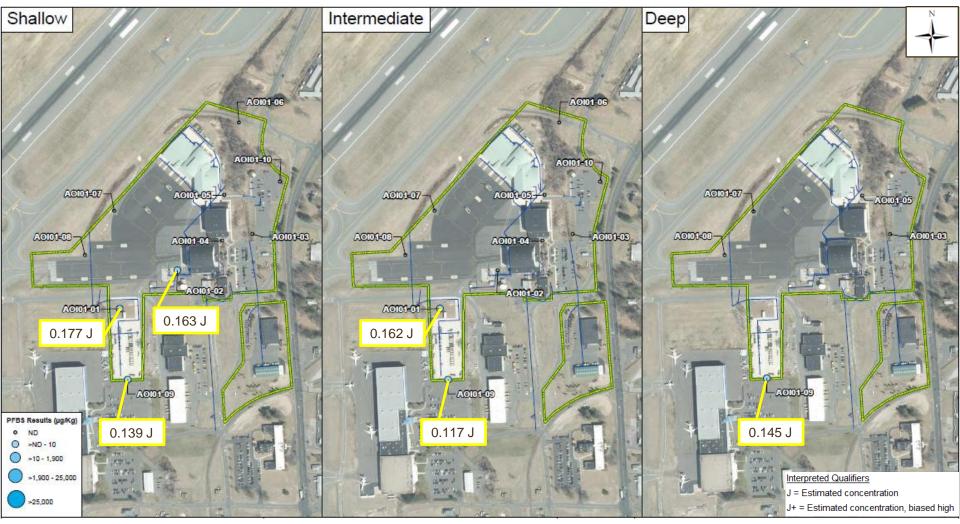

SI – Summary of Findings

- PFOA and PFOS in groundwater confirmed at both source areas (AOI1) and facility boundary locations (upgradient and downgradient) exceeding their respective OSD SLs (40 nanograms per liter [ng/L])
 - Maximum concentrations of PFOA (298 ng/L) at location AOI01-03; east of the drainage swale
 - Maximum concentration of PFOS (581 ng/L) at location AOI01-08; west of the facility tarmac
 - PFBS was detected in GW at concentrations ranging from 1.33 to 51.3 ng/L, but did not exceed its respective SL (600 ng/L)
- PFAS coming onto facility at concentrations exceeding OSD GW SLs on eastern and southwestern boundaries
 - Unlikely attributable to ARNG activities at these locations, due to inferred groundwater flow direction

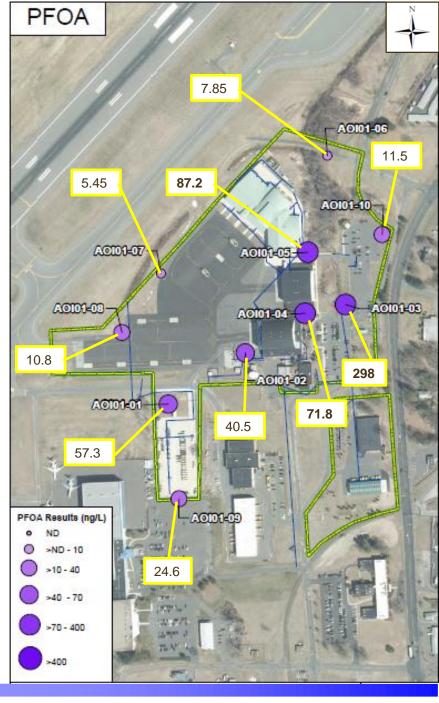

SI – Summary of Findings

- PFOA, PFOS and PFBS detected in soil, but at concentrations several orders of magnitude below the OSD SLs
 - Maximum concentration of PFOA (0.491 micrograms per kilogram [µg/kg]) east of drainage swale
 - Maximum concentration of PFOS (41.5 µg/kg) west of facility tarmac
 - Maximum concentration of PFBS (0.177 µg/kg) south and upgradient of potential release areas
- PFOS and PFBS detections in surface and shallow subsurface soil downgradient of the Wash Rack and Building 152
 - These detections indicate a likely release of PFAS-containing materials at both the Wash Rack and Building 152


SI – Summary of Findings AOIs and Adjacent Sources


SI – Summary of Findings PFOA in Soil

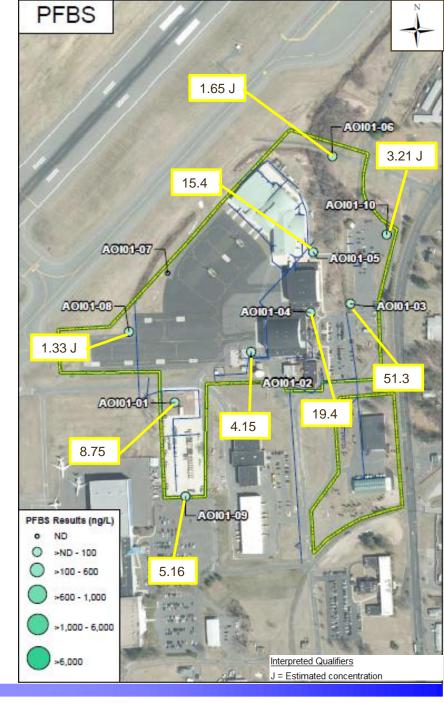
SI – Summary of Findings PFOS in Soil

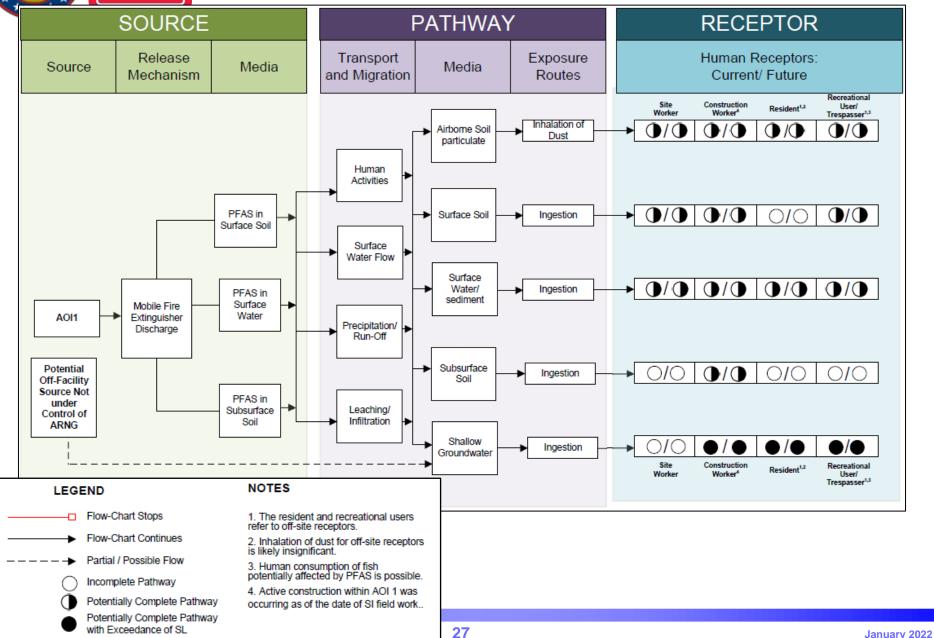


SI – Summary of Findings PFBS in Soil

SI – Summary of Findings PFOA in Groundwater

Bold Font = Detected concentration exceeded USEPA HA SL


SI – Summary of Findings PFOS in Groundwater


Bold Font = Detected concentration exceeded USEPA HA SL

SI – Summary of Findings PFBS in Groundwater

SI – Summary of Findings

ΑΟΙ	Potential PFAS Release Area	Soil – Source Area	Groundwater – Source Area	Groundwater – Facility Boundary
1	Wash Rack		•	
1	Building 152	O	•	

Legend:

N/A = Not applicable

= detected; exceedance of the screening levels

= detected; no exceedance of the screening levels

= not detected

Next Steps

- Finalize SI Report
 - CTDEEP concurrence received November 2021
 - Schedule
- Initiate next step in CERCLA process: Remedial Investigation

Open Discussion

Acronyms

- µg/kg micrograms per kilogram
- AASF Army Aviation Support Facility
- AFFF aqueous film forming foam
- AOI area of interest
- ARNG Army National Guard
- CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
- CSM conceptual site model
- CTDEEP Connecticut Department of Energy
 and Environmental Protection
- DQO data quality objective
- ft feet
- GW groundwater
- OSD Office of the Secretary of Defense
- NA not applicable
- ng/L nanograms per liter
- PA Preliminary Assessment
- PFAS per- and polyfluoroalkyl substances

- PFBS perfluorobutanesulfonic acid
- PFOA perfluorooctanoic acid
- PFOS perfluorooctanesulfonic acid
- SI Site Inspection
- SL screening level
- TPP Technical Project Planning
- µg/kg micrograms per kilogram
- US United States
 - USACE U.S. Army Corp of Engineers

Appendix E Boring Logs

THIS PAGE INTENTIONALLY BLANK

			055		—						PAGE 1 OF
	T ARNO	,			e Distr	ict		Nindso	r Locks AASF - ARNG	PFAS	
				2172		00101 5750 1/07/04					
	STARTE					COMPLETED <u>4/27/21</u>				-	
	NG CON		-						58.06 ft HOLE	SIZE	2 inches
	NG EQU									00.6	
	NG MET	-							NG 7.00 ft / Elev 151		
LOGG	ED BY _	J. Sha	nnon	1		CHECKED BY J. Hollingsworth	AT TIME OF S	SAMPL	ING _ 6.54 ft / Elev 15	1.52 ft	
0 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	IPTION		ENVIRONMENTAL DATA		WELL DIAGRAM
_			SP		0.0	POORLY GRADED SAND, dry, c (10YR 4/6), loose, mostly fine- to (trace coarse grains) with trace fi	medium-grained	158.1	AOI01-01-SB-00-02		
_		100			2.5 3.0	Changes to contain angular grave to 50 mm in size. Changes to yellowish brown (10Y present.		155.6 155.1	•		Well Casing Type: Schedule PVC Diameter: 1 in Top: 0 ft bgs Bottom: 7 ft bgs
5					5.0	Changes to brownish yellow (10Y coarse-grained (trace fine grains) gravel.		153.1	AOI01-01-SB-05-07		
_		85			7.0	∑ Changes to wet.		151.1			
10					9.0	Changes to pale brown (10YR 6/ moderately dense, mostly fine- to sand (trace coarse-grains).		149.1	AOI01-01-GW		Well Screen Type: Schedule PVC Top: 7 ft bgs Bottom: 12 ft bg
_		100			11.5	Changes to dark grayish brown (fine-grained.	10YR 4/2), mostly	146.6			Bottom: 12 ft bg

Notes: 1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp. 2. Coordinates and elevation data in NAVD88-12B for vertical datum and NAD83 for horizontal datum in Connecticut State Plane.

	T <u>ARNO</u>				e District			r Locks AASF - A	RNG PFAS	
DRILLI DRILLI	NG CON	ITRAC IIPMEN	tor It_g	Casca eoprob	ade 4/27/21	GROUND ELEVATIO	ON <u>15</u> .EVELS	<u>i3.72 ft</u> H S:	IOLE SIZE	
		-			CHECKED BY J. Hollingsworth	_				
o UEPIH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCR	IPTION		ENVIRONMENTAL DATA		WELL DIAGRAM
_		100	SP- SM		 POORLY GRADED SAND WITH brown (10YR 3/3), fine-grained (coarse grains), loose with 10% s Changes to dark reddish brown (fine- to medium-grained (5% coarticle) 	2.5YR 3/3), mostly	153.7	AOI01-02-SB-00-02		<u>Well Casing</u> Type: Schedule PVC Diameter: 1 in Top: 0 ft bgs Bottom: 6.5 ft b
5		97	SP		 5.0 POORLY GRADED SAND, dry, (10YR 4/4), mostly fine-grained coarse grains), loose with trace f 6.5 ∑ Changes to wet. 	trace medium and ines.	148.7	A0101-02-SB-04-06 A0101-02-GW		
- 10		31	ML SP		 7.5 Medium- and coarse-grained sar to 5%. CLAYEY SILT, wet, very dark br. 2/1), soft with trace fine-grained POORLY GRADED SAND, wet, 5/2) to yellowish brown (10YR 5/ fine-grained sand (trace medium dense. 	pwn to black (10YR sand. grayish brown (10YR 4), mostly grains), moderately	146.2 145.7 145.2 143.7			Well Screen Type: Schedule PVC Top: 6.5 ft bgs Bottom: 11.5 ft
		97			 Changes to dark grayish brown (Medium-grained sand fraction in (trace coarse grains) and trace fi mm) at 12.5 ft bgs. 12.5 Changes to yellowish brown (10' to medium-grained (trace coarse 	10YR 4/2). creases to 10% nes. Gravel (20 x 40 YR 5/4), mostly fine-	141.2			
			ng valu	ies rep	Bottom of borehole at resent total volatile organic vapors (refere		standar	d) measured with	a Photoioni;	zation Detector (PIC

						ct	_		r Locks AASF - ARNG	9 PFAS	
						COMPLETED _4/29/21			NOR	THING	904961.362
									52.95 ft HOLE		
RILL	ING EQU	JIPMEN	IT _G	eoprob	е						
		-							NG 7.00 ft / Elev 145		
.OGG		J. Sna	nnon		'	CHECKED BY J. Hollingsworth		SAWIPL	-ING _ 5.09 ft / Elev 14	1.00 1	
0 (ff)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI	PTION		ENVIRONMENTAL DATA	,	WELL DIAGRAM
_			SP		0.0	POORLY GRADED SAND, dry, b loose, mostly fine- to medium-gra coarse-grained) with 10% gravel a and spongey texture at top 8".	ined (10%	153.0	AOI01-03-SB-00-02		
-		100	SW- SM		2.0	WELL-GRADED SAND WITH SI dry, dark brown (10YR 3/3), loose	e, mostly fine- to	151.0			
_			SM		3.0	medium-grained with 15% fine gr SILTY SAND, moist, black (10YR dense, fine-grained with 40% fine	2/1), moderately	150.0			<u>Well Casing</u> Type: Schedule PVC Diameter: 1 in
5			SW		4.0	WELL-GRADED SAND WITH GI brown (10YR 5/3) to reddish brow mostly fine- to medium-grained (1 20% gravel, and trace fines.	vn (5YR 4/3), loose,	149.0	AOI01-03-SB-03-05		Top: 0 ft bgs Bottom: 7 ft bgs
_					0.5			140.5	AOI01-03-SB-05-07		
_		95	SP		6.5 <u>T</u>	POORLY GRADED SAND, wet, 1 medium-grained (5% coarse-grain of wood with organic silt inbedded bgs.	ieu). Vertical Diece	146.5			
_					9.0	Changes to grayish brown (10YR	5/2), mostly	144.0	AOI01-03-GW		Well Screen
10						fine-grained (trace medium and c with trace fines.					Type: Schedule PVC Top: 7 ft bgs Bottom: 12 ft bg
-											
_		100	CL		12.0	LEAN CLAY, wet, moderate plast laminated with thin (1 to 5 mm-th (5Y 6/2) and yellow (10YR 6/8) la silt.	ick), light olive gray	141.0			
_ 15											
						Bottom of borehole at	15.0 feet.				
lotos											
			ng valu	ies rep	resent	total volatile organic vapors (referen	iced to an isobutylene	e standar	rd) measured with a Pł	notoioniz	ation Detector (PID

AECON	AEC	СОМ					WELL NU	TOTAL DEPTH 10 FT BO
	-							PAGE 1 OF
LIENT ARM	IG, USA	ACE Ba	altimore	District	PROJECT NAME	Windso	or Locks AASF - ARNG	PFAS
PROJECT NU	MBER	60552	2172		SITE NAME AOI 1	1		
DATE START	ED _4/2	29/21		COMPLETED	EASTING 102101	5.643	NORT	THING 904923.827
ORILLING CO	NTRAC	TOR	Cascad	9	GROUND ELEVAT	ION _1	53.11 ft HOLE	SIZE 2 inches
DRILLING EQ								
					_		NG 5.00 ft / Elev 148	
	J. Sha	nnon		CHECKED BY J. Hollingsworth		SAMP	LING 3.80 ft / Elev 14	/9.31 ft
O UEPTH (ft) SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCR	IPTION		ENVIRONMENTAL DATA	WELL DIAGRAM
-		SW		.0 WELL-GRADED SAND WITH G (10YR 4/3), loose, mostly fine-to (15% coarse-grained) with 25% a gravel ranging up to 25 mm in siz roots.	medium-grained angular to subangular	153.1	AOI01-04-SB-00-02	<u>Well Casing</u> Type: Schedule
	100			 Changes to reddish brown (5YR) Changes to dark gravish brown (150.6 149.1	AOI01-04-SB-03-05	PVC Diameter: 1 in Top: 0 ft bgs Bottom: 5 ft bgs
5				0 Changes to dark grayish brown (10YR 4/2).	149.1		
-		SP	5	POORLY GRADED SAND, wet, moderately dense, mostly fine- to with trace coarse grains.		148.1	-	
-							A0101-04-GW	Well Screen
	72		7	⁵ Changes to gravish brown (10YR	R 5/2).	145.6		Type: Schedule
			8	0 Changes to light brownish gray (fine-grained with trace medium-g		145.1		Top: 5 ft bgs Bottom: 10 ft bg
10			9	fines. Laminations (1 to 4 mm-thick) of medium-grained sand, gray (2.5) gray (10YR 6/2).	/ 6/1) to brownish	144.1		
vith 10.6 eV la	amp.	-		Bottom of borehole at sent total volatile organic vapors (referer NAVD88-12B for vertical datum and NAI	nced to an isobutylene		-	

28/21 TOR (NT Geo Direct nnon	172 Completed _4/28/21 Cascade oprobe Push CHECKED BY _J. Hollingsworth	EASTING 1021036.626 GROUND ELEVATION 1 GROUND WATER LEVEL	52.2 ft HOLE S: ING _6.50 ft / Elev 145	SIZE 2 inches
NT <u>Geo</u> Direct I nnon	oprobe Push CHECKED BY _J. Hollingsworth	GROUND WATER LEVEL $\[equation]{}^{$	S: ING _6.50 ft / Elev 145	
Direct	Push CHECKED BY _J. Hollingsworth	$\overline{\underline{\nabla}}$ at time of drill	ING _6.50 ft / Elev 145	
nnon	CHECKED BY _J. Hollingsworth			5.70 ft
				.8 07 ft
U.S.C.S.	OF 0		۶۲	
	OHAGYO MATERIAL DESCRIP	PTION	ENVIRONMENTAI DATA	WELL DIAGRAM
SW	0.0 WELL-GRADED SAND, moist, ve brown (10YR 3/2), loose, mostly fi medium-grained sand with 10% ar subrounded, fine (up to 30 mm in 10% fines.	ne- to ngular to	AOI01-05-SB-00-02	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	dark grayish brown (10YR 3/2), m coarse-grained sand with 25% and	ostly medium to gular to subrounded		Well Casing Type: Schedule PVC Diameter: 1 in Top: 0 ft bgs Bottom: 6 ft bgs
SP	6.5	to wet, brown 146.2 ostly fine- to 145.7	AOI01-05-SB-04-06 AOI01-05-GW	
	7.5 Changes to contain 10% fines and becomes spongey.	d 10% roots. Texture 144.7		Well Screen Type: Schedule
CL			AOI01-05-SB-08-10	PVC Top: 6 ft bgs Bottom: 11 ft bg
SP				
	Bottom of borehole at 1	15.0 feet.		
	CL	Generation Generation SP Generation Generation Generation Generation FOORLY GRADED SAND, moist (7.5YR 5/4), moderately dense, medium-grained with trace fines. Changes to wet. CL Rest Rest LEAN CLAY, dark gray (5Y 4/1), or laminations of fine-grained sand at becomes spongey. CL Rest Image: SP 12.0 POORLY GRADED SAND, wet, be moderately dense, mostly fine- to with trace fines. SP 12.0 POORLY GRADED SAND, wet, be moderately dense, mostly fine- to with trace fines.	SP 6.0 ✓ POORLY GRADED SAND, moist to wet, brown (10°R 3/2), mostly medium to coarse-grained sand with 25% angular to subrounded gravel ranging up to 50 mm in size and 10% fines. 146.2 SP 6.0 ✓ POORLY GRADED SAND, moist to wet, brown (1.57 146.2 6.5 ✓ (7.5YR 5/4), moderately dense, mostly fine- to medium-grained with trace fines. Changes to wet. 145.7 7.5 Changes to contain 10% fines and 10% roots. Texture 144.7 becomes spongey. 144.7 CL 8.5 LEAN CLAY, dark gray (5Y 4/1), dense, thin (<1mm) 143.7 laminations of fine-grained sand and silt.	dark grayish brown (10YR 3/2), mostly medium to coarse-grained sand with 25% angular to subrounded gravel ranging up to 50 mm in size and 10% fines. AOI01-05-SB-04-06 SP 6.0 6.5

								WELL	NUM	BE	R AOI01-06
A E (СОМ	AE	СОМ						т	ΌΤΑ	L DEPTH 10 FT BGS PAGE 1 OF 1
PROJE	T <u>ARNO</u> ECT NUM STARTE	IBER D _4/2	6055 28/21	2172		COMPLETED <u>4/28/21</u>			NORTHIN	IG _	905684.681 2 inches
	ING EQU										
	ING MET						$\mathbf{\nabla}$ AT TIME OF DRILL				
LOGGI	ED BY _	J. Sna	innon			CHECKED BY J. Hollingsworth	AT TIME OF SAMP		:IEV 148.5	υπ	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI	PTION	ENVIRONMENTAL		١	WELL DIAGRAM
		100	SP- SM		0.0	POORLY GRADED SAND WITH (7.5YR 4/4), loose, mostly fine-gr and coarse grains) with 10% fine- subrounded to angular gravel pied diameter. Roots throughout.	ained (trace medium _{151.6} s and 5% ces up to 30 mm in	AOI01-06-SB-00-	02		<u>Well Casing</u> Type: Schedule 40
· -		100	58			roots become trace amounts. POORLY GRADED SAND, mois moderately dense, mostly fine-gra fines.	t, brown (7.5YR 5/4), ained with trace	AOI01-06-SB-03-	05		PVC Diameter: 1 in Top: 0 ft bgs Bottom: 5 ft bgs
5			-		4.5 5.0		inations (1 to 3 147.6 t bgs 147.1				
		75						A0101-06-GW			Well Screen Type: Schedule 40 PVC Top: 5 ft bgs Bottom: 10 ft bgs
10					•	Bottom of borehole at	10.0 feet				
with 10	.6 eV lar	np.	0			nt total volatile organic vapors (referer /D88-12B for vertical datum and NAE	2	,		ioniz	ation Detector (PID)

AE	сом	AEC	СОМ						WELL N		ER AOI01-07 TAL DEPTH 12 FT BGS PAGE 1 OF 1		
CLIEN	T_ARNG	6, USA	ACE B	altimor	e Dis	trict	PROJECT NAME	Windso	or Locks AASF - AR	NG PFAS	3		
PROJE		BER	6055	2172			SITE NAME _ AOI 1						
DATE	STARTE	D _4/2	28/21			COMPLETED _4/28/21	EASTING _102032	1.972	NC	RTHING	905134.582		
DRILLI	ING CON	TRAC	TOR	Casca	ade		GROUND ELEVAT	ION _1	56.2 ft HC	LE SIZE	2 inches		
DRILLI	ING EQUI	IPMEN	NT _G	eoprob	e								
	ING MET	-							NG _ 6.50 ft / Elev ?				
LOGG	ED BY _J	I. Sha	nnon			CHECKED BY J. Hollingsworth	AT TIME OF	SAMPI	_ING <u>5.92 ft / Elev</u>	150.28 ft			
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI	MATERIAL DESCRIPTION						
_			SP- SM		0.0 1.0	POORLY GRADED SAND WITH (10YR 4/3), loose, mostly fine-gra to coarse grains) with 10% fines a gravel. Roots present to 0.5 ft bgs Changes to yellowish brown (10Y	ained (trace medium and trace amounts of 5.	156.2 155.2	AOI01-07-SB-00-02				
_		90	SP		2.0	POORLY GRADED SAND, dry, li 6/4), loose, mostly fine- to mediur		154.2	AOI01-07-SB-02-04		Well Casing Type: Schedule 40 PVC Diameter: 1 in Top: 0 ft bgs Bottom: 6 ft bgs		
5 10		90			6.5	Changes to wet, reddish brown (5 mm-thick laminations present at 6 Changes to dark grayish brown (1 moderately dense, mostly medium clay seam present at 7.5 ft bgs.	6.5 to 7.5 ft bgs 10YR 4/2), loose to	149.7 148.7	AOI01-07-SB-04-06 AOI01-07-GW		Well Screen Type: Schedule 40 PVC Top: 6 ft bgs Bottom: 11 ft bgs		
		100				Bottom of borehole at	12.0 feet						
			ng valu	ies rep	reser	nt total volatile organic vapors (referen		standa	rd) measured with a	Photoion	ization Detector (PID)		

RTHING	
	WELL DIAGRAM
	<u>Well Casing</u> Type: Schedule 4 PVC Diameter: 1 in Top: 0 ft bgs Bottom: 6 ft bgs
	Well Screen Type: Schedule 4 PVC Top: 6 ft bgs Bottom: 11 ft bgs
Pho ne.	

		BER .	6055	2172			SITE NAME AOI	1	Locks AASF - ARNG		
DRILLI DRILLI DRILLI	ING CON ING EQU ING MET	NTRAC JIPMEN THOD	TOR NT _G Direc	Casca eoprot t Push	ade		GROUND WATER	TION <u>16</u> LEVELS	9.15 ft HOLE	5 SIZE _	2 inches
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	RIPTION		ENVIRONMENTAL DATA		WELL DIAGRAM
-		92	SP		6/3) to brown medium-grai	n (7.5YR 4/2), loose ined (trace coarse g	light brown (7.5YR e, mostly fine- to rains) with trace fines at material in first 8".	169.2	AOI01-09-SB-00-02		Well Casing
5		95	SM		dense. 6.5 SILTY SANI mostly fine-c	brown (7.5YR 4/2), D, dry, yellowish red grained with 25% sil 35 x 20 mm gravel	t.	164.2 162.7 161.2	AOI01-09-SB-05-07		Type: Schedule PVC Diameter: 1 in Top: 0 ft bgs Bottom: 10 ft bg
		92			10.0 $\stackrel{\overline{\nabla}}{=}$ Changes to	wet.		159.2	AOI01-09-SB-08-10 AOI01-09-GW		Well Screen Type: Schedule PVC Top: 10 ft bgs Bottom: 15 ft b
- 15			SP		brown (10YF medium- to o trace gravel.	RADED SAND, wet R 3/2), loose to mod coarse-grained (trac Bottom of borehole a	lerately dense, mostly ce fine grains) with	155.2			

									WELL	NUI	MBE	R AOI01-10
AE	СОМ	AEC	СОМ								ΤΟΤΑ	L DEPTH 10 FT BGS PAGE 1 OF 1
CLIE	NT ARNO	G, USA	ACE B	altimor	e District				or Locks AASF -	ARNG	PFAS	
							SITE NAME AOI 1					
DATE	STARTE	D _4/2	28/21		co	OMPLETED _ 4/28/21	EASTING 102139	9.185		NORTH	HING _	905295.254
DRIL	LING CON	ITRAC	TOR	Casca	ade		GROUND ELEVATI	ION _15	55.05 ft	HOLE	SIZE _	2 inches
DRIL	LING EQU	IPME	NT _G	ieoprob	be		GROUND WATER I	LEVELS	S:			
DRIL	LING MET	HOD	Direc	t Push			$\overline{\mathbf{Y}}$ at time of	DRILLI	NG 5.00 ft / El	ev 150.	05 ft	
LOG	GED BY _	J. Sha	nnon		Cł	HECKED BY J. Hollingsworth		SAMPL	.ING <u>5.00 ft / E</u>	lev 150).05 ft	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI	PTION		ENVIRONMENTAL DATA		V	VELL DIAGRAM
		100 92	SP		2.0	POORLY GRADED SAND, dry, v 3/1), loose, mostly fine-grained (1 10% coarse grains) with 10% gra Roots present at top 6 to 8". Changes to brownish yellow, fine- (trace coarse grains). Weathered, quartzite 30 mm in diameter prese	0% medium and vel and 5% fines. to medium-grained subrounded	155.1	AOI01-10-SB-00-			Well Casing Type: Schedule 4 PVC Diameter: 1 in Top: 0 ft bgs Bottom: 5 ft bgs
5	-	95	-		5.6	Changes to wet. Organic soil sampled as POORLY Wet, very dark grayish brown (10' (trace medium grains) with trace 1 Texture is spongey. POORLY GRADED SAND, wet, of (10YR 4/4), loose to moderately of medium-grained with trace fines.	YR 3/2), fine-grained fines and roots. dark yellowish brown lense, mostly fine- to	150.1 \ <u>149.6</u> 149.5	AOI01-10-GW			Well Screen Type: Schedule 4 PVC Top: 5 ft bgs Bottom: 10 ft bgs
10					a	Changes to dark grayish brown (1 moderately dense, mostly fine-gra to coarse grains). Bottom of borehole at	ained (trace medium	145.6				
Notes 1. He			ng valu	ues rep	·····	moderately dense, mostly fine-gra to coarse grains).	ained (trace medium f		rd) measured v	vit	vith a Pho	vith a Photoioniz

Coordinates and elevation data in NAVD88-12B for vertical datum and NAD83 for horizontal datum in Connecticut State Plane.

ARNG SMART LOG 8.5X11_V2 - - 6/17/21 12:45 - C:UUSERSUACK.HOLLINGSWORTHIDOCUMENTS/GINTARNG/WINDSOR LOCKS/WINDSOR LOCKS.GPJ

Appendix F Analytical Results

THIS PAGE INTENTIONALLY BLANK

Appendix F Laboratory Data Groundwater Site Inspection Report, Windsor Locks AASF, Connecticut

		Area of Interest														AOI	01													
		Sample ID		AOI01-0)1-GW			AOI01-	02-GW			AOI01-0)3-GW		A	OI01-03	3-GW-D			AOI01-0	4-GW			AOI01-0)5-GW			AOI01-0	06-GW	
		Sample Date		04/27/	2021			04/28	2021			04/29/	2021			04/29/	2021			04/29/	2021			04/28/	2021			04/28/	/2021	
Analyte	OSD Screening Level a,b	USEPA HA°	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qua	I Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qua	Result	LOD	LOQ	Qual
Water, PFAS by LCMSM	S compliant with C	SM 5.3 Table B-1	5 (ng/L)																										in second	
6:2 FTS	-		9.38	2.00	4.00		534	15.0	20.0		6.77	2.00	4.00		6.06	2.00	4.00		64.4	2.00	4.00		4.46	2.00	4.00		<	2.00	4.00	U
8:2 FTS	-	-	10.4	2.00	4.00		16.9	2.00	4.00		12.6	2.00	4.00		10.7	2.00	4.00		48.2	2.00	4.00		<	2.00	4.00	U	<	2.00	4.00	U
NEtFOSAA	-	-	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U
NMeFOSAA	-	-	<	4.00	8.00	U	<	4.00	8.00	U	2.69	4.00	8.00	J	2.17	4.00	8.00	J	1.000	4.00	8.00	J	<	4.00	8.00	U	<	4.00	8.00	U
PFBA	-	-	29.6	2.00	4.00		58.1	2.00	4.00		21.9	2.00	4.00		22.0	2.00	4.00		24.6	2.00	4.00		<	10.6	4.00	U	<	2.00	4.00	U
PFBS	600	-	8.75	2.00	4.00		4.15	2.00	4.00		51.3	2.00	4.00		46.5	2.00	4.00		19.4	2.00	4.00		15.4	2.00	4.00		1.65	2.00	4.00	J
PFDA	-	-	7.66	2.00	4.00		1.78	2.00	4.00	J	3.81	2.00	4.00	J	3.26	2.00	4.00	J	3.42	2.00	4.00	J	1.12	2.00	4.00	J	<	2.00	4.00	U
PFDoA	-	-	v	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	v	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFHpA	-	-	55.4	2.00	4.00		57.0	2.00	4.00		16.3	2.00	4.00		15.0	2.00	4.00		35.9	2.00	4.00		9.78	2.00	4.00		4.74	2.00	4.00	
PFHxA	-		92.3	2.00	4.00		169	2.00	4.00		345	2.00	4.00		320	2.00	4.00		95.2	2.00	4.00		70.9	2.00	4.00		7.58	2.00	4.00	
PFHxS	-	-	252	2.00	4.00		127	2.00	4.00		1830	15.0	20.0		1350	30.0	40.0		306	2.00	4.00		169	2.00	4.00		13.1	2.00	4.00	
PFNA	-	-	290	2.00	4.00		32.3	2.00	4.00		49.7	2.00	4.00		45.1	2.00	4.00		97.5	2.00	4.00			2.00	4.00		2.03	2.00	4.00	J
PFOA	40	70	57.3	2.00	4.00		40.5	2.00	4.00		298	2.00	4.00		275	2.00	4.00		71.8	2.00	4.00		87.2	2.00	4.00		7.85	2.00	4.00	
PFOS	40	70	138	2.00	4.00		94.2	2.00	4.00		125	2.00	4.00		115	2.00	4.00		408	10.0	20.0		<	2.00	4.00	U	8.93	2.00	4.00	
PFPeA	-	-	88.5	2.00	4.00		263	2.00	4.00		45.0	2.00	4.00		41.8	2.00	4.00		82.6	2.00	4.00		23.0	2.00	4.00		4.72	2.00	4.00	
PFTeDA	-	-	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFTrDA	-	-	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFUnDA	-	-	223	2.00	4.00		<	2.00	4.00	U	52.3	2.00	4.00		44.7	2.00	4.00		9.74	2.00	4.00		<	2.00	4.00	U	<	2.00	4.00	U
Total PFOA+PFOS	-	70	195.3	2			134.7	2			423	2			390	2			479.8	10			87.2	2			16.78	2		

Grey Fill

Detected concentration exceeded OSD Screening Levels

Bold Font Detected concentration exceeded USEPA HA Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

c. USEPA, 2016. Drinking Water Health Advisory for PFOA. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-005 May 2016. / EPA. 2016. Drinking Water Health Advisory for PFOS. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number:

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

PFHxS

GW HA

HQ

6:2 FTS 6:2 fluorotelomer sulfonate

- 8:2 FTS 8:2 fluorotelomer sulfonate
- NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid
- NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid

PFBS	perfluorobutanesulfonic acid

- PFDA perfluorodecanoic acid
- PFDoA perfluorododecanoic acid PFHpA
- perfluoroheptanoic acid PFHxA
 - perfluorohexanoic acid
 - perfluorohexanesulfonic acid perfluorononanoic acid
- PFNA PFOA perfluorooctanoic acid
- PFOS perfluorooctanesulfonic acid
- PFPeA perfluoropentanoic acid
- PFTeDA perfluorotetradecanoic acid
- PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AASF Army Aviation Support Facility

- Area of Interest
- D duplicate
 - groundwater
 - health advisory
 - hazard quotient
- LCMSMS liquid chromatography with tandem mass spectrometry LOD
 - limit of detection limit of quantitation
- LOQ OSD Office of the Secretary of Defense
- QSM Quality Systems Manual
- Qual interpreted qualifier
- USEPA United States Environmental Protection Agency
- ng/L nanogram per liter
- not applicable
- analyte not detected above the LOD

Appendix F Laboratory Data Groundwater Site Inspection Report, Windsor Locks AASF, Connecticut

		Area of Interest								AO	101							
		Sample ID	,	AOI01-0	7-GW			AOI01-0	8-GW			AOI01-0	9-GW			AOI01-1	0-GW	
		Sample Date		04/28/	2021			04/28/	2021			04/27/	2021			04/29/	2021	
Analyte	OSD Screening Level a,b	USEPA HA°	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMS	MS compliant with C	SM 5.3 Table B-1	5 (ng/L)															
6:2 FTS	-	-	<	3.00	4.00	U	<	3.00	4.00	U	<	2.00	4.00	U	<	3.00	4.00	U
8:2 FTS	-	-	<	3.00	4.00	U	<	3.00	4.00	U	<	2.00	4.00	U	<	3.00	4.00	U
NEtFOSAA	-	-	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U
NMeFOSAA	-	-	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U
PFBA	-	-	<	3.50	4.00	U	<	5.02	4.00	U	15.9	2.00	4.00		<	3.50	4.00	U
PFBS	600	-	<	2.00	4.00	U	1.33	2.00	4.00	J	5.16	2.00	4.00		3.21	2.00	4.00	J
PFDA	-	-	<	3.00	4.00	U	<	3.00	4.00	U	<	2.00	4.00	U	<	3.00	4.00	U
PFDoA	-	-	<	3.00	4.00	U	<	3.00	4.00	U	<	2.00	4.00	U	<	3.00	4.00	U
PFHpA	-	-	2.65	3.00	4.00	J	5.64	3.00	4.00		10.5	2.00	4.00		3.42	3.00	4.00	J
PFHxA	-	-	3.09	2.00	4.00		12.9	2.00	4.00		39.5	2.00	4.00		8.28	2.00	4.00	
PFHxS	-	-	7.07	3.00	4.00		66.8	3.00	4.00		161	2.00	4.00		60.6	3.00	4.00	
PFNA	-	-	3.61	2.00	4.00	J	4.42	2.00	4.00		4.25	2.00	4.00		v	2.00	4.00	U
PFOA	40	70	5.45	2.00	4.00		10.8	2.00	4.00		24.6	2.00	4.00		11.5	2.00	4.00	
PFOS	40	70	52.6	2.00	4.00		581	2.00	4.00		399	2.00	4.00		9.88	2.00	4.00	
PFPeA	-	-	2.52	2.00	4.00	J	9.87	2.00	4.00		11.2	2.00	4.00		3.37	2.00	4.00	J
PFTeDA	-	-	<	3.00	4.00	U	<	3.00	4.00	U	<	2.00	4.00	U	<	3.00	4.00	U
PFTrDA	-	-	<	3.00	4.00	U	<	3.00	4.00	U	<	2.00	4.00	U	<	3.00	4.00	U
PFUnDA	-	-	<	3.00	4.00	U	<	3.00	4.00	U	<	2.00	4.00	U	<	3.00	4.00	U
Total PFOA+PFOS	-	70	58.05	2			591.8	2			423.6	2			21.38	2		

Grey Fill etected concentration exceeded OSD Screening Levels Bold Font

Detected concentration exceeded USEPA HA Screening Levels

References

A casistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

C USEPA, 2016. Drinking Water Health Advisory for PFOA. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-005. May 2016. / EPA. 2016. Drinking Water Health Advisory for PFOS. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822 P. 61004. May 2016. J May 2016

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid

Acronyms and Abbreviations

GW HA

HQ

AASF .	Army Aviation Support Facility
--------	--------------------------------

- AOI Area of Interest
- D duplicate
 - groundwater
 - health advisory
 - hazard quotient
- LCMSMS liquid chromatography with tandem mass spectrometry LOD
 - limit of detection
- LOQ limit of quantitation OSD Office of the Secretary of Defense
- QSM Quality Systems Manual
- Qual interpreted qualifier
- USEPA United States Environmental Protection Agency
- ng/L nanogram per liter
- not applicable
- analyte not detected above the LOD

Appendix F Laboratory Data Surface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest														AOI	01													
	Sample ID	AO	101-01-	SB-00-0)2	AO	01-02-	SB-00-0	12	AO	01-03-	6B-00-0	2	AO	101-04-\$	SB-00-0)2	AO	01-05-5	SB-00-0)2	AO	101-06-	SB-00-0	2	AO	101-07-5	3B-00-0)2
	Sample Date		04/27/	2021			04/27/	2021			04/29/2	2021			04/29/2	2021			04/28/2	2021			04/28/2	2021			04/28/2	2021	
	Depth		0 - 2	2 ft		0 - 2 ft			0 - 2 ft			0 - 2 ft					0 - 2	ft			0 - 2	ft ft			0 - 2	ft			
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^{a,b}																												
Soil, PFAS by LCMSMS	compliant with QS				/kg)																								
6:2 FTS	-	<	0.213	1.06	U	0.149	0.254	1.27	J	<	0.221	1.11	U	<	0.211	1.06	U	<	0.234	1.17	U	<	0.223	1.11	U	<	0.219	1.09	U
8:2 FTS	-	<	0.106	1.06	U	0.197	0.127	1.27	J	<	0.111	1.11	U	<	0.106	1.06	U	<	0.117	1.17	U	<	0.111	1.11	U	<	0.109	1.09	U
NEtFOSAA	-	<	0.106	1.06	U	<	0.127	1.27	U	0.039	0.111	1.11	J+	<	0.106	1.06	U	<	0.117	1.17	U	<	0.111	1.11	U	<	0.109	1.09	U
NMeFOSAA	-	<	0.053	1.06	U	<	0.064	1.27	U	<	0.055	1.11	U	<	0.053	1.06	U	<	0.059	1.17	U	v	0.056	1.11	U	<	0.055	1.09	U
PFBA	-	0.054	0.106	1.06	J	0.089	0.127	1.27	J	0.093	0.111	1.11	J	0.048	0.106	1.06	J	<	0.117	1.17	U	0.235	0.111	1.11	J	0.096	0.109	1.09	J
PFBS	1900	0.177	0.053	1.06	J	0.163	0.064	1.27	J	<	0.055	1.11	U	<	0.053	1.06	U	<	0.059	1.17	U	v	0.056	1.11	U	<	0.055	1.09	U
PFDA	-	<	0.106	1.06	U	0.432	0.127	1.27	J	0.366	0.111	1.11	J	0.076	0.106	1.06	J	<	0.117	1.17	U	0.116	0.111	1.11	J	0.183	0.109	1.09	J
PFDoA	-	<	0.053	1.06	U	0.561	0.064	1.27	J	0.134	0.055	1.11	J	0.029	0.053	1.06	J	0.092	0.059	1.17	J	0.023	0.056	1.11	J	0.023	0.055	1.09	J
PFHpA	-	<	0.053	1.06	U	0.045	0.064	1.27	J	0.031	0.055	1.11	J	<	0.053	1.06	U	<	0.059	1.17	U	0.100	0.056	1.11	J	0.026	0.055	1.09	J
PFHxA	-	0.026	0.053	1.06	J	0.096	0.064	1.27	J	0.127	0.055	1.11	J	<	0.083	1.06	U	<	0.059	1.17	U	0.121	0.056	1.11	J	<	0.055	1.09	U
PFHxS	-	0.127	0.106	1.06	J	0.576	0.127	1.27	J	0.856	0.111	1.11	J	0.412	0.106	1.06	J	0.110	0.117	1.17	J	v	0.111	1.11	U	0.068	0.109	1.09	J
PFNA	-	<	0.053	1.06	U	0.145	0.064	1.27	J	0.135	0.055	1.11	J	0.043	0.053	1.06	J	~	0.059	1.17	U	0.120	0.056	1.11	J	0.114	0.055	1.09	J
PFOA	130	<	0.213	1.06	U	<	0.254	1.27	U	<	0.221	1.11	U	<	0.211	1.06	U	<	0.234	1.17	U	0.173	0.223	1.11	J	<	0.219	1.09	U
PFOS	130	1.01	0.213	1.06	J	3.82	0.254	1.27		2.86	0.221	1.11		2.60	0.211	1.06		0.515	0.234	1.17	J	0.445	0.223	1.11	J	0.970	0.219	1.09	J
PFPeA	-	<	0.053	1.06	U	0.124	0.064	1.27	J	0.087	0.055	1.11	J	0.047	0.053	1.06	J	<	0.059	1.17	U	0.189	0.056	1.11	J	0.031	0.055	1.09	J
PFTeDA	-	<	0.053	1.06	U	0.211	0.064	1.27	J	0.054	0.055	1.11	J	<	0.053	1.06	U	0.063	0.059	1.17	J	<	0.056	1.11	U	<	0.055	1.09	U
PFTrDA	-	<	0.106	1.06	U	3.16	0.127	1.27		1.56	0.111	1.11		<	0.106	1.06	U	0.313	0.117	1.17	J	0.082	0.111	1.11	J	0.035	0.109	1.09	J
PFUnDA	-	0.032	0.053	1.06	J	5.05	0.064	1.27		1.51	0.055	1.11		0.053	0.053	1.06	J	0.451	0.059	1.17	J	0.051	0.056	1.11	J	0.076	0.055	1.09	J

Grey Fill

Detected concentration exceeded OSD Screening Levels

References

c. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid

PFBS perfluorobutanesulfonic acid

- PFDA perfluorodecanoic acid
- perfluorododecanoic acid PEDoA
- PFHpA perfluoroheptanoic acid
- PFHxA perfluorohexanoic acid perfluorohexanesulfonic acid
- PFHxS perfluorononanoic acid
- PFNA PFOA perfluorooctanoic acid
- PEOS perfluorooctanesulfonic acid
- PFPeA perfluoropentanoic acid
- PFTeDA perfluorotetradecanoic acid
- perfluorotridecanoic acid PFTrDA
- PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AASF Army Aviation Support Facility

- Area of Interest AOI
- D duplicate ft
- feet HQ
- hazard quotient LCMSMS liquid chromatography with tandem mass spectrometry
 - limit of detection
- LOD LOQ limit of quantitation
- OSD Office of the Secretary of Defense
- QSM Quality Systems Manual
- Qual interpreted qualifier
- SB soil boring
- USEPA United States Environmental Protection Agency µg/kg micrograms per kilogram
- not applicable
- analyte not detected above the LOD <

Appendix F Laboratory Data Surface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest												AC	0101											
	Sample ID		01-07-S	B-00-02	2-D	AO	01-08-	SB-00-0	2	AO	101-09-	SB-00-	02	AOIO)1-09-SE	3-00-02	2-D	AO	101-10-	SB-00-0)2	AOI	01-10-S	B-00-0	2-D
	Sample Date		04/28/	2021			04/28/	2021			04/27/	2021			04/27/2	2021			04/28/	2021			04/28/	2021	
	Depth		0 - 2	2 ft			0 - 2	ft			0 - 2	? ft			0 - 2	ft			0 - 2	2 ft			0 - 2	ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level a,b																								
Soil, PFAS by LCMSM	S compliant with Q	SM 5.3 1		-15 (µg	kg)																				
6:2 FTS	-	<	0.218	1.09	U		0.214		U	<	0.229	1.14	U			1.13	U		0.217	1.08	U	<	0.218		U
8:2 FTS	-	<	0.109	1.09	U	<	0.107	1.07	U	<	0.114	1.14	U	<	0.113	1.13	U	v	0.108	1.08	U	v	0.109	1.09	U
NEtFOSAA	-	<	0.109	1.09	U	<	0.107	1.07	U	<	0.114	1.14	U	~	0.113	1.13	U	<	0.108	1.08	U	<	0.109	1.09	U
NMeFOSAA	-	<	0.054	1.09	U	<	0.054	1.07	U	<	0.057	1.14	U	<	0.057	1.13	U	<	0.054	1.08	U	<	0.054	1.09	U
PFBA	-	0.069	0.109	1.09	J	0.109	0.107	1.07	J	0.258	0.114	1.14	J	0.149	0.113	1.13	J	0.065	0.108	1.08	J	0.058	0.109	1.09	J
PFBS	1900	<	0.054	1.09	U	<	0.054	1.07	U	0.139	0.057	1.14	J	0.137	0.057	1.13	J	<	0.054	1.08	U	<	0.054	1.09	U
PFDA	-	0.116	0.109	1.09	J	0.082	0.107	1.07	J	0.098	0.114	1.14	J	0.070	0.113	1.13	J	0.324	0.108	1.08	J	0.290	0.109	1.09	J
PFDoA	-	0.022	0.054	1.09	J	0.046	0.054	1.07	J	0.038	0.057	1.14	J	0.027	0.057	1.13	J	0.099	0.054	1.08	J	0.102	0.054	1.09	J
PFHpA	-	0.026	0.054	1.09	J	0.049	0.054	1.07	J	0.086	0.057	1.14	J	0.056	0.057	1.13	J	0.023	0.054	1.08	J	<	0.054	1.09	UJ
PFHxA	-	<	0.054	1.09	U	0.087	0.054	1.07	J	0.183	0.057	1.14	J	0.108	0.057	1.13	J	0.080	0.054	1.08	J	0.068	0.054	1.09	J
PFHxS	-	0.059	0.109	1.09	J	0.217	0.107	1.07	J	0.318	0.114	1.14	J	0.261	0.113	1.13	J	0.377	0.108	1.08	J	0.311	0.109	1.09	J
PFNA	-	0.070	0.054	1.09	J	0.039	0.054	1.07	J	0.161	0.057	1.14	J	0.111	0.057	1.13	J	<	0.054	1.08	UJ	0.053	0.054	1.09	J
PFOA	130	<	0.218	1.09	U	0.155	0.214	1.07	J	0.200	0.229	1.14	J	0.139	0.226	1.13	J	<	0.217	1.08	U	<	0.218	1.09	U
PFOS	130	1.18	0.218	1.09		4.28	0.214	1.07	J+	2.17	0.229	1.14		1.77	0.226	1.13		2.00	0.217	1.08		1.79	0.218	1.09	
PFPeA	-	0.031	0.054	1.09	J	0.098	0.054	1.07	J	0.180	0.057	1.14	J	0.107	0.057	1.13	J	0.044	0.054	1.08	J	0.035	0.054	1.09	J
PFTeDA	-	<	0.054	1.09	U	<	0.054	1.07	U	<	0.057	1.14	U	<	0.057	1.13	U	0.039	0.054	1.08	J	0.032	0.054	1.09	J
PFTrDA	-	0.035	0.109	1.09	J	0.067	0.107	1.07	J	0.147	0.114	1.14	J	0.124	0.113	1.13	J	0.475	0.108	1.08	J	0.509	0.109	1.09	J
PFUnDA	-	0.055	0.054	1.09	J	0.282	0.054	1.07	J	0.170	0.057	1.14	J	0.120	0.057	1.13	J	1.27	0.054	1.08		1.30	0.054	1.09	1

Grey Fill

Detected concentration exceeded OSD Screening Levels

References a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid

- PFHxS perfluorohexanesulfonic acid
- PFNA perfluorononanoic acid
- PFOA perfluorooctanoic acid
- PEOS perfluorooctanesulfonic acid
- PFPeA perfluoropentanoic acid
- PFTeDA perfluorotetradecanoic acid perfluorotridecanoic acid PFTrDA
- PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AASF Army Aviation Support Facility

- AOI Area of Interest
- D duplicate ft
- feet HQ
 - hazard quotient
- LCMSMS liquid chromatography with tandem mass spectrometry limit of detection
- LOD LOQ limit of quantitation
- Office of the Secretary of Defense
- OSD QSM Quality Systems Manual
- Qual interpreted qualifier
- SB soil boring
- USEPA United States Environmental Protection Agency
- µg/kg micrograms per kilogram
- not applicable
- analyte not detected above the LOD <

Appendix F Laboratory Data Shallow Subsurface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

-	Area of Interest														AOI	01													
	Sample ID	AO	101-01-	SB-05-0)7	AO	101-02-	SB-04-0)6	AO	101-03-8	SB-03-0)5	AO	101-03-8	SB-05-0)7	AO	101-04-8	SB-03-0	15	AO	0101-05-	SB-02-0)4	AOI	01-05-S	B-04-0	16
	Sample Date		04/27/	2021			04/27/	2021			04/29/2	2021			04/29/2	2021			04/29/2	2021			04/28/	2021			04/28/2	2021	
	Depth		5 - 7	7 ft			4 - 6	6 ft		3 - 5 ft				5 - 7 ft				3 - 5 ft				2 - 4 ft					4 - 6	ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qua	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^{a,b}																												
Soil, PFAS by LCMSMS of					/kg)																								
6:2 FTS	-	<			U	<	0.258	1.29	U	<	0.223		U		0.261	1.30	U	<	0.229	1.14	U	<	0.216		U		0.236		U
8:2 FTS	-	<	0.106	1.06	U	0.070	0.129	1.29	J	<	0.112		U		0.130	1.30	U	<	0.114	1.14	U	<	0.108	1.08	U			1.18	U
NEtFOSAA	-	<	0.106	1.06	U	<	0.129	1.29	U	<		1.12	U		0.130	1.30	U	<	0.114	1.14	U	<	0.108	1.08	U			1.18	U
NMeFOSAA	-	<	0.053	1.06	U	<	0.064	1.29	U	<	0.056	1.12	U		0.065	1.30	U	<	0.057	1.14	U	<	0.054	1.08	U			1.18	U
PFBA		0.045	0.106	1.06	J	0.061	0.129	1.29	J	0.055	0.112	1.12	J	-	0.130	1.30	J	<	0.114	1.14	U	<	0.108	1.08	U			1.18	U
PFBS	25000	0.162	0.053	1.06	J	<	0.091	1.29	U	<	0.056	1.12	U		0.065	1.30	U	<	0.057	1.14	U	<	0.054	1.08	U		0.059	1.18	U
PFDA	-	<	0.106	1.06	U	0.675	0.129	1.29	J	0.346	0.112	1.12	J	0.230	0.130	1.30	J	<	0.114	1.14	U	<	0.108	1.08	U		0.118	1.18	U
PFDoA	-	<	0.053	1.06	U	<	0.064	1.29	U	0.115	0.056	1.12	J		0.065	1.30	J	<	0.057	1.14	U	0.032	0.054	1.08	J		0.059	1.18	U
PFHpA	-	<	0.053	1.06	U	0.064	0.064	1.29	J	0.181	0.056	1.12	J		0.065	1.30	J	<	0.057	1.14	U	<	0.054	1.08	U		0.059	1.18	U
PFHxA	-	<	0.053	1.06	U	0.077	0.064	1.29	J	0.316	0.056	1.12	J	0.530	0.065	1.30	J	<	0.057	1.14	U	<	0.054	1.08	U	<	0.059	1.18	U
PFHxS	-	<	0.106	1.06	U	0.148	0.129	1.29	J	4.86	0.112	1.12		7.56	0.130	1.30		0.129	0.114	1.14	J	0.058	0.108	1.08	J	<	0.118	1.18	U
PFNA	-	<	0.053	1.06	U	0.150	0.064	1.29	J	0.169	0.056	1.12	J	0.170	0.065	1.30	J	<	0.057	1.14	U	0.023	0.054	1.08	J	<	0.059	1.18	U
PFOA	1600	v	0.212	1.06	U	<	0.258	1.29	U	0.278	0.223	1.12	J	0.491	0.261	1.30	J	<	0.229	1.14	U	<	0.216	1.08	U	<	0.236	1.18	U
PFOS	1600	0.582	0.212	1.06	J	1.89	0.258	1.29		5.07	0.223	1.12		6.19	0.261	1.30		0.310	0.229	1.14	J+	0.196	0.216	1.08	J	0.300	0.236	1.18	J
PFPeA	-	<	0.053	1.06	U	0.066	0.064	1.29	J	0.055	0.056	1.12	J	0.096	0.065	1.30	J	<	0.057	1.14	U	0.023	0.054	1.08	J	<	0.059	1.18	U
PFTeDA	-	<	0.053	1.06	U	<	0.064	1.29	UJ	0.034	0.056	1.12	J	<	0.065	1.30	U	<	0.057	1.14	U	0.022	0.054	1.08	J	<	0.059	1.18	U
PFTrDA	-	<	0.106	1.06	U	<	0.129	1.29	UJ	1.42	0.112	1.12		0.539	0.130	1.30	J	<	0.114	1.14	U	0.098	0.108	1.08	J	<	0.118	1.18	U
PFUnDA	-	<	0.053	1.06	U	1.35	0.064	1.29		8.02	0.056	1.12		3.31	0.065	1.30		<	0.057	1.14	U	0.162	0.054	1.08	J	<	0.059	1.18	U

Grey Fill

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on industrial/commercial composite worker scenario for incidental ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate

8:2 FTS	8:2 fluorotelomer sulfonate
0.2 F13	0.2 Indoloteionnei Sunonate

N-ethyl perfluorooctane- sulfonamidoacetic acid

MeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid

- PFBA perfluorobutanoic acid
- PFBS perfluorobutanesulfonic acid
- PFDA perfluorodecanoic acid PEDoA
- perfluorododecanoic acid PFHpA perfluoroheptanoic acid
- PFHxA perfluorohexanoic acid
- PFHxS perfluorohexanesulfonic acid
- PFNA perfluorononanoic acid
- PFOA perfluorooctanoic acid
- PEOS perfluorooctanesulfonic acid
- PFPeA perfluoropentanoic acid
- PFTeDA perfluorotetradecanoic acid
- perfluorotridecanoic acid PFTrDA PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AASF Army Aviation Support Facility

- AOI Area of Interest
- ft feet HQ
- hazard quotient I CMSMS
 - liquid chromatography with tandem mass spectrometry limit of detection
- LOD limit of quantitation
- LOQ Office of the Secretary of Defense OSD
- QSM Quality Systems Manual
- Qual interpreted qualifier
- SB soil boring
- USEPA United States Environmental Protection Agency
- µg/kg micrograms per kilogram
- not applicable <
- analyte not detected above the LOD

NEtFOSAA NM

Appendix F Laboratory Data Shallow Subsurface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest														AOI	01													
	Sample ID	AO	101-06-	SB-03-0)5	AO	101-07-	SB-02-0)4	AO	101-07-5	SB-04-0)6	AOI	01-08-8	SB-02-0)4	AO	101-08-9	6B-04-0	6	AO	101-09-5	SB-05-0	7	AOI	01-09-5	B-08-1	0
	Sample Date		04/28/	2021			04/28/	2021			04/28/2	2021			04/28/2	2021			04/28/2	2021			04/27/2	2021			04/27/2	2021	
	Depth		3 - 5	5 ft			2 - 4	ft			4 - 6	ft			2 - 4	ft			4 - 6	ft			5 - 7	ft			8 - 10) ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^{a,b}																												
Soil, PFAS by LCMSMS	compliant with Q	SM 5.3 1			/kg)																_								
6:2 FTS	-	<	0.280		U	<	0.215		U	<	0.232		U		0.236	1.18	U	0.214	0.260	1.30	J		0.232	1.16	U			1.15	U
8:2 FTS	-	<	0.140	1.40	U	<	0.107	1.07	U	<	0.116		U		0.118	1.18	U	<	0.130	1.30	U	<	0.116		U			1.15	U
NEtFOSAA	-	<	0.140	1.40	U	<	0.107	1.07	U	<	0.116		U		0.118	1.18	U	<	0.130	1.30	U	<	0.116	1.16	U			1.15	U
NMeFOSAA	-	<	0.070	1.40	U	<	0.054	1.07	U	<		1.16	U		0.059	1.18	U	<	0.065	1.30	U	<	0.058	1.16	U			1.15	U
PFBA	-	<	0.140	1.40	U	<	0.107	1.07	U	<	0.116	1.16	U		0.118	1.18	U	<	0.130	1.30	U	<	0.116	1.16	U			1.15	U
PFBS	25000	<	0.070	1.40	U	<	0.054	1.07	U	<	0.058	1.16	U		0.059	1.18	U	<	0.065	1.30	U	0.117	0.058	1.16	J		0.058	1.15	J
PFDA	-	<	0.140	1.40	U	<	0.107	1.07	U	<	0.116		U		0.118	1.18	J	<	0.130	1.30	U	<	0.116	1.16	U		0.115	1.15	U
PFDoA	-	<	0.070	1.40	U	<	0.054	1.07	U	<	0.058	1.16	U		0.059	1.18	U	<	0.065	1.30	U	<	0.058	1.16	U		0.058	1.15	U
PFHpA	-	<	0.070	1.40	U	<	0.054	1.07	U	<	0.058	1.16	U		0.059	1.18	J	<	0.065	1.30	U	<		1.16	U		0.058	1.15	U
PFHxA	-	0.039	0.070	1.40	J	<	0.054	1.07	U	<	0.058	1.16	U		0.059	1.18	U	0.119	0.065	1.30	J	0.035	0.058	1.16	J		0.058	1.15	U
PFHxS	-	<	0.140	1.40	U	<	0.107	1.07	U	<	0.116		U		0.118	1.18	J	<	0.130	1.30	U	0.039	0.116	1.16	J			1.15	J
PFNA	-	<	0.070	1.40	U	<	0.054	1.07	U	<	0.058	1.16	U		0.059	1.18	J	<	0.065	1.30	U	0.026	0.058	1.16	J		0.058	1.15	U
PFOA	1600	<	0.280	1.40	U	<	0.215	1.07	U	<	0.232	1.16	U	0.285	0.236	1.18	J	<	0.260	1.30	U	<	0.232	1.16	U	<	0.230	1.15	U
PFOS	1600	<	0.280	1.40	U	0.169	0.215	1.07	J	0.299	0.232	1.16	J	41.5	2.36	11.8		<	0.260	1.30	U	0.441	0.232	1.16	J	<	0.230	1.15	U
PFPeA	-	<	0.070	1.40	U	<	0.054	1.07	U	<		1.16	U		0.059	1.18	J	<	0.065	1.30	U	<	0.058	1.16	U			1.15	U
PFTeDA	-	<	0.070	1.40	U	<		1.07	U	<	0.058		U		0.059	1.18	U	<	0.065	1.30	U	<		1.16	U		0.058	1.15	U
PFTrDA	-	<	0.140	1.40	U	<	0.107	1.07	U	<	0.116	1.16	U	<	0.118	1.18	U	<	0.130	1.30	U	<	0.116	1.16	U	<	0.115	1.15	U
PFUnDA	-	<	0.070	1.40	U	<	0.054	1.07	U	<	0.058	1.16	U	<	0.059	1.18	U	<	0.065	1.30	U	<	0.058	1.16	U	<	0.058	1.15	U

Grey Fill

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on industrial/commercial composite worker scenario for incidental ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate

0.2 F13	0.2 Indototelottiel Sulfonate
NETEOSAA	N-ethyl perfluorooctane- sulfonan

IEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
IEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid

- NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid PFBA
- perfluorobutanoic acid PFBS perfluorobutanesulfonic acid
- PFDA perfluorodecanoic acid
- PEDoA perfluorododecanoic acid
- PFHpA perfluoroheptanoic acid
- PFHxA perfluorohexanoic acid
- PFHxS perfluorohexanesulfonic acid
- PFNA perfluorononanoic acid
- PFOA perfluorooctanoic acid
- PEOS perfluorooctanesulfonic acid
- PFPeA perfluoropentanoic acid
- PFTeDA perfluorotetradecanoic acid PFTrDA
- perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AASF Army Aviation Support Facility

- AOI Area of Interest
- ft feet
- HQ hazard quotient I CMSMS
 - liquid chromatography with tandem mass spectrometry
- LOD limit of detection limit of quantitation
- LOQ Office of the Secretary of Defense OSD
- QSM Quality Systems Manual
- Qual interpreted qualifier
- SB soil boring
- USEPA United States Environmental Protection Agency
- ug/Kg micrograms per kilogram
- not applicable
- < analyte not detected above the LOD

Appendix F Laboratory Data Shallow Subsurface Soil Site Inspection Report, Windsor Locks AASF, Connecticut

	Area of Interest		AOIO)1								
	Sample ID	AC	0101-10-5	SB-03-05								
	Sample Date	04/28/2021										
	Depth											
Analyte	OSD Screening Level ^{a,b}	Result	LOD	LOQ	Qual							
Soil, PFAS by LCMSMS	compliant with Q	SM 5.3 Ta	ble B-15	(µg/kg)								
6:2 FTS	-	<	0.247	1.24	U							
8:2 FTS	-	 	0.124	1.24	U							
NEtFOSAA	-	<	0.124	1.24	U							
NMeFOSAA	-	<	0.062	1.24	U							
PFBA	-	0.066	0.124	1.24	J							
PFBS	25000	<	0.062	1.24	U							
PFDA	-	<	0.124	1.24	U							
PFDoA	-	<	0.062	1.24	U							
PFHpA	-	0.033	0.062	1.24	J							
PFHxA	-	0.089	0.062	1.24	J							
PFHxS	-	0.297	0.124	1.24	J+							
PFNA	-	0.141	0.062	1.24	J							
PFOA	1600	0.106	0.247	1.24	J+							
PFOS	1600	0.795	0.247	1.24	J							
PFPeA	-	0.043	0.062	1.24	J							
PFTeDA	-	<	0.062	1.24	U							
PFTrDA	-	<	0.124	1.24	U							
PFUnDA	-	<	0.062	1.24	U							

Grey Fill

Detected concentration exceeded OSD Screening Levels

References a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS and PFOA in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on industrial/commercial composite worker scenario for incidental ingestion of contaminated soil.

b. USEPA, 2021. Risk Based Screening Levels Calculated for PFBS in Groundwater and Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 8 April 2021.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

ug/Kg

<

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid
Acronyms and Ab	breviations
AASF	Army Aviation Support Facility
AOI	Area of Interest
ft	feet
HQ	hazard quotient
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
LOQ	limit of quantitation
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	interpreted qualifier
SB	soil boring
USEPA	United States Environmental Protection Agency

micrograms per kilogram not applicable

analyte not detected above the LOD

Appendix F Laboratory Data Decontamination Water and Quality Control Samples Site Inspection Report, Windsor Locks AASF, Connecticut

Area of Interest		DEC	ON											Q	С									
Sample ID						WL-EF	RB-01			WL-EF	RB-02		WL-ERB-03					WL-EF	RB-04			WL-FF	RB-01	
Sample Date					04/28/2021					04/28/2021				04/29/2021				04/29/2021				04/29/	2021	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSMS	complia	ant with	QSM	5.3 Tab	le B-15 (ng/L)																		
6:2 FTS	<	2.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
8:2 FTS	<	2.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
NEtFOSAA	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U
NMeFOSAA	^	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U	<	4.00	8.00	U
PFBA	2.80	2.00	4.00	J	<	3.50	4.00	U	<	3.50	4.00	U	<	3.50	4.00	U	<	3.50	4.00	U	<	3.50	4.00	U
PFBS	^	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFDA	<	2.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
PFDoA	<	2.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
PFHpA	^	2.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
PFHxA	1.61	2.00	4.00	J	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFHxS		2.00	4.00	U		3.00		U	<	3.00	4.00	U		3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
PFNA		2.00	4.00	U		2.00		U	<	2.00	4.00	U		2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFOA	-	2.00	4.00	J		2.00		U	<	2.00	4.00	U		2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
	0.875	2.00	4.00	J		2.00	4.00		13.6	2.00	4.00			2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFPeA	<	2.00	4.00	U		2.00		U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U	<	2.00	4.00	U
PFTeDA		2.00	4.00	U		3.00		U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
PFTrDA	<	2.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U
PFUnDA	<	2.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U	<	3.00	4.00	U

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid

cronym

AASF	Army Aviation Support Facility
ERB	equipment rinsate blank
FRB	field reagent blank
LCMSMS	liquid chromatography with tandem mass spectrometry
LOD	limit of detection
LOQ	limit of quantitation
QC	quality control
QSM	Quality Systems Manual
Qual	interpreted qualifier
WL	Windsor Locks
ng/L	nanogram per liter
<	analyte not detected above the LOD

Appendix F Laboratory Data TOC and pH Site Inspection Report, Windsor Locks AASF, Connecticut

Area of Interest		AOI01														
Sample ID	AC	0101-05-	SB-00-0)2	AOI	01-05-S	B-00-02	2-D	AOI01-10-SB-00-02 04/28/2021							
Sample Date		04/28/	2021			04/28/	2021									
Depth		0 - 2	2 ft			0 - 2	2 ft		0 - 2 ft							
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual				
pН	7.88	1.00	1.00	J	7.94	1.00	1.00	J	7.30	1.00	1.00	J				
Total Organic Carbon (mg/kg)	11700	200	250		10300	200	250		9660	200	250					

 Acconvms and Abbreviations

 AASF
 Army Aviation Support Facility

 AOI
 Area of Interest

 D
 duplicate

 ft
 ft

 LOD
 imit of detection

 LOQ
 limit of quantitation

 Qual
 interpreted qualifier

Interpreted Qualifiers

J = Estimated concentration

- mg/kg milligram per kilogram
- SB soil boring

Appendix G Laboratory Reports

THIS PAGE INTENTIONALLY BLANK

Due to file size, laboratory reports are provided electronically (CD) or can be requested.

THIS PAGE INTENTIONALLY BLANK