FINAL Preliminary Assessment Report Wyoming Army National Guard Army Aviation Support Facility Cheyenne, Wyoming

Perfluorooctane-Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide

January 2021

Prepared for:

Army National Guard Bureau 111 S. George Mason Drive Arlington, VA 22204

UNCLASSIFIED

Table of Contents

Exec	utive S	Summary	1
1.	Introd	duction	3
	1.1	Authority and Purpose	3
	1.2	Preliminary Assessment Methods	3
	1.3	Report Organization	4
	1.4	Facility Location and Description	4
	1.5	Facility Environmental Setting	4
		1.5.1 Geology	5
		1.5.2 Hydrogeology	5
		1.5.3 Hydrology	5
		1.5.4 Climate	6
		1.5.5 Current and Future Land Use	6
2.	Fire 7	Fraining Areas1	0
3.	Non-	Fire Training Areas1	1
	3.1	WYARNG Army Aviation Support Facility Hangar1	1
4.	Emer	gency Response Areas1	3
5.	Adjad	cent Sources1	4
6.	Prelir	ninary Conceptual Site Model1	6
7.	Conc	lusions1	7
	7.1	Findings1	7
	7.2	Uncertainties1	7
	7.3	Potential Future Actions1	7
8.	Refe	rences1	9
Appe	ndix A	Data Resources2	0
Appe	ndix E	3 Preliminary Assessment Documentation2	1
Appe	ndix E	3.1 Interview Record2	2
Appe	ndix E	3.2 Visual Site Inspection Checklists2	3
Appe	ndix E	3.3 Conceptual Site Model Information2	4
Appe	ndix C	2 Photographic Log2	5

Tables

Table 7-1: Uncertainties

Figures

- Figure ES-1 Summary of Findings
- Figure 1-1 Facility Location
- Figure 1-2 Groundwater Features
- Figure 1-3 Surface Water Features
- Figure 3-1 Non-Fire Training Areas
- Figure 5-1 Adjacent Sources
- Figure 7-1 Summary of Findings

Appendices

- Appendix A Data Resources Appendix B Preliminary Asse
 - Preliminary Assessment Documentation
 - B.1 Interview Records
 - B.2 Visual Site Inspection Checklists
 - B.3 Conceptual Site Model Information
- Appendix C Photographic Log

Acronyms and Abbreviations

AASF	Army Aviation Support Facility
AECOM	AECOM Technical Services, Inc.
AFB	Air Force Base
AFFF	aqueous film forming foam
AOI	area of interest
ARNG	Army National Guard
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
EDR™	Environmental Data Resources, Inc. [™]
FTA	Fire Training Area
HA	Health Advisories
PA	Preliminary Assessment
PFAS	per- and poly-fluoroalkyl substances
PFBS	Perflourobutane sulfonate
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
RI	Remedial Investigation
SI	Site inspection
UCMR3	Unregulated Contaminant Rule 3
U.S.	United States
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
WYARNG	Wyoming Army National Guard

Executive Summary

The Army National Guard (ARNG) is performing *Preliminary Assessments (PAs) and Site Inspections (SIs) for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) Impacted Sites at ARNG Facilities Nationwide.* A PA for per- and polyfluoroalkyl substances (PFAS)-containing materials was completed for Wyoming Army National Guard (WYARNG) Army Aviation Support Facility (AASF). The AASF is which is located on F.E. Warren Air Force Base (AFB), Cheyenne, Wyoming. The AASF is owned by the WYARNG and used to provide full-time maintenance support to the Wyoming aviation units. The WYARNG AASF encompasses approximately 44 acres of F.E. Warren AFB and was constructed in 2010. The performance of this PA included the following tasks:

- Reviewed available administrative record documents and Environmental Data Resources, Inc. (EDR)[™] report packages to obtain information relevant to potential PFAS releases, such as: drinking water well locations, historical aerial photographs, Sanborn maps, and environmental compliance actions in the area surrounding the facility;
- Conducted a site visit on 8 May 2018 and completed visual site inspections at locations where PFAS-containing materials were suspected of being stored, used, or disposed; and
- Interviewed current WYARNG AASF personnel during the site visit.

No Areas of Interest related to potential PFAS releases was identified at WYARNG AASF during the PA. The summary of PA findings is shown on **Figure ES-1**.

Based on the United States Environmental Protection Agency Unregulated Contaminant Monitoring Rule 3 (UCMR 3) data, it was indicated that no PFAS were detected in a public water system above the United States Environmental Protection Agency (USEPA) Health Advisory level within 20 miles of the facility (USEPA, 2015). PFAS analyses performed in 2016 had method detection limits that were higher than currently achievable. Thus, it is possible that low concentrations of PFAS were not detected during the UCMR3 but might be detected if analyzed today.

Based on the documented absence of the use/release of PFAS-containing materials at the AASF, evidence does not support current or former WYARNG activities having contributed to PFAS contamination in soil, groundwater, surface water or sediment at the AASF or adjacent areas. Therefore, the AASF will not move forward in the Comprehensive Environmental, Response, Compensation, and Liability Act process.

1. Introduction

1.1 Authority and Purpose

The Army National Guard (ARNG) G9 is the lead agency in performing *Preliminary Assessments* (*PAs*) and Site Inspections (SIs) for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) at Impacted Sites at ARNG Facilities Nationwide. This work is supported by the United States (US) Army Corps of Engineers (USACE) Baltimore District and their contractor AECOM Technical Services, Inc. (AECOM) under Contract Number W912DR-12-D-0014, Task Order W912DR17F0192, issued 11 August 2017.

The ARNG is assessing potential effects on human health related to processes at their facilities that used per-and poly-fluoroalkyl substances (PFAS) (a suite of related chemicals), primarily releases of aqueous film forming foam released during firefighting activities or training, although other sources of PFAS are possible. In addition, the ARNG is assessing businesses or operations adjacent to the ARNG facility (not under the control of ARNG) that could potentially be responsible for a PFAS release.

PFAS are classified as emerging environmental contaminants that are garnering increasing regulator interest due to their potential risks to human health and the environment. PFAS formulations contain highly diverse mixtures of compounds. Thus, the fate of PFAS compounds in the environment varies. The regulatory framework at both federal and state levels continues to evolve. The U.S. Environmental Protection Agency (USEPA) issued Drinking Water Health Advisories (HAs) for PFOA and PFOS in May 2016, but there are currently no promulgated national standards regulating PFAS in drinking water.

This report presents findings of a PA for PFAS-containing materials at the Wyoming Army National Guard (WYARNG) Army Aviation Support Facility (AASF) in Cheyenne, Wyoming, in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, the National Oil and Hazardous Substances Pollution Contingency Plan (40 Code of Federal Regulations Part 300), and Department of the Army requirements and guidance.

This PA Report documents where PFAS may have been released into the environment. The term PFAS will be used throughout this report to encompass all PFAS chemicals being evaluated, including PFOS and PFOA, which are key aqueous film forming foam (AFFF) components.

1.2 Preliminary Assessment Methods

The performance of this PA included the following tasks:

- Reviewed available administrative record documents and Environmental Data Resources, Inc. (EDR)[™] report packages to obtain information relevant to potential PFAS releases, such as: drinking water well locations, historical aerial photographs, Sanborn maps, and environmental compliance actions in the area surrounding the facility;
- Conducted a site visit on 8 May 2018 and completed visual site inspections at locations where PFAS-containing materials were suspected of being stored, used, or disposed; and
- Interviewed current WYARNG AASF personnel during the site visit.

1.3 Report Organization

This report has been prepared in accordance with the USEPA *Guidance for Performing Preliminary Assessments under CERCLA* (USEPA, 1991). The report sections and descriptions of each are:

- Section 1 Introduction: identifies the project purpose and authority and describes the facility location, environmental setting, and methods used to complete the PA.
- Section 2 Fire Training Areas (FTAs): describes the FTAs at the facility.
- Section 3 Non-FTAs: describes the airfield facility visited during the site visit.
- Section 4 Emergency Response Areas: describes areas of potential PFAS release at the facility, specifically in response to emergency situations.
- Section 5 Adjacent Sources: describes sources of potential PFAS release adjacent to the facility that are not under the control of ARNG.
- Section 6 Preliminary Conceptual Site Model: describes the pathways of PFAS transport and receptors at each AOI.
- Section 7 Conclusions: summarizes the data findings and presents the conclusions of the PA.
- Section 8 References: provides the references used to develop this document.
- Appendix A Data Resources
- Appendix B Preliminary Assessment Documentation
- Appendix C Photographic Log

1.4 Facility Location and Description

The WYARNG AASF covers approximately 44 acres within the boundaries of the F.E. Warren Air Force Base (AFB). F.E. Warren AFB, originally Fort D.A. Russell, was established in 1867 on the branch of the South Platte River. Originally named in honor of Civil War Brigadier General David A. Russell, F.E. Warren AFB is the oldest continuously active military installation in the Air Force. It's home to the 90th Missile Wing and Headquarters, 20th Air Force, of Air Force Global Strike Command (Aerostar, 2018).

The WYARNG AASF encompasses approximately 41 acres of F.E. Warren AFB and was constructed in 2010. The AASF is owned by the WYARNG and used to provide full-time maintenance support to the Wyoming aviation units. The WYARNG AASF is in southeastern Wyoming approximately 7 miles west of Cheyenne, Wyoming. (**Figure 1-1**). Land use surrounding F.E. Warren AFB ranges from agricultural to residential housing with Cheyenne to the east, and primarily agricultural areas to the north and west (Aerostar, 2018).

1.5 Facility Environmental Setting

Environmental information found in Section 1.5 for this PA was adapted in part from the Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base Wyoming (CH2M Hill, 2015).

1.5.1 Geology

As indicated in the 2019 EDR[™] report (**Appendix A**), most of the region is underlain by tertiary units that are of sedimentary origin and consist of sand, gravel, clay, siltstone, and limestone. These units are overlain by Quaternary sediments that include alluvial terrane and floodplain deposits. These sediments are generally unconsolidated and consist of lenticular beds of clay, silt, sand, gravel, and boulders.

Beneath the installation, the late Miocene-aged Ogallala unit can be described as a heterogeneous mixture of sand and gravel beds, silt, clay, and thin limestone units. The beds are sometimes cemented by calcium carbonate, Lenses of sand and gravel are generally sporadic, but consistently occur from the surface to a depth of about 10 feet below ground surface (bgs) in the southwestern part of F.E. Warren AFB. Below this depth, the predominant sediments are fine-grained, but sand and gravel still occur. The Ogallala is about 300 feet thick in the northern part of the installation, thinning to the south to approximately 30 feet in the valley where it has been deeply eroded (CH2M Hill, 2015).

1.5.2 Hydrogeology

The unconfined High Plains aquifer is the principal source for water supply wells in the area surrounding F.E. Warren AFB. Numerous wells near the AFB are used for domestic and livestock water supply. Depth to the water table in this area is variable, being at the land surface near streams that act as discharge areas and increasing in depth with distance from discharge areas. In the southern portion of the installation, the depth to the water table generally ranges from about 10 to 40 feet bgs. The direction of groundwater flow in the shallow aquifer zone is generally toward the discharge areas of Crow Creek, Diamond Creek, and the unnamed tributary to Crow Creek (Figure 1-2). Groundwater beneath the AFB is recharged locally by some areal infiltration of precipitation despite the relatively dry climate. Groundwater is discharged via evapotranspiration in the riparian areas, flow into streams, and springs and seeps near the streams.

Drinking water at F.E. Warren AFB is obtained from the Cheyenne Public Utilities, which uses both groundwater and surface water sources. The City owns and operates about 35 groundwater wells located west and northwest of Cheyenne. The wells pump from the Ogallala and White River Aquifers. Surface water is collected from the Douglas Creek Drainage, located in the Snowy Range Mountains, about 75 miles west of Cheyenne. Surface water is also collected from the Crow Creek Drainage, located in the Pole Mountain/Vedauwoo area, about 30 miles west of Cheyenne (Board of Public Utilities, 2014). All drinking water sources used by the City of Cheyenne are located upstream or upgradient of the F.E. Warren watershed. No active or contingent drinking water wells are located on the installation (CH2M Hill, 2015). Based on the United States Environmental Protection Agency (USEPA) Unregulated Contaminant Monitoring Rule 3 (UCMR3) data, it was indicated that no PFAS were detected in a public water system above the USEPA Lifetime Health Advisory level within 20 miles of the facility (USEPA, 2015). PFAS analyses performed in 2016 had method detection limits that were higher than currently achievable. Thus, it is possible that low concentrations of PFAS were not detected during the UCMR3 but might be detected if analyzed today.

1.5.3 Hydrology

Surface water at F.E. Warren AFB occurs as stream flow, seeps, and lakes. Stream flow results from groundwater discharge and from rainfall and snowmelt runoff. Crow Creek is the major perennial stream that drains southern areas of the AFB and a gaining stream (that is, receives groundwater discharge). Two tributaries to Crow Creek also drain the southern part of the AFB: an unnamed tributary and Diamond Creek (Figure 1-3). The unnamed tributary is an interrupted stream, with alternating reaches that are perennial, intermittent, or ephemeral. Diamond Creek,

the second largest stream on F.E. Warren AFB, is perennial along most of its length, with low flows maintained by groundwater discharge. The upper reach of Diamond Creek, covering the first 300 yards, is intermittent. Diamond Creek is also a gaining creek across the AFB except in periods of loss during the warmer months of July through September. These stream discharge losses are likely due to evaporation. Seeps contribute to stream flows in Crow Creek and its unnamed tributary throughout the year (CH2M Hill, 2015).

1.5.4 Climate

F.E. Warren AFB is near the Front Range of the Rocky Mountains and on the high plains. Located in a fairly dry region of the country, the AFB receives about 14 inches of moisture per year in the form of rain or snowmelt and has an average winter snowfall of 52 inches. Snowfall is common nine months out of the year due to the high plains environment (more than 6,000 feet above sea level.) The first snowfall of the season typically occurs in late September and the last snowfall occurs in May.

Winter months are usually dry and windy with wind gusts commonly more than 50 mph. Blowing and drifting snow create particularly hazardous conditions for winter travel. All of the major highways leading through Cheyenne occasionally close due to severe winter weather. Average winter temperatures range from the 30s during the day to teens overnight. Cold snaps that can plunge temperatures and wind chills below zero are typically short lived.

Spring and summer seasons are the wettest times of the year with more than two inches of moisture per month from April to July. Severe thunderstorms occur in the late spring to summer months and can result in flash flooding conditions, large hail and even occasional tornadoes. The peak of the tornado season along the Front Range is June, while the greatest flash flooding potential exists in July and August. Average summer temperatures are pleasant, due in part to the low humidity, with most days in the low 80s for highs and 50s for overnight lows. (F.E. Warren, 2017).

1.5.5 Current and Future Land Use

The WYARNG AASF serves as a year-round maintenance facility to support WYARNG aviation units. The facility is developed with several buildings and related infrastructure including paved roadways and parking areas. Access to the facility is controlled, and land use surrounding the facility is owned and operated by the U.S. Air Force. Reasonably anticipated future land use is not expected to change from the current land use, which ranges from agricultural to residential housing with Cheyenne to the east, and primarily agricultural areas to the north and west (Aerostar, 2018).

L Q:\Projects\ENV\GEARS\GEO\ARNG PFAS\900-CAD-GIS\920-GIS or Graphics\MXD\WY\WYARNG_AASF_PA_Figures\Fig_1-1_WYARNG_AASF_Site_Location.mxd

C:\Users\stankevichm\OneDrive - AECOM Directory\ARNG_PFAS_GIS_60552172\MXDs\WY\WYARNG_AASF_PA_Figures\Fig_1-2_WYARNG_AASF_Groundwater.mxd

2. Fire Training Areas

No FTAs were identified at the WYARNG AASF during this PA.

3. Non-Fire Training Areas

In addition to FTAs, the PA evaluated areas where PFAS-containing materials may have been broadly used, stored, or disposed. This may include buildings with fire suppression systems, paint booths, AFFF storage areas, and areas of compliance demonstrations. Information on these features obtained during the PA are included in **Appendices A** and **B**. One non-FTA where Jet-X was potentially released at the AASF was identified during this PA. A description of the non-FTA is presented below and shown on **Figure 3-1**.

3.1 WYARNG Army Aviation Support Facility Hangar

Construction of the AASF was completed in 2010. The geographic coordinates are 41°11'45.5"N and 104°52'14.0"W. The Hangar is equipped with a fire suppression system that includes a 55-gallon tank containing Jet-X 2.75%. A full system release during facility commissioning on 2 April 2010. The Jet-X released within the hangar was allowed to dissipate through the floor drains and surrounding drains outside the hangar doors onto the tarmac and surrounding area.

A second release occurred on 11 June 2011, at the east hangar and was a full system release leaving approximately 5-feet of foam. Personnel opened the hangar doors and the foam was moved outside the hangar and allowed to dissipate on the ramp. surrounding area. The internal floor drains were blocked, but the drains by the hangar doors were open.

A third release occurred on 8 August 2011 when a contractor crushed a thermal wire. A minimal amount of foam was released from the fire suppression system and discharged to the floor drain.

Release areas that were allowed to dissipate, along with stormwater within the perimeter of the AASF, flow via catch basins to the oil water separator, then on to the local septic system, and finally to the Cheyenne Municipal Wastewater Treatment Facility.

According to the manufacturer's technical specifications, Jet-X 2.75% is a hydrocarbon surfactant, and therefore does not contain PFAS. Additionally, it is unclear if any AFFF containing PFAS was ever stored, used, or released at WYARNG AASF. However, in the absence of known PFAS-containing materials, the Hangar is not considered a suspected PFAS release area.

4. Emergency Response Areas

No instances of emergency response areas were identified at or adjacent to the WYARNG AASF during the PA through interviews or EDR[™] Reports. All emergency services are provided by F.E. Warren AFB. The F. E. Warren AFB emergency service records were not reviewed during the PA to determine if there were any emergencies responses adjacent to the WYARNG AASF.

5. Adjacent Sources

The Air Force conducted both a PFAS PA (CH2M Hill, 2015) and a SI (Aerostar. 2018) at F.E. Warren AFB (**Appendix A**). During the PA, 10 potential release areas were identified; however, only three locations were recommended for an SI. The locations included the Former Fire Protection Training Area 2 (AFFF Area 1), Former Fire Protection Training Area 3 (AFFF Area 2) and Building 1247 (AFFF Area 3) (**Figure 5-1**). Based on the findings of the SI, PFOA and PFOS groundwater concentrations were reported above the USEPA HAs (70 parts per trillion) at all three locations. In addition, surface soil concentrations at the Protection Training Area 2 (AFFF Area 1) and Building 1247 (AFFF Area 3) exceeded the USEPA regional screening levels for soil.

All three sites were recommended for an expanded SI as well as a Remedial Investigation for further investigation under the CERCLA process. Based on groundwater flow, these sites are located downgradient of the WYARNG AASF and the documented PFAS releases should not have an impact on the WYARNG AASF.

Euflicting 1243 Fuels (AFFFF)	Crow Creek	TRE PROTECTION OF THE PROTECTI	effor Arcen 2)	- Form	Per Fire Protection		
Legend	E						1
Potential PFAS Releas	se		- 11	A stadie f	A 7		11
Facility Boundary	ooo Dours da	14:00			7.2.5	13-13	Adam to
	ase boundar	y		1 desta	10 - Contraction	a state	A BLER
		Star Star		1ATAS	0 355	710	1,420
		a se	and have been	I HA I'N	49		reet
CLIENT	ARNG		D.(Ň	Adjace	ent Source	S
NOTES Preliminary Assessment	tor PFAS at WY	ARNG AASF, W		Λ	•		
REVISED 9/4/2020	GIS BY	MS	9/4/2020		AECOM	F !	- E 4
SCALE 1:8,520 Base Map: Source: Esri. Maxar. GeoFve. Farthetar	СНК ВҮ	VK	9/4/2020		12420 Milestone Center Driv	ve Figu	re 5-1
Geographics, CNES/Airbus DS, USDA, USGS,	PM	RG	9/4/2020	V	Germantown, MD 20876		

Base Map: Source: Esh, Maxar, George House, Earnistar Georgraphics, CKES/Arbus SJ, SUSAJ, USSS, PM RG 9/4/2020 Germantown, MD 20876 C:Users\stankevichm\OneDrive - AECOM Directory\ARNG_PFAS_GIS_60552172'IMXDs\WY\WYARNG_AASF_PA_Figures\Fig_5-1_WYARNG_AASF_Adjacent_Sources.mxd

6. Preliminary Conceptual Site Model

Based on the PA findings, no AOIs were identified at the AASF. A conceptual site model identifies the three components necessary for a potentially complete exposure pathway: (1) source, (2) pathway, and (3) receptor. If any of these elements are missing, the pathway is considered incomplete.

Based on the findings of this PA, no PFAS sources originated at the AASF or from activities associated with the AASF; therefore, there is no complete exposure pathway to potential receptors.

7. Conclusions

This report presents a summary of available information gathered during the PA on the use and storage of AFFF at the AASF. The PA findings are based on the information presented in **Appendix A** and **Appendix B**.

7.1 Findings

Based on information obtained during interviews conducted with facility personnel who have been familiar with the facility since 2010 and reviewed documentation, no AOIs related to PFAS releases were identified at the AASF. While adjacent sources were identified, evidence obtained during the PA does not support that current or former ARNG facility activities have contributed to PFAS contamination in soil, groundwater, surface water, or sediment. Therefore, the pathways to all human receptors are incomplete. A summary of the PA findings are presented on **Figure 7-1**.

7.2 Uncertainties

A number of information sources were investigated during this PA to determine the potential for PFAS-containing materials to have been present, used, or released at the facility. Historically, documentation of PFAS use was not required because PFAS were considered benign. Therefore, records were not typically kept by the facility or available during the PA on the use of PFAS in training, firefighting, or on its disposition.

The conclusions of this PA are based on all available information, including: previous environmental reports, EDRs[™], observations made during the VSI, and interviews. Interviews of personnel with direct knowledge of a facility generally provided the most useful insights regarding a facility's historical and current PFAS-containing materials. Sometimes, the provided information was vague or conflicted with site observations. Gathered information has a degree of uncertainty due to the absence of written documentation, the limited number of personnel with direct knowledge due to staffing changes, the time passed since PFAS was first used (1969 – present), and a reliance on personal recollection. Inaccuracies may arise in potential PFAS release locations, dates of release, volume of releases, and the concentration of AFFF used. There is also a possibility the PA has missed a source of PFAS, as the science of how PFAS may enter the environment continually evolves.

In order to minimize the level of uncertainty, readily available data regarding the use and storage of PFAS were reviewed, current personnel were interviewed, multiple personnel were interviewed for the same potential source area, and potential source areas were visually inspected. The uncertainties associated with the PA are summarized in **Table 7-1**.

Table 7-1: Uncertainties

Area of Interest	Source of Uncertainty
AOI 1 WYARNG AASF	It is unclear if any AFFF containing PFAS was ever stored, used, or released at WYARNG AASF.

7.3 Potential Future Actions

Based on the documented absence (2010 to present) of the storage, use or release of PFAScontaining materials at the AASF, no AOIs were identified during the PA. Evidence does not support that current or former ARNG activities have contributed to PFAS contamination to soil, groundwater, surface water, or sediment at the facility or adjacent areas. Therefore, the facility will not move forward in the CERCLA process.

8. References

Aerostar SES LLC. 2018. Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming. August 2018.

Board of Public Utilities. 2014. "Water – The Clear Choice" Consumer Confidence Report – January 1 to December 31, 2013. City of Cheyenne, Wyoming. April 2014.

CH2M HILL. 2015. *Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base Wyoming*. December 2015

National Ground Water Association. 2018. Groundwater and PFAS: State of Knowledge and Practice. January 2018.

F.E. Warren AFB. 2017. *Where in the world is F.E. Warren?* <u>https://www.warren.af.mil/About-Us/Fact-Sheets/Display/Article/635369/where-in-the-world-is-fe-warren/</u> (Accessed April 2019). August.

USEPA. 2015. 2013-2015 Environmental Occurrence Data for the Unregulated Contaminant Monitoring Rule (UCMR) <u>https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule#3</u>.

USEPA. 1991. *Guidance for Performing Preliminary Assessments under CERCLA*. EPA/540/G-91/013. September 1991.

Appendix A Data Resources Data Resources will be provided separately on CD. Data Resources for WYARNG AASF include:

Previous Investigations Completed at F.E. Warren Air Force Base

- Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base Wyoming. December 2015
- Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming. August 2018.

WYARNG AASF EDR Report

• 2019 WYARNG AASF EDR Report

Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming

August 2018

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

> Submitted by: U.S. Army Corps of Engineers Omaha District 1616 Capitol Avenue Omaha, Nebraska 68102-4901

Prepared by: Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830-8022 under Contract No. W9128F-15-D-0051 Delivery Order No. 0003

US Army Corps of Engineers.

Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming

August 2018

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by: U.S. Army Corps of Engineers Omaha District 1616 Capitol Avenue Omaha, Nebraska 68102-4901

Prepared by: Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830 under Contract No. W9128F-15-D-0051 Delivery Order No. 0003

	Page
Acronyms and Abbreviations	V11
1.0 INTRODUCTION	1
2.0 AFFF AREA DESCRIPTIONS	
2.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	
2.2 FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	
2.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)	5
3.0 FIELD ACTIVITIES AND FINDINGS	
3.1 FIELD ACTIVITIES AND SAMPLING PROCEDURES	
3.2 PFAS CROSS-CONTAMINATION AVOIDANCE PROCEDURES	7
3.2.1 Field Equipment	
3.2.2 Field Clothing and Personal Protective Equipment (PPE)	7
3.2.3 Sample Containers	
3.2.4 Wet Weather	
3.2.5 Equipment Decontamination	
3.2.6 Personnel Hygiene	
3.2.7 Food Considerations	
3.2.8 Visitors	9
3.3 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	
3.3.1 Sample Locations	
3.3.2 Lunology und son Description	
3.3.4 Analytical Results	
3 3 5 Conclusions	
3.4 FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	13
3.4.1 Sample Locations	
3.4.2 Lithology and Soil Description.	
3.4.3 Groundwater Flow	
3.4.4 Analytical Results	
3.4.5 Conclusions	
3.5 BUILDING 1247–BASE FUELS (AFFF AREA 3)	
3.5.1 Sample Locations	
3.5.2 Lithology and Soil Description	
3.5.3 Groundwater Flow	
3.5.4 Analytical Results	
3.5.5 Conclusions	
3.6 INVESTIGATION-DERIVED WASTE	
4.0 GROUNDWATER PATHWAY	20
4.1 F.E. WARREN AIR FORCE BASE HYDROGEOLOGY	
4.2 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	
4.3 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	
4.4 BUILDING 1247–BASE FUELS (AFFF AREA 3)	
5.0 SURFACE WATER PATHWAY	
5.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	
5.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	23
5.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)	

Table of Contents

6.0 SC	DIL, SEDIMENT, AND AIR PATHWAYS	
6.1	FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	
6.2	FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	
6.3	BUILDING 1247–BASE FUELS (AFFF AREA 3)	23
7.0 UI	PDATES TO CONCEPTUAL SITE MODELS	
7.1	FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	
7.2	FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	
7.3	BUILDING 1247–BASE FUELS (AFFF AREA 3)	25
8.0 SU	JMMARY AND CONCLUSIONS	
8.1	FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	
8.2	FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	
8.3	BUILDING 1247–BASE FUELS (AFFF AREA 3)	
9.0 RI	EFERENCES	

List of Tables

List of Figures

Figure 1 Location of F.E. Warren Air Force Base, Laramie County, WyomingA	\- 1
Figure 2 F.E. Warren Air Force Base AFFF Area LocationsA	\- 2
Figure 3 Former Fire Protection Training Area 2 (AFFF Area 1) Sample Locations and Potentiometric	
ContoursA	\- 3
Figure 4 Former Fire Protection Training Area 3 (AFFF Area 2) Sample Locations and Potentiometric	
ContoursA	\- 4
Figure 5 Building 1247–Base Fuels (AFFF Area 3) Sample Locations and Potentiometic ContoursA	\- 5
Figure 6 Former Fire Protection Training Area 2 (AFFF Area 1) PFBS, PFOA, and PFOS in Groundwat	ter
and Surface WaterA	\-6
Figure 7 Former Fire Protection Training Area 2 (AFFF Area 1) PFBS, PFOA, and PFOS in Soil and	
SedimentA	\- 7
Figure 8 Former Fire Protection Training Area 3 (AFFF Area 2) PFBS, PFOA, and PFOS in Groundwat	ter
and Surface WaterA	\-8

Figure 9 Former Fire Protection Training Area 3 (AFFF Area 2) PFBS, PFOA, and PFOS in Soil and	
Sediment	.A-9
Figure 10 Building 1247–Base Fuels (AFFF Area 3) PFBS, PFOA, and PFOS in Groundwater	4-10
Figure 11 Building 1247–Base Fuels (AFFF Area 3) PFBS, PFOA, and PFOS in SoilA	4- 11
Figure 12 Geologic Map of F.E. Warren Air Force Base	4-12

List of Appendices

- Appendix A Figures
- Appendix B Regional Screening Level Calculations for Soil and Sediment
- Appendix C Data Validation Reports and Laboratory Data Sheets
- Appendix D Physiochemical Analytical Results
- Appendix E Boring Logs and Field Forms
- Appendix F New Monitoring Wells Construction Details
- Appendix G Groundwater Elevation Data

Acronyms and Abbreviations

#	number
%	percent
µg/kg	micrograms per kilogram
μg/L	micrograms per liter
AFB	Air Force Base
AFCEC	Air Force Engineering Center
AFFF	aqueous film forming foam
amsl	above mean sea level
ASL	Aerostar SES LLC
bgs	below ground surface
btoc	below top of casing
CSM	conceptual site model
DW	drinking water
EPA	Environmental Protection Agency
EZ	exclusion zone
ft	foot/feet
FPTA	fire protection training area
GPS	global positioning system
GW	groundwater
HA	health advisory
HDPE	high-density polyethylene
HQ	hazard quotient
ID	identification
IRP	Installation Restoration Program
J	Reported concentration is an estimated value.
JP-4	jet propellant fuel number 4
MDL	method detection limit
mg/kg	milligrams per kilogram
ML	silt
N/A	not applicable
ND	not detected
NL	not listed
OU	operable unit
OWS	oil/water separator
PA	preliminary assessment
PFAS	per- and polyfluorinated alkyl substances
PFBS	perfluorobutane sulfonate
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
pH	potential of hydrogen
PID	photoionization detector
PPE	personal protective equipment
QAPP	quality assurance project plan
QC	quality control
KI	remedial investigation
KSL	Regional Screening Level
SD SD	seament
SI	site inspection
SM	silty sand

SO	subsurface soil
SS	surface soil
SW	surface water
TCE	trichloroethylene
TCLP	toxicity characteristic leaching procedure
TOC	total organic carbon
U	Analyte was not detected above the reported value.
U.S.	United States
USACE	U.S. Army Corps of Engineers
USAF	U.S. Air Force
USCS	Unified Soil Classification System
WSEO	Wyoming State Engineer's Office

1.0 INTRODUCTION

Aerostar SES LLC (ASL), under contract to the United States (U.S.) Army Corps of Engineers (USACE) Omaha District (Contract No. W9128F-15-D-0051, Deliver Order No. 0003), conducted screening-level site inspections (SIs) at three suspected aqueous film forming foam (AFFF) release areas at F.E. Warren Air Force Base (AFB), Laramie County, Wyoming (Figure 1, Appendix A). The purpose of the inspections is to determine the presence or absence of perfluorooctanoic acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorooctane sulfonate (PFOS) in the environment at these areas. The SIs were conducted in accordance with contract requirements (USACE, July 2015), the quality assurance project plan (QAPP) (ASL, March 2016), and the F.E. Warren AFB site-specific addendum to the QAPP (ASL, August 2017). The QAPP and the QAPP addendum were prepared in accordance with U.S. Environmental Protection Agency (EPA) guidance (EPA, March 2012) and Air Force Civil Engineer Center (AFCEC) requirements.

PFOA and PFOS are in a class of synthetic fluorinated chemicals used in industrial and consumer products, including defense-related applications. This class of compounds is also referred to as per- and polyfluorinated alkyl substances (PFAS). In 1970, the U.S. Air Force (USAF) began using AFFF (firefighting agents containing PFOA and PFOS) to extinguish petroleum fires. Releases of AFFF to the environment routinely occured during fire training, equipment maintenance, storage, and use. Although manufacturers have reformulated AFFF to eliminate PFOS, the EPA continues to permit the use of PFOS-based AFFF, and the USAF maintains a significant inventory of PFOS-based AFFF. As of this report, the USAF is actively removing PFOS-based AFFF from its inventory and replacing it with formulations based on shorter carbon chains, which may be less persistent and bioaccumulative in the environment.

The objectives of the SI were to

- determine if a confirmed release of PFOS, PFOA, and PFBS has occurred at the area selected for inspection;
- determine if PFOS and/or PFOA are present in groundwater or surface water at the inspection area at concentrations exceeding the EPA lifetime health advisory (HA) for drinking water (EPA, May 2016a; EPA, May 2016b);
- determine if PFBS, PFOA, and/or PFOS are present in soil or sediment at the inspection area at concentrations exceeding calculated screening levels; and
- identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS or PFOA above the EPA HAs or PFBS above the regional screening level [RSL]) (EPA, May 2018).

The objectives of the SI were to identify any releases of AFFF that resulted in PFOS, PFOA, and/or PFBS contamination in the environment above the project screening levels and identify any possible human exposure to drinking water above the HA levels. This report does not include assessment of ecological exposure pathways, receptors, or risk from PFAS impacts to the environment. Confirmed releases may require further investigation to fully delineate the extent of contamination and perform a complete risk assessment that includes ecological receptors.

After publication of the site-specific QAPP addendum (ASL, August 2017), the USAF determined that more conservative screening levels were appropriate. Therefore, screening levels for PFOS and PFOA in soil and sediment were calculated using the EPA RSL calculator with a target hazard quotient (HQ) of 0.1. Appendix F presents the RSL calculations for soil and sediment based on a Tier 3 toxicity value reference dose of 0.00002 milligrams per kilogram per day derived by EPA in its drinking water HAs for

PFOA (EPA, May 2016a) and PFOS (EPA, May 2016b). Screening levels for PFOS and PFOA in groundwater and surface water are based on EPA lifetime drinking water HAs for PFOA (EPA, May 2016a) and PFOS (EPA, May 2016b). A release was considered confirmed when exceedances of the following concentrations were identified.

PFOS:

- 0.07 micrograms per liter (μ g/L) in groundwater (combined with PFOA value).
- $0.07 \mu g/L$ in surface water (combined with PFOA value).
- 126 micrograms per kilogram (µg/kg) in soil (calculated RSL values).
- 126 µg/kg in sediment (calculated RSL values).

PFOA:

- 0.07 µg/L in groundwater (combined with PFOS value).
- $0.07 \mu g/L$ in surface water (combined with PFOS value).
- 126 µg/kg in soil (calculated RSL).
- 126 µg/kg in sediment (calculated RSL).

Although PFOS and PFOA are the focus of the HA and provide specific targets for the USAF to address in this SI, the EPA has also derived RSLs for PFBS for which there is a Tier 2 toxicity value (Provisional Peer Reviewed Toxicity Value). The USAF also considers a release to be confirmed when exceedances of the following RSL concentrations (HQ = 0.1) are identified:

PFBS:

- 40 μ g/L in groundwater/surface water.
- 130,000 µg/kg in residential soil/sediment.
- 13 µg/kg in soil leaching to groundwater.

PFOA, PFOS, and PFBS are herein referred to collectively as PFAS compounds.

Table 1 presents the screening values used for comparing the analytical results for each of the PFAS compounds.

	Chemical Abstracts Number	EPA Regiona (May	al Screening Lev y 2018 HQ=0.1)	Calculated Regional	EPA Health	
Parameter		Residential Soil (µg/kg)	Soil Leaching to Ground- water (µg/kg)	Tap Water (µg/L)	Screening Levels for Soil and Sediment ^b (μg/kg)	Drinking Water (Surface Water or Groundwater) (μg/L) ^c
Perfluorobutane sulfonate (PFBS)	29420-43-3	130,000	13	40	NL	NL
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	NL	126	o ozd
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	NL	126	0.07*

Table 1 Regulatory Screening Values

^aEPA Regional Screening Levels (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening levels were calculated using the EPA Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgi-

bin/chemicals/csl_search). ^cEPA, May 2016a. *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* and EPA, May 2016b. *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)*. ^dWhen both PFOA and PFOS are present and the combined concentration of PFOA and PFOS are compared with the 0.07 µg/L health advisory level.

combined concentration of PFOA and PFOS are compared with the 0.07 μ g/L health advisory level. μ g/kg = micrograms per kilogram μ g/L = micrograms per liter EPA = Environi

HQ = hazard quotient

 $\mu g/L = micrograms per liter$ EPA = Environmental Protection Agency NL = not listed

A preliminary assessment (PA) conducted in August 2015 identified two locations at F.E. Warren AFB where releases of AFFF may have occurred and further investigation was needed, as summarized on Table 2 (CH2M Hill, December 2015). An additional area that was identified in the PA but not recommended for inspection was also included in the SI at the request of AFCEC personnel. AFFF areas are discussed in Section 2.0 and are shown on Figure 2 in Appendix A. Media evaluated from the AFFF areas included surface soil, subsurface soil (collected in the vadose zone immediately above the water saturated-unsaturated soil interface), groundwater, surface water, and sediment.

Unless otherwise noted, this SI was conducted in accordance with the QAPP (ASL, March 2016) and the F.E. Warren AFB site-specific addendum to the QAPP (ASL, August 2017).

AFFF Area Number	AFFF Inspection Area	Associated Existing IRP Site ID	Rationale
1	Former FPTA 2	FT009	 Two bermed training pits where AFFF was used to extinguish training fires. Training pits were unlined. No retention ponds present.
2	Former FPTA 3	N/A	 One lined pit connected to an OWS and lined retention pond. AFFF was used to extinguish training fires in the lined pit. Liner beneath the training pit leaked.
3	Building 1247–Base Fuels	N/A	 Building has an active AFFF system with overhead lines. Floor drains in the building flow via underground pipes to an OWS then to the sanitary sewer and can be diverted from the OWS to a lined containment pond northeast of the building. A known release of AFFF occurred inside the building bay, but it is unclear if the AFFF went to the OWS or the lined containment pond. In the past, when the containment pond has filled with stormwater, water is pumped from the pond onto the grassy and gravel-covered areas surrounding the pond.
AFB = Air Force Base			AFFF = aqueous film forming foam FPTA = fire protection training area

Table 2 AFFF Area and Selection Rationale for Site Inspections at F.E. Warren AFB

ID = identificationOWS = oil/water separator IRP = Installation Restoration Program

N/A = not applicable

2.0 AFFF AREA DESCRIPTIONS

The following installation information, geologic information, and site descriptions are taken from the QAPP addendum (ASL, August 2017). F.E. Warren AFB is west of Cheyenne in Laramie County, Wyoming. Cheyenne is the capital of Wyoming and has an estimated population of 60,000 residents, making it the largest city in the state. Topography in the area is characterized by rolling hills that are typical of the transition area between the eastern slope of the Rocky Mountains on the west and the high plains on the east. Land use surrounding the base ranges from agricultural to residential housing with Chevenne to the east, and primarily agricultural areas to the north and west. The High Plains Aquifer is the principal source of water in the area. The base the Ogallala Formation comprises the upper part of the High Plains Aquifer.

F.E. Warren AFB, originally Fort D.A. Russell, was established in 1867 on the branch of the South Platte River, 3 miles west of what is today Cheyenne. Originally named in honor of Civil War Brigadier General David A. Russell, F.E. Warren AFB is the oldest continuously active military installation in the Air Force. It's home to the 90th Missile Wing and Headquarters, 20th Air Force, of Air Force Global Strike Command (ASL, August 2017).

Today, the Mighty Ninety operates 150 Minuteman III Intercontinental Ballistic Missiles on full alert 24 hours a day, 365 days a year. The 90th Missile Wing employs approximately 3,361 military members and 964 civilian employees. Family members of assigned military members add another approximately 5,445 to the local population. Also, approximately 5,000 military retirees reside in the area (ASL, August 2017).

Regional Geology

The majority of the region is underlain by Tertiary units of sedimentary origin that generally consist of sand, gravel, clay, siltstone, and limestone. These units are overlain by Quaternary sediments that include alluvial terrace and floodplain deposits. These sediments are generally unconsolidated and consist of lenticular beds of clay, silt, sand, gravel, and boulders (CH2M Hill, December 2015).

Beneath the base, the Tertiary-age (late Miocene) Ogallala unit is a heterogeneous mixture of sand and gravel beds, silt, clay, and thin limestone units. The beds are sometimes cemented by calcium carbonate. Lenses of sand and gravel are generally sporadic but consistently occur from the surface to a depth of about 10 feet below ground surface (bgs) in the southwestern part of the base. Below this depth, the predominant sediments are fine-grained, but sand and gravel still occur. The Ogallala is about 300 feet thick in the northern part of the base, thinning to the south to approximately 30 feet in valleys where it has been deeply eroded (CH2M Hill, December 2015).

2.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

Former Fire Protection Training Area (FPTA) 2 (also known as Installation Restoration Program [IRP] Site FT009 and Operable Unit [OU]-5) is in the central portion of the base, southeast of the intersection of Old Glory Road and Missile Drive. It is approximately 0.25 miles south of Crow Creek. A trichloroethylene (TCE) plume associated with OU-5 is beneath the area. FPTA 2 consisted of two unlined, bermed training pits that were used from 1965 to 1989. No retention ponds were present. Waste oils, solvents, hydraulic fluid, and other combustible liquids were used in training exercises until 1974. After that year, only jet propellant fuel number 4 (JP-4) was used in the training exercises. No fuel storage facilities were located at the area. Fire training exercises occurred twice per month and 300 to 400 gallons of JP-4 were used during each exercise. AFFF and water were used to extinguish fires from 1972 until the FPTA was closed in 1989. This site was considered to need no remedial action, as presented in *Final Record of Decision for Operable Unit 5* (USAF, September 1994). The location of Former FPTA 2 (AFFF Area 1) is included as Figure 3, Appendix A.

2.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

Former FPTA 3 is in the southwestern portion of the base and was active from 1990 to 2000. Former FPTA 3 consisted of an aircraft carcass in a polyethylene-lined training pit and a lined retention pond. The training pit was connected to an oil/water separator (OWS) and water was piped from the OWS to the lined retention pond. Former FPTA 3 was shut down in 2000 because one of the liners beneath the training pit developed a leak. AFFF was used in a limited capacity at Former FPTA 3. The liners for the pit and retention pond have been removed and the retention pond was filled in (CH2M Hill, December 2015). The location of the Former FPTA 3 is included as Figure 4 in Appendix A.
2.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)

Building 1247 is in the southwestern corner of the base on Post Road and Wyoming Avenue. Building 1247–Base Fuels was built in 1995 and has an active AFFF system with overhead lines. The AFFF tank size is unknown, but it is estimated it to be 200 to 300 gallons. A former TCE plume associated with OU-2 and OU-9 is beneath the area, as shown on Figure 5. Building 1247 is connected to a polyethylene-lined containment pond between Buildings 1240 and 1242 and spills can be diverted to this pond, as necessary. The pond liner was replaced with a new polyethylene liner in approximately 2013. When rainwater filled the pond, it was pumped out on to the grassy areas nearby (CH2M Hill, December 2015).

An AFFF leak occurred in the bay of Building 1247 when a pipe in the fire suppression system froze and broke; however, the year of the leak is not known. All AFFF was contained inside the hangar. Floor drains in this building discharge to an OWS and then to the sanitary sewer (which flows to a publicly owned treatment works) unless manually diverted to the containment pond. It is not clear if the valve to the containment pond was opened during the spill; however, the AFFF entered either the OWS and the sanitary sewer or the containment pond, where it would have been left to evaporate. The location of Building 1247–Base Fuels (AFFF Area 3) is shown on Figure 5, Appendix A.

3.0 FIELD ACTIVITIES AND FINDINGS

A readiness review (Appendix E) was conducted for all field personnel prior to mobilizing to the site. The readiness review covered anticipated hazards, types and proper use of equipment needed for the field activities, sampling procedures, and procedures to be used to prevent cross-contamination of samples with PFAS-containing compounds.

3.1 FIELD ACTIVITIES AND SAMPLING PROCEDURES

ASL completed soil sampling and groundwater monitoring well installation at former FE Warren between August 28, 2017, and September 6, 2017.

Soil borings were advanced with a track-mounted, compact sonic drill rig. Soil cores were collected by advancing a 4-inch, inner core barrel to the desired sample depth and overdrilling with a 6-inch outer casing. The core barrel and soil core were-retrieved, leaving the 6-inch outer casing to maintain the integrity of the borehole. Soil cores were then vibrated from the core barrel into plastic sleeves for logging, field screening, and sample collection. Prior to logging, slits were cut in the sample sleeve and the soil core was measured and the recovered length recorded in the boring log. The sample sleeve was then opened and the core visually logged. All borings were logged by a trained geologist (with a degree from an accredited university) experienced in describing soil cores and overseen by a senior geologist. The soil descriptions were assigned in accordance with the *Geology Supplement to the Scope of Services* (USACE, June 2013) and followed this general format:

- Color (using Munsell soil color charts);
- Soil type (fat clay, lean clay, sand, silty gravel, etc.);
- Grading, grain size, consistency/density, moisture content, cementing;
- Other notable features (staining, organics, fossils, odors, etc.); and
- Unified Soil Classification System symbol (CH, CL, SP, GM, etc.).

Surface soil samples were collected from 0 to 6 inches bgs with stainless steel hand augers and stainless steel spoons. Surface soil samples were only analyzed for physiochemical parameters because the surface

soil is fill material related to the construction of the paved driveway leading to the tractor-trailer parking lot. Subsurface soil samples were collected from the soil core generated during sonic drilling, immediately above the water saturated/unsaturated soil interface. Composite surface and subsurface soil samples were submitted to CT Laboratories of Baraboo, Wisconsin, for physiochemical analyses. The physiochemical analyses included soil potential of hydrogen (pH) (EPA Method 9045D), particle size analysis (American Society for Testing and Materials D422), percent solids, and total organic carbon (TOC) content in soil (EPA Lloyd Kahn Method).

Nine groundwater monitoring wells were installed for this SI. The wells were constructed with 2-inch diameter, 10-foot-long Schedule 40 polyvinyl chloride (PVC) screens (continuous wrap 0.010-inch slot) and risers with flush-threaded joints. Sand filter packs were installed by tremieing sand through the outer sonic casing and vibrating it in place. Boring logs and well construction diagrams are included in Appendix E. Bentonite seals were allowed to hydrate for at least 24 hours (and typically up to 48 hours) before development. Each monitoring well was developed until the column of water in the well was free of visible sediment, and/or pH, temperature, turbidity, and specific conductivity stabilized. Well development was completed after bentonite seal hydration and before grouting. Well development logs are in Appendix E. Construction details for the new and existing wells are summarized in Table F-1 in Appendix F. Groundwater sampling was completed at least 24 hours after development.

Groundwater samples were collected with a peristaltic pump and disposable polyvinyl tubing using lowflow sampling methodology from two existing wells and the nine newly installed wells. Sediment samples were collected using a combination of dip samplers and stainless steel spoons. Surface water samples were collected directly from surface water bodies into the sample containers. Well development logs, groundwater sampling logs, and sample collection forms are included in Appendix E.

Surface water samples were collected directly from surface water bodies into the sample containers. At AFFF Area 2, one of the planned surface water samples (sample location FEWRN02-005) could not be collected because of dry conditions; therefore, the co-located sediment sample (FEWRN02-005-SD-001) was collected as a surface soil sample (FEWRN02-005-SS-001). Sediment samples were collected using stainless steel spoons. Surface water and sediment sampling forms are including in Appendix E.

Environmental samples were submitted via overnight courier to Maxxam Analytics International Corporation of Mississauga, Ontario, Canada, under chain of custody procedures. The samples were analyzed by modified EPA Method 537, *Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)*. Eighteen PFAS compounds are included in this analysis. Analytical results and a full list of the 18 compounds are in Appendix C. However, only the three analytes listed below have health-based screening levels associated with them.

Analyte	CAS Number
• Perfluorobutane sulfonate (PFBS)	29420-43-3
• Perfluorooctanoic acid (PFOA)	335-67-1
• Perfluorooctane sulfonate (PFOS)	1763-23-1
CAS = Chemical Abstracts Service	

Field duplicate samples were collected at a frequency of one for every 10 samples for each sample media. Matrix spike/matrix spike duplicate samples were collected at a frequency of one per every 20 samples for each media. Third-party Stage 2B validation was completed on 100% of the analytical data, and Stage 4 validation was completed on 10% of the results. Data validation qualifiers were applied, as needed, to the data. All results were evaluated as usable, and no determinations for the AFFF area were changed as a

result of quality control (QC)-qualified data. The data validation report and laboratory data sheets (which include analytical results for all 18 PFAS compounds) are in Appendix C.

Land survey was used to record the coordinates and surface elevations of the soil borings and the surface elevations and top-of-casing elevations of the groundwater monitoring wells. Survey data from a licensed surveyor provides an accuracy of one-hundredth of a foot (horizontal and vertical) for the soil borings and monitoring wells. Northing and easting coordinates were recorded in U.S. survey feet using the Wyoming State Plane East Zone 83-2011 coordinate system. Elevations were recorded referenced to the North American Vertical Datum 1988. Surface water and sediment sample locations were recorded with a Trimble[®] Geo 7X handheld global positioning system (GPS) unit. Post-processed horizontal data collected with the Trimble[®] Geo 7X is accurate to sub-meter intervals. Survey data for the monitoring wells are included in Table F-1. Locations collected with the handheld GPS are included in Table F-2.

Sample locations, area-specific lithology, groundwater flow direction, analytical results, and conclusions for AFFF Area 1 are presented in Section 3.3.

3.2 PFAS CROSS-CONTAMINATION AVOIDANCE PROCEDURES

Field personnel complied with PFAS cross-contamination avoidance procedures and considerations, which are included in ASL Standard Operating Procedure 028, *Field Sampling Protocols to Avoid Cross-Contamination at Perfluorinated Compounds (PFCs) Sites*.

3.2.1 Field Equipment

- Teflon[®]-containing materials (Teflon[®] tubing, bailers, tape, plumbing paste, or other Teflon[®] materials) were not used because Teflon[®] contains fluorinated compounds.
- High-density polyethylene (HDPE) and silicon materials are acceptable.
- Peristaltic pumps were used to sample groundwater for all wells at FE Warren.
- Field notes were recorded in a bound logbook that did not have waterproof paper.
- All personnel changed gloves between recording and sampling activities to prevent crosscontamination.
- Post-It Notes[®] were not allowed on site.
- Only Sharpie[®] brand markers were used. Pens were used to document field activities in the logbooks and on field forms, to label sample containers, and to prepare the chains of custody.
- Chemical (blue) ice packs were not used to store samples, food, or drinks.

3.2.2 Field Clothing and Personal Protective Equipment (PPE)

- The sampling personnel wore field clothing made of synthetic and natural fibers (preferably cotton). The clothing had to have been laundered at least six times without using a fabric softener since it was purchased. New clothing was not allowed because it could contain PFAS-related treatments.
- Only rain gear made from polyurethane and wax-coated materials was allowed.
- Clothing or boots containing Gore-Tex[™] was not allowed because it consists of a PFAS membrane.
- Tyvek[®] clothing was not allowed on-site because it contains fluorinated compounds.
- Disposable nitrile gloves were worn at all times when field activities were being conducted, and a new pair was donned prior to the following activities at each sample location:
 - Decontamination of reusable sampling equipment;

- Contact with sample bottles or water containers;
- Insertion of anything into the well (HDPE tubing, HydraSleeve[®] bailer, etc.);
- Insertion of silicon tubing into the peristaltic pump;
- Completion of monitor well purging;
- Sample collection; and
- Handling of any quality assurance/QC samples, including field blanks and equipment blanks.
- A new pair of nitrile gloves were worn after handling any non-dedicated sampling equipment, after contact with surfaces that had not been decontaminated, or when field personnel thought it was necessary.

3.2.3 Sample Containers

- All samples were collected in polypropylene or HDPE bottles with screw caps made of the same materials. The liners of lined screw caps were not made of Teflon[®] and did not contain PFAS.
- Glass sample containers were not used.
- Container labels were completed using a Sharpie[®] pen after the caps had been placed on each bottle.

3.2.4 Wet Weather

- Field personnel who were sampling during wet weather (such as rainfall or snowfall) wore appropriate clothing that did not pose a risk of cross-contamination. Sampling personnel avoided synthetic gear treated with water-repellant finishes containing PFAS. Only rain gear made from polyurethane and wax-coated materials was allowed.
- Field personnel wore gloves when erecting or moving a gazebo tent overtop used for protection from rain at sampling locations because the canopy material may have been treated with a PFAS-based coating. Gloves were changed immediately after handling the tent, and any further contact with the tent was avoided until all sampling activities were finished and the team was ready to move on to the next sample location.

3.2.5 Equipment Decontamination

Field sampling equipment, including oil/water interface meters and water level indicators, were decontaminated using Alconox[®] or Liquinox[®] soap. Decon 90[®] was not used during decontamination activities. Laboratory-certified PFAS-free water was used for the final decontamination rinse of sampling equipment. Larger equipment, such as drill rigs, was decontaminated using potable water and a high-pressure washer and then rinsed with potable water.

3.2.6 Personnel Hygiene

- Field personnel did not use cosmetics, moisturizers, hand cream, or other related products as part of their personal hygiene routine before a sampling event because these products may contain surfactants and be a potential source of PFAS.
- Because many manufactured sunblock and insect repellants contain PFAS, only sunblock and insect repellants that contain 100% natural ingredients were allowed.
- For restroom breaks, field personnel left the exclusion zone (EZ) before removing PPE. Before returning to the EZ, field personnel washed as normal, allowing extra time to rinse with water after using soap. Field personnel used a mechanical dryer to avoid using paper towels if possible.

3.2.7 Food Considerations

Field personnel did not eat or drink inside the EZ.

3.2.8 Visitors

Site visitors remained outside the EZ during all sampling activities.

3.3 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

3.3.1 Sample Locations

Surface and subsurface soil samples were collected from three boring locations, two within the perimeter of the former unlined burn pit in the northeast portion of the AFFF area and the other within the perimeter of southwestern former unlined burn pit. Two groundwater monitoring wells (FEWRN01-MW001 and FEWRN01-MW002) were installed in borings FEWRN01-001 and FEWRN01-003, respectively. Groundwater samples were collected from the newly installed wells and two existing wells (MW-070 and MW-071) located north and west, respectively, of FPTA 2. Surface water and sediment samples were collected from two locations northeast of Former FPTA 2: one from the inlet to a drainage culvert that drains surface water from Former FPTA 2 northeast to Crow Creek, and one from the confluence of the drainage ditch and Crow Creek. Sampling locations for AFFF Area 1 are shown on Figure 3 (Appendix A).

3.3.2 Lithology and Soil Description

Borings FEWRN01-001, FEWRN01-002, and FEWRN01-003 were drilled to total depths of 20.0 feet bgs, 20.0 feet bgs, and 21.0 feet bgs, respectively. The overlying unconsolidated soils are primarily very pale brown, clayey, fine-to-medium sands (SC) with varying soil depths; sandy lean clay interbedded with sand (CL); and fine- to coarse-grained, clayey gravel (GC) overlying medium- to coarse-grained sandstone. During drilling bedrock was encountered at 13 feet bgs in FEWRN01-001 and at 20 feet bgs in FEWRN01-003. Bedrock was not encountered in FEWRN01-002. Detailed boring logs for AFFF Area 1 are included in Appendix E.

3.3.3 Groundwater Flow

Groundwater depths were measured at AFFF Area 1 on September 5, 2017, as summarized on Table G-1 in Appendix G. Based on depth-to-groundwater measurements in monitoring wells FEWRN01-MW001, FEWRN01-MW002, MW-070, and MW-071, the groundwater elevations were calculated at 6117.48 feet above mean sea level (amsl), 6121.44 feet amsl, 6120.92 feet amsl, and 6114.21 feet amsl, respectively. Depth to groundwater ranges between 9.63 and 13.99 feet below top of casing (btoc). Groundwater flow is to the north-northeast, as shown on Figure 3 in Appendix A.

3.3.4 Analytical Results

Groundwater

PFBS, PFOA, and PFOS were detected in the four primary groundwater samples and one field duplicate groundwater sample collected from four monitoring wells (FEWRN01-MW001, FEWRN01-MW003, MW-070, and MW-071). PFBS concentrations in all five samples were below the screening level. PFOA, PFOS, and the combined PFOA and PFOS concentrations exceeded the screening levels in all five

samples. Groundwater analytical results are summarized in Table 3 and are shown on Figure 6 in Appendix A.

Analyte	Sample ID	FEWRN01- 001-GW- 015	FEWRN01- 003-GW- 015	FEWRN01- 003-GW- 915 (duplicate)	FEWRN01- MW-070- GW-020	FEWRN01- MW071- GW-020
	Screening Level (µg/L)		Result (μg/L)	Result (μg/L)	Result (μg/L)	Result (μg/L)
Perfluorobutane sulfonate (PFBS)	40ª	11	0.97	1.1	1.7	0.39
Perfluorooctanoic acid (PFOA)	0.07 ^b	72	0.43	0.48	5.4	0.24
Perfluorooctane sulfonate (PFOS)	0.07 ^b	64	2.5	3.2	6.0	0.35
PFOS + PFOA ^c	0.07 ^b	136	2.93	3.68	11.4	0.59

Table 3 AFFF Area 1 – Former Fire Protection Training Area 2, Groundwater Analytical Results

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte detected above screening level.

^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening level listed in Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA) (EPA, May 2016a) and Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) (EPA, May 2016b).

^eEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present. ID = identification

 $\mu g/L = micrograms per liter$ GW = groundwater

Surface Water

Two primary and one duplicate surface water samples were collected from downgradient drainage locations. PFBS, PFOA, and PFOS were detected in all three samples, but the concentrations of PFBS did not exceed the screening levels in any of the samples. PFOA and PFOS concentrations exceeded the screening level in FEWRN01-005-SW-001 and its field duplicate. The combined PFOA and PFOS concentrations exceeded screening levels in all three samples. Surface water sample analytical results are summarized in Table 4 and are shown on Figure 6 in Appendix A.

	Sample ID	FEWRN01- 004-SW-001	FEWRN01- 005-SW-001	FEWRN01- 005-SW-901 (duplicate)
Analyte	Screening Level (µg/L)	Result (μg/L)	Result (μg/L)	Result (µg/L)
Perfluorobutane sulfonate (PFBS)	40 ^a	0.013 J	0.13	0.13
Perfluorooctanoic acid (PFOA)	0.07 ^b	0.043	0.33	0.33
Perfluorooctane sulfonate (PFOS)	0.07 ^b	0.045	1.2	1.2
PFOS + PFOA [°]	0.07 ^b	0.088	1.53	1.53

Fable 4 AFFF Area 1 -	– Former Fire I	Protection [Fraining A	rea 2, S	urface Wate	er Analytical	Results
						•/	

Bold values indicate analyte detected at concentration indicated.

Shaded cells indicate analyte detected above screening level.

^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening level listed in Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA) (EPA, May 2016a) and Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) (EPA, May 2016b).

°EPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

 $\mu g/L = micrograms per liter$ ft = footID = identification

J = reported concentration is an estimated value SW = surface water

Surface Soil

Three primary and one field duplicate surface soil samples were collected from three boring locations. PFBS was detected in the three primary samples and exceeded the soil leaching to groundwater screening level at FEWRN01-001-SS-001. PFOA was detected in all three primary and one duplicate samples. The PFOA concentration in the primary sample FEWRN01-001-SS-001 was detected above the screening level. PFOS was also detected in all four samples and the concentrations in FEWRN01-001-SS-001 and FEWRN01-002-SS-001 were detected above the screening level. Surface soil analytical results are summarized in Table 5 and shown on Figure 7 in Appendix A.

	Sample ID	FEWRN01- 001-SS-001	FEWRN01- 001-SS-001 FEWRN01- 002-SS-001		FEWRN01- 003-SS-901 (duplicate)
Analyte	Depth (ft)	0-0.5	0-0.5	0-0.5	0-0.5
	Screening Level (μg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000ª	3,600	0.59 J	0.59 J	0.52 U
Perfluorooctanoic acid (PFOA)	126 ^b	50,000	2.2	2.2	2.0
Perfluorooctane sulfonate (PFOS)	126 ^b	3,400	140	62	71

Table 5 AFFF Area 1 – Former Fire Protection Training Area 2, Surface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte detected above screening level.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). ^cEPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

µg/kg = micrograms per kilogram ID = identification SS = surface soil ft = foot/feet

J = Reported concentration is an estimated value.

U = Analyte was not detected above the reported value.

Subsurface Soil

Three primary subsurface samples and one duplicate sample were collected from three soil borings. PFBS, PFOA, and PFOS were detected in the three primary samples at concentrations below the screening level. PFOS was detected in the duplicate sample below the screening level. Subsurface soil analytical results are summarized in Table 6 and shown on Figure 7 in Appendix A.

	Sample ID	FEWRN01- 001-SO-018	FEWRN01- 002-SO-018	FEWRN01- 003-SO-016	FEWRN01- 003-SO-916 (duplicate)
Analyte	Depth (ft)	18–19	18–19	16–17	16–17
	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000ª	0.64 J	1.3	0.65 J	0.66 U
Perfluorooctanoic acid (PFOA)	1,26 ^b	2.8	6.0	0.94 J	0.66 U
Perfluorooctane sulfonate (PFOS)	1,26 ^b	4.0	20	0.80 J	0.51 J

Table 6 AFFF Area 1 – Former Fire Protection Training Area 2, Subsurface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). ^cEPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

 $\mu g/kg = \text{micrograms per kilogram}$ ft = foot/feet ID = identification J = Reported concentration is an estimated value. SO = subsurface soil U = Analyte was not detected above the reported value.

Soil Physiochemical Analyses

One composite surface soil sample and one composite subsurface soil sample were collected from soil borings completed at AFFF Area 1 and analyzed for pH, TOC, percent solids, and grain size. The surface soil sample FEWRN01-006-SS-001 was composed of equal aliquots of soil collected from borings FEWRN01-001, FEWRN01-002, and FEWRN01-003 from the 0–6-inch interval. Similarly, the subsurface soil sample FEWRN01-006-SO-017 was composed of equal aliquots of soil collected from soil borings FEWRN01-001, FEWRN01-006-SO-017 was composed of equal aliquots of soil collected from soil borings FEWRN01-001, FEWRN01-002, and FEWRN01-003 from 16 feet bgs to 19 feet bgs. Table D-1 (summarizing physiochemical data) and laboratory data sheets are included in Appendix D.

Sediment

Two primary and one duplicate sediment samples were collected from downgradient drainage locations. PFBS was not detected in the samples. PFOA was detected in the primary and field duplicate samples collected from FEWRN01-005 at concentrations below the screening level. PFOS was detected in all three samples at concentrations below the screening level. Sediment sample analytical results are summarized in Table 7 and shown on Figure 7 in Appendix A.

	Sample ID	FEWRN01-004- SD-001	FEWRN01-005- SD-001	FEWRN01-005- SD-901 (duplicate)
Analyte	Depth (ft)	0-0.5	0-0.5	0-0.5
	Screening Level (µg/kg) (µg/l		Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000ª	0.72 U	0.66 U	0.84 U
Perfluorooctanoic acid (PFOA)	126 ^b	0.72 U	0.63 J	0.56 J
Perfluorooctane sulfonate (PFOS)	126 ^b	1.1 J	5.2 J	1.9 J

Table 7 AFFF Area 1 – Former Fire Protection Training Area 2, Sediment Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels for Resident Soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generictables). ^bScreening levels calculated using the EPA Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgibin/chemicals/csl_search). ^cEPA Regional Screening Levels for soil protective of groundwater (May 2018)

(https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

 $\mu g/kg = micrograms$ per kilogram ft = feet ID = identification J = Reported concentration is an estimated value. SD = sediment U = Analyte was not detected above the reported value.

3.3.5 Conclusions

Operations at the Former FPTA 2 have resulted in detections of PFAS in surface soil, subsurface soil, groundwater, surface water, and sediment. However, only PFAS concentrations in surface soil, groundwater, and surface water exceeded the screening levels.

3.4 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

3.4.1 Sample Locations

Surface soil samples were not collected from the soil boring locations at former FPTA 3 because the area had been filled with a soil-gravel mix after operations at the FPTA had been ceased. Subsurface soil samples were collected from soil borings at four locations at Former FPTA 3. One boring, FEWRN02-001, is on the western side of the FPTA 3. Location FEWRN02-002 is within the perimeter of the former training pit in the southern portion of the AFFF area. Boring FEWRN02-003 is located on eastern side of Former FPTA 3 and FEWRN02-004 is within the footprint of the retention pond. A monitoring well was installed in each boring and groundwater samples were collected from these newly installed wells (FEWRN02-MW001, FEWRN02-MW002, FEWRN02-MW003, and FEWRN02-MW004). Surface water and sediment samples (location FEWRN02-006) were collected from Crow Creek, northeast of Former FPTA 2. Surface water was not present at FEWRN02-005 at the inlet to a culvert that drains FPTA 3 northeast to Crow Creek; therefore, a surface soil sample was collected at this location in lieu of a sediment/surface water sample. Sampling locations for AFFF Area 2are shown on Figure 4 (Appendix A).

3.4.2 Lithology and Soil Description

Borings FEWRN02-001, FEWRN02-002, FEWRN02-003, and FEWRN02-004 were drilled to total depths of 30.0 feet bgs, 40.0 feet bgs, 35.0 feet bgs, and 30.0 feet bgs, respectively. The soils varied from sandy, lean clay (CL); clayey sand (SC); and fat clay (CH). Detailed boring logs for AFFF Area 2 are included in Appendix E.

3.4.3 Groundwater Flow

Groundwater depths were measured at AFFF Area 2 on September 5, 2017, as summarized on Table G-1 in Appendix G. Based on depth-to-groundwater measurements in monitoring wells FEWRN02-MW001, FEWRN02-MW002, FEWRN02-MW003, and FEWRN02-MW004, the groundwater elevations were calculated at 6136.13 feet amsl, 6136.64 feet amsl, 6132.90 feet amsl, and 6132.74 feet amsl, respectively. Depth to groundwater ranges between 13.78 and 15.84 feet btoc. Groundwater flow is to the southeast, as shown on Figure 4 in Appendix A.

3.4.4 Analytical Results

Groundwater

PFBS, PFOA, and PFOS were detected in the four primary groundwater samples collected from four monitoring wells (FEWRN02-MW001, FEWRN02-MW002, FEWRN02-MW003, and FEWRN02-MW004). PFBS concentrations in all four samples were below the screening level. PFOA concentrations in two samples (FEWRN02-003-GW-030 and FEWRN02-004-GW-024) exceeded the screening level. PFOS and the combined PFOA and PFOS concentrations exceeded the screening levels in all four samples. Groundwater analytical results are summarized in Table 8 and are shown on Figure 8 in Appendix A.

	Sample ID	FEWRN02- 001-GW-025	FEWRN02- 002-GW-033	FEWRN02- 003-GW-030	FEWRN02- 004-GW-024
Analyte	Screening Level (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)
Perfluorobutane sulfonate (PFBS)	40 ^a	0.074	0.022	3.2	3.7
Perfluorooctanoic acid (PFOA)	0.07^{b}	0.031	0.029	0.95	1.1
Perfluorooctane sulfonate (PFOS)	0.07 ^b	0.72	0.91	17	19
PFOS + PFOA ^c	0.07 ^b	0.751	0.939	17.95	20.1

Table 8	AFFF Area	2 – Former	Fire Prote	ction Tr	aining A	Area 3,	Groundwater	Analytical	Results
								•	

Bold values indicate analyte detected at concentration indicated. <u>Shaded</u> values indicate analyte detected above screening level. ^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening Level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

°EPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

 $\mu g/L =$ micrograms per liter GW = groundwater ID = identification

Surface Water

According to the QAPP, two surface water samples were planned to be collected from the AFFF area; however, one location (FEWRN-02-005) was dry. PFAS were not detected in the samples above the laboratory method detection limit (MDL). Surface water sample analytical results are summarized in Table 9 and shown on Figure 8 in Appendix A.

	Sample ID	FEWRN02-006-SW-001
	Depth (ft)	0–0.5
Analyte	Screening Level (µg/L)	Result (µg/L)
Perfluorobutane sulfonate (PFBS)	40 ^a	0.010 U
Perfluorooctanoic acid (PFOA)	0.07 ^b	0.010 U
Perfluorooctane sulfonate (PFOS)	0.07 ^b	0.010 U
PFOS + PFOA ^c	0.07 ^b	ND

Table 9 AFFF Area 2 – Former Fire Protection Training Area 3, Surface Water Analytical Results

^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

^cEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

 $\mu g/L = micrograms per liter$

ID = identification

SW = surface water

ft = foot/feet

ND = not detected

U = Analyte was not detected above the reported value.

Surface Soil

The QAPP called for the collection of both a surface water and sediment sample to be obtained at sample location FEWRN02-005; however, the surface water sample location was dry. Because of the field condition change, the sample matrix was re-categorized as a surface soil sample (FEWRN02-005-SS-001). PFBS, PFOA, and PFOS were detected in this sample at concentrations below the screening level. Surface soil analytical results are summarized in Table 10 and shown on Figure 9 in Appendix A.

T . I. I .	$10 \ \mathbf{EEE}$	A	F 1	P ¹ D	- 4 4	T	A	C	C - 1 A 1		D1 4
I anie		Area / _	Hormer	HIRA PR	ATECTION	raining	Area 1	Surgee	Sou Angi	VIICALE	Z ACHITC
I ant	IV AI I I	$\mathbf{A} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$	runu		ouccuon	II amme	m ca J.	Surface	Son Ana	y urcar r	NUSUIUS
							,			•/	

	Sample ID	FEWRN02-005-SS-001		
	Depth (ft)	0–0.5		
Analyte	Screening	Dosult		
	Level	(ug/kg)		
	(µg/kg)	(μg/Kg)		
	13°	2.0		
Perfluorobutane sulfonate (PFBS)	130,000ª	2.9		
Perfluorooctanoic acid (PFOA)	126 ^b	2.0		
Perfluorooctane sulfonate (PFOS)	126 ^b	38		

Bold values indicate analyte detected at concentration indicated.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). ^cEPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

 $\mu g/kg =$ micrograms per kilogram ft = foot/feet ID = identification SS = surface soil

Subsurface Soil

Four primary subsurface samples were collected from four soil borings. PFBS was detected in two primary samples at concentrations below the screening level. PFOA was also detected in two primary samples at concentrations below the screening level. PFOS was detected in three primary samples below the screening level. Subsurface soil analytical results are summarized in Table 11 and shown on Figure 9 in Appendix A.

	Sample ID	FEWRN02- 001-SO-028	FEWRN02- 002-SO-031	FEWRN02- 003-SO-031	FEWRN02- 004-SO-013
Analyte	Depth (ft)	28–29	31–32	31–32	13–14
	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000ª	0.66 U	0.66 U	0.76 J	1.1 J
Perfluorooctanoic acid (PFOA)	126 ^b	0.66 U	0.66 U	0.45 J	0.98 J
Perfluorooctane sulfonate (PFOS)	126 ^b	0.66 U	0.80 J	3.2	82

Table 11 AFFF Area 2 – Former Fire Protection Training Area 3, Subsurface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

^c EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

 $\mu g/kg = micrograms per kilogram$

ID = identification

SO = subsurface soil

ft = foot/feet

J = Reported concentration is an estimated value.

U = Analyte was not detected above the reported value.

Soil Physiochemical Analyses

A composite subsurface soil sample was collected from soil borings completed at AFFF Area 2 and analyzed for pH, TOC, percent solids, and grain size. The soil sample FEWRN02-007-SS-031 was composed of equal aliquots of soil collected from borings FEWRN02-001, FEWRN02-002, FEWRN02-003, and FEWRN02-004 from 13 feet bgs to 32 feet bgs. A composite surface soil sample was not collected from AFFF Area 2 boring locations because when this FPTA was decommissioned in 2007, the retention pond and OWS were excavated and the area backfilled. Table D-1 (summarizing physiochemical data) and laboratory data sheets are included in Appendix D.

Sediment

One primary sediment sample was collected from a downgradient drainage location. PFAS were not detected in the samples above the laboratory MDL. Sediment sample analytical results are summarized in Table 12 and shown on Figure 9 in Appendix A.

	Sample ID	FEWRN02-006-SD-001
	Depth (ft)	0-0.5
Analyte	Screening	Descrit
	(µg/kg)	kesuit (μg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000ª	0.66 U
Perfluorooctanoic acid (PFOA)	126 ^b	0.66 U
Perfluorooctane sulfonate (PFOS)	126 ^b	0.66 U

Table 12 AFFF Area 2 – Former Fire Protection Training Area 3, Sediment Analytical Results

^aEPA regional screening levels for resident soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rslsgeneric-tables)

^bScreening levels calculated using the EPA Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgibin/chemicals/csl search).

^c EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regionalscreening-levels-rsls-generic-tables). ft = foot/feet

 $\mu g/kg = micrograms per kilogram$

ID = identification

SD = sediment

U = Analyte was not detected above the reported value.

3.4.5 Conclusions

Operations at Former FPTA 3 have resulted in detections of PFAS in surface soil, subsurface soil, and groundwater. However, only PFAS concentrations in groundwater exceeded the screening levels.

3.5 **BUILDING 1247–BASE FUELS (AFFF AREA 3)**

3.5.1 **Sample Locations**

Surface and subsurface soil samples were collected from soil borings at four locations around the retention pond that holds Building 1247 floor drainage. The retention pond is northeast of the building. The borings were located roughly at the corners of the retention pond starting at the southwest corner (FEWRN03-001) and continuing counterclockwise (FEWRN03-002, southeast corner; FEWRN03-003, northeast corner) to the northwest corner (FEWRN03-004). Monitoring wells FEWRN03-MW001, FEWRN03-MW002, and FEWRN03-MW003 were installed in three of the borings of corresponding boring holes, and groundwater samples were collected from the newly installed wells. Sampling locations for AFFF Area 3 are shown on Figure 5 (Appendix A).

3.5.2 Lithology and Soil Description

Borings FEWRN03-001, FEWRN03-002, FEWRN03-003, and FEWRN03-004 were drilled to total depths of 26.1 feet bgs, 26.0 feet bgs, 35.0 feet bgs, and 30.0 feet bgs, respectively. The soils varied from sandy, lean clay (CL) and clayey sand (SC). Detailed boring logs for AFFF Area 3 are included in Appendix E.

3.5.3 **Groundwater Flow**

Groundwater depths were measured at AFFF Area 3 on September 5, 2017, as summarized on Table G-1 in Appendix G. Based on depth-to-groundwater measurements in monitoring wells FEWRN03-MW001, FEWRN03-MW002, and FEWRN03-MW003, the groundwater elevations were calculated at 6146.04

feet amsl, 6145.15 feet amsl, and 6145.53 feet amsl, respectively. Depth to groundwater ranges between 8.42 and 9.44 feet bloc. Groundwater flow is to the east, as shown on Figure 5 in Appendix A.

3.5.4 Analytical Results

Groundwater

PFBS, PFOA, and PFOS were detected in the three primary and one field duplicate groundwater samples collected from three monitoring wells (FEWRN03-MW001, FEWRN03-MW002, and FEWRN03-MW003). PFBS concentrations in all four samples were below the screening level. PFOA, PFOS, and the combined PFOA and PFOS concentrations in all four samples exceeded the screening levels. Groundwater analytical results are summarized in Table 13 and are shown on Figure 10 in Appendix A.

	Sample ID	FEWRN03- 001-GW- 020	FEWRN03- 002-GW- 020	FEWRN03- 003-GW- 020	FEWRN03- 003-GW-920 (duplicate)
Апајуте	Screening Level (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)
Perfluorobutane sulfonate (PFBS)	40ª	0.16 J	0.38	0.31	0.36
Perfluorooctanoic acid (PFOA)	0.07 ^b	0.16 J	0.26	0.59	0.66
Perfluorooctane sulfonate (PFOS)	0.07 ^b	0.82	0.72	1.3	1.7
PFOS + PFOA°	0.07 ^b	0.98 J	0.98	1.89	2.36

Table 13 AFFF Area 3 - Building 1247-Base Fuels, Groundwater Analytical Results

Bold values indicate analyte detected at concentration indicated. <u>Shaded</u> values indicate analyte detected above screening level. ^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

^b EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^cEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

 $\mu g/L =$ micrograms per liter GW = groundwater

ID = identification

J = Reported concentration is an estimated value.

Surface Soil

Four primary surface soil samples were collected from four boring locations. PFBS was detected in three samples at concentrations below the screening level. PFOA was detected in all four primary samples at concentrations below the screening level. PFOS was also detected in the four samples, and the concentrations in FEWRN03-001-SS-001 and FEWRN03-004-SS-001 were detected above the screening level. Surface soil analytical results are summarized in Table 14 and shown on Figure 11 in Appendix A.

	Sample ID	FEWRN03- 001-SS-001	FEWRN03- 002-SS-001	FEWRN03- 003-SS-001	FEWRN03- 004-SS-001
Anglyta	Depth (ft)	0-0.5	0-0.5	0-0.5	0-0.5
Анауи	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000ª	0.35 J	0.53 U	0.41 J	7.6 J
Perfluorooctanoic acid (PFOA)	126 ^b	0.64 J	0.38 J	1.5	8.7 J
Perfluorooctane sulfonate (PFOS)	126 ^b	130	22	73	1,600

Bold values indicate analyte detected at concentration indicated. Shaded values indicate analyte detected above screening level. ^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generictables).

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search). ° EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screeninglevels-rsls-generic-tables).

 $\mu g/kg = micrograms per kilogram$

ID = identification

ft = foot/feet

SS = surface soil

J = Reported concentration is an estimated value.

Subsurface Soil

Four primary subsurface samples and one field duplicate sample were collected from four soil borings. PFBS was detected in three primary samples and the field duplicate at concentrations below the screening level. PFOA was detected in the two primary samples and the field duplicate sample at concentrations below the screening level. PFOS was detected in one primary sample below the screening level. Subsurface soil analytical results are summarized in Table 15 and shown on Figure 11 in Appendix A.

	Sample ID	FEWRN03- 001-SO-008	FEWRN03- 002-SO-007	FEWRN03- 003-SO-008	FEWRN03- 003-SO-908 (duplicate)	FEWRN03- 004-SO-008
Analyte	Depth (ft)	8–9	7–8	8–9	8–9	8–9
	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000ª	0.43 J	0.53 U	0.55 J	0.81 J	0.37 J
Perfluorooctanoic acid (PFOA)	126 ^b	0.66 U	0.34 J	0.53 J	0.50 J	0.53 U
Perfluorooctane sulfonate (PFOS)	126 ^b	0.66 U	11	0.78 U	0.72 U	0.53 U

Bold values indicate analyte detected at concentration indicated.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generictables). ^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search). ^c EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screeninglevels-rsls-generic-tables).

 $\mu g/kg = micrograms per kilogram$ SO = subsurface soil

ft = foot/feet ID = identification J = Reported concentration is an estimated value. U = Analyte was not detected above the reported value.

Soil Physiochemical Analyses

A composite surface soil sample was collected from soil borings completed at AFFF Area 3 and analyzed for pH, TOC, percent solids, and grain size. The soil sample FEWRN03-005-SS-001 was composed of equal aliquots of soil collected from borings FEWRN03-001, FEWRN03-002, FEWRN03-003, and FEWRN03-004 from the 0–6-inch interval. Similarly, the subsurface soil sample FEWRN03-005-SO-008 was composed of equal aliquots of soil collected from soil borings FEWRN03-001, FEWRN03-001, FEWRN03-002, FEWRN03-002, FEWRN03-003, and FEWRN03-004 from 7 feet bgs to 9 feet bgs. Table D-1 (summarizing physiochemical data) and laboratory data sheets are included in Appendix D.

3.5.5 Conclusions

Operations at the Building 1247–Base Fuels have resulted in detections of PFAS in surface soil, subsurface soil, and groundwater. However, only PFAS concentrations in surface soil and groundwater exceeded the screening levels.

3.6 INVESTIGATION-DERIVED WASTE

The USAF has awarded a separate contract to others for the removal and proper disposal of soil and water investigation-derived waste generated during this SI. Waste soil and water generated during soil boring installation and monitoring well purging were placed in Department of Transportation-approved steel drums (twelve drums of soil and twelve drums of water) and stored at the base hazardous waste storage facility at Building 944 for waste sampling and proper disposal. A representative sample was collected from each media, submitted to CT Laboratories, and analyzed for PFAS, total petroleum hydrocarbons, toxicity (using the Toxicity Characteristic Leaching Procedure [TCLP] for the full TCLP list of analytes), flashpoint, pH, cyanide, and sulfide. These analytical results have been submitted to the USAF electronically

Construction Waste

Construction waste—such as paper, plastic, trash, and PPE—was placed in plastic garbage bags and placed in an on-site dumpster for disposal.

4.0 GROUNDWATER PATHWAY

4.1 F.E. WARREN AIR FORCE BASE HYDROGEOLOGY

The unconfined High Plains aquifer is the principal source for water supply wells in the area surrounding F.E. Warren AFB. Numerous wells near the base are used for domestic and livestock water supply. Depth to the water table in this area is variable, being at the land surface near streams that act as discharge areas and increasing in depth with distance from discharge areas (ASL, August 2017). In the southern portion of the base, the depth to the water table generally ranges from 10 to 40 feet bgs. The direction of groundwater flow in the shallow aquifer zone is generally toward Crow Creek, Diamond Creek, and the unnamed tributary to Crow Creek.

Groundwater beneath the base is recharged locally by some areal infiltration of precipitation despite the relatively dry climate. Groundwater is discharged into nearby streams via springs and seeps (CH2M Hill, December 2015).

Drinking water at the F.E. Warren AFB is obtained from the Cheyenne Public Utilities, which uses both groundwater and surface water sources. The city owns and operates about 35 groundwater wells west and northwest of Cheyenne. The wells pump from the Ogallala and White River Aquifers. Surface water is

collected from the Douglas Creek Drainage in the Snowy Range Mountains, about 75 miles west of Cheyenne. Surface water is also collected from the Crow Creek Drainage in the Pole Mountain/ Vedauwoo area, about 30 miles west of Cheyenne. All drinking water sources used by the city of Cheyenne are upstream or upgradient of the F.E. Warren AFB watershed. There are 11 domestic water wells on-base and 733 wells within four miles downgradient of F.E. Warren—643 of which are designated for domestic use (Wyoming State Engineer's Office [WSEO], 2017a). Figure 12 (Appendix A) is a generalized geologic map of F.E. Warren AFB.

4.2 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

As presented in Table 5 (Section 3.3.4), analytical results for one or more groundwater samples had combined PFOA and PFOS concentrations exceeding the screening level. These results indicate that the shallow groundwater at AFFF Area 1 has been impacted by the release of AFFF.

The population within a 4-mile radius of the location is approximately 32,580 (CH2M Hill, December 2015). The shallow groundwater at AFFF Area 1 generally flows to the northeast towards Crow Creek. There are multiple downgradient domestic water wells within a 4-mile radius of the base. The nearest downgradient drinking water well (Richardson Well #P36060.0W) is 1.21 miles east-northeast (side-downgradient) from AFFF Area 1 and is 24 feet deep. There are also six domestic wells less than 0.75 miles from the Former FPTA 2 (Permit Numbers P22531.0P, P29389.0W, P35731.0W, P48322.0W, P49156.0W, and P85408.0W) but are cross-gradient of the AFFF area. These wells have screened intervals ranging from 60 to 165 ft bgs. The nearest downgradient domestic wells are screened at approximately 20 feet bgs within the unconfined aquifer; therefore, the groundwater exposure pathway may potentially be complete. Because of the proximity of nearby domestic-use water wells (less than 4 miles), PFAS concentrations in groundwater at AFFF Area 1 may pose an immediate risk to human health.

4.3 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

As presented in Table 10 (Section 3.4.4), analytical results for one or more groundwater samples had combined PFOA and PFOS concentrations exceeding the screening levels. These results indicate that the shallow groundwater at AFFF Area 2 has been impacted by the release of AFFF.

The population within a 4-mile radius of the location is approximately 32,580 (CH2M Hill, December 2015). The shallow groundwater at AFFF Area 2 generally flows to the southeast. There are six downgradient domestic wells approximately 1.7 miles from the Former FPTA 3 (Permit Numbers P22531.0P, P29389.0W, P35731.0W, P48322.0W, P49156.0W, and P85408.0W) and multiple downgradient domestic water wells within a 4-mile radius of the base. Although the downgradient domestic wells are screened between 60 and 165 feet bgs, deeper than the new monitoring wells at FPTA 3, the aquifer in which they are completed is unconfined; therefore, the groundwater exposure pathway may potentially be complete. Because of the proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 2 may pose an immediate risk to human health.

4.4 BUILDING 1247–BASE FUELS (AFFF AREA 3)

As presented in Table 13 (Section 3.5.4), analytical results for one or more groundwater samples had combined PFOA and PFOS concentrations exceeding the screening levels. These results indicate that the shallow groundwater at AFFF Area 3 has been impacted by the release of AFFF.

The population within a 4-mile radius of the location is approximately 32,580 (CH2M Hill, December 2015). The shallow groundwater at AFFF Area 3 generally flows to the east. There are six downgradient domestic wells approximately 1.2 miles from Building 1247 (Permit Numbers P22531.0P, P29389.0W, P35731.0W, P48322.0W, P49156.0W, and P85408.0W) and multiple downgradient domestic water wells within a 4-mile radius of the base. Although the downgradient domestic wells are screened between 60 and 165 feet bgs, deeper than the new monitoring wells at AFFF Area 3, the aquifer in which they are completed is unconfined; therefore, the groundwater exposure pathway may potentially be complete. Because of the close proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 3 may pose an immediate risk to human health.

5.0 SURFACE WATER PATHWAY

Surface water at F.E. Warren AFB occurs as stream flow, seeps, and lakes. Stream flow results from groundwater discharge and from rainfall and snowmelt runoff. Crow Creek is the major perennial stream that drains southern areas of the base. Overall, Crow Creek is a gaining stream (that is, receives groundwater discharge) through the base area. Two tributaries to Crow Creek also drain the southern part of the base: an unnamed tributary and Diamond Creek. The unnamed tributary is an interrupted stream with alternating reaches that are perennial, intermittent, or ephemeral. Diamond Creek, the second largest stream on F.E. Warren AFB, is perennial along most of its length, with low flows maintained by groundwater discharge. The upper reach of Diamond Creek, approximately covering the first 300 yards on the base, is intermittent. Diamond Creek is also a gaining creek across the base except in periods of loss during the warmer months of July through September. These stream discharge losses are likely because of evaporation. Seeps contribute to stream flows in Crow Creek and its unnamed tributary throughout the year (ASL, August 2017).

The surface water at FPTA 2 and FPTA 3 either infiltrates the soil within these AFFF areas or via overland flow into the open ditches and stormwater control system surrounding the locations. Surface water collected in the open ditches and stormwater control systems flow into Crow Creek, approximately 1,100 feet northeast of FPTA 2 (AFFF Area 1) and less than 400 feet north of FPTA 3 (AFFF Area 2). Surface water is not a medium of concern at Building 1247 (AFFF Area 3).

There are 23 active surface water intake locations from Crow Creek within 15 miles downstream from the nearest AFFF area at F.E. Warren AFB. Of those 23 intakes, 10 are used for irrigation, seven for industrial purposes, four intakes for unknown purposes, one is temporary, and one is used for domestic purposes (WSEO, 2017b). The domestic-use intake, WSEO permit number P34840.0D, is located about 1,250 feet downstream from the base boundary.

5.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

As presented in Table 4 (Section 3.3.4) and shown on Figure 6, analytical results for one or more surface water samples had combined PFOA and PFOS concentrations exceeding the screening levels. These results indicate that the surface water at AFFF Area 1 has been impacted by the release of AFFF.

The surface water either infiltrates the soil of former FPTA 2 or migrates via overland flow into the open ditches and stormwater control system located to the northeast of the AFFF area. The ditch system empties into Crow Creek, which is approximately 1,100 feet away from the AFFF area. A domestic surface water intake is 1.6 miles downstream of the confluence of the ditch outfall and Crow Creek. Therefore, the human health exposure pathway for surface water may potentially be complete. Because of the close proximity of nearby domestic-use surface water intakes (less than 15 miles downstream), PFAS concentrations in surface water at AFFF Area 1 may pose an immediate risk to human health.

5.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

As presented in Table 9 (Section 3.4.4) and shown on Figure 8, PFAS were not detected above the laboratory detection level in the surface water sample at AFFF Area 2; therefore, the surface water exposure pathway is incomplete.

5.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)

Surface water was not a medium of concern at AFFF Area 3 because the release that occurred at Building 1247 was fully contained with the building and was either sent to the OWS and then through the sanitary sewer to a publicly owned sewer treatment plant or diverted to a lined retention pond and left to evaporate (ASL August, 2017). Additionally, there was no surface water body identified at or near AFFF Area 3.

6.0 SOIL, SEDIMENT, AND AIR PATHWAYS

The objective of SI soil and sediment sampling was to determine if these media in the individual areas had been impacted by the release of AFFF and whether PFAS concentrations remain in the soil or sediments at concentrations above the human health-based screening levels. Screening levels for soils are based on the residential exposure with an HQ of 0.1.

6.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

As presented in Tables 5, 6, and 7 (Section 3.3.4) and shown on Figure 7, analytical results for one or more surface soil samples for PFOA and PFOS concentrations exceeded the screening levels. PFBS also exceeded the soil leaching to groundwater limit; however, as described in Section 4.2, PFBS was not detected at levels above screening levels in groundwater. In subsurface soil and sediment samples at AFFF Area 1, PFAS was detected but at concentrations below the screening level. These results indicate that the surface soil, subsurface soil, and sediment at AFFF Area 1 have been impacted by the release of AFFF. The surface soil and air pathways at AFFF Area 1 are potentially complete. Site workers could be at risk for exposure from inhalation of surface soils.

6.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

Surface soil samples were not planned for collection at AFFF Area 2 because surface soil was determined not to be a medium of concern due to the placement of new soil and gravel throughout the area. However, at the time of the field sampling, surface water was not present in the storm sewer culvert—one of two surface water/sediment sampling locations. In accordance with the QAPP, a surface soil sample (FEWRN02-005-SS-001) was collected within the dry culvert in lieu of the surface water/sediment sample.

As presented in Tables 10, 11, and 12 (Section 3.4.4) and shown on Figure 9, PFAS concentrations were below the screening levels or below the laboratory detection levels in the soil and sediment samples. These results indicate that the surface soil, subsurface soil, and sediments at AFFF Area 2 have not been impacted above screening levels by the release of AFFF. In the absence of PFAS concentrations above the screening levels, the soil, sediment, and air exposure pathways at AFFF Area 2 are incomplete.

6.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)

As presented in Tables 14 and 15 (Section 3.5.4) and shown in Figure 11, PFAS concentrations for one or more surface soil samples exceeded the screening level. This result indicates that the surface soil at AFFF

Area 3 has been impacted by the release of AFFF. These results indicate that the surface soil and subsurface soil AFFF Area 3 have been impacted by the release of AFFF. The surface soil and air pathways at AFFF Area 3 are potentially complete. Site workers could be at risk for exposure from inhalation of surface soils. Analytical results for subsurface soil was either below the screening level or below the laboratory detection limits. Sediments were not a medium of concern at AFFF Area 3.

7.0 UPDATES TO CONCEPTUAL SITE MODELS

The following sections summarize updated conceptual site models (CSMs) based on human health exposure pathways present in Sections 4, 5, and 6.

7.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

The CSM for Former FPTA 2 presented in the QAPP addendum (ASL, August 2017) identified surface soil, subsurface soil, groundwater, surface water, and sediment as media potentially impacted by previous releases of AFFF.

Based on the findings discussed in Sections 3.3.4 and 4.2, groundwater at the Former FPTA 2 has been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS impacted-groundwater represents a potentially complete human ingestion pathway due to the proximity of private domestic water wells.

In addition, based on findings discussed in Sections 3.3.4 and 5.1, surface water at the Former FPTA 2 has been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS-impacted surface water represents a potentially complete human ingestion pathway due to the presence of domestic surface water intakes downstream on Crow Creek.

Based on findings discussed in Sections 3.3.4 and 6.1, surface soil at the Former FPTA 2 has also been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS-impacted surface soil represents a potentially complete pathway. Because the area is vegetated and not heavily trafficked, the air pathway is incomplete at this area. Subsurface soil and sediment at the Former FPTA 2 were not impacted by PFAS above screening levels.

7.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

The CSM for the Former FPTA 3 presented in the QAPP addendum (ASL, August 2017) identified groundwater, subsurface soil, surface water, and sediment as media potentially impacted by previous releases of AFFF. Surface soil was sampled at one location in lieu of a surface water and sediment sample because the planned sampling location was dry.

Based on the findings discussed in Sections 3.4.4 and 4.3, groundwater at the Former FPTA 3 has been impacted by PFOA and PFOS at concentrations above the EPA HA. Therefore, PFAS-impacted groundwater represents a potentially complete human ingestion pathway due to the proximity of private domestic water wells.

In addition, based on findings discussed in Sections 3.4.4, 5.2, and 6.2, surface water, surface soil, subsurface soil, and sediment at the Former FPTA 3 have not been impacted by PFOA and PFOS at concentrations above screening levels and the pathways are incomplete.

7.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)

The CSM for Building 1247–Base Fuels presented in the QAPP addendum (ASL, August 2017) identified groundwater, surface soil, and subsurface soil as media potentially impacted by previous release of AFFF.

Based on the findings discussed in Sections 3.5.4 and 4.4, groundwater at Building 1247–Base Fuels has been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS-impacted groundwater represents a potentially complete human ingestion pathway due to the proximity of private domestic water wells.

In addition, based on findings discussed in Sections 3.5.4 and 6.3, surface soil at Building 1247–Base Fuels has been impacted by PFOS at concentrations above the screening level. Therefore, surface soil represents a potentially complete pathway. Because the area is vegetated and not heavily trafficked, the air pathway is incomplete at this area. Subsurface soil at Building 1247–Base Fuels was not impacted by PFAS above screening levels.

8.0 SUMMARY AND CONCLUSIONS

The objectives of the SI were to

- determine if a confirmed release of PFOS, PFOA, and PFBS has occurred at the area selected for inspection;
- determine if PFOS and/or PFOA are present in groundwater or surface water at the inspection area at concentrations exceeding the EPA lifetime health advisory (HA) for drinking water (EPA, May 2016a; EPA, May 2016b);
- determine if PFBS, PFOA, and/or PFOS are present in soil or sediment at the inspection area at concentrations exceeding calculated screening levels; and
- identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS or PFOA above the EPA HAs or PFBS above the regional screening level [RSL]) (EPA, May 2018).

Selected sample media included surface soil, subsurface soil, groundwater, sediment, and surface water. Sampling locations focused on immediate release areas and were biased toward locations most likely to have been impacted by releases of AFFF.

The areas inspected included the following:

- AFFF Area 1 Former Fire Protection Training Area 2,
- AFFF Area 2 Former Fire Protection Training Area 3, and
- AFFF Area 3 Building 1247–Base Fuels.

Selected sample media varied across the three areas but included groundwater, surface water, surface soil, subsurface soil, and sediment. Sampling was primarily limited to the immediate areas of known or suspected AFFF releases and biased toward locations most likely to have been impacted by the releases.

All samples were analyzed for PFBS, PFOA, and PFOS using modified EPA Method 537. Analytical results for PFOA and PFOS in groundwater and surface water were compared to the screening level of $0.07 \mu g/L$. The combined concentrations of PFOA and PFOS was also compared to this screening level. Analytical results for PFBS in groundwater and surface water were compared to the published EPA RSL of 40 $\mu g/L$. Analytical results for PFOA and PFOS in soil and sediment were compared to calculated

RSLs (126 μ g/kg for both PFOA and PFOS). Analytical results for PFBS in soil and sediment were compared to the published EPA RSLs (130,000 μ g/kg).

Table 16 summarizes detected concentrations of PFBS, PFOA, and PFOS for each media at the three AFFF areas. A brief summary of key findings and conclusions, as well as recommendations for follow-on activities, are provided in Sections 8.1, 8.2, and 8.3.

AFFF Area	IRP ID	Parameter	Maximum Detected Concentration	Unit	Screening Level	Number of Samples/ Number of Exceedances ¹	Exceeds Screening Value	Potentially Complete DW Exposure Pathway	Recommendation
		Groundwater							
		PFBS	11	μg/L	40	4/0	No		
		PFOA	72	μg/L	0.07	4/4	Yes		
		PFOS	64	μg/L	0.07	4/4	Yes		
		PFOA + PFOS ²	136	μg/L	0.07	4/4	Yes		
		Surface Water							
		PFBS	0.013 J	μg/L	40	2/0	No		
		PFOA	0.33	μg/L	0.07	2/1	Yes	Yes	Initiate Expanded SI, Advance Area to RI
		PFOS	1.2	μg/L	0.07	2/1	Yes		
Former		PFOA + PFOS	1.53	μg/L	0.07	2/2	Yes		
Fire		Surface Soil							
Training	FT009	PFBS	3,600	μg/kg	130,000 13 ³	3/1	Yes		
Area 2 (AFFF		PFOA	50,000	μg/kg	126	3/1	Yes		
Area 1)		PFOS	3,400	µg/kg	126	3/2	Yes		
		Subsurface Soil							
		PFBS	1.3	µg/kg	130,000 13 ³	3/0	No		
		PFOA	6.0	µg/kg	126	3/0	No		
		PFOS	20	µg/kg	126	3/0	No		
		Sediment							
		PFBS	ND	μg/kg	130,000 13 ³	2/0	No]	
		PFOA	0.63 J	µg/kg	126	2/0	No		
		PFOS	5.2 J	µg/kg	126	2/0	No	-	

Table 16 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances

M2027.0003

27

8/8/18

AFFF Area	IRP ID	Parameter	Maximum Detected Concentration	Unit	Screening Level	Number of Samples/ Number of Exceedances ¹	Exceeds Screening Value	Potentially Complete DW Exposure Pathway	Recommendation
		Groundwater							
		PFBS	3.7	μg/L	40	4/0	No		
		PFOA	1.1	μg/L	0.07	4/2	Yes		
		PFOS	19	μg/L	0.07	4/4	Yes		
		PFOA + PFOS	20.1	μg/L	0.07	4/4	Yes		
		Surface Water							
		PFBS	ND	μg/L	40	1/0	No		
		PFOA	ND	μg/L	0.07	1/0	No		
		PFOS	ND	μg/L	0.07	1/0	No		
Former		PFOA + PFOS	ND	μg/L	0.07	1/0	No		
Fire		Surface Soil							
Protection Training		PFBS	2.9	µg/kg	130,000 13 ³	1/0	No	Vac	Initiate Expanded
Area 3		PFOA	2.0	µg/kg	126	1/0	No	105	to RI
(AFFF Area 2)		PFOS	38	µg/kg	126	1/0	No		
		Subsurface Soil							
		PFBS	1.1 J	µg/kg	130,000 13 ³	4/0	No	-	
		PFOA	0.98 J	µg/kg	126	4/0	No		
		PFOS	82	µg/kg	126	4/0	No		
		Sediment							
		PFBS	ND	µg/kg	130,000 13 ³	1/0	No]	
		PFOA	ND	µg/kg	126	1/0	No		
		PFOS	ND	μg/kg	126	1/0	No		

M2027.0003

28

8/8/18

	Groundwater			Î				
	PFBS	0.38	µg/kg	40	3/0	No		
	PFOA	0.66	µg/kg	0.07	3/3	Yes		
	PFOS	1.7	µg/kg	0.07	3/3	Yes		
	PFOA + PFOS	2.36	μg/L	0.07	3/3	Yes		Initiate Expanded SI, Advance Area to RI
Building	Surface Soil							
1247– Base Fuels (AFFF Area 3)	PFBS	7.6 J	µg/kg	130,000 13 ³	4/0	No	Yes	
	PFOA	8.7 J	µg/kg	126	4/0	No		
	PFOS	1,600	µg/kg	126	4/2	Yes		
	Subsurface Soil							
	PFBS	0.55 J	µg/kg	130,000 13 ³	4/0	No		
	PFOA	0.53 J	µg/kg	126	4/0	No		
	PFOS	11	µg/kg	126	4/0	No		

¹Only primary sample results are included unless an exceedance occurred only in a duplicate sample, in which case, only the duplicate sample was included. ²Maximum PFOA + PFOS concentration shown is the highest combined PFOA and PFOS concentration detected in a specific groundwater sample and in this instance is not the sum of the individual maximum PFOA and PFOS concentrations listed as they occurred in two separate samples.

³EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

Bold values exceed screening levels.

 $\mu g/kg = microgram per kilogram AFFF = aqueous film forming foam$

ID = identification

J = Reported concentration is an estimated value.

PFBS = perfluorobutane sulfonate PFOS = perfluorooctane sulfonate

SI = site inspection

 $\mu g/L = micrograms \ per \ liter$

DW = drinking water IRP = Installation Restoration Program

ND = not detected

- PFOA = perfluorooctanoic acid
- RI = remedial inspection

29

8.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

Former FPTA 2 (IRP Site FT009) is located towards the central portion of the base southwest of the intersection of Old Glory Road and Missile Drive. The two unlined, bermed training pits at the area were used from 1965 to 1989. Fire training exercises from 1965 to 1974 used waste oils, solvents, hydraulic fluid, and other combustible liquids. From 1974 to 1989, only JP-4 was used. AFFF and water were used to extinguish fires from 1972 to 1989. A TCE plume associated with OU-5 is beneath the area.

As indicated on Table 16, PFOA, PFOS, and the combined concentrations PFOA and PFOS were detected at concentrations above screening levels in groundwater and surface water. PFBS, PFOA, and PFOS were detected at concentrations above screening levels in surface soil (PFBS exceeded the soil leaching to groundwater screening level). Analytical results confirm that a release of AFFF occurred at the Former FPTA 2 that has affected these media to an extent that could create complete exposure pathways.

Because of the close proximity of nearby domestic-use water wells (less than four miles) and domesticuse surface water intakes, PFAS concentrations in groundwater and surface water at AFFF Area 1 may pose an immediate risk to human health due to the potential ingestion scenario. PFAS concentrations in surface soil also pose a potential risk to on-site excavation workers through inhalation.

Based on the PFAS impacts to groundwater and surface water with a potentially complete pathway to water users, an expanded SI is recommended. In addition, a remedial investigation (RI) is recommended to further assess the extent of contamination and the impacts to groundwater, surface soil, and surface water at AFFF Area 1.

8.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

Former FPTA 3 is located in the southern portion of the base. It was active from 1990 to 2000 and consisted of a polyethylene-lined training pit and a lined retention pond. The training pit was connected to an OWS and water was piped from the OWS to the lined retention pond. One of the liners beneath the training pit was found to be leaking. The liners for the pit and retention pond were removed and the retention pond filled in. AFFF was used in a limited capacity at Former FPTA 3.

As indicated on Table 16, PFOA, PFOS, and the combined concentrations PFOA and PFOS were detected at concentrations above screening levels in groundwater. Analytical results confirm that a release of AFFF occurred at the Former FPTA 3 that has affected this medium to an extent that could create a complete exposure pathway.

Because of the close proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 2 may pose an immediate risk to human health due to the potential ingestion scenario.

Based on the PFAS impacts to groundwater with a potentially complete pathway to water users, an expanded SI is recommended. In addition, an RI is recommended to further assess the extent of contamination and the impacts to groundwater at AFFF Area 2.

8.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)

Building 1247 is in the southwestern corner of the base on Post Road and Wyoming Avenue. This structure was built in 1995 and has an active AFFF system with overhead lines with an associated 200- to 300-gallon tank. The building is connected to a polyethylene-lined containment pond (added in 2013) and spills can be diverted to this pond. In the past, when the pond has filled with rainwater, it was pumped out to the nearby grassy area. A failure of the fire suppression system leaked an unknown quantity of AFFF inside the building, which either flowed through an OWS and a sanitary sewer system or to the containment pond. A former TCE plume associated with OU-2 and OU-9 is beneath the area.

As indicated on Table 16, PFOA, PFOS, and the combined concentrations PFOA and PFOS were detected at concentrations above screening levels in groundwater. PFOS was detected at concentrations above screening levels in surface soil. Analytical results confirm that a release of AFFF occurred at the Building 1247–Base Fuels that have affected these media to an extent that could create complete exposure pathways.

Because of the close proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 3 may pose an immediate risk to human health based on the ingestion scenario. PFOS concentrations in surface soil also pose a potential risk to on-site excavation workers through inhalation.

Based on the PFAS impacts to soil and groundwater and the potentially complete pathway to water users, an expanded SI is recommended. In addition, an RI is recommended to further assess the extent of contamination and the impacts to groundwater at AFFF Area 3.

9.0 REFERENCES

Aerostar SES LLC (ASL), March 2016. Final Quality Assurance Project Plan for Site Inspections of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations.

ASL, August 2017. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations, Addendum 11, Field Sampling Plan for F.E. Warren Air Force Base, Laramie County, Wyoming.

CH2M Hill, December 2015. *Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base, Wyoming.*

Environmental Protection Agency (EPA), March 2012. *Intergovernmental Data Quality Task Force Uniform Federal Policy for Quality Assurance Project Plans Optimized UFP-QAPP Worksheets.*

EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS).

EPA, May 2018. Regional Screening Levels (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables)

EPA, website accessed 2017. Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

URS Group, June 2006. *Final Record of Decision Zone D Groundwater, Operable Unit 2 and Operable Unit 9, F.E. Warren Air Force Base, Wyoming.*

U.S. Air Force, September 1994. Final Record of Decision for Operable Unit 5.

U.S. Army Corps of Engineers (USACE), June 2013. Geology Supplement to the Scope of Services.

USACE, July 2015. Performance Work Statement for Site Inspection of Aqueous Film Forming Areas, Multiple Sites, United States Air Force Installations.

Wyoming State Engineers Office (WSEO), 2017a. Ground Water Division. https://sites.google.com/a/wyo.gov/seo/ground-water

WSEO, 2017b. Surface Water Division. https://sites.google.com/a/wyo.gov/seo/surface-water

Appendix A Figures

M2027.0003

M2027.0003

A-8

M2027.0003

A-9

A-10

Appendix B Regional Screening Level Calculations for Soil and Sediment

Default Resident Equation Inputs for Soil

Variable	Value
THQ (target hazard quotient) unitless	0.1
TR (target risk) unitless	1E-06
LT (lifetime) years	70
ET (exposure time) hours/day	24
ET, (child exposure time) hours/day	24
ET _{rac.a} (adult exposure time) hours/day	24
ET _{0.2} (mutagenic exposure time) hours/day	24
ET _{2.6} (mutagenic exposure time) hours/day	24
$ET_{\kappa,\kappa}$ (mutagenic exposure time) hours/day	24
ET _{16.26} (mutagenic exposure time) hours/day	24
ED _{ree} (exposure duration) years	26
ED _{ree} (exposure duration - child) years	6
ED (exposure duration - adult) years	20
$ED_{a,2}$ (mutagenic exposure duration) years	2
$ED_{2.6}$ (mutagenic exposure duration) years	4
ED _{6.16} (mutagenic exposure duration) years	10
ED _{16.26} (mutagenic exposure duration) years	10
BW _{mer} (body weight - child) kg	15
BW, roca (body weight - adult) kg	80
BW (mutagenic body weight) kg	15
BW _{2.6} (mutagenic body weight) kg	15
BW _{6.16} (mutagenic body weight) kg	80
BW _{16.26} (mutagenic body weight) kg	80
SA _{res-c} (skin surface area - child) cm ² /day	2373
SA _{res-a} (skin surface area - adult) cm ² /day	6032
SA ₀₋₂ (mutagenic skin surface area) cm ² /day	2373
SA ₂₋₆ (mutagenic skin surface area) cm ² /day	2373
SA ₆₋₁₆ (mutagenic skin surface area) cm ² /day	6032
SA ₁₆₋₂₆ (mutagenic skin surface area) cm ² /day	6032
EF _{ree} (exposure frequency) days/year	350
EF _{ree} (exposure frequency - child) days/year	350
EF _{res-a} (exposure frequency - adult) days/year	350

M2027.0003 Output generated 15FEB2018:16:21:12

B-1

4/24/2018

1

Default Resident Equation Inputs for Soil

Variable	Value
EF _{0.2} (mutagenic exposure frequency) days/year	350
EF ₂₆ (mutagenic exposure frequency) days/year	350
EF _{6.16} (mutagenic exposure frequency) days/year	350
EF _{16.26} (mutagenic exposure frequency) days/year	350
IFS _{recent} i (age-adjusted soil ingestion factor) mg/kg	36750
IFSM _{recadi} (mutagenic age-adjusted soil ingestion factor) mg/kg	166833.3
IRS _{men} (soil intake rate - child) mg/day	200
IRS _{zeca} (soil intake rate - adult) mg/day	100
IRS_{n} (mutagenic soil intake rate) mg/day	200
IRS _{2.6} (mutagenic soil intake rate) mg/day	200
IRS _{6.16} (mutagenic soil intake rate) mg/day	100
IRS _{16.26} (mutagenic soil intake rate) mg/day	100
AF _{res-a} (skin adherence factor - adult) mg/cm ⁻²	0.07
AF _{res-c} (skin adherence factor - child) mg/cm ²	0.2
AF ₀₋₂ (mutagenic skin adherence factor) mg/cm ²	0.2
$AF_{_{2:6}}$ (mutagenic skin adherence factor) mg/cm _2	0.2
AF ₆₋₁₆ (mutagenic skin adherence factor) mg/cm ²	0.07
AF ₁₆₋₂₆ (mutagenic skin adherence factor) mg/cm ²	0.07
DFS _{rec-adi} (age-adjusted soil dermal factor) mg/kg	103390
DFSM _{rec-adi} (mutagenic age-adjusted soil dermal factor) mg/kg	428260
AT _{ree} (averaging time - resident carcinogenic)	365
City DEC (Climate Zone) Selection	Default
A (PEF acres)	0.5
Q/C _{wind} (g/m ² -s per kg/m ³)	93.77
PEF (particulate emission factor) m ³ /kg	1359344438
A (PEF Dispersion Constant)	16.2302
B (PEF Dispersion Constant)	18.7762
C (PEF Dispersion Constant)	216.108
V (fraction of vegetative cover) unitless	0.5
U_m (mean annual wind speed) m/s	4.69
U, (equivalent threshold value)	11.32
$F(x)$ (function dependent on U $_{m}/U_{t}$) unitless	0.194
M2027.0003	
Output generated 15FEB2018:16:21:12	

B-2

4/24/2018

Default Resident Equation Inputs for Soil

Variable	Value
City $_{ve}$ (Climate Zone) Selection	Default
A _c (VF acres)	0.5
Q/C _{vol} (g/m ² -s per kg/m ³)	68.18
foc (fraction organic carbon in soil) g/g	0.006
p_{b} (dry soil bulk density) g/cm 3	1.5
p_s (soil particle density) g/cm 3	2.65
n (total soil porosity) L/L	0.43396
Theta, (air-filled soil porosity) L,/L	0.28396
Theta, (water-filled soil porosity) L/L	0.15
T (exposure interval) s	819936000
A (VF Dispersion Constant)	11.911
B (VF Dispersion Constant)	18.4385
C (VF Dispersion Constant)	209.7845
City _{VE mace-loading} (Climate Zone) Selection	Default
VF _{ml} (volitization factor - mass-limit) m ³ /kg	•
Q/C _{vol} (g/m ² -s per kg/m ³)	68.18
A _c (VF mass-limit acres)	0.5
T (exposure interval) yr	26
d depth of source) m	
$p_{_{\rm b}}$ (dry soil bulk density) g/cm 3	1.5
A (VF Dispersion Constant - Mass Limit)	11.911
B (VF Dispersion Constant - Mass Limit)	18.4385
C (VF Dispersion Constant - Mass Limit)	209.7845
T _w (groundwater temperature) Celsius	25

Default

Resident Risk-Based Screening Levels (RSL) for Soil Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user guide Section 2:3.5; W = see user guide Section 2:3.6; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed ceiling limit (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 10 Guide); s = Concentration may exceed Csat (See User Guide); U = User-provided

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ^{.1}	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	ABS	RBA	Soil Saturation Concentration (mg/kg)	S (mg/L)
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	No	No	-		-		2.00E-05	D	-		1	0.1	1	-	6.80E+02
Perfluorooctanoic acid (PFOA)	335-67-1	No	No	7.00E-02	D	-		2.00E-05	D	-		1	0.1	1	-	9.50E+03

K (cm3̈/g)	K (cm ³ /g)	HLC (atm-m ³/mole)	Henry's Law Constant (unitless)	H` and HLC Ref	Normal Boiling Point T _{boil} (K)	BP Ref	Critical Temperature T _{crit} (K)	T _{crit} Ref	D _{ia} (cm²/s)	D _{iw} (cm²/s)	D _^ (cm²/s)	Particulate Emission Factor (m³/kg)	Volatilization Factor (m³/kg)
3.72E+02	-	-	-		532.15	PHYSPROP	-		2.07E-02	5.25E-06	-	1.36E+09	-
1.15E+02	-	-	-		465.55	PHYSPROP	-		2.26E-02	5.79E-06	-	1.36E+09	-

Ingestion SL TR=1E-06 (mg/kg)	Dermal SL TR=1E-06 (mg/kg)	Inhalation SL TR=1E-06 (mg/kg)	Carcinogenic SL TR=1E-06 (mg/kg)	Ingestion SL Child THQ=0.1 (mg/kg)	Dermal SL Child THQ=0.1 (mg/kg)	Inhalation SL Child THQ=0.1 (mg/kg)	Noncarcinogenic SL Child THI=0.1 (mg/kg)	Ingestion SL Adult THQ=0.1 (mg/kg)	Dermal SL Adult THQ=0.1 (mg/kg)	Inhalation SL Adult THQ=0.1 (mg/kg)	Noncarcinogenic SL Adult THI=0.1 (mg/kg)	Screening Level (mg/kg)
-	-	-	-	1.56E-01	6.59E-01	-	1.26E-01	1.67E+00	3.95E+00	-	1.17E+00	1.26E-01 nc
9.93E+00	3.53E+01	-	7.75E+00	1.56E-01	6.59E-01	-	1.26E-01	1.67E+00	3.95E+00	-	1.17E+00	1.26E-01

M2027.0003 Output generated 15FEB2018:16:21:12

B-4

4/24/2018

nc

4

Inhalation Unit Risk Tox	halation Unit Risk Toxicity Metadata 5											
Chemical	CASNUM	Inhalation Unit Risk (µg/m ³) ^{.1}	Toxicity Source	EPA Cancer Classification	Inhalation Unit Risk Tumor Type	Inhalation Unit Risk Target Organ	Inhalation Unit Risk Species	Inhalation Unit Risk Method	Inhalation Unit Risk Route	Inhalation Unit Risk Treatment Duration	Inhalation Unit Risk Study Reference	Inhalation Unit Risk Notes
Perfluorooctane sulfonic acid (PFOS)	1763-23-1											
Perfluorooctanoic acid (PFOA)	335-67-1											

M2027.0003 Output generated 15FEB2018:16:21:12

B-5

4/24/2018

Oral Slope Factor Toxicity Metadata

Chemical	CASNUM	Oral Slope Factor (mg/kg-day) ⁻¹	Toxicity Source	EPA Cancer Classification	Oral Slope Factor Tumor Type	Oral Slope Factor Target Organ	Oral Slope Factor Species	Oral Slope Factor Method	Oral Slope Factor Route	Oral Slope Factor Treatment Duration	Oral Slope Factor Study Reference	Oral Slope Factor Notes
Perfluorooctane sulfonic acid (PFOS)	1763-23-1											
Perfluorooctanoic acid (PFOA)	335-67-1	7.00E-02	DWSHA	NA	NA	NA	NA	NA	NA	NA	NA	NA

B-6

4/24/2018

6

Oral Chronic Toxicity Metadata

	Chemical		CASNUM	Chronic Oral Reference Dose (mg/kg-day	Toxicity) Source	Oral Chronic Reference Dose Basis	Oral Chronic Reference Dose Confidence Level	Oral Chronic Reference Dose Critical Effect
Perfluorooct	ane sulfonic	acid (PFOS)	1763-23-1	2.00E-05	DWSHA	NA	NA	NA
Perfluorooct	anoic acid (F	PFOA)	335-67-1	2.00E-05	DWSHA	NA	NA	NA
Oral Chronic Reference Dose Target Organ	Oral Chronic Reference Dose Modifying Factor	Oral Chronic Reference Dose Uncertainty Factor	Oral Chronic Reference Dose Species	Oral Chronic Reference Dose Route	Oral Chronic Reference Dose Study Duration	Oral Chronic Reference Dose Study Reference	Oral Chronic Reference Dose Notes	
NA	NA	NA	NA	NA	NA	NA	NA	
NA	NA	NA	NA	NA	NA	NA	NA	

M2027.0003 Output generated 15FEB2018:16:21:12

B-7

4/24/2018

7

Inhalation Chronic Toxicity Metadata

сі	nemical		CASNUM	Chronic Inhalation Reference Concentration (mg/m ³)	Toxicity Source	Inh Cl Ref Conc E	alation nronic erence entration Basis	Inh Cl Ref Conc Con L	alation hronic erence entration fidence evel	Inha Ch Refe Conce Critic	alation ironic erence entration al Effect	Inhalation Chronic Reference Concentration Target Organ
Perfluorooctane Perfluorooctanoi	sulfonic acid (PF c acid (PFOA)	OS)	1763-23-1 335-67-1	-	- -							
Inhalation Chronic Reference Concentration Modifying Factor	Inhalation Chronic Reference Concentration Uncertainty Factor	Inl C Re Cond S	halation Chronic eference centration species	Inhalation Chronic Reference Concentration Route	Inhalat Chroi Refere Concenti Stud Durati	tion nic nce ration ly ion	Inhalat Chror Referen Concenti Stud Referen	ion nic nce ration y nce	Inhalat Chroi Refere Concenti Note	ion nic nce ration s		

4/24/2018

Appendix C

Data Validation Reports and Laboratory Data Sheets

DATA VALIDATION REPORT

M2032.0001 (Omaha) FE Warren

SAMPLE DELIVERY GROUPs: B7J1539, B7J3592

Prepared for

Aerostar SES LLC

October 24, 2017

MEC^x, Inc. 8864 Interchange Drive Houston, Texas 77054

www.mecx.net

TABLE OF CONTENTS

ACRON	YMS AN	D ABBREVIATIONS	iii
I.	INTRO	DUCTION	1
II.	Sample	Management	3
III.	Metho	d Analysis – Perfluorinated Compounds by Modified EPA Method 537	7
	III.1.	Holding Times	7
	111.2.	Calibration	7
		III.2.1. Initial Calibration	7
		III.2.2. Continuing Calibration	7
	III.3.	Quality Control Samples	8
		III.3.1. Method Blanks	8
		III.3.2. Laboratory Control Samples	8
		III.3.3. Matrix Spike/Matrix Spike Duplicate	8
	111.4.	Field QC Samples	9
		III.4.1. Field Blanks and Equipment Blanks	9
		III.4.2. Field Duplicates	9
	III.5.	Internal Standards Performance1	.0
	III.6.	Compound Identification1	.0
	III.7.	Compound Quantification and Reported Detection Limits	.0
	III.8.	System Performance	.0
IV.	Summa	ary and Conclusions	.1
	IV.1.	Precision1	.1
	IV.2.	Accuracy1	.1
	IV.3.	Representativeness1	.1
	IV.4.	Comparability1	.1
	IV.5.	Completeness1	.1

V.	References	12
----	------------	----

TABLES

- 1 Sample Identification
- 2 Data Qualifier Reference
- 3 Reason Code Reference
- 4 Continuing Calibration
- 5 FB/EB Detects
- 6 FD RPDs
- 7 Internal Standards Percent Recovery

ACRONYMS AND ABBREVIATIONS

°C	Celsius
%	Percent
%D	percent difference
В	blank contamination
СВ	calibration blank
CCAL	continuing calibration
ССВ	continuing calibration blank
CCV	continuing calibration verification
COC	chain of custody
CLP	Contract Laboratory Program
EPA	US Environmental Protection Agency
ER	equipment rinsate
FB	field blank
FD	field duplicate
ICAL	initial calibration
ICB	initial calibration blank
ICL	instrument calibration limit
ICV	initial calibration verification
IS	internal standard
J	estimated value
LCS	laboratory control sample
LOD	limit of detection
LOQ	limit of quantification
MB	method blank
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
ND	nondetect
PARCC	precision, accuracy, representativeness, comparability, completeness
PFC	perfluorinated compound
QAPP	Quality Assurance Program Plan
QC	quality control
QSM	Quality Systems Manual
R	Rejected
RL	reporting limit
RPD	relative percent difference
RRF	relative response factor
RSD	relative standard deviation
SDG	sample delivery group
ТВ	trip blank
U	not detected
UJ	not detected; associated value is an estimate

I. INTRODUCTION

Task Order Title: M2032.0001 (Omaha) FE Warren

Contract: W9128F-15-D-0051

MEC^x Project No.: 1529.001H.01

Sample Delivery Group: B7J1539, B7J3592

Project Manager: Jenny Vance

Matrix: Soil/Water

QC Level: Stage 2B, Stage 4

No. of Samples: 54

Laboratory: Maxxam

TABLE 1 - SAMPLE IDENTIFICATION

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
FEWRN01-004-SD-001	FBF475	SE	2017-09-01 08:45	E537 m	Stage 2B
FEWRN01-004-SW-001	FBF476	WS	2017-09-01 08:45	E537 m	Stage 4
FEWRN01-005-SD-001	FBF453	SE	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-005-SD-901	FBF454	SE	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-005-SW-001	FBF455	WS	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-005-SW-901	FBF456	WS	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-MW-070-GW-020	FBF460	WG	2017-08-30 14:45	E537 m	Stage 2B
FEWRN01-MW071-GW-020	FBF459	WG	2017-08-30 11:45	E537 m	Stage 2B
FEWRN02-001-SO-028	FBF468	SO	2017-08-31 18:10	E537 m	Stage 2B
FEWRN02-002-SO-031	FBF466	SO	2017-08-31 14:23	E537 m	Stage 4
FEWRN02-003-SO-031	FBF464	SO	2017-08-31 10:10	E537 m	Stage 2B
FEWRN02-004-SO-013	FBF451	SO	2017-08-30 15:20	E537 m	Stage 2B
FEWRN02-005-SS-001	FBF473	SO	2017-09-01 08:25	E537 m	Stage 2B
FEWRN02-006-SD-001	FBF457	SE	2017-08-29 12:35	E537 m	Stage 2B
FEWRN02-006-SW-001	FBF458	WS	2017-08-29 12:35	E537 m	Stage 2B
FEWRN03-001-SO-008	FBF461	SO	2017-08-29 17:30	E537 m	Stage 2B
FEWRN03-001-SS-001	FBF448	SO	2017-08-29 10:06	E537 m	Stage 2B
FEWRN03-002-GW-020	FBF472	WG	2017-08-31 15:34	E537 m	Stage 2B

FE Warren DV Report.1.Docx RV1

Sample Name	Lab Sample	Matrix	Collection	Method	Validation
FEWRN03-002-SO-007	FBF450	SO	2017-08-29 12:55	E537 m	Stage 4
FEWRN03-002-SS-001	FBF444	SO	2017-08-28 16:05	E537 m	Stage 2B
FEWRN03-003-GW-020	FBF470	WG	2017-08-31 11:10	E537 m	Stage 2B
FEWRN03-003-GW-920	FBF471	WG	2017-08-31 11:10	E537 m	Stage 2B
FEWRN03-003-SO-008	FBF447	SO	2017-08-29 11:00	E537 m	Stage 2B
FEWRN03-003-SO-908	FBF449	SO	2017-08-29 11:00	E537 m	Stage 2B
FEWRN03-003-SS-001	FBF443	SO	2017-08-28 15:40	E537 m	Stage 2B
FEWRN03-004-SO-008	FBF445	SO	2017-08-29 07:10	E537 m	Stage 2B
FEWRN03-004-SS-001	FBF441	SO	2017-08-28 13:10	E537 m	Stage 2B
FEWRN-RS-001	FBF440	WO	2017-08-28 12:05	E537 m	Stage 2B
FEWRN-RS-002	FBF446	WO	2017-08-29 07:45	E537 m	Stage 2B
FEWRN-RS-003	FBF452	WO	2017-08-30 15:15	E537 m	Stage 2B
FEWRN-RS-004	FBE163	WO	2017-08-31 06:55	E537 m	Stage 2B
		WO	2017-08-01 08:20	E527 m	Stage 2D
		wo	2017-09-01 08.20	LJJ7 III	Stage 2D
FEWRN-SB-001	FBF442	wQ	2017-08-28 12:10	E537 M	Stage 2B
FEWRN-SB-002	FBF469	WQ	2017-08-31 09:25	E537 m	Stage 2B
FEWRN01-001-GW-015	FBP244	WG	2017-09-04 16:20	E537 m	Stage 4
FEWRN01-001-SO-018	FBP225	SO	2017-09-01 15:25	E537 m	Stage 4
FEWRN01-001-SS-001	FBP228	SO	2017-09-01 12:32	E537 m	Stage 2B
FEWRN01-002-SO-018	FBP227	SO	2017-09-01 17:15	E537 m	Stage 2B
FEWRN01-002-SS-001	FBP226	SO	2017-09-01 15:50	E537 m	Stage 2B
FEWRN01-003-GW-015	FBP242	WG	2017-09-04 13:45	E537 m	Stage 2B
FEWRN01-003-GW-915	FBP243	WG	2017-09-04 13:45	E537 m	Stage 2B
FEWRN01-003-SO-016	FBP232	SO	2017-09-02 10:10	E537 m	Stage 2B
FEWRN01-003-SO-916	FBP233	SO	2017-09-02 10:10	E537 m	Stage 2B
FEWRN01-003-SS-001	FBP230	SO	2017-09-02 07:59	E537 m	Stage 2B
FEWRN01-003-SS-901	FBP231	SO	2017-09-02 07:59	E537 m	Stage 2B
FEWRN02-001-GW-025	FBP240	WG	2017-09-04 10:35	E537 m	Stage 2B
FEWRN02-002-GW-033	FBP236	WG	2017-09-02 16:00	E537 m	Stage 2B

FE Warren DV Report.1.Docx RV1

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
FEWRN02-003-GW-030	FBP235	WG	2017-09-02 14:15	E537 m	Stage 2B
FEWRN02-004-GW-024	FBP237	WG	2017-09-02 17:40	E537 m	Stage 2B
FEWRN03-001-GW-020	FBP229	WG	2017-09-01 17:35	E537 m	Stage 2B
FEWRN-IDW-WS	FBP238	SO	2017-09-03 08:50	E537 m	Stage 2B
FEWRN-IDW-WW	FBP239	WG	2017-09-03 09:00	E537 m	Stage 2B
FEWRN-RS-006	FBP234	WQ	2017-09-02 13:15	E537 m	Stage 2B
FEWRN-RS-007	FBP241	WQ	2017-09-04 12:05	E537 m	Stage 2B

II. SAMPLE MANAGEMENT

According to the case narratives and the chains-of-custody (COCs) provided by the laboratory for sample delivery groups (SDGs) B7J1539, B7J3592:

- Cooler temperatures recorded on the COCs were within the temperature limits of ≤6°C and ≥0°C.
- Field and laboratory personnel signed and dated the COCs.

TABLE 2 - DATA QUALIFIER REFERENCE

Qualifier	Definition
R	The sample results are rejected because of serious deficiencies in the ability to analyze the sample and to meet quality control (QC) criteria. The presence or absence of the analyte cannot be verified.
U	The analyte was analyzed for but was nondetect (ND) above the reported sample quantification limit.
В	The reported concentration is less than 5 times the concentration reported in an associated field or lab blank.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J- denotes a low bias for the sample results and J+ for a high bias.
UJ	The material was analyzed for but was ND. The associated value is an estimate and may be inaccurate or imprecise.

TABLE 3 - REASON CODE REFERENCE

Reason Code	Definition
01	Sample received outside of 4+/-2 degrees Celsius (°C)
01A	Improper sample preservation
02	Holding time exceeded
02A	Extraction
02B	Analysis
03	Instrument performance – outside criteria
03A*	Bromofluorobenzene (BFB)
03B*	Decafluorotriphenylphosphine (DFTPP)
03C*	dichlorodiphenyltrichloroethane (DDT) and/or endrin % breakdown exceeds criteria
03D	Retention time windows
03E	Resolution
04	ICAL results outside specified criteria
04A	Compound mean RRF QC criteria not met
04B	Individual % RSD criteria not met
04C	r < 0.995 or r ² < 0.99
04D	ICAL % Recovery
05	Continuing calibration results outside specified criteria

FE Warren DV Report.1.Docx RV1

Reason Code	Definition
05A	Compound mean RRF QC criteria not met
05B	Compound % Difference QC criteria not met
06	Result qualified as a result of the 5x/10x blank correction
06A	Method or preparation blank
06B	ICB or CCB
06C	ER
06D	ТВ
06E	FB
07	Surrogate recoveries outside control limits
07A	Sample
07B	Associated MB or LCS
08	MS/MSD/Duplicate results outside criteria
08A	MS and/or MSD recovery not within control limits (accuracy)
08B	% RPD outside acceptance criteria (precision)
09*	Post digestion spike outside criteria graphite furnace atomic absorption (GFAA)
10	Internal standards outside specified control limits
10A	Recovery
10B	Retention time
11	LCS recoveries outside specified limits
11A	Recovery
11B	% RPD (if run in duplicate)
12*	Interference check standard
13*	Serial dilution
14*	Tentatively identified compounds
15	Quantification
16	Multiple results available; alternate analysis preferred
17	Field duplicate RPD criteria is exceeded
18*	Percent difference between original and second column exceeds QC criteria
19	Professional judgment was used to qualify the data
20*	Pesticide clean-up checks
21	Target compound identification

Reason Code	Definition
22*	Radiological calibration
23*	Radiological quantification
24	Reported result and/or lab qualifier revised to reflect validation findings

*Indicates that this code is not expected to apply to the evaluation of PFAS analyses

III. METHOD ANALYSIS – PERFLUORINATED COMPOUNDS BY MODIFIED EPA METHOD 537

K. Zilis of MEC^X reviewed this SDG November 1-3, 2017.

III.1. HOLDING TIMES

SDGs B7J1539, B7J3592

Except as noted below, the holding times specified in the QAPP were met. Samples were extracted within 28 days of collection and analyzed within 45 days of extraction.

In SDG <u>B7J3592</u>, sample FEWRN03-001-GW-020 was analyzed for PFHxS and PFOS by the high level analysis method in batch 5155735 on 9/24. The sample was re-extracted by the low level method past the 28 day holding time. Data for the target compounds analyzed by the low level method were qualified as estimated (J/UJ)

In the original analysis of sample FEWRN01-001-GW-015, PFDS exceeded the control limits in the Instrument Sensitivity Check and the sample was reextracted for this compound on 10/01/2017, past the 28 day extraction holding time. Data for PFDS was qualified as estimated (UJ) as noted in Table 4 below.

Table 4-Extraction Holding Time

SDG B7J3592

Extraction Batch	Analyte	Affected Samples
5185352	All analytes with the exception of PFHxS and PFOS	FBP229
	PFDS	FBP244

III.2. CALIBRATION

Calibration criteria were met, with exceptions noted in the tables below.

III.2.1. INITIAL CALIBRATION

SDGs B7J1539, B7J3592

Initial calibration criteria were met. Recoveries were within 70-130% for the lowest level of each initial calibration and 75-125% for the remaining levels, and all correlation coefficient r² values were within the control limit of \geq 0.990 or r values \geq 0.995. Applicable %RSDs were within the control limit of \leq 20%. The calculated peak asymmetry factors were within the control range of 0.8-1.5. MEC^X noted the laboratory utilized as the calibration method a weighted (1/X) linear initial calibration standard curve not forced through zero.

III.2.2. CONTINUING CALIBRATION

The initial calibration verification (ICV) and continuing calibration verification (CCV) recoveries were within the control limits of 75-125%. Low-level check standard (ISC) recoveries were within the control limits of 70-130%, with the exception noted in the table below. ISC exceptions did not result in qualification to the sample data.

7

FE Warren DV Report.1.Docx RV1

C-11

Table 4-Continuing Calibration

ICV or CCV date / time / instrument	Analyte	Recovery	Affected Samples
ISC 09/24/2017 6:55P LCMS04	PFOS	131%	None. Sensitivity std applies only to a high level detection.
ISC 09/16/2017 4:13A LCMS04	PFDS	137%	None. Sample re-extracted and reanalyzed on 10/01
ISC 10/01/2017 4:33P LCMS04	PFUnA	137%	None. The initial 12:32 ISC is compliant. Sample run at 1:17P

III.3. QUALITY CONTROL SAMPLES

III.3.1. METHOD BLANKS

SDGs B7J1539, B7J3592

The method blanks associated with the analyses of the soil and water samples had no target analyte detects above the respective soil and water detection limits (DLs).

III.3.2. LABORATORY CONTROL SAMPLES

SDGs B7J1539, B7J3592

Recoveries affecting sample data were within the control limits of 70-130%, and RPDs for LCS/LCSD pairs were within the control limit of \leq 30%.

III.3.3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed on the samples listed below. MS/MSD recoveries were not evaluated if the parent sample concentration exceeded 4× the spike amount. Qualifications were not assigned for a single recovery outlier not occurring in both the MS and MSD of a pair. Nondetects in the parent sample were not qualified for RPD outliers. Remaining recoveries and RPDs affecting sample data were within the control limits of 70-130% and \leq 30%, respectively.

SDGs B7J1539

MS/MSD analyses were performed on surface water sample FEWRN02-006-SW-001 and soil sample FEWRN02-006-SD-001. Recoveries and RPDs were within the control limits of 70-130% and \leq 30%, respectively.

SDGs B7J3592

MS/MSD analyses were performed on soil samples FEWRN01-001-SO-018 and FEWRN-001-SS-001. Results were not calculated for FEWRN-001-SS-001 due to the high levels of target analytes. MS/MSD analyses were requested on water sample FEWRN01-001-GW-015 but due to high concentrations of target analytes in the native sample, a laboratory control sample spike and spike duplicate were performed in batch 5159897 instead.

FE Warren DV Report.1.Docx RV1

III.4. FIELD QC SAMPLES

MEC^x evaluated field QC samples, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. MEC^x used the remaining detects to evaluate the associated site samples. Findings associated with field QC samples are summarized below.

III.4.1. FIELD BLANKS AND EQUIPMENT BLANKS

The field and equipment blanks and detects, if any, are listed in the table below. No target compounds were reported in the equipment rinsate blanks. The reviewer noted the ambient field blank (AB), FEWRN-SB-001, contained detections for 6:2-FTS and PFOS, as listed below. The reviewer did not apply qualifications for the ambient field blank as this sample was designed to show potential contamination in the driller's source water used to decontaminate the drilling equipment. As such, this water would have little to no contact with site samples or sampling equipment.

Table 5-FB/EB Detects

SDG B7J1539

Ambient Blank	Detect	Concentration	LOQ	
FEWRN-SB-001 (AB)	6:2 Fluorotelomer sulfonate (6:2-FTS)	0.010 ug/L	0.020 ug/l	
	Perfluorooctane sulfonate (PFOS)	0.032 ug/L	0.020 ug/L	

III.4.2. FIELD DUPLICATES

Field duplicate pairs are listed below. RPDs for detections \geq the LOQ were within the control limits of \leq 30% for soils and waters, and detected values below the LOQ, in one or both samples of a pair, were within control limit of ± the LOQ, with exceptions noted in the tables below. In the case of samples analyzed at different dilutions, the greater of the two LOQs was used for comparison. Target analyte results for the outlier RPDs were qualified as estimated (J for detects and UJ for nondetects) in both samples of a pair.

Table 6-FD RPDs

<u>SDG B7J1539</u>			
Parent Sample	Field Duplicate	Target Analyte	RPD Outliers
FEWRN01-005-SD-001	FEWRN01-005-SD-901	PFOS	93%

SDG B7J3592

Parent Sample	Field Duplicate	Target Analyte	RPD Outliers
FEWRN01-003-SS-		8:2 FTS	154%
001	LEMKINOT-002-22-201	PFDS	±LOQ
FEWRN01-003-SO-			none
016	FEWKIN01-003-30-910		
FEWRN01-003-GW-			none
015	FEWRIN01-003-GW-915		

FE Warren DV Report.1.Docx RV1

III.5. INTERNAL STANDARDS PERFORMANCE

The applicable labeled internal standard recoveries were within the control limits of $\pm 50\%$ of the average peak areas of the initial calibration, except as noted in the tables below. The results for the associated target compounds were qualified as estimated (UJ for nondetects or J for detects) in the affected samples.

Table 7-IS Recovery Outliers

SDG B7J1539

Internal Standard	% Recovery	Affected Sample	Associated Target Analyte(s)
	20%	EEW/RN01 004 SW 001	PFTeA
WIZ-PFTEA	3970	FEWKN01-004-3W-001	PFTriA

III.6. COMPOUND IDENTIFICATION

Compound identification was verified for three soil samples and two water samples: soil samples FEWRN01-001-SO-018, FEWRN03-002-SO-007 and FEWRN02-002-SO-031, and water samples FEWRN01-001-GW-015 and FEWRN01-004-SW-001. The laboratory analyzed for 18 perfluorinated compounds by Modified EPA Method 537. Review of retention times and the ion chromatograms indicated no issues with compound identification.

III.7. COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Calculations were verified and sample results reported on the sample result summaries were verified against the raw data for the samples listed above (see Compound Identification section). Quantitation verification was limited based upon the significant figures presented in the raw data and were therefore estimations of the actual sample amounts. The reviewer considered the concentration verified within that limitation. The laboratory calculated and reported compound-specific detection limits. Detects below the LOQ were qualified as estimated (J). Nondetects are valid to the LOD.

Most samples were initially analyzed undiluted. However, water samples and soil extracts were prescreened to obtain estimated concentrations so that extracts could be appropriately diluted. Some samples with high concentrations of PFCs were not analyzed undiluted. Reporting limits have been adjusted accordingly. Analytes were reported from the least dilute analysis possible to report all target analytes within the linear calibration range.

The laboratory integrated isomeric forms for the PFCs with linear and branched isomers as required by Revision 1.1 of EPA Method 537.

III.8. SYSTEM PERFORMANCE

No issues were noted with system performance.

IV. SUMMARY AND CONCLUSIONS

MEC^x evaluated a total of 810 data records from field samples during the validation and qualified 38 records (4.7 % of the data) as estimated values (J/UJ). The qualification was required for extraction holding time exceedance, potential field blank contamination, internal standard recovery outliers and field duplicate precision outliers. Nondetect compounds were flagged (U) to indicate that the compound was analyzed for but not detected above the limit of detection (LOD). Specific qualification were discussed in the text above.

Overall, the quality of the data was acceptable. The precision (99.3%) and accuracy results (96.0%) were acceptable. Other data quality indicators (DQI) (representativeness, comparability and completeness) met the project objectives. Each of these DQIs is discussed below.

IV.1. PRECISION

Precision is a measure of the agreement between duplicate sample measurements of the same quantity and is reflected in the relative percent difference (RPD) between spikes and the RPD for the field duplicate pair analysis. Precision was measured at 99.3%. The outliers in the precision measurements were due to samples flagged for field duplicate RPD outliers. Precision was considered acceptable for the project.

IV.2. ACCURACY

Accuracy is measured by the results from the recovery of known amounts of compounds or elements from calibration, method blanks, laboratory control samples (LCS), matrix spikes (MS), internal standard recoveries and surrogate recoveries. Holding time exceedances also impact accuracy. Accuracy outliers were primarily holding time exceedances and potential field blank contamination. The accuracy was 96.0%. Accuracy was considered acceptable for the project.

IV.3. REPRESENTATIVENESS

The measures of representativeness – sample handling, analytical blank analysis, were met. Designated analytical protocols were followed. The laboratory did utilize a weighted 1/X calibration curve which was not forced through zero. Although this is a deviation from Method 537, modified, it is acceptable on DoD projects and was considered acceptable by the reviewer. Analytical holding times were met for all analyses. Extraction holding times were exceeded for portions of two samples. No analytical problems were noted which would impact data representativeness.

IV.4. COMPARABILITY

The samples were analyzed using appropriate approved methods of analysis. All data were reported correctly using standard units.

IV.5.COMPLETENESS

Completeness is the amount of validated data compared to the planned amount of data and is expressed as a percentage of the usable data divided by the total number of data points. Although one data point was rejected by the reviewer, it was not a target compound and was not counted against the overall percent completeness. Of the 810 target data points, no data points were rejected, resulting in a completeness of 100%.

V. REFERENCES

Aerostar, 2016. Final Quality Assurance Project Plan for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites United States Air Force Installations, March 2016

Aerostar, 2016a. Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations, Addendum 11, Field Sampling Plan for F.E. Warren Air Force Base, Laramie County, Wyoming, July 2017.

Department of Defense (DOD), 2017. *DoD Quality Systems Manual for Environmental Laboratories*, Version 5.1. January 2017.

EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.

EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA/540-R-014-002.

EPA (U.S. Environmental Protection Agency), January 2009. OSWER 9200-1-85. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use.* EPA-540/R-08-005.

Validated Sample Result Forms: B7J1539

Analysis Method: EPA 537 m

Sample Name FEWRN01-004	-SD-001		Matrix '	Гуре: S	R	lesult Typ	e: TRG			
Lab Sample Name: FBF475	Sampl	ple Date/Time: 2017-09-01 08:4					Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.34	0.28	0.72	1.2	ug/kg	J	J		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.72	0.38	0.72	1.2	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.72	0.20	0.72	1.2	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	<0.72	0.28	0.72	1.2	ug/kg	U	U		
PERFLUORODECANE SULFONATE	335-77-3	<0.72	0.28	0.72	1.2	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	0.51	0.16	0.48	1.2	ug/kg	J	J		
PERFLUORODODECANOIC ACID	307-55-1	0.30	0.26	0.72	1.2	ug/kg	J	J		
PERFLUOROHEPTANOIC ACID	375-85-9	<0.72	0.20	0.72	1.2	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	0.46	0.28	0.72	1.2	ug/kg	J	J		
PERFLUOROHEXANOIC ACID	307-24-4	0.58	0.23	0.72	1.2	ug/kg	J	J		
PERFLUORONONANOIC ACID	375-95-1	<0.72	0.20	0.72	1.2	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.72	0.31	0.72	1.2	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	1.1	0.25	0.72	1.2	ug/kg	J	J		
PERFLUOROOCTANOIC ACID	335-67-1	<0.72	0.31	0.72	1.2	ug/kg	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	0.76	0.22	0.72	1.2	ug/kg	J	J		
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.48	0.13	0.48	1.2	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.48	0.14	0.48	1.2	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.72	0.22	0.72	1.2	ug/kg	U	U		

Sample Name FEWRN01-004	-SW-001	1	Matrix 7	Type: W	R	kesult Typ	e: TRG		
Lab Sample Name: FBF476	Sample Date/Time: 2017-09			•09 - 01	08:45		Validation Level: Stage 4		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	3.5	0.064	0.20	0.40	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.022	0.0036	0.010	0.020	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.013	0.0053	0.011	0.022	ug/L	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	9.0	0.086	0.20	0.40	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.011	0.0051	0.011	0.022	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.011	0.0044	0.011	0.022	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.011	0.0031	0.011	0.022	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.096	0.0036	0.011	0.022	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	0.036	0.0037	0.011	0.022	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.48	0.0032	0.011	0.022	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.014	0.0042	0.011	0.022	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.011	0.0040	0.011	0.022	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.045	0.0029	0.011	0.022	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.043	0.0051	0.011	0.022	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.011	0.0030	0.011	0.022	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	10A
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	UJ	10A
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.011	0.0047	0.011	0.022	ug/L	U	U	

Analysis Method: EPA 537 m

Sample Name FEWRN01-005-	-SD-001		Matrix '	Гуре: S	R	esult Typ	e: TRG			
Lab Sample Name: FBF453	Sample Date/Time:			-08-29	11:00		Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<0.66	0.25	0.66	1.1	ug/kg	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	<0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	0.25	0.24	0.66	1.1	ug/kg	J	J		
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.25	0.66	1.1	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	<0.66	0.21	0.66	1.1	ug/kg	U	U		
PERFLUORONONANOIC ACID	375-95-1	<0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.77	0.29	0.66	1.1	ug/kg	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	5.2	0.23	0.66	1.1	ug/kg		J	17	
PERFLUOROOCTANOIC ACID	335-67-1	0.63	0.29	0.66	1.1	ug/kg	J	J		
PERFLUOROPENTANOIC ACID	2706-90-3	<0.66	0.20	0.66	1.1	ug/kg	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U		

Analysis Method: EPA 537 m

Analysis Method:	EPA 537 m									
Sample Name FEWRN01-005	-SD-901		Matrix	Type: S	F	Result Typ	e: TRG			
Lab Sample Name: FBF454	Sample	Date/Tim	e: 2017	e: 2017-08-29			Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.84	0.32	0.84	1.4	ug/kg	U	U		
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.84	0.45	0.84	1.4	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.84	0.24	0.84	1.4	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	<0.84	0.32	0.84	1.4	ug/kg	U	U		
PERFLUORODECANE SULFONATE	335-77-3	<0.84	0.32	0.84	1.4	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.56	0.18	0.56	1.4	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	<0.84	0.31	0.84	1.4	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	<0.84	0.24	0.84	1.4	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	0.94	0.32	0.84	1.4	ug/kg	J	J		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.84	0.27	0.84	1.4	ug/kg	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.84	0.24	0.84	1.4	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.84	0.36	0.84	1.4	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	1.9	0.29	0.84	1.4	ug/kg		J	17	
PERFLUOROOCTANOIC ACID	335-67-1	0.56	0.36	0.84	1.4	ug/kg	J	J		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.84	0.25	0.84	1.4	ug/kg	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.56	0.15	0.56	1.4	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.56	0.17	0.56	1.4	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.84	0.25	0.84	1.4	ug/kg	U	U		

Analysis Method:	EPA 537 m									
Sample Name FEWRN01-005	5-SW-001		Matrix 7	Г уре: W	R	lesult Typ	e: TRG			
Lab Sample Name: FBF455	Sample I	Date/Tim	e: 2017-	: 2017-08-29			Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.17	0.0038	0.012	0.024	ug/L				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.012	0.0043	0.012	0.024	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	0.13	0.0058	0.012	0.024	ug/L				
PERFLUOROBUTANOIC ACID	375-22-4	0.055	0.0052	0.012	0.024	ug/L				
PERFLUORODECANE SULFONATE	335-77-3	< 0.012	0.0055	0.012	0.024	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.012	0.0048	0.012	0.024	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.012	0.0034	0.012	0.024	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.078	0.0040	0.012	0.024	ug/L				
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.034	0.10	0.20	ug/L				
PERFLUOROHEXANOIC ACID	307-24-4	0.35	0.0035	0.012	0.024	ug/L				
PERFLUORONONANOIC ACID	375-95-1	< 0.012	0.0046	0.012	0.024	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	0.014	0.0043	0.012	0.024	ug/L	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	1.2	0.0031	0.012	0.024	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	0.33	0.0055	0.012	0.024	ug/L				
PERFLUOROPENTANOIC ACID	2706-90-3	0.17	0.0032	0.012	0.024	ug/L				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.012	0.0046	0.012	0.024	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.012	0.0040	0.012	0.024	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.012	0.0052	0.012	0.024	ug/L	U	U		

Tuesday, January 9, 2018
Analysis Method:	EPA 537 m								
Sample Name FEWRN01-005	5-SW-901		Matrix T	Г уре: W	R	esult Typ	e: TRG		
Lab Sample Name: FBF456	Sample	Date/Time	e: 2017-	-08-29	11:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.18	0.0040	0.013	0.025	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.013	0.0045	0.013	0.025	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.13	0.0060	0.013	0.025	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.060	0.0054	0.013	0.025	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.013	0.0058	0.013	0.025	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.013	0.0050	0.013	0.025	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.013	0.0035	0.013	0.025	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.076	0.0041	0.013	0.025	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.40	0.0036	0.013	0.025	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.013	0.0048	0.013	0.025	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.013	0.0045	0.013	0.025	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	1.2	0.0033	0.013	0.025	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.33	0.0058	0.013	0.025	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.18	0.0034	0.013	0.025	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.013	0.0048	0.013	0.025	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.013	0.0041	0.013	0.025	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.013	0.0054	0.013	0.025	ug/L	U	U	

Sample Name FEWRN01-MW	/-070-GW-020)	Matrix '	Гуре: W	R	kesult Typ	e: TRG		
Lab Sample Name: FBF460	Sampl	e Date/Tim	e: 2017	-08-30	14:45		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	15	0.16	0.50	1.0	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.069	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.7	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	1.3	0.043	0.10	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	3.2	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	26	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	6.3	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.10	0.038	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.12	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	6.0	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	5.4	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	4.7	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Sample Name FEWRN01-MW	/071-GW-020		Matrix 7	Г уре: W	R	kesult Typ	e: TRG		
Lab Sample Name: FBF459	Sampl	e Date/Tim	e: 2017-	-08-30	11:45		Validation Level: Stage 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.58	0.0035	0.011	0.022	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.0069	0.0040	0.011	0.022	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.39	0.0053	0.011	0.022	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.18	0.0047	0.011	0.022	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.011	0.0051	0.011	0.022	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.011	0.0044	0.011	0.022	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.011	0.0031	0.011	0.022	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.20	0.0036	0.011	0.022	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	1.8	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.93	0.0032	0.011	0.022	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.0090	0.0042	0.011	0.022	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.011	0.0040	0.011	0.022	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.35	0.0029	0.011	0.022	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.24	0.0051	0.011	0.022	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.66	0.0030	0.011	0.022	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.011	0.0042	0.011	0.022	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.011	0.0036	0.011	0.022	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.011	0.0047	0.011	0.022	ug/L	U	U	

Sample Name FEWRN02-001	-SO-028	-	Matrix '	Гуре: S	R	e: TRG			
Lab Sample Name: FBF468	Sampl	e Date/Time	2017	-08-31	18:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<0.66	0.25	0.66	1.1	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.66	0.24	0.66	1.1	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.66	0.21	0.66	1.1	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	<0.66	0.23	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	<0.66	0.20	0.66	1.1	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN02-002	2-SO-031		Matrix	Type: S	F	Result Typ	e: TRG		
Lab Sample Name: FBF466	Sample	Date/Tim	e: 2017	-08-31	14:23		Validati	on Level: St	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<0.66	0.25	0.66	1.1	ug/kg	U	U	
3:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	<0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	0.26	0.24	0.66	1.1	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	<0.66	0.21	0.66	1.1	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.80	0.23	0.66	1.1	ug/kg	J	J	
PERFLUOROOCTANOIC ACID	335-67-1	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U	

Sample Name FEWRN02-003	-SO-031	-	Matrix [Гуре: S	R	esult Typ	e: TRG		
Lab Sample Name: FBF464	Sampl	le Date/Time	2017	-08-31	10:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.60	0.21	0.54	0.90	ug/kg	J	J	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.54	0.29	0.54	0.90	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.76	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.38	0.21	0.54	0.90	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	<0.54	0.21	0.54	0.90	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.90	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.54	0.20	0.54	0.90	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.45	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	3.5	0.21	0.54	0.90	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	1.1	0.17	0.54	0.90	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	<0.54	0.15	0.54	0.90	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.54	0.23	0.54	0.90	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	3.2	0.19	0.54	0.90	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.45	0.23	0.54	0.90	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.60	0.16	0.54	0.90	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.099	0.36	0.90	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.90	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.54	0.16	0.54	0.90	ug/kg	U	U	

Sample Name FEWRN02-004	-SO-013		Matrix '	Гуре: S	R	esult Typ	e: TRG			
Lab Sample Name: FBF451	Sampl	e Date/Time	e: 2017	-08-30	15:20		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.2	0.25	0.66	1.1	ug/kg				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	4.9	0.35	0.66	1.1	ug/kg				
PERFLUOROBUTANE SULFONATE	29420-43-3	1.1	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROBUTANOIC ACID	375-22-4	0.84	0.25	0.66	1.1	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	0.24	0.24	0.66	1.1	ug/kg	J	J		
PERFLUOROHEPTANOIC ACID	375-85-9	0.65	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROHEXANE SULFONATE	108427-53-8	7.3	0.25	0.66	1.1	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	3.1	0.21	0.66	1.1	ug/kg				
PERFLUORONONANOIC ACID	375-95-1	<0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.60	0.29	0.66	1.1	ug/kg	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	82	2.3	6.6	11	ug/kg				
PERFLUOROOCTANOIC ACID	335-67-1	0.98	0.29	0.66	1.1	ug/kg	J	J		
PERFLUOROPENTANOIC ACID	2706-90-3	1.6	0.20	0.66	1.1	ug/kg				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.66	0.20	0.66	1.1	ug/kg	U	U		

Analysis Method:	EPA 537 m	ı							
Sample Name FEWRN02-005	5-SS-001		Matrix	Type: S	F	Result Typ	e: TRG		
Lab Sample Name: FBF473	Sample	e Date/Tim	e: 2017	7-09-01	08:25		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.7	0.28	0.72	1.2	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	4.1	0.38	0.72	1.2	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	2.9	0.20	0.72	1.2	ug/kg			
PERFLUOROBUTANOIC ACID	375-22-4	0.98	0.28	0.72	1.2	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.72	0.28	0.72	1.2	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.68	0.16	0.48	1.2	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.48	0.26	0.72	1.2	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	1.4	0.20	0.72	1.2	ug/kg			
PERFLUOROHEXANE SULFONATE	108427-53-8	23	0.28	0.72	1.2	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	4.3	0.23	0.72	1.2	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	1.1	0.20	0.72	1.2	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.72	0.31	0.72	1.2	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	38	0.25	0.72	1.2	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.0	0.31	0.72	1.2	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	3.2	0.22	0.72	1.2	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.48	0.13	0.48	1.2	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.48	0.14	0.48	1.2	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.62	0.22	0.72	1.2	ug/kg	J	J	

Analysis Method:	EPA 537 m								
Sample Name FEWRN02-006	5-SD-001		Matrix	Type: S	R	Result Typ	e: TRG		
Lab Sample Name: FBF457	Sample	Date/Tim	e: 2017	-08-29	12:35		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<0.66	0.25	0.66	1.1	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	<0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.66	0.24	0.66	1.1	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	<0.66	0.21	0.66	1.1	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	<0.66	0.23	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.66	0.20	0.66	1.1	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN02-006	5-SW-001		Matrix 7	Г уре: W	R	lesult Typ	e: TRG		
Lab Sample Name: FBF458	Sample	Date/Tim	e: 2017-	-08-29	12:35		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Sample Name FEWRN03-001	-SO-008		Matrix	Гуре: S	R	kesult Typ	pe: TRG			
Lab Sample Name: FBF461	Sampl	e Date/Time	e: 2017	-08-29	17:30		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	0.43	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROBUTANOIC ACID	375-22-4	<0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	<0.66	0.24	0.66	1.1	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	0.72	0.25	0.66	1.1	ug/kg	J	J		
PERFLUOROHEXANOIC ACID	307-24-4	<0.66	0.21	0.66	1.1	ug/kg	U	U		
PERFLUORONONANOIC ACID	375-95-1	<0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	<0.66	0.23	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	<0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	<0.66	0.20	0.66	1.1	ug/kg	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U		

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-001	-SS-001		Matrix	Type: S	R	Result Typ	e: TRG		
Lab Sample Name: FBF448	Sample	Date/Tim	e: 2017	-08-29	10:06		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.57	0.22	0.57	0.95	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.57	0.30	0.57	0.95	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.35	0.16	0.57	0.95	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.61	0.22	0.57	0.95	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.57	0.22	0.57	0.95	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.58	0.12	0.38	0.95	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.38	0.21	0.57	0.95	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.57	0.16	0.57	0.95	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	5.8	0.22	0.57	0.95	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.61	0.18	0.57	0.95	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.55	0.16	0.57	0.95	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.46	0.25	0.57	0.95	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	130	2.0	5.7	9.5	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.64	0.25	0.57	0.95	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.67	0.17	0.57	0.95	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.37	0.10	0.38	0.95	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.34	0.11	0.38	0.95	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.41	0.17	0.57	0.95	ug/kg	J	J	

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-002	2-GW-020		Matrix T	ype: W	R	lesult Typ	e: TRG		
Lab Sample Name: FBF472	Sample D	ate/Time	e: 2017-	08-31	15:34		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.27	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.38	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.18	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.12	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	2.0	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.64	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.72	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.26	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.40	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-002	2-SO-007		Matrix '	Type: S	R	Result Typ	e: TRG		
Lab Sample Name: FBF450	Sample	Date/Tim	e: 2017	-08-29	12:55		Validati	on Level: St	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.88	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.53	0.15	0.53	0.88	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.35	0.11	0.35	0.88	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	0.25	0.19	0.53	0.88	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.53	0.15	0.53	0.88	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.20	0.53	0.88	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.53	0.17	0.53	0.88	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.88	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	2 754-91-6	< 0.53	0.23	0.53	0.88	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	11	0.18	0.53	0.88	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.34	0.23	0.53	0.88	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.53	0.16	0.53	0.88	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.35	0.097	0.35	0.88	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.35	0.11	0.35	0.88	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.26	0.16	0.53	0.88	ug/kg	J	J	

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-002	2-SS-001		Matrix '	Type: S	R	Result Typ	e: TRG		
Lab Sample Name: FBF444	Sample	Date/Tim	e: 2017	-08-28	16:05		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.53	0.28	0.53	0.89	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	0.35	0.20	0.53	0.89	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.39	0.12	0.36	0.89	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	<0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.0	0.20	0.53	0.89	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.39	0.17	0.53	0.89	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	2 754-91-6	< 0.53	0.23	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	22	0.19	0.53	0.89	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.38	0.23	0.53	0.89	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.53	0.16	0.53	0.89	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.098	0.36	0.89	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.89	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.25	0.16	0.53	0.89	ug/kg	J	J	

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-003	3-GW-020		Matrix T	Г уре: W	R	esult Typ	e: TRG		
Lab Sample Name: FBF470	Sample	Date/Time	e: 2017-	-08-31	11:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.62	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.31	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.16	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.18	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	2.4	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.85	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	1.3	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.59	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.46	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Sample Name FEWRN03-003-	-GW-920	1	Matrix T	Type: W	R	kesult Typ	e: TRG		
Lab Sample Name: FBF471	Sampl	le Date/Time	2017-	08-31	11:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.64	0.0037	0.012	0.023	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.012	0.0041	0.012	0.023	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.36	0.0055	0.012	0.023	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.20	0.0049	0.012	0.023	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.012	0.0053	0.012	0.023	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.012	0.0046	0.012	0.023	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.012	0.0032	0.012	0.023	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.19	0.0038	0.012	0.023	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	2.3	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.99	0.0033	0.012	0.023	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.010	0.0044	0.012	0.023	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.012	0.0041	0.012	0.023	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	1.7	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.66	0.0053	0.012	0.023	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.53	0.0031	0.012	0.023	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.012	0.0044	0.012	0.023	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.012	0.0038	0.012	0.023	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.012	0.0049	0.012	0.023	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-003	3-SO-008		Matrix	Type: S	R	Result Typ	e: TRG		
Lab Sample Name: FBF447	Sample I	Date/Tim	e: 2017	-08-29	11:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.78	0.30	0.78	1.3	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.78	0.42	0.78	1.3	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.55	0.22	0.78	1.3	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.53	0.30	0.78	1.3	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	<0.78	0.30	0.78	1.3	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.52	0.17	0.52	1.3	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.78	0.29	0.78	1.3	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.78	0.22	0.78	1.3	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	5.0	0.30	0.78	1.3	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.85	0.25	0.78	1.3	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	<0.78	0.22	0.78	1.3	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.78	0.34	0.78	1.3	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	<0.78	0.27	0.78	1.3	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	0.53	0.34	0.78	1.3	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.80	0.23	0.78	1.3	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.52	0.14	0.52	1.3	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.52	0.16	0.52	1.3	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.78	0.23	0.78	1.3	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-003	3-SO-908		Matrix	Type: S	R	Result Typ	e: TRG		
Lab Sample Name: FBF449	Sample	Date/Tim	e: 2017	7-08-29	11:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<0.72	0.28	0.72	1.2	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.72	0.38	0.72	1.2	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.81	0.20	0.72	1.2	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.47	0.28	0.72	1.2	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	<0.72	0.28	0.72	1.2	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.48	0.16	0.48	1.2	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	0.27	0.26	0.72	1.2	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.72	0.20	0.72	1.2	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	7.9	0.28	0.72	1.2	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.92	0.23	0.72	1.2	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.72	0.20	0.72	1.2	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.72	0.31	0.72	1.2	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	<0.72	0.25	0.72	1.2	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	0.50	0.31	0.72	1.2	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.80	0.22	0.72	1.2	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.48	0.13	0.48	1.2	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.48	0.14	0.48	1.2	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.72	0.22	0.72	1.2	ug/kg	U	U	

Sample Name FEWRN03-003-	-SS-001		Matrix '	Type: S	R	esult Typ	e: TRG		
Lab Sample Name: FBF443	Sampl	e Date/Time	e: 2017	-08-28	15:40		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.54	0.21	0.54	0.90	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.54	0.29	0.54	0.90	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.41	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.52	0.21	0.54	0.90	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.54	0.21	0.54	0.90	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.90	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.54	0.20	0.54	0.90	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.54	0.15	0.54	0.90	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	12	0.21	0.54	0.90	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.58	0.17	0.54	0.90	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.50	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.54	0.23	0.54	0.90	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	73	1.9	5.4	9.0	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	1.5	0.23	0.54	0.90	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.67	0.16	0.54	0.90	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.099	0.36	0.90	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.90	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.54	0.16	0.54	0.90	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN03-004	I-SO-008		Matrix '	Type: S	F	Result Typ	e: TRG		
Lab Sample Name: FBF445	Sample	Date/Tim	e: 2017	-08-29	07:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.89	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.37	0.15	0.53	0.89	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.35	0.20	0.53	0.89	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.89	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.1	0.20	0.53	0.89	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.53	0.17	0.53	0.89	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.53	0.23	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	<0.53	0.19	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.53	0.23	0.53	0.89	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	0.57	0.16	0.53	0.89	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.098	0.36	0.89	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.89	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.53	0.16	0.53	0.89	ug/kg	U	U	

Sample Name FEWRN03-004	-SS-001		Matrix '	Туре: S	R	kesult Typ	e: TRG		
Lab Sample Name: FBF441	Sampl	e Date/Tim	e: 2017	-08-28	13:10		Validation Level: Stage 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	3.9	2.3	6.0	10	ug/kg	J	J	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<6.0	3.2	6.0	10	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	7.6	1.7	6.0	10	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	3.8	2.3	6.0	10	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	7.2	2.3	6.0	10	ug/kg	J	J	
PERFLUORODECANOIC ACID	335-76-2	4.4	1.3	4.0	10	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	<6.0	2.2	6.0	10	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	4.6	1.7	6.0	10	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	220	2.3	6.0	10	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	13	1.9	6.0	10	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	<6.0	1.7	6.0	10	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	6.8	2.6	6.0	10	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	1600	21	60	100	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	8.7	2.6	6.0	10	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	7.6	1.8	6.0	10	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	<4.0	1.1	4.0	10	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<4.0	1.2	4.0	10	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<6.0	1.8	6.0	10	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN-RS-00	01		Matrix 7	Г уре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBF440	Sample	Date/Tim	e: 2017-	-08-28	12:05		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 m	l									
Sample Name FEWRN-RS-00	02		Matrix 7	ype: W	R	Result Type: TRG					
Lab Sample Name: FBF446	Sample	Date/Tim	e: 2017-	08-29	07:45		Validati	on Level: St	age 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U			

Analysis Method:	EPA 537 m								
Sample Name FEWRN-RS-00	03		Matrix 7	Г уре: W	R	esult Typ	e: TRG		
Lab Sample Name: FBF452	Sample	Date/Tim	e: 2017-	-08-30	15:15		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN-RS-00)4		Matrix 7	ype: W	R	esult Typ	e: TRG		
Lab Sample Name: FBF463	Sample	Date/Tim	e: 2017-	08-31	06:55		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN-RS-00	05		Matrix 7	ype: W	R	esult Typ	e: TRG		
Lab Sample Name: FBF474	Sample	Date/Tim	e: 2017-	09 - 01	08:20		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN-SB-00	01		Matrix 7	ype: W	R	esult Typ	e: TRG		
Lab Sample Name: FBF442	Sample	Date/Time	e: 2017-	08-28	12:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.010	0.0032	0.010	0.020	ug/L	J	J	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.032	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN-SB-00	02		Matrix 7	Г уре: W	R	lesult Typ	e: TRG		
Lab Sample Name: FBF469	Sample	Date/Tim	e: 2017-	-08-31	09:25		Validatio	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Validated Sample Result Forms: B7J3592

Sample Name FEWRN01-001	-GW-015]	Matrix '	Type: W	R	lesult Typ	e: TRG		
Lab Sample Name: FBP244	Sampl	e Date/Time	2017	-09-04	16:20		Validati	on Level: St	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	49	0.32	1.0	2.0	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.76	0.072	0.20	0.40	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	11	0.096	0.20	0.40	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	7.9	0.086	0.20	0.40	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.20	0.092	0.20	0.40	ug/L	U	UJ	02A
PERFLUORODECANOIC ACID	335-76-2	< 0.20	0.080	0.20	0.40	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.20	0.056	0.20	0.40	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	6.1	0.066	0.20	0.40	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	140	2.4	5.0	8.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	53	0.29	1.0	2.0	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.33	0.076	0.20	0.40	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	3.0	0.072	0.20	0.40	ug/L			
PERFLUOROOCTANE SULFONATE	1763-23-1	64	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	72	0.46	1.0	2.0	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	13	0.054	0.20	0.40	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.20	0.076	0.20	0.40	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.20	0.066	0.20	0.40	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.20	0.086	0.20	0.40	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN01-001	-SO-018		Matrix '	Туре: S	R	lesult Typ	e: TRG		
Lab Sample Name: FBP225	Sample	Date/Tim	e: 2017	-09-01	15:25		Validati	on Level: St	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.6	0.20	0.53	0.89	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.89	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.64	0.15	0.53	0.89	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	1.4	0.20	0.53	0.89	ug/kg			
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.89	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.50	0.15	0.53	0.89	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	4.9	0.20	0.53	0.89	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	4.0	0.17	0.53	0.89	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	2 754-91-6	0.71	0.23	0.53	0.89	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	4.0	0.19	0.53	0.89	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.8	0.23	0.53	0.89	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.75	0.16	0.53	0.89	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.098	0.36	0.89	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.89	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.53	0.16	0.53	0.89	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN01-001	I-SS-001		Matrix '	Гуре: S	R	esult Typ	e: TRG		
Lab Sample Name: FBP228	Sample	Date/Tim	e: 2017	-09-01	12:32		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<59	23	59	99	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<59	32	59	99	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	3600	17	59	99	ug/kg			
PERFLUOROBUTANOIC ACID	375-22-4	820	23	59	99	ug/kg			
PERFLUORODECANE SULFONATE	335-77-3	<59	23	59	99	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	14	13	40	99	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	<59	22	59	99	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	860	17	59	99	ug/kg			
PERFLUOROHEXANE SULFONATE	108427-53-8	20000	23	59	990	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	6900	190	590	990	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	48	17	59	99	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	5100	260	590	990	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	3400	21	59	99	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	50000	470	1100	1800	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	1200	18	59	99	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	<40	11	40	99	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<40	12	40	99	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<59	18	59	99	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN01-002	2-SO-018		Matrix	Type: S	F	lesult Typ	e: TRG		
Lab Sample Name: FBP227	Sample	Date/Tim	e: 2017	-09-01	17:15		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.6	0.23	0.60	1.0	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.60	0.32	0.60	1.0	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.3	0.17	0.60	1.0	ug/kg			
PERFLUOROBUTANOIC ACID	375-22-4	3.1	0.23	0.60	1.0	ug/kg			
PERFLUORODECANE SULFONATE	335-77-3	<0.60	0.23	0.60	1.0	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.40	0.13	0.40	1.0	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.60	0.22	0.60	1.0	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.73	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	17	0.23	0.60	1.0	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	7.4	0.19	0.60	1.0	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	< 0.60	0.17	0.60	1.0	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	0.77	0.26	0.60	1.0	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	20	0.21	0.60	1.0	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	6.0	0.26	0.60	1.0	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	2.2	0.18	0.60	1.0	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN01-002	2-SS-001		Matrix	Type: S	R	Result Typ	e: TRG		
Lab Sample Name: FBP226	Sample	Date/Tim	e: 2017	7-09-01	15:50		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.60	0.23	0.60	1.0	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.60	0.32	0.60	1.0	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.59	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.48	0.23	0.60	1.0	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	1.6	0.23	0.60	1.0	ug/kg			
PERFLUORODECANOIC ACID	335-76-2	0.56	0.13	0.40	1.0	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.45	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	11	0.23	0.60	1.0	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	1.1	0.19	0.60	1.0	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	0.50	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	6.5	0.26	0.60	1.0	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	140	2.1	6.0	10	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.2	0.26	0.60	1.0	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.39	0.18	0.60	1.0	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.41	0.18	0.60	1.0	ug/kg	J	J	

Analysis Method:	EPA 537 m								
Sample Name FEWRN01-003	3-GW-015		Matrix T	ype: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP242	Sample I	Date/Time	e: 2017-	09-04	13:45		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.4	0.064	0.20	0.40	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.11	0.0036	0.010	0.020	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.97	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.32	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.37	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	4.2	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	2.5	0.058	0.20	0.40	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	0.017	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	2.5	0.052	0.20	0.40	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.43	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.2	0.054	0.20	0.40	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN01-003	3-GW-915		Matrix 7	ype: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP243	Sample I	Date/Tim	e: 2017-	09-04	13:45		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.8	0.064	0.20	0.40	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.13	0.0036	0.010	0.020	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	1.1	0.096	0.20	0.40	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.36	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.39	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	4.7	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	2.7	0.058	0.20	0.40	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	0.017	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	3.2	0.052	0.20	0.40	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.48	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.3	0.054	0.20	0.40	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
Analysis Method:	EPA 537 m	l							
-----------------------------	-------------	-----------------	----------------	---------	-------	-----------------	------------------	-------------------------	---------------------------
Sample Name FEWRN01-003	-SO-016		Matrix	Type: S	F	Result Typ	e: TRG		
Lab Sample Name: FBP232	Sample	• Date/Tim	e: 2017	-09-02	10:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.1	0.25	0.66	1.1	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.65	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.39	0.25	0.66	1.1	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.66	0.24	0.66	1.1	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.47	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.4	0.25	0.66	1.1	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.90	0.21	0.66	1.1	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.80	0.23	0.66	1.1	ug/kg	J	J	
PERFLUOROOCTANOIC ACID	335-67-1	0.94	0.29	0.66	1.1	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.46	0.20	0.66	1.1	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.66	0.20	0.66	1.1	ug/kg	U	U	

Analysis Method:	EPA 537 m								
Sample Name FEWRN01-003	s-SO-916		Matrix	Type: S	F	Result Typ	e: TRG		
Lab Sample Name: FBP233	Sample	Date/Tim	e: 2017	-09-02	10:10		Validatio	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.69	0.25	0.66	1.1	ug/kg	J	J	
3:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	0.38	0.25	0.66	1.1	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	<0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.66	0.24	0.66	1.1	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.88	0.25	0.66	1.1	ug/kg	J	J	
PERFLUOROHEXANOIC ACID	307-24-4	0.68	0.21	0.66	1.1	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.51	0.23	0.66	1.1	ug/kg	J	J	
PERFLUOROOCTANOIC ACID	335-67-1	<0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	0.45	0.20	0.66	1.1	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U	

Analysis Method:	EPA 537 m	L							
Sample Name FEWRN01-003	3-SS-001		Matrix	Type: S	F	Result Typ	e: TRG		
Lab Sample Name: FBP230	Sample	e Date/Tim	e: 2017	-09-02	07:59		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.9	0.25	0.66	1.1	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	4.4	0.35	0.66	1.1	ug/kg		J	17
PERFLUOROBUTANE SULFONATE	29420-43-3	0.59	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.78	0.25	0.66	1.1	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	2.7	0.25	0.66	1.1	ug/kg		J	17
PERFLUORODECANOIC ACID	335-76-2	1.4	0.14	0.44	1.1	ug/kg			
PERFLUORODODECANOIC ACID	307-55-1	0.46	0.24	0.66	1.1	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	0.85	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	3.8	0.25	0.66	1.1	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.97	0.21	0.66	1.1	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	1.3	0.19	0.66	1.1	ug/kg			
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	11	0.29	0.66	1.1	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	62	2.3	6.6	11	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.2	0.29	0.66	1.1	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.84	0.20	0.66	1.1	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.91	0.20	0.66	1.1	ug/kg	J	J	

Analysis Method:	EPA 537 m	L							
Sample Name FEWRN01-003	3-SS-901		Matrix '	Type: S	F	Result Typ	e: TRG		
Lab Sample Name: FBP231	Sample	e Date/Tim	e: 2017	-09-02	07:59		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.9	0.20	0.52	0.87	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	34	0.28	0.52	0.87	ug/kg		J	17
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.52	0.15	0.52	0.87	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	0.44	0.20	0.52	0.87	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.52	0.20	0.52	0.87	ug/kg	U	UJ	17
PERFLUORODECANOIC ACID	335-76-2	0.81	0.11	0.35	0.87	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.52	0.19	0.52	0.87	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.94	0.15	0.52	0.87	ug/kg			
PERFLUOROHEXANE SULFONATE	108427-53-8	3.3	0.20	0.52	0.87	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.80	0.17	0.52	0.87	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.86	0.15	0.52	0.87	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	2 754-91-6	13	0.23	0.52	0.87	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	71	1.8	5.2	8.7	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.0	0.23	0.52	0.87	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.79	0.16	0.52	0.87	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.35	0.096	0.35	0.87	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.35	0.10	0.35	0.87	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.32	0.16	0.52	0.87	ug/kg	J	J	

Sample Name FEWRN02-001	-GW-025	1	Matrix T	ype: W	R	kesult Typ	e: TRG		
Lab Sample Name: FBP240	Sampl	e Date/Time	: 2017-	09-04	10:35		Validation Level: Stage 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
3:2 FLUOROTELOMER SULFONATE	39108-34-4	0.0038	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.074	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.040	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.022	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	0.29	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.16	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.72	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.031	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.14	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method: EPA 537 m

Analysis Method:	EPA 537 m								
Sample Name FEWRN02-002	2-GW-033		Matrix T	Г уре: W	R	esult Typ	e: TRG		
Lab Sample Name: FBP236	Sample I	Date/Time	e: 2017-	-09-02	16:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.044	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.065	0.0036	0.010	0.020	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.022	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.020	0.0043	0.010	0.020	ug/L	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.0099	0.0033	0.010	0.020	ug/L	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.13	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.079	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	0.0079	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.91	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.029	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.064	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Sample Name FEWRN02-003-	-GW-030		Matrix '	Гуре: W	R	esult Typ	e: TRG		
Lab Sample Name: FBP235	Sampl	e Date/Tim	e: 2017	-09-02	14:15		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.6	0.032	0.10	0.20	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	3.2	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	1.2	0.043	0.10	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.79	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	17	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	8.0	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	17	0.13	0.50	1.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.95	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	2.4	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Analysis Method: EPA 537 m

Sample Name FEWRN02-004	-GW-024		Matrix '	Гуре: W	R	kesult Typ	e: TRG		
Lab Sample Name: FBP237	Sampl	e Date/Time	e: 2017	-09-02	17:40		Validation Level: Stage 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.3	0.032	0.10	0.20	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.14	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	3.7	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	1.4	0.043	0.10	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.94	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	22	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	7.5	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	19	0.13	0.50	1.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	1.1	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	3.6	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Analysis Method: EPA 537 m

Analysis Method:	EPA 537 m	l								
Sample Name FEWRN03-001	-GW-020	7-020 Matrix Type: W Result Type: TRG								
Lab Sample Name: FBP229	Sample	Date/Time	e: 2017-	09 - 01	17:35		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.063	0.0032	0.010	0.020	ug/L		J	02A	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	UJ	02A	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.16	0.0048	0.010	0.020	ug/L		J	02A	
PERFLUOROBUTANOIC ACID	375-22-4	0.088	0.0043	0.010	0.020	ug/L		J	02A	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	UJ	02A	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	UJ	02A	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	UJ	02A	
PERFLUOROHEPTANOIC ACID	375-85-9	0.069	0.0033	0.010	0.020	ug/L		J	02A	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.3	0.24	0.50	0.80	ug/L				
PERFLUOROHEXANOIC ACID	307-24-4	0.34	0.0029	0.010	0.020	ug/L		J	02A	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	02A	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	UJ	02A	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.82	0.23	0.50	0.80	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	0.16	0.0046	0.010	0.020	ug/L		J	02A	
PERFLUOROPENTANOIC ACID	2706-90-3	0.16	0.0027	0.010	0.020	ug/L		J	02A	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	02A	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	UJ	02A	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	UJ	02A	

Analysis Method:	EPA 537 m	ı							
Sample Name FEWRN-IDW-	WS	VS Matrix Type: S Result Type							
Lab Sample Name: FBP238	Sample	e Date/Tim	e: 2017	-09-03	08:50		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<64	25	64	110	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<64	34	64	110	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	350	18	64	110	ug/kg			
PERFLUOROBUTANOIC ACID	375-22-4	170	25	64	110	ug/kg			
PERFLUORODECANE SULFONATE	335-77-3	<64	25	64	110	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	<43	14	43	110	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<64	24	64	110	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	160	18	64	110	ug/kg			
PERFLUOROHEXANE SULFONATE	108427-53-8	5600	250	640	1100	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	1300	20	64	110	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	53	18	64	110	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	2000	28	64	110	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	1300	23	64	110	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	12000	280	640	1100	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	190	19	64	110	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	<43	12	43	110	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<43	13	43	110	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<64	19	64	110	ug/kg	U	U	

Analysis Method:	EPA 537 m	l							
Sample Name FEWRN-IDW-	·WW		Matrix '	Type: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP239	Sample	e Date/Tim	e: 2017	-09-03	09:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.6	0.064	0.20	0.40	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	3.7	0.072	0.20	0.40	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	2.3	0.096	0.20	0.40	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.81	0.086	0.20	0.40	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.20	0.092	0.20	0.40	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.20	0.080	0.20	0.40	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.20	0.056	0.20	0.40	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.69	0.066	0.20	0.40	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	18	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	7.3	0.058	0.20	0.40	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.14	0.076	0.20	0.40	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	4.2	0.072	0.20	0.40	ug/L			
PERFLUOROOCTANE SULFONATE	1763-23-1	100	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	26	0.46	1.0	2.0	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.6	0.054	0.20	0.40	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.20	0.076	0.20	0.40	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.20	0.066	0.20	0.40	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.20	0.086	0.20	0.40	ug/L	U	U	

M2027.0003

Analysis Method:	EPA 537 m	l							
Sample Name FEWRN-RS-00)6		Matrix 7	Result Typ	ype: TRG				
Lab Sample Name: FBP234	Sample	Date/Tim	e: 2017-	-09-02	13:15		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

M2027.0003

Analysis Method:	EPA 537 m	l									
Sample Name FEWRN-RS-00	07		Matrix 7	Г уре: W	R	Result Typ	e: TRG				
Lab Sample Name: FBP241	Sample	Date/Tim	e: 2017-	09-04	12:05		Validation Level: Stage 2B				
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U			

M2027.0003

Maxxam

Prepared for: Aerostar SES LLC

Project: M2027.0003 (OMAHA) FE Warren

Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B7J3592

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 <u>www.maxxamanalytics.com</u>

Maxxam Analytics

Maxxam

I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- ➢ Is accurate, legible and error free.
- Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

Review Performed By:

Steph Vallen

Project Manager

Stephanie Pollen 2017.10.18 17:16:31 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 www.maxxamanalytics.com

Glossary of Terms

- Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrixspecific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- Calibration Standards are a set of solutions containing the analytes of interest at a specified concentration.
- Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- Internal Standard a deuterated or ¹³C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- Isomer is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- Method Blank is a laboratory control sample using reagents that are known to be free of contamination.
- Precision is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- Quality Control is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > *RSD* is the relative standard deviation.
- Blank Spike is a laboratory control sample that has been fortified with native analytes of interest.
- Window Defining Mixture is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

1.0 Project Narrative

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 www.maxxamanalytics.com

Maxxam Analytics

Maxxam Job: B7J3592 – Soil Analysis

Sample Analysis

Samples were initially analyzed on QC batches 5158547 (2017/09/22) and 5158618 (2017/09/22). Due to failure of QC acceptance criteria on QC batch 5158547 (2017/09/22), samples were re-extracted and re-analyzed on QC batch 5186997 (2017/10/03-04). QC acceptance criterion was also not met for Perfluorooctanoic acid (PFOA) in the Blank sample on QC batch 5158618. The sample was re-extracted and re-analyzed on QC batch 5187001 (2017/10/02) for this analyte.

Soil extracts were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for analysis. Dilutions were required for selected analytes in the following samples:

FBP226	FEWRN01-002-SS-001	Perfluorooctanesulfonate (PFOS)
FBP228	FEWRN01-001-SS-001	All analytes
FBP230	FEWRN01-003-SS-001	Perfluorooctanesulfonate (PFOS)
FBP231	FEWRN01-003-SS-901	Perfluorooctanesulfonate (PFOS)
FBP238	FEWRN-IDW-WS	All analytes

Detection limits were adjusted accordingly.

A high concentration of Perfluorooctanesulfonate (PFOS) was detected in the following sample during pre-screening:

FBP230 *FEWRN01-003-SS-001*

The sample was diluted 10x and 100x for analysis. Due to discrepancies between the dilution and screening results, the sample was re-diluted and re-analyzed. Consistent results were obtained between the re-diluted and undiluted samples. These results indicate a possible error during the initial dilution procedure. There is no impact on data quality as results were reported from the re-diluted sample.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

QC Samples

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was performed on sample FBP228 (*FEWRN01-001-SS-001*) on QC batches 5158618 (2017/09/22) and 5187001 (2017/10/02) but not analyzed due to high concentrations of target analytes in the native sample.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

Maxxam Job: B7J3592 – Water Analysis

Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batches 5159252 (2017/09/25) and 5159897 (2017/09/16) and 5185352 (2017/10/01). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

FBP229	FEWRN03-001-GW-020	All analytes
FBP235	FEWRN02-003-GW-030	All analytes
FBP236	FEWRN02-002-GW-033	Perfluorooctanesulfonate (PFOS)
FBP237	FEWRN02-004-GW-024	All analytes
FBP239	FEWRN-IDW-WW	All analytes
FBP242	FEWRN01-003-GW-015	Perfluoropentanoic acid (PFPeA), Perfluorohexanoic acid (PFHxA), Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS)
FBP243	FEWRN01-003-GW-915	Perfluorobutanesulfonate (PFBS), Perfluoropentanoic acid (PFPeA), Perfluorohexanoic acid (PFHxA), Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS)
FBP244	FEWRN01-001-GW-015	All analytes

Detection limits were adjusted accordingly for these samples.

The following samples were also analyzed for selected parameters by serial dilution (high level analysis) on QC batch 5155735 (2017/09/24):

FBP229 FEWRN03-001-GW-020 Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)

FBP244 FEWRN01-001-GW-015 Perfluorohexanesulfonate (PFHxS)

Detection limits were adjusted accordingly for these analytes.

The following sample was initially analyzed on QC batch 5159897 (2017/09/16):

FBP244 *FEWRN01-001-GW-015*

Due to failure of the Instrument Sensitivity Check (ISC) for Perfluorodecanesulfonate (PFDS), the sample was reextracted and re-analyzed for this analyte on QC batch 5185352 (2017/10/01) past the method defined hold time.

The following sample was initially analyzed for Perfluorohexanesulfonate (PFHxS) and Perfluorooctanesulfonate (PFOS) by serial dilution (high level analysis) on QC batch 5155735 (2017/09/24):

FBP229 *FEWRN03-001-GW-020*

The sample was subsequently extracted and analyzed on QC batch 5185352 (2017/10/01) past the method defined hold time for all other analytes. Because of their chemical structures, per- and polyfluorinated alkyl substances (PFAS) are chemically and biologically stable in the environment and resist typical environmental degradation processes. This would suggest the hold time exceedance would not have a significant impact on the data quality.

QC Samples

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was required for sample FBP244 (*FEWRN01-001-GW-015*) on QC batch 5159897 (2017/09/16) but not performed due to high concentrations of target analytes in the native sample. A Spike and Spike Duplicate (LCS/LCS Dup) was analyzed instead. There is no impact on data quality as % RPD between the LCS/LCS Dup met acceptance criteria.

9 of 2218

4/26/18

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

PROJECT NARRATIVE

Maxxam Analytics Client Project #: M2027.0003 (OMAHA)

Client: Aerostar SES LLC Client Project: M2027.0003 (OMAHA)

I. SAMPLE RECEIPT/ANALYSIS

a) Sample Listing

Maxxam	Client	Date	Date	Date	Date	Initial
ID	Sample ID	Sampled	Received	Prepped	Run	Calibration
PFOS and PFO	DA in soil by SPE/LCMS					
FBP225	FEWRN01-001-SO-018	2017/09/01	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP226	FEWRN01-002-SS-001	2017/09/01	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP227	FEWRN01-002-SO-018	2017/09/01	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP228	FEWRN01-001-SS-001	2017/09/01	2017/09/06	2017/09/11	2017/09/22	2017/09/22 & 2017/10/02
FBP230	FEWRN01-003-SS-001	2017/09/02	2017/09/06	2017/09/28	2017/10/05	2017/10/03-04
FBP231	FEWRN01-003-SS-901	2017/09/02	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP232	FEWRN01-003-SO-016	2017/09/02	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP233	FEWRN01-003-SO-916	2017/09/02	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP238	FEWRN-IDW-WS	2017/09/03	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
PFOS and PFO	DA in water by SPE/LCMS					
FBP229	FEWRN03-001-GW-020	2017/09/01	2017/09/06	2017/09/27	2017/10/01	2017/09/24 & 2017/10/01
FBP229 Dup	FEWRN03-001-GW-020	2017/09/01	2017/09/06	2017/09/08	2017/09/24	2017/09/24 & 2017/10/01
FBP234	FEWRN-RS-006	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP235	FEWRN02-003-GW-030	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP236	FEWRN02-002-GW-033	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP237	FEWRN02-004-GW-024	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP239	FEWRN-IDW-WW	2017/09/03	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP240	FEWRN02-001-GW-025	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP241	FEWRN-RS-007	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP242	FEWRN01-003-GW-015	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP243	FEWRN01-003-GW-915	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP244	FEWRN01-001-GW-015	2017/09/04	2017/09/06	2017/09/12	2017/09/16	2017/09/16 & 2017/09/24 & 2017/10/01
FBP244 Dup	FEWRN01-001-GW-015	2017/09/04	2017/09/06	2017/09/08	2017/09/24	2017/09/24

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with cooler temperature less than 10 degrees Celsius. Cooler custody seal was present and intact.

c) Documentation Problems: none encountered

II. SAMPLE PREP:

No problems encountered

III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

a) Hold Times: all within recommended hold times

b) Instrument Calibration: all within control limits

c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.

d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Steph Fallh Project Manager-Site Assessment and Remediation/Ultra Trace

2017/10/18 Date

Maxxam Analytics M2027.0003

Aerost	arses_ AIR	1006 Floyd C Oal Ridge, 865-481	uller Court IN 37830 7837	Cha Anal	in of C ysis Re	Ste	06-S	Polle	7 13: m	43		e 1 of 2.		
Project Name/ Site Inspect Multiple Eiters, United State	ion of Aqueous Film Forming Foem Areas a Air Force Installations		JOIN NO.: N	EC.1.	(Omaha)		B7J3	592						
Aerostar Project Managuri Send Data to.	Brian Odom, BOdom@e(wcproenv.com Jenny Vance, jvance@ecroster.net	(478) 397-4906 (665) 463-7904	loatemetico	100	Much.	MAF		NV-	668	1	Ľ.	Jample Types: N Normal		
Sampler(s):	Kaleb Brunbaugh, Ti	avis Casse	Un Ash	Willi.	j.		$\left \right $					PB = Field Duplicate AB = Ambient Blank or Field Keegent Blank EB = Equipment Rinsate		
Laboratory Name/Address: Maxxam Analytics, Inc. 6749 Campobello Rd. Milastisaliga, Ontario LaN2L4	Laboratny Sineping Add Maxxam Asalytics elo Fedéro Dajoo 	1955: 28 PICKUP"	Contact: M Phone: (90 email: MD	olimsə DiGi 53.847.6700 iGraziağın	ozja . ext. 5784 exxem.co	A 15 molecular line					1	Matrix : WG - Grucomiwalce SG = Boil WP = Polanie Wrate SE = Suchneni WG = Suringe Wrate		
MAXXAM use anly	Sample ID	Date Collected	Titus Collected	батріе. Тура	Matrix	IF AG, ISHE 14						WQ + Freid QC (AB, EB)		
	Erwig Mal-agilit - will	a hunde	1020	N	150	2	-	-1	-	-	-	NOTES		
	FOUR NO1-007-35-001	4/117	1500	1	50	1-					-	Taicht & ms/ASD		
	Elevent - 2- con 19	aliter	13.50	N	10	1			12		-	pre D		
•	KEVENAL-16-00)	GHIIS	1757	N	65	2		4	X		-	*		
	FEWEND3- ADIA GUISOZD	0/1/17	1725	N	616	17			V		-	Parent J. mp.O		
CHER.	FEWRNOL-247 SS and	9/2/17	2250	N	60	1ª)		-			
	FGWRN01-003-56-001	9/2/12	17700	En	CD	1 F			-	1				
-	FGW/RND1-003 SA-UIL	ah 1-1	a 1010	N	50	1			-	1	-			
12	ELVENAL 003-50-GIA	9/2/17	lak	ED	50	11				1-				
1 4 3	FEWEN-RS-OULD	4/2/17	1315	FG	WQ	2				1		ASSESSED WIT FEWERIEZ-403-6W-030		
115	FEWKNO2-003- GW-030	9/2/17	1415	N	WG	2			-		1	Take hreage ic nabia		
- <u></u>	FEWRNO2-002 GW-033	9/2/17	1600	N	WG	2				-	1			
1 7 .	FEWEN02-004-6W-024	9/2/17	1740	N	W.G	2					1	The second secon	· · ·	
2 2 .	FEWEN - IDW -WS	4/2/17	0850	N	50	1					1			
	FEWEN-IDW - WW	9/5/17	0900	N	Wir	2					1			
ARLINGLOCHED BY	9-5.17 1900 MSL	ABCENTED BY Inden Tradient Lud APARATESET	Singu Cuat	Total 5 0 alectres frem 3 4 Seatthree	1 Cuntainen 17 [09/3 13-243 3-3 3- 3-3 3-	4	Analyty List		0-41 YH		Harrison Acres Acr	V_AI * Continuant Reprint FAU 100 100 100 100 100 100 100 100 100 100 100 100 100 100		1.00
Parten Marcen	Tim p	P-multiment	T T	fron T	~ p			in second			TALL TALL	Probably produce year (2015) (11) hydrocenest afformal (100) (10) (11) (10) (10)		

Maxxam Analytics

15 of 2218

M2027.0003

Page 1 of 2 C-81

4/26/18

Aerosta	rses_ AIR	1005 Floyd Cu Oak Ridge, 1 865-401-	Iller Court N 37838 7837	Analy	n of Cust sis Requ	est Nu	ecord/ Imber:			415	P	136 rage 2 of 2
Project Name: Site Inspection Multiple Sites, United States	n of Aqueous Film Forming Foam Areas, Air Force Installations		Job No.: Mi	FE WA	Omaha) RIZEN				-			
Aerostar Project Manager: Send Data to:	Brian Odom, BOdom@specproenv.com (4 Jenny Vance, jvance@aerostar.net (4	476) 397-4906 865) 483-7904					1			+		Sample Types: N = Normal FD = Field Duplicate
ampler(s): ASA Lin	Itis , Travis Cassella, Jeren	K/ein				1						AB = Ambieht Blank or Field Reagent Blank EB = Equipment Rinsate
aboratory Nama/Address: Aaxxam Analytica, Inc i740 Campobello Rd. Alssissauga, Ontario 5N2L8	Laboratory Shipping Addra Maxaan Analytica clo Pedia Depot 299 Gayuga Rdi Cheektowaga, NY 14225 Please indicate "HOLD FOR PH	ss: CKUP"	Contact: Mi Phone: (90) email: MD	əlissə DiGr 5) 817-5700 iGrazia@m	ext. 5784 axxam.ca	at of 15 analytes bolow)			/	D	1	Matrix: WG = Groundwater SO = Soli WP = Potable Water SE = Soliment WS = Surface Water MS = Surface Water
MAXXAM use only	Sample ID	Date Collected	Time Collected	Sample Type	Matrix	PFAS (see to						WO = Held QC (AB, EB)
	FEWRN02-001 - GW- 025	9-4-17	1035	2	NG	2			+			NOTES
	FELRN - KS-007	9-4-17	1205	EB	wa	2				Q		
,	FEWEN01-003-6W-015	9-4-17	1345	N	WG	2						
	FEWRNO1 - 003 - 6W-915	9-4-17	1345	N	WG	Z						_
	FEWEN01-001-6W-015	9-4-17	1620	N	WG	6		1				MJ/MSD
			-	-	-	-	-	-	-	-	-	
				-		-	-		-		-	2
					and a	>						-
			-		1-2	-						
					-	1		/	_			
			F	-								
-			-			,	-				-	. Set.
				1					1			- 1 S - 1
	DUNTING - 1900	RECEIVED BY:		Total #	17 Containen 17 09 0	1/4 >6	Analyte List	-	ANALYTE	a tert	TREESAN PAN CORR INCO	CAR DESIGN FAIR FAIR
Ash willis	"ASL	PARAMSEES	Sin 64	3.4	13.3/3.1	1		Pathan Pathan		i and	19124 191254	HUARD Hilds Statistical OF THE STATES AND A STATES AND
grature:	Data/Tete	September .		Date/Time	1			Pada	n an	e bel	PTER-A PTER-A PTER-A	Figure Signature COTS COTS arcorg Imfluencement 00 PDA 00000 Signation Intervention 00 PDA 00000

Page 2 of 2 C-82

4/26/18

10

Maxxam

Prepared for: Aerostar SES LLC

Project: M2027.0003 (OMAHA) FE WARREN

Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B7J1539

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 www.maxxamanalytics.com

Maxxam

I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- Is accurate, legible and error free.
- Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

Review Performed By:

Pauliousky

Project Manager Assistant Maxiam Date: 2017.11.02 09:16:52 -04

Digitally signed by Karolina Pankowska Date: 2017.11.02 09:16:52 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 www.maxxamanalytics.com

Glossary of Terms

- Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrixspecific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- Calibration Standards are a set of solutions containing the analytes of interest at a specified concentration.
- Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- Internal Standard a deuterated or ¹³C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- Isomer is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- Method Blank is a laboratory control sample using reagents that are known to be free of contamination.
- Precision is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- Quality Control is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > *RSD* is the relative standard deviation.
- Blank Spike is a laboratory control sample that has been fortified with native analytes of interest.
- Window Defining Mixture is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

1.0 Project Narrative

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 www.maxxamanalytics.com

Maxxam Job: B7J1539 – Soil Analysis

Sample Analysis

Soil extracts were initially pre-screened and estimated concentrations were obtained so that extracts could be appropriately diluted for analysis on QC batch 5157643 (2017/09/19). Due to high concentrations, dilutions were required for selected analytes in the following samples:

FBF441	FEWRN03-004-SS-001	All analytes
FBF443	FEWRN03-003-SS-001	Perfluorooctanesulfonate (PFOS)
FBF448	FEWRN03-001-SS-001	Perfluorooctanesulfonate (PFOS)
FBF451	FEWRN02-004-SO-013	Perfluorooctanesulfonate (PFOS)

Detection limits were adjusted accordingly.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

Maxxam Job: B7J1539 – Water Analysis

Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batch 5152828 (2017/09/09). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

FBF455	FEWRN01-005-SW-001	Perfluorohexanesulfonate (PFHxS)
FBF456	FEWRN01-005-SW-901	Perfluorohexanesulfonate (PFHxS)
FBF459	FEWRN01-MW071-GW-020	Perfluorohexanesulfonate (PFHxS)
FBF460	FEWRN01-MW-070-GW-020	All analytes
FBF470	FEWRN03-003-GW-020	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)
FBF471	FEWRN03-003-GW-920	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)
FBF472	FEWRN03-002-GW-020	Perfluorohexanesulfonate (PFHxS)
FBF476	FEWRN01-004-SW-001	Perfluorobutanoic acid (PFBA), 6:2 Fluorotelomersulfonate (6:2FTS)

Detection limits were adjusted accordingly.

The extracted internal standard analytes ${}^{13}C_2$ -Perfluorotetradecanoic acid (${}^{13}C_2$ -PFTeDA) and ${}^{13}C_2$ -8:2 Fluorotelomersulfonate (${}^{13}C_2$ -8:2FTS) are used to quantify native Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA) and 8:2 Fluorotelomersulfonate (8:2FTS) respectively. The recovery observed for ${}^{13}C_2$ -Perfluorotetradecanoic acid (${}^{13}C_2$ -PFTeDA) was below the defined lower control limit (LCL) for the following sample:

FBF476 *FEWRN01-004-SW-001*

In addition, the recoveries observed for ${}^{13}C_2$ -8:2 Fluorotelomersulfonate (${}^{13}C_2$ -8:2FTS) were above the defined upper control limit (UCL) for the following samples:

FBF469 FEWRN-SB-002

FBF476 FEWRN01-004-SW-001

Samples were re-extracted and re-analyzed to confirm these extracted internal standard analyte recoveries on QC batch 5159252 (2017/09/25). Acceptable recovery was obtained for ${}^{13}C_2$ -8:2 Fluorotelomersulfonate (${}^{13}C_2$ -8:2FTS) in sample FBF476 (*FEWRN01-004-SW-001*) on re-analysis.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

PROJECT NARRATIVE

Maxxam Analytics Client Project #: M2027.0003 (OMAHA)

Client: Aerostar SES LLC Client Project: M2027.0003 (OMAHA)

I. SAMPLE RECEIPT/ANALYSIS

a) Sample Listing

Maxxam	Client	Date	Date	Date	Date	Initial
ID	Sample ID	Sampled	Received	Prepped	Run	Calibration
PFOS and PFC	DA in soil by SPE/LCMS					
FBF441	FEWRN03-004-SS-001	2017/08/28	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF443	FEWRN03-003-SS-001	2017/08/28	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF444	FEWRN03-002-SS-001	2017/08/28	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF445	FEWRN03-004-SO-008	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF447	FEWRN03-003-SO-008	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF448	FEWRN03-001-SS-001	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF449	FEWRN03-003-SO-908	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF450	FEWRN03-002-SO-007	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF451	FEWRN02-004-SO-013	2017/08/30	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF453	FEWRN01-005-SD-001	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF454	FEWRN01-005-SD-901	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF457	FEWRN02-006-SD-001	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF461	FEWRN03-001-SO-008	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF464	FEWRN02-003-SO-031	2017/08/31	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF466	FEWRN02-002-SO-031	2017/08/31	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF468	FEWRN02-001-SO-028	2017/08/31	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF473	FEWRN02-005-SS-001	2017/09/01	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF475	FEWRN01-004-SD-001	2017/09/01	2017/09/02	2017/09/11	2017/09/19	2017/09/19
PFOS and PFC	DA in water by SPE/LCMS					
FBF440	FEWRN-RS-001	2017/08/28	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF442	FEWRN-SB-001	2017/08/28	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF446	FEWRN-RS-002	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF452	FEWRN-RS-003	2017/08/30	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF455	FEWRN01-005-SW-001	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF456	FEWRN01-005-SW-901	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF458	FEWRN02-006-SW-001	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF459	FEWRN01-MW071-GW-020	2017/08/30	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF460	FEWRN01-MW-070-GW-020	2017/08/30	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF463	FEWRN-RS-004	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF469	FEWRN-SB-002	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF470	FEWRN03-003-GW-020	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF471	FEWRN03-003-GW-920	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF472	FEWRN03-002-GW-020	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF474	FEWRN-RS-005	2017/09/01	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF476	FEWRN01-004-SW-001	2017/09/01	2017/09/02	2017/09/07	2017/09/09	2017/09/09

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: none encountered

c) Documentation Problems: Level IV revised to reflect sample ID correction as per client request.

II. SAMPLE PREP:

No problems encountered

III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

a) Hold Times: all within recommended hold times

b) Instrument Calibration: all within control limits

c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.

d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

arolin

Project Manager Assistant- Site Assessment and Remediation/Ultra Trace

2017/11/01

Date

Aerost	arses	Oak Ridge, T 865-481-1	37830 837 Job No.: M	Analy	Umahal	Jest N	umber	_		_	_	Page 11 of 2/	
Project Name: Site Inspects Multiple Sites, United State:	on of Aqueous Film Forming Foam Areas, s Air Force Installations		Installation	FEW	arren				ANALYS	5	÷		
Aarostar Project Manager: Send Dete to:	Brian Oxforn, BOdom@specproenv.com Jenny Yance, Jvance@aerostar.net	(478) 397-4906 (865) 483-7904			-	3	1		NAME IS			Sample Types: N = Normal ED = Field Durificate	
ampter(s): Kalter	Brunbaugh, Tra	wis Cassella					23	2		*		AB = Ambient Blank or Field Reagent Blank EB = Equipment Rinsate	
Laboratory Name/Addmiss: Maxxam Analytics, Inc 8740 Campobello Rd. Misélasauga, Ontario .6N2L8	Laboratigy Shipping Addr Laboratigy Shipping Addr vio Fedita Depot 299 Cayuga Rd, Choektowaga, Ny 1422 Phase indicate "HOLD FOR P	9 1CKUP"	Contact: M Phone: (90 email: MD	eliasa DiGr 5) 817-6700 iGrazia (Em	azia . ext. 5784 axxam.ca	t of 18 analytus between		and which		h	- Ar	Matrix: WG = Gouldwater SO = Soil WP = Potacle Water SE = Sediment WS = Surface Water	
MAXXAM use only	Sample ID	Date Collected	Time Gollected	Sample Type	Matrix	FAS Isee Is						WQ = Field QC (AB, EB)	
	FEWRN-RS-ODI	5/28/17	1205	EB	WQ	2	1			-	5	taken of shown asses -/ Swark	
2	· FEWRNOB-COM-STOOL	6/28/17	1310	N	50	1	1					are-e w/ RS-ow/	
*	- FOWRN-SBrool	8/28/17.	1210	AB	Wa	2						Dritters Water Source Blavels	×
14	FEW AN 03-003-44001	8126717	1540	N	50	1	1						
. 52	FQU RNOZ-002-55-01	6/25/14	1605	N	50	1		1					
e lite	FEW RN03-004-5008	8/29/17	0710	N	50	1		1				~	
SI SI	FEW RN-RS-002	8/24/17	0745	EB	Wa	2		/				takinoffesting assoc / smalle	
TJ11	· FEW RN03-003-50005	5/20/17	1100	N	5.0	1			1			assic 1/RS-002 offspin	
B	FENRNO3-OUL-SS-DUI	8/39/17	1006	N	50	1			A	. *			
KES I	FEW RNO3-03-30408	5/29/17	1100	FD	50	1			1			assee up RS-arz of Bonn	
	FEWRNO3-002-Sorce 7	6/29/17	1255	N	50	1							1
	FEW BNOLDOM-SO-013	8/30/17	1570	N	50	1				1		2350C W/ R5-002.	
	FEWRN-RSOUT	5/20/17	1515	CB	Wa	2			1	1	1	assue of sample above, offsom	
		t									1		
	1					-					1		
Ang Bleve	61/0/17 1900	RECEIVED BY:		Total # c	17/09/0 11:30	2	Analyte List	Page an	asarvn		ERTEN- FOR CORP.	E.A.S.* E-minimal	
Jerery Klein	ren ASL	PARAMISEET	S10144	ryne 3	0/3.1	10		In the second	and the second second	i. and	IPILA. IPICA	POST PRODUCTION AND PROVIDED AND PROVIDANT PROVIDED AND PROVIDED AND PROVIDED AND PROVIDANT PROVIDED AND PROVIDANT PROVIDANT PROVIDANT PROVIDANT PROVIDANT PROVIDANT PROVIDANT PROVIDA	
Pages -	Duer?rep	Derman Gus Ha	y see	Pres	ent	-		Profiliant Profiliant Profiliant Profiliant	Andreas and	t and	PTENA PTENA PTENA PTENA	19.7.7.8 6.7.Fpertures automas 6.7.F1 19.0.6.6.4 101.7.5 Performation and 19.0.6.7 19.0.6.4 101.7.6 Performation and 19.0.6.7 19.0.6.6 101.7.6 Performation and and the performance and antiparticle and antipart and antiparticle antipartic	

Page 1 of 4 C-92

4/26/18

Aerosta	rSES.	1006 Floyd Cull Oak Ridge, TN 865-481-78	er Court 37830 137	Chai Analy	n of Cus sis Requ	tody R lest NL	ecord/ imber:			10	Р	rage 2 ¹³³ of 2/
roject Name: Site Inspection uitiple Sites, United States /	of Aqueous Film Forming (Lam Aleas) Air Force Installations		Job No.: M2	FE W	Omaha)				ANAL VOR	-		
erostar Project Manager: end Data to: ampler(s): ASはいに	Brian Odoni, BOdom@specproenv.com (4 Jenny Vance, jvance@uerostar.net (1 115, Travis Cassella	478) 397-4906 365) 483-7904	_				1			-		Sample Types: N = Normal FD = Field Duplicate AB = Ambién Blank or Field Reagent Blank EB = Equipment Rinsate
aboratory Name/Address: axxam Analytics, Inc r40 Campobello Rd. ississauga, Ontario SN21.8	Laboratory Shipping Addre Maxam Analytics cio FedEx Depot 295 Gayuga Rd. Cheektowaga, NY 14225 Please indicate "HOLD FOR Pld	es: CKUP*	Contact: Mo Phone: (905 email: MD	iliasa DiGr i) 817-5700 Grazia@m	szia . ext. 5784 axxam.ca	et of 18 analytes below)			×			Matrix: WG = Groundwater SO = Soil WP = Potable Water SE = Sparment WS = Surface Water WD = Evelor (240 - E00
MAXXAM use only	Sample ID	Date Collected	Time Collected	Sample Type	Matrix	PFAS (see 1					1	WU - FIBO CC (AB, CD)
1 A	FEWRNOL-005-50-001	8/29/2017	1100	N	SE	10			×			NOTES
	FEWENO1-005-50-901		1100	FO	SE	1%		_				
•	FEWENOI-005-5W-001		1100	N	WS	22						
	FEW PIN -05-540-901	1	100	FD	ws	2th	110					E. Maria
	FEWRN02-006-50-001	8/29/17	12.75	N	SE	3.		/				MSMSD
4	FEWRNAL-006-SW-001	8/24/17	1235	N	WS	6		1	1			MS/MSD
	FEWR NOL-MU-71 -020	8/30/17	1145	N	a	2	4		K			e.
	FEWRNON- MWOTI- 6W-020	8/30/17	1145	N	WG	2			1			
	FEWENDI WW DTO-LW DLO	8/30/17	1445	N	Wite	2						
	FEWRADZ AN -50 -008	8/29/17	1730	N	50	1	1			1		
			-							1		
			4			1					N	
									-		1	1
		de-	-		-				17	-	1	1 A.M. 60
				1	-	1					-	1 188 7
		-		Total #	of Container	120	-	-	-	_		
John Klein	DANTE 9 10/17 1700	RECEIVED BY	-	2n/	109/02	50	Analyte List	0-FD-	APALYTI D		EBREMA FAR COM	A CAN Continued PARADA
Jeremy Klei	ASL Deserters	TARAMSEET	Sinon La	Data/Time	0/3.11	30		Pethan Pethan Pethan			FETH ACOTH ATTACA	Bill Study Difference and States and Add - 3 Difference and -3 Difference and -3 D
Hadd Radiation	Jun	Printed Name	_	Film		_		Pr-Same	bismi al	k .	TTPA	HARD PRODUCT AND AND AND AND A

Maxxam Analytics

M2027.0003

Page 2 of 4 C-93

4/26/18

8

.
Aerosto	SES A TIME	1996 Floyd Cu Oak Ridge, 7 865-481-	iller Court N 37830 7837	Chai Analy	n of Custo sis Reque	ody Rest Nu	ecord/ imber:			215	P	Page 3 of 4
roject Name: Site Inspectie lultiple Sites, United States	on of Aqueous Film Forming Foam Areas, a Air Force Installations		Job No.: Ma	FE Wa	omaha) Oren AFB					v		2
erostar Project Manager. end Data Io:	Brian Odom, BOdom@specproenv.com (Jenny Vance, jvance@serostar.net (478) 397-4906 865) 483-7904					1			-		Sample Types: N = Normal FD = Field Duplicate
implar(s): K Br	Millingte, Kaves Brunk	sough			-							EB = Equipment Rinsate
aboratory Name/Address: laxxam Analytics, Inc 740 Gampobello Rd tissiasauga, Ontario 6N2L8	Laboratory Shipping Addre Laboratory Shipping Addre Laboratory Shipping Addre Laboratory Shipping Address Laboratory Shipping Address Shipping Address Laboratory Shipping Address Shipping Address Shipping Address Laboratory Shipping Address Laboratory Sh	CKUP	Phone: (905) 817-5700. ext. email: MDIGrazia@maxxar		st, menssa utorazia s: (905) 817-5700, ext. 5784 : MDiGrazia@maxxam.ca			/				Matrix: WG = Groundwater SO = Soil WP = Potable Water SE = Sediment WS = Surface Water WS = Surface Water
MAXXAM use only	Sample (D	Date Collected	Time Collected	Sample Type	Matrix	PPAS (see b			/			WU = Pielo UC (AB, EB)
ē 1	FEWRN- DS-004	8/3//7	0655	EB	wa	2				1		REFE SPIEN, ASSec up symmptic below
	FEW & NO2-003-50031	8/31/17	1010	XN	50	1		1-1		1		assoc of RS-004 above
	FrwRN02-002-50-31	8/31/17	H23	N	30	1	1	1.5			1	,
	FEW ANDZORAL-SU-MS	8/31/17	1810	N	50	1					1	
	K	- cue										ter
			1.00							-		10
			-		-				-	- 1		
			-									
				1	A							
				10	1	-					1	
					0			1	-			
	1		ic							-	-	
										-		
						-						
			1	Total # e	of Containers	5			-	-		· · · · · ·
Putting	Desertion 9/01/17 1900	RECEIVED BY		Linter/Terms 25	11:3=		Analyto List:		ANALATIC CONT		HAR COR	CAR Fundamental CARPEN CAN
436 Willis	ASL. Date Torne	PARAMSEE	Sing.	9 3. DamiTure	0/31/3	0		Fedhara In Sec.	1	d na nathd na	Prijsk TRIDDer HTIDDer HTIDDer	First, I. Bellamonto Langvill, F. Wirzle, 2014 (1997), 107404 (2014) Internet Manager (1997), 2014 (1997), 2014 (1997), 2014 (1997),
mad Natia	Tost	Polizial Hame		Fam	_			Page 1	0. an 14	-	PERM	10.4v1 Reflectionation 4.0 PD5 V27

M2027.0003

Page 3 of 4 C-94

4/26/18

6

Aerosta	ITSES	1006 Floyd Cu Dak Ridge, T 865-481-	iller Court N 37830 7837	Chai Analy	n of Cus sis Requ	tody R lest Nu	lecord/ umber:				F	Page 4 135 4	
Project Name: Site Inspectio Aultiple Sites, United States	n gl Aqueous Film Forming Form Areas, Air Force Installations		Job No.: Ma	FE WAT	Omaha)				-	-			
erostar Project Manager: iend Data to: iampler(s):	Brian Odom, BOdom@apecproetty.com (Jenny Vance, jvance@aerostar.net ()	178) 397-4906 865) 483-7904	(maana oon)		1.5.10				ANAL TSP	+7		Sample Types: N = Normal FD = Field Duplicate AB = Ambiént Blank or Field EB = Equipment Rinsate	d Reagent Blank
boratory Name/Address: Laboratory Shipping A scarm Analytics 40 Campoballe Rd. sisinaauga, Ontario NZL8 MAXXAM use only MAXXAM use only Sample D		SKUP*	Contact: Me Phone: (605 email: MD	elissa DiGri) 817-5700 Grazia@m	ssa DiGrazia B17-5700, ext. 5784 irazia@mexxam.ca							Matrix: WG = Groundwater SO = Soil WP = Potable Water SE = Spoirment WS = Surface Water WG = Field QC (AB, EB)	
MAXXAM use only	Sample ID	Date Collected	Time Collected	Sample Type	Matrix	PFAS (see]							1.1
	FEWRN - SB-002	8-31-17	0925	AB	WQ	2			1.			NOT Taken From Gov hydron	es F@ Area z
-	EEWEN03-003-6W-020	8-31-17	dill	N	NG	2		-	/		-	1	
	FEINEN03- 003- 661-920	8-31-17	1110	FD	WB	2			1				
	FENRIO3-002-6W-020	8-31-17	1534	N	WG	2		1		X	1		
	FEWRN02-005-55-001	9-1-17	0825	N	50	1				0	X		- h - m -
1	FEWRN - RS - 005 -	9-1-17	0320	EB	WO	2					1	1 9 3/201 a 350 (14) FEWEN 07-005-55	- W/ sample
3	FEWEND1704-50-001	9-1-17	6845	N	Se	1						1	×.
1	FEWRNOL-004-5W-001	9-1-17	0845	N	WS	2						1.	
	<hr/>		1					_					
			1		1.1				1				
			K		-								
	~	. 10	-										
					-								1
		1		-		1	-	_					/
	-		1				1		-	_		1 4 15	- /
ELINQUISHED BY:	09/01/17 1900	RECEIVED BY:	L	Total # 2	01 ⊋ 0 9 0 1] = 10 9 0	14	Analyte List:	Pedaro	SALATA	- 4-41	AREADER 2.58 A DER 2000	1 Kan Kanada Jan Tar	elérus raccone ecrose
odut Hama grafas	Fund	LARAMS GET	512944	Film:	0/31/3	50		A dama Perform Perform		a a a a a a a a a a a a a a	PROA PTPA PERSON PERSON	Strick 1 - He Bound String you (1) Strick - Professional Column (1) (1) Strick - A. Phasemic Column (1) (1) Strick - R. Phasemic column (1) Strick - R. Phasemic column (1) Strick - R. Phasemic column)	A SPES 240
within Hanna-	Tam	Protect Name		Dat.		_		P+0	Avanta 21	e-ant	ALICES .	Hold Phillippine and Millippine Phillippine available a	016 7500 E
								miler		4	in itsu	sirile Pellingeniae Apl	1973

Maxxam Analytics

M2027.0003

Page 4 of 4 C-95

4/26/18

4

.

Appendix D

Physiochemical Analytical Results

AFFF			% Passing	% Passing	USCS	TOC		
Area	Sample ID	Medium	#4 Screen	#200 Screen	Classification	(mg/kg)	pН	% Solids
1	FEWRN01-006-SS-001	SS	90.5	30.2	SM	12,900	8.29	92.7
1	FEWRN01-006-SO-017	SO	93.8	53.1	ML	426	8.62	83.0
2	FEWRN02-007-SO-031	SO	98.9	49.2	SM	215	8.45	84.8
3	FEWRN03-005-SS-001	SS	73.2	18.7	SM	4,220	7.98	81.7
3	FEWRN03-005-SO-008	SO	98.9	51.0	ML	132 J	8.43	78.1

Table D-1 F.E. Warren Air Force Base Physiochemical Sample Analysis Results

% = percent

= number

mg/kg = milligrams per kilogram AFFF = aqueous film forming foam ID = identification

J = estimated value

ML = silt

pH = potential of hydrogen SM = silty sand SO = subsurface soil

SS = surface soil

TOC = total organic carbon

USCS = United Soil Classification System

CT LABORATORI

delivering more than data from your environmental analyses

JENNY VANCE AEROSTAR SES LLC 1006 FLOYD CULLER CIRCLE OAK RIDGE, TN 37830

and

MELISSA DI GRAZIA MAXXAM 6740 CAMPOBELLA RD MISSISSAUGA, ON, CANADA L5N 2L8

PROJECT SITE: SI AFFF Sites, FE Warren AFB, WY

WORK ORDER/CONTRACT #: W9128F-15-D-0051

PROJECT #:

PREPARED:

SDG:

October 1, 2017 (REVISED 11-27-17)

M2027.0003

130380

DOCUMENT PAGES: 108

The data contained in the following report have been reviewed by the appropriate CT Laboratories LLC's staff members. In addition, CT Laboratories LLC certifies that to the best of our knowledge that the analyses reported herein are true, complete and correct within the limits of the methods employed and that they follow the applicable requirements as specified by the project plan, state-specific, NELAC or DOD QSM requirements. The estimated uncertainty of measurement is only available upon request. The reported results relate only to the tested samples. This report shall not be reproduced, except in full, without written approval of CT Laboratories LLC.

APPROVED BY:	1 Der	
	LABORATORY DIRECTOR	
APPROVED BY:_	September Manager	

Certifications: IL (NELAP 002413), KS (NELAP E-10368), KY (0023), WI (157066030), DOD ELAP (A2LA 3806.01), VA (7608), MD (344), LA (NELAP 115843), ISO17025 (A2LA 3806.01, GA EDP Stipulation (Accreditor: LA NELAP, ACC#: E971111, Scope: Non-potable water solid and chemical materials, biological tissue, Effective: 12/10/2014, Expires: annually), PA (68-04201) #008

CT Laboratories LLC • 1230 Lange Court • Baraboo, WI 53913 • 608-356-2760 www.ctlaboratories.com

delivering more than data from your environmental analyses

Case Narrative

Client: MAXXAM/Aerostar SES LLC Project: FE Warren AFB, WY Sample Receipt Date(s): 9-01 through 09-06-2017 SDG #: 130380 (folder 130380 and 130445 partial) - revised 11-27-17 for sample description change

Five samples were analyzed for (GSA)/hydrometer, pH, and TOC. GSA/hydrometer analyses were subcontracted to Mi-Tech, Weston, WI. The assigned sample ID numbers, date sampled, and date received are indicated in the attached Project Summary. The samples were received intact and at a temperature within method specified acceptance limits. Any exceptions are noted below. The analyses were performed, where applicable, following QSM 5.0 requirements.

Sample Analysis and Quality Control

Inorganics:

The samples were analyzed using US EPA Method 9045D (pH) and the Llyod-Kahn method (total organic carbon, TOC). All samples were analyzed within the holding time. The following summaries of quality control procedures are included:

Initial and Continuing Calibration Verification Blanks Summary ICP Interference Check Data Spike Sample Recovery Duplicates Data Laboratory Control Sample Data Analysis Run Log

All analysis results met the method specified quality control criteria with the following exceptions:

pH (9045D) Solid Analyses

Analytical Run # 141851

All analysis results for this analytical run met the method/project specified quality control criteria.

TOC (Lloyd-Kahn) Solid Analyses

Analytical Run # 142064

All analysis results for this analytical run met the method/project specified quality control criteria.

Data Qualifiers

Code Description

- A Analyte averaged calibration criteria within acceptable limits.
- B Analyte detected in associated Method Blank.
- C Toxicity present in BOD sample.
- D Diluted Out.
- E Safe, No Total Coliform detected.
- F Unsafe, Total Coliform detected, no E. Coli detected.
- G Unsafe, Total Coliform detected and E. Coli detected.
- H Holding time exceeded.
- J Estimated value.
- L Significant peaks were detected outside the chromatographic window.
- M Matrix spike and/or Matrix Spike Duplicate recovery outside acceptance limits.
- N Insufficient BOD oxygen depletion.
- O Complete BOD oxygen depletion.
- P Concentration of analyte differs more than 40% between primary and confirmation analysis.
- Q Laboratory Control Sample outside acceptance limits.
- R See Narrative at end of report.
- S Surrogate standard recovery outside acceptance limits due to apparent matrix effects.
- T Sample received with improper preservation or temperature.
- U Analyte concentration was not above the detection level.
- V Raised Quantitation or Reporting Limit due to limited sample amount or dilution for matrix background interference.
- W Sample amount received was below program minimum.
- X Analyte exceeded calibration range.
- Y Replicate/Duplicate precision outside acceptance limits.
- Z Calibration criteria exceeded.

MANUAL INTEGRATION REASON CODES

CTLaboratories has identified four general cases with valid reasons supporting the use of manual integration techniques. These codes are used on chromatograms in this data package to document the reasons for manual integrations per CTLaboratories' SOP SS-10 current revision.

#1: Data system failed to select the correct peak or missed the peak entirely.

In some cases the chromatography system selects and integrates the "wrong peak". In this case the analyst must correct the selection and force the system to integrate the proper peak. In other instances the system may miss the peak completely. In this case the analyst manually integrated the peak

#2: Data System Splits the Peak Incorrectly or Integrates a False Peak as a Rider Peak.

This phenomenon is common at low concentrations where the signal to noise ratio is low. A single compound (peak) is incorrectly split into multiple peaks or integrated as a main peak with one or more rider peaks resulting in low or high area counts for the target compound.

#3: Improperly Integrated Isomers and/or coeluting compounds.

For when the system fails to distinguish coeluting compounds and or isomers. The integration areas and concentrations may be inaccurate, and they must be corrected by manual integration. Prime examples are compounds that are unresolved and integrated improperly when present at low concentrations in standards or samples.

#4: System Established Incorrect Baseline.

There are numerous situations in chromatography where the system establishes the baseline incorrectly. Some baseline errors will be obvious to the analyst and may be corrected via manual procedures.

#5: Miscellaneous.

Some situations involving integration errors may require in-depth review and technical judgment. These cases should be brought to the attention of the group supervisor. If the form of manual integration is not clearly covered by these four cases, then review and approval by the group supervisor or the *QA/QC* Supervisor will be required.

1230 Lange Court • Baraboo, WI 53913 • 608-356-2760 www.ctlaboratories.com

livering more than data fra	m your environmental analyse	nd .			Sar	mple Descript	tion
	IN	1 ORGANIC ANALYSIS D	ATA SHEET		FEWRN	0 1-006-SO-0 1	17
Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-AFFF SITE	E INVESTIGAT	ION
Matrix (soil/water):	SOIL		SDG No.:	130380)		
% Solids:	83.0	I	_ab Sample ID:	915902	2		
Analytical Method:	Method: EPA 8000C		Date Received:	09/06/2017			
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/tii	me:		
Analytical Run #:	141820		Analysis Date/Time	09/0	08/2017	08:20	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	%			
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL
SOLID Soli	ds, Percent	83.0		0.1	0.1	0.1	0.1

livering more than data	from your environmental analyse	a contraction of the second		-	Sar	mple Descript	tion
	ING	1 ORGANIC ANALYSIS DA	TA SHEET		FEWRN	01-006-SO-01	17
Lab Name:	CT Laboratories	Co	ontract: MAXXAM A	ANALYTIC	S-AFFF SITE	E INVESTIGAT	ION
Matrix (soil/water):	SOIL	S	DG No.:	130380)		
% Solids:	83.0	La	b Sample ID:	915902	2		
Analytical Method:	alytical Method: L-Kahn/9060A		ate Received:	09/06/2017			
Dilution Factor:	1.00	то	CLP/SPLP Extractio	n Date/ti	me:		
Analytical Run #:	142064	Ar	nalysis Date/Time	09/	15/2017	10:45	
Analytical Prep Batch #	t:	Pr	ep. Date/Time:				
ICAL Calibration #:	ICAL - TOC010	Co	oncentration Units:	mg/	/kg		
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
TOC To	otal Organic Carbon	426		43	90	180	180

livering more than data fr	om your environmental analyses	A BALL OF SHE				Sai	mple Descript	tion
	INOI	1 RGANIC ANALYSIS DA	ATA SHEE	T		FEWRN	0 1-006-SO-0 1	17
Lab Name:	CT Laboratories	C	ontract:	MAXXAM A	NALYTIC	S-AFFF SITI	E INVESTIGAT	ION
Matrix (soil/water):	SOIL	S	DG No.:		130380			
% Solids:	83.0	La	ab Sample	e ID:	915902			
Analytical Method:	EPA 9045D	D	ate Receiv	ved:	09/06/2017			
Dilution Factor:	1	т	CLP/SPLF	P Extraction	n Date/tir	me:		
Analytical Run #:	141851	A	nalysis Da	ate/Time	09/0	08/2017	11:15	
Analytical Prep Batch #:		P	rep. Date/	Time:				
ICAL Calibration #:		C	concentrati	on Units:	S.U			
CAS#	Analyte	Concentration	Qual	ifiers	DL	LOD	LOQ	RL
PH pH		8.62			0.1	0.1	0.1	0.1

livering more than data fra	m your environmental analyse	205			Sample Descriptio			ion
	IN	1 ORGANIC ANALYSIS D	OATA SHEET	г		FEWRN	01-006-SS-00	1
Lab Name:	CT Laboratories	(Contract: <u>N</u>	MAXXAM AI	NALYTIC	S-AFFF SIT	E INVESTIGAT	ION
Matrix (soil/water):	SOIL		SDG No.:		130380			
% Solids:	92.7	I	_ab Sample	ID:	915894			
Analytical Method:	EPA 8000C	[Date Receive	ed:	09/06/2017			
Dilution Factor:	1.00		TCLP/SPLP	Extraction	Date/tir	ne: _		
Analytical Run #:	141820		Analysis Dat	e/Time	09/0	8/2017	08:20	
Analytical Prep Batch #:			Prep. Date/T	ime:				
CAL Calibration #:		(Concentratio	on Units:	%			
CAS #	Analyte	Concentration	n Qualif	fiers	DL	LOD	LOQ	RL
SOLID Soli	ds, Percent	92.7			0.1	0.1	0.1	0.1

livering more than data (from your environmental analyse	N3		-	Sar	nple Descript	tion
	IN	1 ORGANIC ANALYSIS DA	ATA SHEET		FEWRN	01-006-SS-00	01
Lab Name:	CT Laboratories	с	ontract: MAXXAM	ANALYTIC	S-AFFF SITE	E INVESTIGAT	ION
Matrix (soil/water):	SOIL	S	DG No.:	130380)		
% Solids:	92.7	La	ab Sample ID:	915894	1		
Analytical Method:	L-Kahn/9060A	D	ate Received:	09/06/2	2017		
Dilution Factor:	1.00	т	CLP/SPLP Extractio	n Date/ti	me: _		
Analytical Run #:	142064	A	nalysis Date/Time	09/	15/2017	10:33	
Analytical Prep Batch #	:	P	rep. Date/Time:				
ICAL Calibration #:	ICAL - TOC010	C	oncentration Units:	mg/	/kg		
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
TOC To	otal Organic Carbon	12900		39	81	160	160

livering more than data fr	om your environmental analyses	1			Sa	mple Descript	ion	
	INOI	RGANIC ANALYSIS D	ATA SHEET		FEWRN	01-006-SS-00	1	
Lab Name:	CT Laboratories	(Contract: MAXXAM	ANALYTIC	S-AFFF SIT	E INVESTIGAT	ION	
Matrix (soil/water):	SOIL	s	DG No.:	130380)			
% Solids:	Solids: <u>92.7</u>		ab Sample ID:	915894				
nalytical Method: <u>EPA 9045D</u>		C	ate Received:	09/06/2017				
Dilution Factor:	_1	т	CLP/SPLP Extraction	tion Date/time:				
Analytical Run #:	141851	P	nalysis Date/Time	09/0	08/2017	11:15		
Analytical Prep Batch #:		F	Prep. Date/Time:					
CAL Calibration #:			Concentration Units:	S.U				
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL	
PH pH		8.29		0.1	0.1	0.1	0.1	

elivering more than data i	tom your environmental analyse	205			Sar	mple Descript	tion
	IN	1 ORGANIC ANALYSIS D	ATA SHEET		FEWRN	03-005-SO-00	8
Lab Name:	CT Laboratories	(Contract: MAXXAM A	ANALYTIC	S-SI AFFF S	ITES	
Matrix (soil/water):	SOIL		SDG No.:	130380)		
% Solids:	78.1	L	ab Sample ID:	915130)		
Analytical Method:	EPA 8000C	[Date Received:	09/05/2	2017		
Dilution Factor:	1.00	ו	CLP/SPLP Extractio	n Date/tii	me:		
Analytical Run #:	141774	ŀ	Analysis Date/Time	09/0	08/2017	08:20	
Analytical Prep Batch #	:	F	Prep. Date/Time:				
ICAL Calibration #:		0	Concentration Units:	%			
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
SOLID So	olids, Percent	78.1		0.1	0.1	0.1	0.1

ivering more than data	from your environmental analyse	N3			Sai	mple Descript	tion
	INC	1 ORGANIC ANALYSIS DA	TA SHEET		FEWRN	03-005-SO-00	8
Lab Name:	CT Laboratories	Cc	ontract: MAXXAM	ANALYTIC	S-SI AFFF S	ITES	
Matrix (soil/water):	SOIL	SE	DG No.:	130380)		
% Solids:	78.1	La	b Sample ID:	915130			
Analytical Method:	L-Kahn/9060A	Da	ate Received:	09/05/2	2017		
Dilution Factor:	1.00	тс	CLP/SPLP Extraction	on Date/ti	me: _		
Analytical Run #:	142064	Ar	alysis Date/Time	09/	15/2017	09:56	
Analytical Prep Batch #	<i>t</i> :	Pr	ep. Date/Time:				
ICAL Calibration #:	ICAL - TOC010	Co	oncentration Units:	mg/	/kg		
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
TOC T	otal Organic Carbon	132	J	46	96	190	190

LILHDU) feilvering more than data from	KHIUKIŁ nyour environmental anal) the			Sa	Sample Description			
		1 INORGANIC ANALYSIS L	DATA SHEET		FEWRN	03-005-SO-00)8		
Lab Name:	CT Laboratories		Contract: MAXXAM /	ANALYTIC	S-SI AFFF S	SITES			
Matrix (soil/water):	SOIL		SDG No.:	130380)				
% Solids:	78.1		Lab Sample ID:	<u>915130</u>)				
Analytical Method:	EPA 9045D		Date Received:	09/05/2	2017				
Dilution Factor:	 		TCLP/SPLP Extractio	on Date/time:					
Analytical Run #:	141851		Analysis Date/Time	09/0	08/2017	11:15			
Analytical Prep Batch #:			Prep. Date/Time:						
ICAL Calibration #:			Concentration Units:	S.U	I.				
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL		
РН рН		8.43		0.1	0.1	0.1	0.1		

2

.

0 0

1 .

elivering more than data fr	om your environmental analyse	205			Sa	mple Descript	tion			
	IN	1 ORGANIC ANALYSIS D	ATA SHEET		FEWRN	03-005-SS-00)1			
Lab Name:	CT Laboratories	(Contract: MAXXAM	ANALYTIC	S-SI AFFF S	SITES				
Matrix (soil/water):	SOIL		SDG No.:	130380)					
% Solids:	81.7	I	_ab Sample ID:	915129	9					
Analytical Method:	alytical Method: EPA 8000C		Date Received:	09/05/2017						
Dilution Factor:	1.00		TCLP/SPLP Extraction	on Date/ti	me:					
Analytical Run #:	141774		Analysis Date/Time	09/0	08/2017	08:20				
Analytical Prep Batch #:			Prep. Date/Time:							
ICAL Calibration #:		(Concentration Units:	%						
CAS#	Analyte	Concentration	n Qualifiers	DL	LOD	LOQ	RL			
SOLID So	lids, Percent	81.7		0.1	0.1	0.1	0.1			

livering more than data	from your environmental analyse	23			Sar	nple Descript	tion			
	IN	1 ORGANIC ANALYSIS DA	TA SHEET		FEWRN	03-005-SS-00)1			
Lab Name:	CT Laboratories	Co	ontract: MAXXAM	ANALYTIC	S-SI AFFF S	ITES				
Matrix (soil/water):	SOIL	SI	DG No.:	130380	D					
% Solids:	81.7	La	ab Sample ID:	915129	Э					
Analytical Method:	L-Kahn/9060A	Da	ate Received:	09/05/2017						
Dilution Factor:	1.00	то	CLP/SPLP Extractio	n Date/ti	me:					
Analytical Run #:	142064	Ar	nalysis Date/Time	09/	15/2017	09:49				
Analytical Prep Batch #	¥:	Pr	ep. Date/Time:							
ICAL Calibration #:	ICAL - TOC010	Co	oncentration Units:	mg	/kg					
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL			
тос т	otal Organic Carbon	4220		44	92	180	180			

livering more than data fra	m your environmental analyses				Sa	mple Descript	tion			
	INC	DRGANIC ANALYSIS D.	ATA SHEET		FEWRN	103-005-SS-00)1			
Lab Name:	CT Laboratories	C	Contract: MAXX	AM ANALYTIC	S-SI AFFF S	SITES				
Matrix (soil/water):	SOIL	S	DG No.:	130380)					
% Solids:	81.7	L	ab Sample ID:	915129	9					
Analytical Method:	EPA 9045D	C	09/05/2	2017						
Dilution Factor:	_1	т	CLP/SPLP Extra	action Date/ti	on Date/time:					
Analytical Run #:	141851	Δ	nalysis Date/Tin	ne 09/0	08/2017	11:15				
Analytical Prep Batch #:		F	Prep. Date/Time:							
ICAL Calibration #:		c	Concentration Un	its: S.U	l.					
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL			
PH pH		7.98		0.1	0.1	0.1	0.1			

silvering more than data i	CT Laboratories Contract: MAXXAM ANALYTICS-SI AFFF SITES SOIL SDG No.: 130380 84.8 Lab Sample ID: 915131 EPA 8000C Date Received: 09/05/2017 1.00 TCLP/SPLP Extraction Date/time:	nple Descript	tion							
	IN	1 ORGANIC ANALYSIS DA	ATA SHEET		FEWRNO)2-007-SO-03	81			
Lab Name:	CT Laboratories	c	ontract: MAXXAM A	ANALYTIC	S-SI AFFF SI	TES				
Matrix (soil/water):	SOIL	S	DG No.:	130380)					
% Solids:	84.8	Li	ab Sample ID:	<u>915131</u>						
Analytical Method:	EPA 8000C	D	ate Received:	09/05/2017						
Dilution Factor:	1.00	т	CLP/SPLP Extractio	n Date/tir	me:					
Analytical Run #:	141774	A	nalysis Date/Time	09/08/2017 08:20						
Analytical Prep Batch #	:	P	rep. Date/Time:							
ICAL Calibration #:		C	concentration Units:	%						
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL			
SOLID So	blids, Percent	84.8		0.1	0.1	0.1	0.1			

livering more than data fr	om your environmental analyses			_	Sa	mple Descript	tion
	INC	1 RGANIC ANALYSIS DA1	A SHEET		FEWRN	02-007-SO-03	31
Lab Name:	CT Laboratories	Co	ntract: MAXXAM A	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL	SD	G No.:	130380)		
% Solids:	84.8	Lat	Sample ID:	915131	1		
Analytical Method:	L-Kahn/9060A	Dat	e Received:	09/05/2	2017		
Dilution Factor:	_1.00	тс	LP/SPLP Extractio	n Date/ti	me: _		
Analytical Run #:	142064	Ana	alysis Date/Time	09/	15/2017	10:26	
Analytical Prep Batch #:		Pre	p. Date/Time:				
ICAL Calibration #:	ICAL - TOC010	Co	ncentration Units:	mg/	/kg		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
TOC Tot	al Organic Carbon	215		42	88	180	180

. .

1 .

LILHDU Divering more than data from	K H I U K I Ł nyour environmental analy) the			Sar	nple Descript	tion
	I	1 NORGANIC ANALYSIS D	ATA SHEET		FEWRN	02-007-SO-03	81
Lab Name:	CT Laboratories	c	Contract: MAXXAM	ANALYTIC	S-SI AFFF S	ITES	
Matrix (soil/water):	SOIL		DG No.:	130380)		
% Solids:	84.8	L	ab Sample ID:	<u>915131</u>	1		
Analytical Method:	EPA 9045D	C	ate Received:	09/05/2	2017		
Dilution Factor:	1	ו	CLP/SPLP Extracti	on Date/ti	me:		
Analytical Run #:	141851	ļ.	nalysis Date/Time	09/0	08/2017	11:15	
Analytical Prep Batch #:		F	Prep. Date/Time:				
ICAL Calibration #:		0	Concentration Units:	S.U	l.		
CAS #	Analyte	Concentratior	Qualifiers	DL	LOD	LOQ	RL
PH pH		8.45		0.1	0.1	0.1	0.1

1

Rev. 3/201	.5				CHAIN OF C	USTO	DY			-								-	Dago	1 of 1
Company: Project Co Telephone Project Na Malkyle Project #:	roject Contact: Brian Odom elephone: 478 - 357-4966 roject Name: 52 & AFFF AREAS, Malkyle Siles roject #: M2027.0003 ocation: FE WARREN Logged By: BNA I) R I	f (Tic	S		1230 e ogra M Id V	0 Lang 508-35 am: RCR Vaste	ge Cou 56-276 w RA SI	urt, Ba 50 F www.ct DWA ther	raboo Fax 60 Iabor NP	o, WI 539 8-356-27 atories.co	913 766 om	Report T EMAIL: Compa Addres O-k t Invoice T EMAIL:	0: J. juan ny: A s: 100 inge inge to:* B	rage cross cross of Photos The tran	Uance Carbosher.net anges LLC byd Culler Ct S7830 Odom Doge Cprocenu.com
Sampled B	FE W	BRRE	in rum bau	gh	Logged By: BNA PM	BM	****			#* #	AU 20	27.	0003				Addres	Ridg	Plant	v sescec v 3783D
Client Specia	ial Instr	uction	IS			N/N	700	ameter	sive/			YSES	REQU	JESTE	D			ntainers	dsm/sm b	Turnaround Time Normal RUSH* Date Needed: Rush analysis requires prior CT Laboratories' approval
Matrix: GW – groundwa S - soil/sedimen Collectio	vater SW nt SL- on	- surfac - sludge Matrix	e water V A Grab/	VW - was - air Sample	tewater DW - drinking water M - misc/waste	Filtered?	Hal	hydn	NHAR)			\setminus						Total # Co	Designate	24 hr 200% 2-3 days 100% 4-9 days 50%
Date T	Time	5	Comp	#		+	-				Fill in	Space	es wit	h Boti	tles per	Test				CT Lab ID # Lab use only
3/24/17 14	605	5	Comp	1	FEWRN03-005-55-001	2	×	×	+			_	+			_				915129
7 31/17 4 1/31/17 4	123	5	Comp		FEWRNER - 007-50-031	N	×	×	×				•							915131
						18	*							-						
)									_			\geq	\downarrow						/	
Relinquished By CSt Lili > Received by:	by: • 1		>		Date/Time 9/61/17 1900 Date/Time	Rece	ived B	ly: or Lab	oratory	by:	Si	A de			Date/Tir 9]2/ Date/Tir 9-5-7	me 17 me 17)105 084	4	lce Ten Coc	Lab Use Only Present Fes No np 2 IR GUP O bler # MAALOW

M2027.0003

Rev. 02/	/2017						CHAIN OF	USTO	DY															Page	2	of	2
Compa Project	ny:Aero Contact	Brian	ses Ode	LLC	()	1	ABORATO	RI	[5	A		1230 Lange Court, Baraboo, WI 53913 608-356-2760 Fax 608-356-2766 www.ctlaboratories.com							Repo EMA Com	nt To: IL: J pany	Va.	nce so s	Jenny Gaera	Vanc star	e net c		
Telepho Project Project	one: 47 Name:/ : #: M20	7839 FFFF 77.0	7 490 5I 003		17		Lab Use Or Place Header Stic	nly ker Her	e:	j		Pro QS Sol	ogra M Iid W	m: RCF /aste	A S	SDW/ Other	A 1	NPD	ES		Addi Ook Invol EMA	Rice To:	100	FL	odor Spece	oller 830 moenu.	C+.
Locatio	n: FE	way	ter .	AFI	3		1 304	YS				PO	#								Add	ress:	100	6 FI	loyd C	Her (1 7830	÷
Sample	ed By: K	. Br	umba	ugh	111						1			- 1	*Part	ty liste	ed is re	spon	sible	for pay	ment oj	Invoic	e as p	erCTL	aboratorie	s' terms an	d conditions
Client Sp	ecial Inst	truction	s	0					L			_		ANA	LYSE	S REC	QUES	TED	2.7		_			1	Tu	rnaround	Time
Matrix: GW - groundwater SW - surface water WW - waster S. soli/cellment SL - shulee A - air		stewater	DW - dri	inking water	litered? Y/N		PH-DRO, PCB	PH-DRO, PCB Merals	Cyanide	H, Flashpoint	H, Flashpaint	uffide	0778 70.	10(PH-GRO	ufide	erals, Swc Pericide 64, TPH- DR0/6Rb			otal # Containers	Designated MS/MSD	Date Needed: Rush analysis require CT Laboratories' ap, Surcharges: 24 hr 200% 2-3 days 1009 4-9 days 50%		uires prior approval es: 0% 00%			
S - soil/sediment SL - studge A - air M - misc/waste Collection, Grab/ Sample				-	S	+	e	-	0	0	S	>	-	-		2 4	-			-	-	CT Lab I	D#				
Date	Time	Matrix	Comp	Ħ	Sar	Sample ID Description				1.	_	_		Fill Ir	1 Spa	ces v	vith E	Bottl	es pe	er Tes	t	-	-			Lab use o	ly
9/5/17	0845	WW	comp	1	FEWF	(N -	IDW-WW	N	3	3	1	1	1				3	2	1				15		915	403/	915909
1/5/17	0845	2	Lomp	2	FEW	RN -	IDW-WS	N	-		-		1.1.1.1	1	1	1	-	_	-	11	-		5	_	915	410/9	15911
			*	-		_		-	$ \ge$					-	-	-	-			-	-	-	-			-	-
			-	-				+	-								-	-	-	+	-	-		-	-		
			1					-							1		-		-	-	-				-		
				V							15	177			1	~	K								1		
1.1.1			11.	R					11.1				177					1	\neg		1						
. T.L.		11 14	<u>11 — </u>	n	/								1		1.1.1			H1			1		11	_	1		
11.1	111	1	11.	11		1	-	12	171		1.8	11	12		111	1	111		11						1	_	
- L - L							-				_(1			
		1		1.0		-		1					1.1			-	1.1								1		
Relinquish	ed By:	189	will	is	Da 9-	S- /	7 1900	Rece	lived l	Βγ:							A	2	Date 9)(n alm	10	ø		lce	Present	b Use Only	No
Received b	ο γ :				Da	e/Time		Rece	ived (or Lab	orato	ry by		K	1	4	0		Date	/Time	3.2	120	~	Ter		D IR G	DA IN

Appendix E Boring Logs and Field Forms

EMPLOYEE NAME: ASH WILLIS

EMPLOYEE NUMBER: 130276

JOB NUMBER: M2027.0003

Job Location: FE Warren

Readiness Review Date: 08/14/17

JOB TASKS:

SURFACE SAMPLING GROUNDWATER SAMPLING SOIL SAMPLING – SURFACE SOIL AND SUBSURFACE SOIL SOIL BORING LOGGING SURFACE WATER AND SEDIMENT SAMPLING MOBE/DEMOBE TASKS <u>EQUIPMENT NEEDED:</u> SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE, GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC. SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

 $SW\ Sampling:\ Sample\ containers,\ SW\ collection\ device$

 $PROPER \ PPE \ For \ all \ above \ tasks \ is \ a \ minimum \ Level \ \ D, \ plus \ nitriles.$

DOCUMENTS NEEDED:

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

 $\label{eq:mini-sonic drilling. Permanent well installation. \ UXO Recognition \ \ and \ anomaly \ a voidance.$

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE

EMPLOYEE NAME: JEREMY KLEIN

EMPLOYEE NUMBER: 130286

JOB NUMBER: M2027.0003

Job Location: WPAFB

Readiness Review Date: 08/14/17

JOB TASKS:

SURFACE SAMPLING GROUNDWATER SAMPLING SOIL SAMPLING – SURFACE SOIL AND SUBSURFACE SOIL SOIL BORING LOGGING SURFACE WATER AND SEDIMENT SAMPLING MOBE/DEMOBE TASKS EQUIPMENT NEEDED: SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE, GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC. SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

 $SW\ Sampling:\ Sample\ containers,\ SW\ collection\ device$

 $PROPER \ PPE \ For \ all \ above \ tasks \ is \ a \ minimum \ Level \ \ D, \ plus \ nitriles.$

DOCUMENTS NEEDED:

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

 $\label{eq:mini-sonic drilling. Permanent well installation. \ UXO Recognition \ \ and \ anomaly \ a voidance.$

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE

EMPLOYEE NAME: KALEB BRUMBAUGH

EMPLOYEE NUMBER: 130333

JOB NUMBER: M2027.0003

Job Location: FE Warren

READINESS REVIEW DATE: 08/14/17

JOB TASKS:

SURFACE SAMPLING

GROUNDWATER SAMPLING

SOIL SAMPLING – SURFACE SOIL AND SUBSURFACE SOIL

SOIL BORING LOGGING

SURFACE WATER AND SEDIMENT SAMPLING

MOBE/DEMOBE TASKS

EQUIPMENT NEEDED:

SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE,

GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC.

SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

SW SAMPLING: SAMPLE CONTAINERS, SW COLLECTION DEVICE

PROPER PPE FOR ALL ABOVE TASKS IS A MINIMUM LEVEL D, PLUS NITRILES.

DOCUMENTS NEEDED:

FIELD FORMS: BORING LOG, GW sampling log, sample log, log book, calibration sheets

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

MINI-SONIC DRILLING. PERMANENT WELL INSTALLATION. UXO RECOGNITION AND ANOMALY AVOIDANCE.

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE

EMPLOYEE NAME: TRAVIS CASSELLA

EMPLOYEE NUMBER:

JOB NUMBER: M2027.0003

Job Location: FE Warren

READINESS REVIEW DATE: 08/14/17

JOB TASKS:

SURFACE SAMPLING

GROUNDWATER SAMPLING

SOIL SAMPLING – SURFACE SOIL AND SUBSURFACE SOIL

SOIL BORING LOGGING

SURFACE WATER AND SEDIMENT SAMPLING

MOBE/DEMOBE TASKS

EQUIPMENT NEEDED:

SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE,

GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC.

SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

SW SAMPLING: SAMPLE CONTAINERS, SW COLLECTION DEVICE

PROPER PPE FOR ALL ABOVE TASKS IS A MINIMUM LEVEL D, PLUS NITRILES.

DOCUMENTS NEEDED:

FIELD FORMS: BORING LOG, GW sampling log, sample log, log book, calibration sheets

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

MINI-SONIC DRILLING. PERMANENT WELL INSTALLATION. UXO RECOGNITION AND ANOMALY AVOIDANCE.

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE
		A	erostar SE	Suc	BORING L Well ID:	_OG FEV	- FI VRN	EVVF 101-1	RNO MVV(1-00 001)1	Site Name Drilling Com Drilling Meth Driller	: AFFF Area 01 npany : Cascade Drilling hod : Mini Sonic/Boart Longyea : Ryan Miller
	A	FFF Al Pr FE V	Areas (Omaha District) FFF Site Inspection oject# M2027.0003 Varren Air Force Base		Start Date End Date Northing Easting Surface Elev* Total Depth (ft)**	:	9/0 ² 9/0 ² 234 740 612 20.0	1/17 1/17 401 945 9.06	78 32			Borehole Dia Boring Com Depth to Wa Logged by Signature	iameter : 6.0 in. npletion : Monitoring Well : 2.0 in. PVC ater (ft) : 19.2 : Kaleb Brumbaugh <i>Kaleb Brumbaugh</i>
	Τ		Water Levels	Meas	urements				S				
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	During Drilling DESCRI	*North Datum **Belc (BGS	n American Vertical n (NAVD88) feet (ft) ww Ground Surface S) feet (ft)	PID (ppm)	USCS / LITHOLOGY	Munsell Color	Depth to Water (DTV	SAMPLE TYPE	SAI	MPLE ID	Well: FEWRN01-MW001 Elev (TOC): 6128.62
0-	Ē	0,						~		0) 			Flush Mount,8-in.
-	1	100	(0.0 - 2.5) Well graded Gra 4/1 - 8/1, dark gray to white sub-angular fine to coarse cobble, 20.0 - 27.5 cm, mo	avel wit e, sub- graine ottled, c	h Silt, 10YR round to d, scattered Iry (fill)		GΝ	a a a a a a		SS	FEWRN0 Ir 0.0	1-001-SS-001 hterval) - 1.0 ft	Riser 2.0 in. Sch 40 PVC
-	2	90	(2.5 - 5.0) SILT with Grave plasticity, 10YR 6/3 pale br noncemented, gravel sub-a trace cobble, dry, (fill)	I, fine (rown, l angula	grained, low oose, r to sub-round,	- 0	МН						Of Out. 0.5 - 3.0 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
5- - - - - - - - - - - - - 	3	100	(5.0 - 13.0) CLAYEY SANE plasticity, 10YR 7/3, very p fines, 5% medium sand, tra sub-angular to sub-round,	D, non ale bro ace gra poorly	to low own, 95% avel, graded, dry	2	sc						Bentonite Seal 1/4 in. Uncoated Pellets 3.0 - 6.0 ft bgs
	- 4	100				7							Filter Pack 16/30 Colorado Silica Sand 16.0 - 20.0 ft bgs
	- 5	100	(13.0 - 20.0) SANDSTONE poorly cemented, medium some larger quartz inclusic visible stajining most of cou	E, N7, I to coal ons, ha	ight gray, rse grain with rd, dry, no								
15-	6	80	with few competent pieces	ie was	TOCK HOUF		ss		V	so	FEWRN0 Ir 18.0	1-001-S0-018 nterval) - 19.0 ft	Screen (10 ft) 9.44 - 19.44 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
20-			Total Depth of Boring 20.0	feet									

		A	erostar SE	Suc	BORING L	.OG	- FI	EWF	RNO	1-00	2	Site Name Drilling Com Drilling Meth Driller	ipany iod	: AFFF Area 01 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller
	A	FFF Al Pr	Areas (Omaha District) FFF Site Inspection roject# M2027.0003		Start Date End Date Northing Easting		: 9/01 : 9/01 : 234 : 740	1/17 1/17 346.8 861.9	39 91			Borehole Di Boring Com Depth to Wa	ameter pletion ater (ft)	: 6.0 in. : Soil Boring : 19.3
	I	FE V	Varren Air Force Base		Surface Elev* Total Depth (ft)**		: 612 : 20.0	9.34)				Logged by Signature		: Kaleb Brumbaugh : <u>Kaleb Brumbaug</u> h
N FEET		VERY	Water Levels ▲ During Drilling	Meas *North Datun **Belo (BGS	surements n American Vertical n (NAVD88) feet (ft) w Ground Surface S) feet (ft)		тногоду	tolor	Nater (DTW)	түре				
DEPTH II	INTERVA	% RECO	DESCRI	IPTIC	N	PID (ppm	USCS / L	Munsell C	Depth to \	SAMPLE	SAI	MPLE ID		REMARKS
0-	1	100	(0.0 - 2.0) SILT (very fine) Gravel, 10YR 5/2, grayish coarse gravel, cobble 25.0 well graded, noncemented	with C brown) - 30.0 I, Iow p	obble and , 40% fine to cm, loose, lasticity, dry,		мн			ss	FEWRN0 Ir 0.0	1-002-SS-001 nterval) - 1.0 ft	Soil Bori	ng 2 backfill - Grout:
		100	(2.0 - 5.0) SILTY SAND, 9/ medium grained, 10YR 8/2 trace to scattered gravel a	0% fine 2, very nd cob	e grained 10% pale brown, ble, dry	0	SM						Mix Used	d: Cement (94 lb bag), Bentonite (~3 lbs)
5-	2					0							Water (~	7 gallons)
			(5.0 - 10.0) CLAYEY SANI plasticity, 10YR 7/3, very p fines, 2% medium sand, tra argillaceous matrix, low to soft to firm, damp at 7.5 ft	D, non ba l e bro ace mi mediu bgs	to low own, 98% ca, m toughness,									
	3	100					SC							
10-	- 4	100	(10.0 - 12.0) CLAYEY SAN pale brown, non to low pla sand, sub-angular to sub-r argillaceous matrix, dry	ND, 10` sticity, ound, t	YR 8/2, very fine grained trace	- 2	sc							
	- 5	100	(12.0 - 20.0) SANDY LEAN interbedded SANDSTONE brown, fine gravel, well gra to hard, low plasticity, sub- sub-round, medium to high	N CLA 5, 10YF aded (S -angula n tough	Y with 8 8/2, very pale SS), medium ar to iness. wet	- 7		///						
15-							CL							
	6	100												
									▼	so	FEWRN0 Ir 18.0	1-002-S0-018 nterval) - 19.0 ft		
20-			Total Depth of Boring 20.0	feet										

		A	erostar SE	5	BORING L Well ID:	OG FEV	- FI <u>VRN</u>	evvf 101 -1	RN0 <u>MVV(</u>	1-00 002	03	Site Name Drilling Com Drilling Meth Driller	ipany iod	: AFFF Area 01 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller
	A	FFF Al Pr	Areas (Omaha District) FFF Site Inspection oject# M2027.0003 Varren Air Force Base		Start Date End Date Northing Easting Surface Elev* Total Depth (ft)**		9/02 9/02 234 740 613 21.0	2/17 2/17 194. 625. 1.49	01 92			Borehole Di Boring Com Depth to Wa Logged by Signature	ameter pletion ater (ft)	: 6.0 in. : Monitoring Well : 2.0 in. PVC : 17.0 : Kaleb Brumbaugh : <i>Kalab Brumbauak</i>
	Γ		Water Levels	Meas	surements				S			olgriddio		<u>, acco o auno aco</u> n
DEPTH IN FEET (BGS)	NTERVAL	% RECOVERY		*North Datun **Belo (BGS	n American Vertical n (NAVD88) feet (ft) ow Ground Surface S) feet (ft)	(mdd) Ole	JSCS / LITHOLOGY	Munsell Color	Depth to Water (DTV	SAMPLE TYPE	SAI	MPLE ID	Well: F Elev (T	EWRN01-MW002 OC): 6131.07
-0	1	100	(0.0 - 2.0) SILTY GRAVEL, grayish brown, well graded, grained with cobble, sub-ar noncemented, dry	10YF , fine 1 ngu l ar	R 6/2, light to coarse to sub-round,		GM			ss	FEWRNC FEWRNC Ir 0.0	11-003-SS-001 11-003-SS-901 nterval) - 1.0 ft		Flush Mount,8-in. Manhole 2ftX2ftX4in. Pad 12 in. skirt
-	2	100	(2.0 - 7.0) GRAVELY SANE to coarse grained for both g non-plastic, loose, sub-ang dry	D, wel gravel gular t	l graded, fine and sand, o sub-round,	0			· ·					Riser 2.0 in. Sch 40 PVC — Grout: 0.5 - 3.9 ft bgs Mix Used: — Portland Cement
5-						0	sw	((94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
-	3	100	(7.0 - 10.0) CLAYEY SAND plasticity, 10YR 7/3, very pa fines, 2% medium sand, tra argillaceous matrix, low to r soft to firm, damp at 7.5 ft b), non ale bro ice mi mediu ogs	to low own, 98% ca, m toughness,		sc							Bentonite Seal 1/4 in. Uncoated Pellets 3.9 - 6.0 ft bgs
- 10	- 4	100	(10.0 - 12.0) CLAYEY SAN pale brown, non to low plas sand, sub-angular to sub-ro argillaceous matrix, dry (12.0 - 17.0) Well graded G	D, 10 sticity, ound,	YR 8/2, very fine grained trace	2	sc							- Filter Pack 16/30
-	- 5	100	10YR 8/2 to 8/1, very pale to sand, gravel is mottled, 10Y gray to very pale brown, dry	brown YR 4/1 y,	to white to 7/3, dark		sw	,						7.0 - 21.0 ft bgs
15-		100							•	so	FEWRNO)1-003-S0-016)1-003-S0-916		Screen (10 ft) 10.05 - 20.05 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
-			(17.0 - 20.0) CLAYEY GRA grayish brown, fine to coars cobbles, subround predomi subangular, argillaceous ma bgs	VEL, se gra inante atrix, v	10YR 5/2, ined, trace ly to wet at 17.0 ft		GC				lı 16.0	nterval) - 17.0 ft		
20-	7	100	(20.0 - 21.0) SANDSTONE poorly cemented, hard, dry, most of core was rock flour competent pieces Total Depth of Boring 21.0	, N7, I , no vi with f feet	ight gray, sible staining, ew]	SS	*/** */* */*						End Cap
			Total Depth of Boring 21.01	ieet										

		A	erostar SES	LLC	BORING L Well ID: Start Date End Date	.0G FEV	- FI <u>//RN</u> : 8/31	EVVF <u>02-1</u> 1/17 17	RN0: //\/\(2-00 001)1	Site Name Drilling Com Drilling Meth Driller Borehole Dia	pany iod ameter	: AFFF Area 02 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller : 6.0 in. : Manifacing Woll
	AI	FFF Al Pr FF V	Areas (Omaha District) FFF Site Inspection oject# M2027.0003		Northing Easting Surface Elev* Total Depth (ft)**		: 237 : 736 : 615 : 30.0	253.0 697.9 2.33)	54 91			Depth to Wa Logged by Signature	iter (ft)	: 2.0 in. PVC : 29.0 : Kaleb Brumbaugh : Kalab Brumbaugh
DEPTH IN FEET (BGS)	NTERVAL	6 RECOVERY	Water Levels I ▲ During Drilling	Meas *North Datun **Belc (BG 2TIC	American Vertical n American Vertical n (NAVD88) feet (ft) ww Ground Surface S) feet (ft)	JD (ppm)	JSCS / LITHOLOGY	Aunsell Color	Depth to Water (DTW)	AMPLE TYPE	SAI	MPLE ID	Well: f Elev (*	FEWRN02-MW001 TOC): 6151.97
0- - - 5-	2	3 100 100	(0.0 - 1.0) GRAVEL, well gra 6/4, gray to light yellowish bi noncemented, loose, dry, fill (1.0 - 9.0) GRAVEL, well gra and sand, 80% fine sand, 20 sand, 10YR 7/3 to 5/2, very grayish brown, gravel is coa noncemented, sub-round to	aded, rown aded, 0% m pale rse to sub-	10YR 6/1 to , 15 to 20 cm, trace cobble redium grained brown to o medium angular	0	GW	A						Flush Mount, 8-in. Manhole 2ftX2ftX4in. Pad 12 in. skirt Riser 2.0 in. Sch 40 PVC
- - - 10-	3	100	(9.0 - 17.5) SANDY LEAN C very pale brown, low to med firm to soft, some fracturing	LAY, ium p	, 10YR 7/3, plasticity, sand n core broke	- 0		**************************************						Grout: 0.5 - 11.3 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
- - - 15-	4	100	open, trace of glaconite, dry	to da	amp		CL							-Bentonite Seal 1/4 in. Uncoated Pellets
- - - 20- -	5	100	(17.5 - 25.0) SANDY FAT C high plasticity, 10YR 8/2, ver scattered gravel, firm to hard toughness, dry, with some tr mottling around gravel when apart	LAY, ry pa d, me ace a core	medium to le brown, dium to high areas of ∌ is broken	- 0	СН							Filter Pack 16/30 Colorado Silica Sand 16.0 - 30.0 ft bgs
- 25-	6	100		10	VD 4/1 dock									Screen (10 ft) 19.19 - 29.19 ft bgs 0.010 in continuous
	7	100	(23.0 - 27.0) CLAYEY SANL gray, 90% fine, 10% medium medium gravel, argillaceous graded, damp to moist (27.0 - 28.0) SANDY LEAN plasticity, 10YR 4/1, dark gra soft to slightly firm, damp	CLA ^A	r, 4/1, dark vel, with trace rix, well r, low w toughness,		SC CL SC	11/11/1	▼	SO	FEWRN0 Ir 28.0	2-001-S0-028 tterval) - 29.0 ft		wrap vee wire Sch 40 PVC
			(28.0 - 30.0) CLAYEY SAND 10YR 4/1, dark gray, 90% fir grained sand, argillaceous n looseness, sub-round to sub 29 ft bgs Total Depth of Boring 30.0 fe), low ne 10 natrix -ang eet	/ plasticity, 1% medium : to scattered ular, wet at								_	

	A	A	erostar SE Areas (Omaha District)	Suc	BORING L Well ID: Start Date End Date	.0G <u>FEV</u> :	- FE <u>VRN</u> 8/31 8/31	EVVF 102 -1 1/17 1/17	RN0: <u>/////(</u>	2-00)02	02	Site Name Drilling Com Drilling Meth Driller Borehole Dia Boring Com	pany od ameter o l etion	: AFFF Area 02 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller : 6.0 in. : Monitoring Well
		A Pi	FFF Site Inspection oject# M2027.0003		Northing Easting Surface Elev* Total Depth (ft)**	:	237 736 615 40 0	150.: 736.(2.76	56 63			Depth to Wa Logged by	ter (ft)	: 2.0 in. PVC : 32.0 : Kaleb Brumbaugh
	T		Water Lovels	Moos		1		, T	5			Oignature		. Naca Dramourga
TH IN FEET BGS)	ERVAL	ECOVERY	Valer Levels During Drilling	*North Datum **Belo (BGS	American Vertical n (NAVD88) feet (ft) ww Ground Surface 6) feet (ft)	(mqq)	S / LITHOLOGY	sell Color	h to Water (DTW	PLE TYPE	SAI	MPLE ID	Well: F Elev (1	FEWRN02-MW002 FOC): 6152.27
	L	% RI	DESCRI	IPTIO	N	DIA	nsc	Mun	Dept	SAM				
-0 -	1	100	(0.0 - 0.5) GRAVEL and C with trace silt, mottled, 10 to dark gray, cobbles 7.5 c fine to coarse, rounded to (0.5 - 10.0) Well Creded S	OBBLE (R 8/1 cm to 30 sub-rou	E, well graded to 4/1, white 0 cm, gravel und, dry	0	GW	/ <u></u>						Flush Mount, 8-in. Manhole 2ftX2ftX4in. Pad 12 in. skirt
5-	3	100	mottled, 10YR 7/3, very pa coarse sand and gravel, w 20.0 - 25.0 cm, dry fill	ale brov ith sca	vn, fine to ttered cobble,	0	sw	/						Riser 2.0 in. Sch 40 PVC —Grout:
10- - - - 15-	4	100	(10.0 - 17.5) GRAVELY LE Sand, low plasticity, 10YR brown to grayish brown, co gravel, predominantly fine medium to low toughness,	EAN CL 8/2 to barse to sand, s dry	AY with 5/2, very pale o fined soft to firm,	- 0	CL							Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
- - - 20-	5	100	(17.5 - 20.0) GRAVELY FA low plasticity, 10YR 5/3, br stiff, medium to high tough	AT CLA rown, fi iness, f	Y, medium to rm to very rractured	1	сн							
- - - 25-	6	90	(20.0 - 25.0) GRAVELY FA low plasticity, 10YR 8/2, ve to very stiff, medium to hig fractured when core broke 22.0 ft bgs	AT CLA ery pale h tougl n open	NY, medium to e brown, firm hness, , moist 20.0 -	1	сн							Bentonite Seal 1/4 in. Uncoated Pellets 17.1 - 22.2 ft bgs
- - - - -	7	100	(25.0 - 30.0) SANDY LEAN low to medium plasticity, 1 pale brown to grayish brow plasticity, damp when core present	N CLAN 0YR 7/ vn, higł broke	/ with gravel, /3 to 5/2, very n to low n, fracturing		CL							Colorado Silica Sand 22.2 - 37.5 ft bgs
		90	(30.0 - 37.5) CLAYEY SAN 10YR 6/3, to 5/2, pale brow 80% fine to 20% medium t sand, sub-round to sub-an matrix, low to no plasticity	ND with wn to g o coars gular, a , soft to	n trace gravel, rayish brown, se grained argillaceous o very soft,	0	sc		•	SO	FEWRN0 Ir 31.0	02-002-S0-031 nterval) - 32.0 ft		Screen (10 ft) 26.97 - 36.97 ft bgs 0.010 in. continuous wrap vee wire
35-		80	some slight low toughness	er, 101	(R 7/4, gravish		N/A							End Cap
40- -			orange, very hard, embedd (38.0 - 39.5) FAT CLAY wi plasticity, 10YR 6/3, pale b some fracturing	ded mid ith Grav prown,	ca, laminated vel, high very firm,		CH	/						Bentonite 1/4 in. Uncoated Pellets
- 45-			(37.5 - 38.0) Granite bould orange, very hard, embedo Total Depth of Boring 40.0	ler, 101 ded mid feet	/R 7/4, grayish ca, laminated									

		A	erostar SE	Suc	BORING L Well ID:	OG FEV	- F	EWF 102-1	RN0: <u>MVV(</u>	2-00 003	13	Site Name Drilling Com Drilling Metl Driller	npany nod	: AFFF Area 02 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller
	A	FFF Al Pr FF V	Areas (Omaha District) FFF Site Inspection oject# M2027.0003 Varren Air Force Base		End Date Northing Easting Surface Elev* Total Depth (ft)**	:	8/3 ⁷ 237 736 614 35.0	5/17 1/17 304 943 7.47	25 37			Depth to Wa Logged by Signature	aneter pletion ater (ft)	: 0.0 m. : Monitoring Well : 2.0 in. PVC : 32.0 : Kaleb Brumbaugh : Kaleb Brumbaugh
	Τ		Water Levels	Meas	surements		Γ.	Γ	S			3		/
EPTH IN FEET (BGS)	ITERVAL	RECOVERY		*North Datun **Belo (BGS	American Vertical n (NAVD88) feet (ft) w Ground Surface S) feet (ft)	ID (ppm)	SCS / LITHOLOGY	unsell Color	epth to Water (DTV	AMPLE TYPE	SAI	MPLE ID	Well: F Elev (⁻	FEWRN02-MW003 TOC): 6147.12
ā	ΙΞ	%	DESCRI	FIIC			Š	Ē	ð	ŝ]	Flush Mount, 8-in.
0-	1	100	(0.0 - 1.0) SILT with Gravel 5/2, grayish brown, 80% fin medium to coarse well grad sub-round to sub-angular, I (1.0 - 5.0) GRAVEL, well gr and trace cobble, 10YR 7/3 predominately round to sub scattered subangular, 40% medium to coarse gravel, n medium-grained sand, 40%	I, non- nes an ded gr loose, raded, 3, very p-round fine g non-ce 6 fine-	plastic, 10YR d 20% avel, dry with sand pale brown, d with ravel, 60% mented, 60% grained sand,	0	мн GW							Manhole 2ftX2ftX4in. Pad 12 in. skirt
5-	3	70	loose, dry (5.0 - 10.0) CLAYEY SANE 10YR 7/3, very pale brown, sand, 5% medium grained sub-angular, trace mica, da	D, low , 95% sand, amp	plasticity, fine grained sub-round to	- 0	sc		a ba ba ba ba ba ba ba ba ba					Grout: 0.0 - 14.2 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs)
10-	4	90	(10.0 - 11.0) GRAVEL, wel 10YR 5/2 to 4/1, grayish br argillaceous matrix, 40% fir coarse gravel, 99% fine sai (11.0 - 15.0) CLAYEY SAN 10YR 7/3, very pale brown, 95% fine grained sand, 5% sand, sub-round to sub-ang medium toughness, soft to fractured when core broker	Il grade rown to ne gra nd ND, lov , poorl o medin gular, l slightl n apar	ed, with Sand, o dark gray, vel, 60% // v plasticity, y graded, um grained low to trace y firm, t, damp	0	GW							Water (~7 gallons) — Riser 2.0 in. Sch 40 PVC
15-	6		(15.0 - 20) CLAYEY SAND 7/3, very pale brown, low to graded, sub-angular to sub and gravel) 95% fine graine grained sand, 70% coarse gravel, trace fine gravel, gr and whites, damp to trace r) with (o no pl)-round ed and gravel gravel avel is moist	Gravel, 10YR asticity, well I (both sand I 5% medium , 30% medium mottled grays	- 0	sc							Bentonite Seal 1/4 in. Uncoated Pellets 14.2 - 18.7 ft bgs Filter Pack 16/30 Colorado Silica Sand 18.7 - 35.0 ft bgs

	A	FFF A PI	Areas (Omaha District) FFF Site Inspection roject# M2027.0003	Suc	BORING L Well ID: Start Date End Date Northing Easting Surface Elev* Total Depth (ft)**	-OG FEV	- Fl VRN : 8/3(: 8/31 : 237 : 736 : 614 : 35.(EVVF 0/17 1/17 304.3 943.3 7.47	RN0: <u>////(</u> 25 37	2-00 <u>)03</u>)3	Site Name Drilling Com Driller Borehole Dia Boring Com Depth to Wa Logged by Signature	pany iod ameter oletion ter (ft)	: AFFF Area 02 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller : 6.0 in. : Monitoring Well : 2.0 in. PVC : 32.0 : Kaleb Brumbaugh : <u>Kaleb Brumbaugh</u>
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCR	Meas *North Datum **Belo (BGS	urements American Vertical (NAVD88) feet (ft) w Ground Surface 5) feet (ft) N	PID (ppm)	USCS / LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAI	MPLE ID	Well: F Elev (`	
19.5-	6	100	(20.0 - 25.0) SANDY LEA non-plastic, 10YR 8/2, ver fine grained sand and 20% sand, loose to firm in area	N CLAY y pale I 6 mediu s, dry	7, low to prown, 80% im grained	- 0	CL							Riser 2.0 in. Sch 40 PVC
29.5-	8	100	(27.0 - 30.0) LEAN CLAY w medium plasticity, 10YR 5 fractured when core broke (27.0 - 30.0) LEAN CLAY to medium plasticity, 10YF brown, soft to firm, moist, broken open with areas of (30.0 - 32.0) CLAYEY SAI	with tra with tra 8/2, va fracture wetnes	ce Sand, low ce Sand, low ery pale ed when core ss	- 0	CH CL							 Filter Pack 16/30 Colorado Silica Sand 18.7 - 35.0 ft bgs Screen (10 ft) 24.15 - 34.15 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
34.5-	10	100	pale brown to grayish brow and 2% medium grained s sub-round, poorly graded, damp (32.0 - 33.0) SAND with G 10YR 8/2 to 4/1, very pale 70% fine and 30% medium coarse sand, scattered co sub-round to sub-angular, trace argillaceous matrix, I (33.0 - 35.0) Well graded 3 10YR 8/2 to 4/1, very pale 70% fine and 30% medium	wn, 98% and, su argillac iravel, v brown n sand arse gr some i moist to SAND v brown n sand	6 fine grained ib-angular to ceous matrix, vell graded, to dark gray, with trace avel, oound, loose o wet vith gravel, to dark gray, with trace	- 7.6 0 0	sc sw sw		•	so	FEWRN0 Ir 31.0	02-003-S0-031 hterval) - 32.0 ft		End Cap
			coarse sand, scattered co sub-round to sub-angular, trace argillaceous matrix, v Total Depth of Boring 35.0	arse gr some i wet	avel, ound, loose									

		A FFF Al Pr FE V	Areas (Omaha District) FF Site Inspection oject# M2027.0003	Suc	BORING Well ID Start Date End Date Northing Easting Surface Elev* Total Depth (ft)**	LOG FEV	- F <u>VRN</u> : 8/3(: 237 : 237 : 737 : 614 : 30.(EVVI 0/17 0/17 7463. 7010. 7010. 0	RN0 <u>MVV(</u> 58 80	2-00 004		Site Name Drilling Com Drillen Borehole Di Boring Com Depth to Wa Logged by Signature	ipany nod ameter pletion ater (ft)	: AFFF Area 02 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller : 6.0 in. : Monitoring Well : 2.0 in. PVC : 14.0 : Kaleb Brumbaugh : <u>Kaleb Brumbaugh</u>
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCRI	Meas *North Datun **Belc (BGS PTIC	American Vertical (NAVD88) feet (ft) ww Ground Surface (ft) N	PID (ppm)	USCS / LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAI	MPLE ID	Well: I Elev (FEWRN02-MW004 TOC): 6146.52 — Flush Mount, 8-in.
0- - - - - - - - - - - - - - - - - - -	1	100	(0.0 - 2.0) SILT with Gravel 5/2, grayish brown, 80% fin medium to coarse (trace cc gravel, sub-round to sub-ar (2.0 - 5.0) SILT with Gravel 5/2, grayish brown, 80% fin medium to coarse (trace cc gravel, sub-round to sub-ar scattered mica, dry (5.0 - 12.5) CLAYEY SANE non-plasticity, 10YR 7/3, ve fine grained sand, 5% med sub-round to sub-angular, I trace mica, damp	I, non- nes an obble) ngular I, non- nes an obble) ngular O, low ery pal ium gr low tot	plastic, 10YR d 20% well graded loose, dry plastic, 10YR d 20% well graded loose, plasticity, to e brown, 95% rained sand, ughness,	0 0 0	M⊢ M⊢							Manhole 2ftX2ftX4in. Pad 12 in. skirt Grout: 0.0 - 9.0 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
- - - 15- - -	4	100 100	(12.5 - 15.0) LEAN CLAY w grayish brown, low plasticit toughness, damp (15.0 - 18.0) CLAYEY SAN 7/3, very pale brown, low pl toughness, sub-angular to grained and 5% medium gr	vith Sa ty, soft ID with lasticit sub-ro rained	and, 10YR 5/2, to firm, Iow Gravel, 10YR y, medium und 95% fine sand, damp		sc sc		•	SO	FEWRN(II 13.0	02-004-S0-013 hterval 0 - 14.0 ft		Bentonite Seal 1/4 in. Uncoated Pellets 9.0 - 14.0 ft bgs Riser 2.0 in. Sch 40 PVC
- 20- - - -	- 6	100 100	(18.0 - 20.0) SANDY LEAN grayish brown, low plasticit toughness, soft to firm, frac broken off, damp to some r (20.0 - 24.0) SANDY LEAN plasticity, 10YR 7/3 to 8/2, 95% fine grained sand and sand, fractured when core l dry	I CLA y, med tured moistu I CLA very p 5% m broker	(, 10YR 5/2, dium when core re (, low ale brown, iedium grained n off, damp to	0	CL							— Filter Pack 16/30 Colorado Silica Sand 14.0 - 30.0 ft bgs
25-	8 9 10	83 100	(24.0 - 27.0) CLAYEY SAN 10YR 5/2 to 8/2, grayish br brown, 95% fine grained sa grained sand, sub-round to argillaceous matrix, poorly trace mica, damp (27.0 - 28.0) SAND, well gr dark gray to very pale brow sand and 30% medium gra	ID, low own to and an sub-a graded graded, raded, rn, 70°	y plasticity, b very pale d 5% medium ingular, d, firm to soft, 10YR 4/1 7/3, % fine grained and,	0	sc sw sc		- Vou - Vou - Vou - Vou - Vou					Screen (10 ft) 19.07 - 29.07 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
			wet (28.0 - 30.0) CLAYEY SAN 10YR 7/3, very pale yellow, grained sands, poorly grade sub-angular, soft, wet Total Depth of Boring 30.0	ID, Iow , prede ed, su	v toughness, ominantly fine b-round to									

		A	erostar SE	Suc	BORING L Well ID	.OG : FE\	- FE WR0	EVVF 03-IV	RN0 11/1/0	3 - 00 01)1	Site Name Drilling Com Drilling Meth Drillor	pany : iod :	AFFF Area 03 Cascade Drilling Mini Sonic/Boart Longyear
	AI	FFF Al Pr FE V	Areas (Omaha District) FFF Site Inspection oject# M2027.0003 Varren Air Force Base		Start Date End Date Northing Easting Surface Elev* Total Depth (ft)**	:	8/29 8/30 234 738 615 26.1	9/17 9/17 716 044 5.01	19 37			Difference Boring Com Depth to Wa Logged by Signature	ameter : pletion : ter (ft) :	6.0 in. Monitoring Well 2.0 in. PVC 9.0 Kaleb Brumbaugh
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels Turing Drilling DESCRI	Meas *North Datum **Belo (BGS	American Vertical n American Vertical n (NAVD88) feet (ft) ww Ground Surface S) feet (ft)	PID (ppm)	USCS / LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAI	MPLE ID	Well: F Elev (T	EWRN03-MW001 OC): 6154.46
-0	1	100	(0.0 - 4.0) SILT with Gravel 5/2, grayish brown,40% fin gravel, sub-round to round,	I, non- e to m , dry	plastic, 10YR edium grained	0	мн			SS	FEWRNC Ir 0.0	3-001-SS-001 hterval) - 1.0 ft		Grout:
- 5- -	2	100 90	(4.0 - 5.0) CLAYEY SAND 10YR 7/3, very pale brown, and 10% medium grained, subround, non-plastic to ve poorly graded, argillaceous scattered, dry to slightly da (5.0 - 10.0) CLAYEY SANE	with tr , 90% sub-ai ery low matri: mp D with t	ace Gravel, fine grained ngular to plasticity, x, mica trace Gravel,	0	SC SC		Yes the Yes Yes Yes					Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
- - 10-			10YR 7/3, very pale brown, and 10% medium grained s grained gravel, sub-angula non-plastic to very low plas graded, damp (10.0 - 15.0) LEAN CLAY w Sand, 10YR 7/3, very pale	, 90% sand, { sticity, with Gr brown	fine grained 5% medium bround, poorly ravel and , low	0			•	SO	FEWRN0 Ir 8.0	3-001-SO-008 hterval) - 9.0 ft		— Bentonite Seal 1/4 in, Uncoated Pellets 7.0 - 10.0 ft bgs
	4	90	throughness, fine to medium throughout lean clay, 10% interbedded, fractured bedd broken open, damp to dry	gravel fine sa ding w	I scattered and hen core	0	sc]]]						
-	5	90	(15.0 - 25.0) CLAYEY SAN pale brown, non-plastic to I sub-angular to sub-round 9 5% medium grained, poorly moist, trace mica	ID, 10` low pla 95% fir y grade	YR 7/3, very asticity, ne grained and ed, damp to			111	Vie Vie Vie Vie Vie					— Filter Pack 16/30 Colorado Silica Sand
20-	-					0	sc		And the And the And					10.0 - 26.11 ft bgs
- 	6 7	100	(25.0 - 26.11) FAT CLAY w high plasticity, 10YR 5/2, g toughness, very hard, dry	<i>r</i> ith Sa rayish	nd, medium to brown, high	0	сн		a tra tra					End Cap
			Total Depth of Boring 26.1	1 feet		1								_

	AI	A =FF AI Pr	Areas (Omaha District) FFF Site Inspection oject# M2027.0003	Suc	BORING L Well ID: Start Date End Date Northing Easting	OG <u>FE\</u> : :	- FI <u>WR(</u> 8/28 8/29 234 738	EVVF <u>)3-N</u> 3/17 9/17 763. 091.	RNO <u>1VVO</u> 09 93	3-00 <u>02</u>	2	Site Name Drilling Com Drilling Meth Driller Borehole Di Boring Com Depth to Wa	npany nod ameter pletion ater (ft)	: AFFF Area 03 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller : 6.0 in. : Monitoring Well : 2.0 in. PVC : 8.0
	ł	E V	Varren Air Force Base		Total Depth (ft)**	:	26.0	5.04)				Logged by Signature		: Kaleb Brumbaugh : <u>Kaleb Brumbaugh</u>
DEPTH IN FEET (BGS)	NTERVAL	% RECOVERY	Water Levels The During Drilling DESCRI	Meas *North Datum **Belc (BGS	American Vertical n (NAVD88) feet (ft) w Ground Surface S) feet (ft)	(mdd) Olc	JSCS / LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAI	MPLE ID	Well: Elev (FEWRN03-MW002 TOC): 6154.59
-0	1	100	(0.0 - 1.0) SILT, non-plastic brown, 65% fines, 35% fine gravel, sub-angular to angu trace mica, dry to slightly da (1.0 - 5.0) CLAYEY SAND, grayish brown to very pale	c, 10Yl e to me ular, no amp 10YR brown	R 5/2, grayish edium grained oncemented, 5/2 to 7/3, , 90% fine	0	мн			SS	FEWRNC Ir 0.0	3-002-SS-001 nterval) - 1.0 ft		Flush Mount, 8-in. Manhole 2ftX2ftX4in. Pad 12 in. skirt Grout: 0.0 - 5.0 ft bgs
	2		to subround, low to non-pla argillaceous matrix, trace m	graine astic, p nica, d	d, sub-angular oorly graded, amp									Mix Used: Portland Cement (94 lb bag)
5	3	90	(5.0 - 10.0) CLAYEY SAND pale brown, low plasticity to fine grained and 5% mediul poorly graded, argillaceous mica, damp to trace moist a	D, 10Y o non-j m grai s matri: at 8.0 1	R 7/3, very blastic, 95% ined sand, x, abundant ft bgs	- 0	sc		•	SO	FEWRN0 Ir 7.0	3-002-SO-007 hterval) - 8.0 ft		Bentonite Seal 1/4 in. Uncoated Pellets
- 10	4	90	(10.0 - 15.0) CLAYEY SAN very pale brown to grayish 10% medium grained claye round to sub-angular, none argillaceous matrix, trace m	ID, 10` brown ey sand to low nica, d	YR 7/3 to 5/2, , 90% fine d, sub-round to <i>v</i> plasticity, amp	0	sc							5.0 - 10.0 ft bgs Riser 2.0 in. Sch 40 PVC
- 15 - - - -	5	90	(15.0 - 20.0) LEAN CLAY w (subround to round), 10YR low plasticity, medium toug firm, fractured when core b to dry	vith Gr 5/2, g hness roken	ravel rayish brown, , firm to very apart, damp	- 0	CL							— Filter Pack 16/30 Colorado Silica Sand 10.0 - 26.0 ft bgs
20-	6	100	(20.0 - 22.0) GRAVELY LE. Sand, 10YR 5/2, grayish br medium toughness, round p cobble size gravel, well gra grained sand, sub-round to to wet around gravel and sa (22.0 - 26.0) FAT CLAY, hig 5/2, grayish brown, high tou density, dry	AN Cl rown, I pebble ided, fi sub-a and, cl gh pla ughne	AY with ow plasticity, es, fine to ine to medium ingular, damp lay is dry sticity, 10YR ss, high	0	СL							Screen (10 ft) 14.87 - 24.87 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
25-	7	100				0		1						
			I otal Depth of Boring 26.0	reet										

		A	erostar SE	Suc	BORING L Well ID	.0G : FE	- F <u>WR</u>	EW 03-I	'RNO MWC	03-00 0 <u>03</u>)3	Site Name Drilling Com Drilling Meth Driller	pany Iod	: AFFF Area 03 : Cascade Drilling : Mini Sonic/Boart Longyear : Ryan Miller
	A	FFF Al Pr	Areas (Omaha District) FFF Site Inspection oject# M2027.0003		Start Date End Date Northing Easting Surface Elev* Total Depth (ft)**	:	8/2 8/2 234 738 615	8/17 9/17 4817 3063 54.58 0	.24 .07 3			Borehole Dia Boring Comp Depth to Wa Logged by Signature	ameter pletion iter (ft)	: 6.0 in. : Monitoring Well : 2.0 in. PVC : 9.0 : Kaleb Brumbaugh : Kalab Brumbaugh
			Water Levels	Meas	surements		5) N			oignature		. Marine to carrie augre
PTH IN FEET (BGS)	ERVAL	RECOVERY		*North Datun **Belc (BGS	n American Vertical n (NAVD88) feet (ft) w Ground Surface S) feet (ft)	(mqq)	CS / LITHOLO(nsell Color	oth to Water (D	APLE TYPE	SAI	MPLE I D	Well: Elev (FEWRN03-MW003 TOC): 6154.06
DEF	<u>T</u>	Я %	DESCRI	PTIC	N		nsc	Mur	DeD	SAN				Flush Mount, 8-in.
-0	- 1		(0.0 - 2.0) SILT, non-plastic brown, 70% fines, 30% fine size gravel, scattered roun angular, noncemented, sof dry	c, 10Y e grain d, sub ft to firr	R 5/2, grayish ed to cobble -angular to n, trace mica,	0	мι	4		ss	FEWRNC FEWRNC Ir 0.0	3-003-SS-001 3-003-SS-901 nterval) - 1.0 ft		2ftX2ftX4in. Pad 12 in. skirt
-	2	100	(2.0 - 5.0) SILTY SAND, no grayish brown, 70% fines medium grained, sub-angu scattered round, well grade	on-plas and 30 Ilar to s ed, dar	stic, 10YR 5/2, 0% fine to subround to np		SM							—Grout: 0.0 - 7.0 ft bgs Mix Used: Portland Cement (94 lb bac)
5-	3	100	(5.0 - 10.0) CLAYEY SAND pale brown, low plasticity to fine grained and 5% mediu poorly graded, argillaceous mica, damp	D, 10Y o non- im gra s matri	R 7/3, very plastic, 95% ined sand, x, abundant	- 0	sc							(94 ID bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
- 10-	-					0				so	FEWRN0 FEWRN0 In 8.0	3-003-SO-008 3-003-SO-908 nterval) - 9.0 ft		-Bentonite Seal
-	-		(10.0 - 15.0) CLAYEY SAN very pale brown to grayish 10% medium grained clayer round to sub-angular, none argillaceous matrix, trace n bedding planes when core	ID, 10 brown ey san e to lov nica, fr broke	YR 7/3 to 5/2, i, 90% fine d, sub-round to v plasticity, ractured n open, damp									Riser 2.0 in. Sch 40 PVC
-	4	90				0	SC		/////					— Filter Pack 16/30 Colorado Silica Sand 11.5 - 26.0 ft bgs
15-	5		(15.0 - 17.5) LEAN CLAY v 7/3 to 5/2, very pale brown low plasticity, medium to hi firm, fine to medium sized, gravel, wet around gravel	with Gr to gra igh tou round	avel, 10YR yish brown, ghness, very to sub-round	- 0	CL							
	6		(17.5 - 20.0) CLAYEY SAN pale brown, low to non-pla: soft to slightly firm, 95% fin grained sand, sub-round to argillaceous matrix, poorly damp to wet at 20 ft bgs	ND, 10 stic, lo ne 5% i sub-a grade	YR 7/3, very w toughness, medium ingular, d, trace mica,		sc		/ / /					0.010 in. continuous wrap vee wire Sch 40 PVC

		A	erostar SE	S c	BORING LC)G -	· FE	WR	N03	-004	ŀ	Site Name Drilling Compa Drilling Method Driller	:A ny:C :N	FFF Area 03 Cascade Drilling ⁄lini Sonic/Boart Longyear Rvan Miller
	AI	FFF Al Pr	Areas (Omaha District) FFF Site Inspection		Start Date End Date Northing Easting	:	8/28/ 8/29/ 2348 7380	/17 /17 309.6)21.3	4 5			Borehole Diam Boring Comple Depth to Water	eter : 6 tion : 5	.0 in. Soil Boring .9
	F	FE V	Varren Air Force Base		Surface Elev* Total Depth (ft)**	: :	6154 30.0	1.40				Logged by Signature	: K : <u>/</u>	aleb Brumbaugh Kalab Brumbaugh
			Water Levels	Meas			Š		TW)					
FEET	.	ERY		Datun	n (NAVD88) feet (ft)		THOLO	olor	/ater (D	ΥPE				
TH IN BGS)	ERVAL	ECOV		(BG	S) feet (ft)	(mdd)		sell Co	th to V	IPLE T	S	AMPLE ID		REMARKS
DEF	IN	% R	DESCRI	PTIC	DN	립	nso	Mun	Dep	SAN				
-0	1	100	(0.0 - 2.5) SILT with Gravel 5/2, grayish brown, 70% fin to cobble size gravel, sub-a noncemented, soft to very f	l, non-j ies, 30 angulai firm, tra	olastic, 10YR % fine grained r to angular, ace mica	0	мн	1		SS	FEWRI	N03-004-SS-001 Interval D.0 - 1.0 ft	Soil Bori Borehole	ng e backfill - Grout:
-	2	100	(2.5 - 5.0) SILTY SAND wit non-plastic, 10YR 5/2, gray	h Grav	vel, own, 70%		SM						Mix Use	d:
5-			subangular to subround to subr	to mec scatter	red round, well	0							Portland Sodium	Cement (94 lb bag), Bentonite (~3 lbs),
.	3	90	(5.0 - 10.0) CLAYEY SANE brown, low plasticity, 95% f medium grained sand, sub- poorly graded, argillaceous abundant mica, damp), 10YI ine gra round ceme	R 7/3, very pale ained and 5% to sub-angular, nting matrix,		sc		V	so	FEWR	N03-004-SO-008 Interval	vvater (~	7 galions)
10-	4	90	(10.0 - 15.0) CLAYEY SAN pale brown, 100% fine with grained clayey sand, trace sub-round to round to sub-a plasticity, low toughness, a with cementing	D, 10) trace fine gr angua l rgillace	/R 7/3, very medium avel, lar, low eous matrix	0	sc					3.0 - 9.0 ft		
15-						0								
-	5	83	(15.0 - 18.0) LEAN CLAY w gravel, 10YR 7/3, very pale non-plastic, low toughness, 95% fine 5% medium grain round, predominantly dry, s	vith col browr soft to ed sar some s	bbles and n, low to o slightly firm, nd, sub-round to light dampness		CL							
	6	100	around cobbles (18.0 - 19.0) LEAN CLAY, I 7/3 to 7/2, very pale brown	low pla	asticity, 10YR	1	CL							
20-	7	100	toughness, dry (19.0 - 24.0) CLAYEY SAN brown, very low plasticity, s fine 5% medium grained sa sub-angular, argillaceous n trace mica,	D, 10 soft to t and, su natrix v	/R 5/2, grayish firm, 95% ib-round to with cementing,	0	sc							
25-	8	100	(24.0 - 27.0) CLAYEY SAN pale brown, low to very low 95% fine, 5% medium grair to sub-angular, trace argilla mica, dry	D, 10) plasti ned sa aceous	YR 7/4, very city to none, nd, sub-round matrix, trace	0	sc							
	9	100	(27.0 - 30.0) CLAYEY SAN very pale brown, low to ver none, 95% fine, 5% mediur sub-round to sub-angular, t matrix, trace mica, wet to d	D, 10) y low p n grair race a amp a	YR 7/4 to 8/2, plasticity to ned sand, rgillaceous t 27.0 ft bgs		sc							
30-			Total Depth of Boring 30.0	feet										

AerostarSES...

- ----

GROUNDWATER SAMPLING LOG

c

Instance FEULEND (- MNADO) Instance FEUEEND (- MNADO) Instance FEUEENDD (- MNADO) <thinstance (-="" feueendd="" mnado)<<="" th=""><th>Las Ins</th><th>stafation:</th><th>M2027.0003</th><th>- FEWA</th><th>RREN</th><th>7</th><th></th><th>Sže</th><th>-</th><th><u>ب</u> و</th><th>Bener</th><th>2 1-01</th><th>FA 2</th><th>(Area)</th><th>* I)</th><th>••••</th><th></th><th></th></thinstance>	Las Ins	stafation:	M2027.0003	- FEWA	RREN	7		Sže	-	<u>ب</u> و	Bener	2 1-01	FA 2	(Area)	* I)	••••		
PURCEND DATA PURCEND DATA PROVIDE DATA PURCEND TOTAL PURCEND TOTAL PROVIDE TRANSF PURCEND TOTAL PURCEND TOTAL PURCEND TOTAL PROVIDE TRANSF PURCEND TOTAL PURCEND TOTAL PURCEND TOTAL PURCEND TOTAL PURCEND TOTAL TOTAL VOL. THE FUNCTION OF TOTAL TO	w	ELL NO: FOLLIP	NO1- 00	WODI			54	WPLE ID:	EWAND	1- 0	01 - 616	2-015		DATE:	9-4-17			
Method Justice Justice Justice Mainting Justice <td>L</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>l 84</td> <td>PU</td> <td>RGING DAT</td> <td>A</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	L		<u> </u>				l 84	PU	RGING DAT	A			1					
International and applicable	2 B 2	ELL AMETER (inches): /ELL VOLUME PLE	2.0	TU DV VOLUME = C	DING WIETER (Inche FOTAL WIEL	s; /Ҷ		L SCREENINT	ERVAL DEPTH: 9.24 FL EPTH TO WAT	ER) >	STATIC DEPTH TO WATER (%		11.12	2 ^{pi}	URGE PUMP TYP IR BAILER:	PP		
COMMENDATION LINE RUDGE: 1 EQUIPMENT VOL = FUNDY VOLUME + (TUBNO CALLAGE) X TUBNO LENDTH + FLOW CELL VOLUME INF DI X DI		(arsy fil out if app	(Gable)	* *	(19,2		FI - 11.	12 ^{FI) x}	0.143	geVA	- 1.1	33	gai					
Hand P M TRINON 15 Instrument of Transmitting in the second of Tran	ε	CUIPMENT VOLLI (only fill aut if app	ME PURGE: 1	EQUIPMENT	VOL = PUN	IP VOLI	UME + (TUB 8 ^{20 (}			TUBIN(G LENGTH)	+ FLOW OF	ELL VOLUME gpt				\$	
The Value Print	N S	ITTAL PUMP OR TUBING EPTH IN WELL ((681):	15		FINAL PUR DEPTH IN	IP OR TU WELL (In	61NG 11); 1	5	PURG	NG ED AT:	143	5	PURGIN	G AT: 14 26	PURGED (pate	E ns):	2.7	й Ц
1435 И/А 0.020 11/2 N/A 0.021 11/2 N/A		TIME	VOLUME PURGED (gallons)	CUMUL. Volume Purged	P	URGE RATE Spm)	DEPTH TO WATER	pN (standard units)	темр, (°с)	- 	sond. Historia	DISSOLVI OXYGEI mgfL	ED OR 4 (m)	р Л	TURBIOITY (NTUs)	COLO) (describ) 1) {da	DDDR csarlbe)
1 4 5 5 0.5 2 0.9 22 0.4 25 3 1227.0 76.9 10 1 5 3 5 0.7 18 1.3 1 0.0 20 12.10 7.4 21 14.2 9 0.5 5 4 1.9 31 33.3 1 1 5 3 5 0.7 18 1.5 7 0.0 20 12.10 7.4 21 14.2 9 0.5 74 1.0 0 37.3 38.3 1 1 5 3 5 0.7 52 2.0 9 0.0 26 12.4 5 7.3 5 13.9 6 0.603 0.711 798.2 0.8 1 6 10 0.7 6 2.4 9 0.0 24 12.4 1 7.3 1 13.5 5 0.400 7 0.4 7 40.8 8 0.4 7 47.4 9 0.5 1 0.4 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.4 1 0.5 1 0.5 1 0.5 1 0.7 1 0.5 1 0.5 1 0.5 1 0.7 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 </td <td>Ľ</td> <td>1435</td> <td>N/A</td> <td>N/A</td> <td>0</td> <td>026</td> <td>1601 BIOCI</td> <td>NIA</td> <td>NIA</td> <td>د.</td> <td>/A</td> <td>N/A</td> <td>NI</td> <td></td> <td>I/A</td> <td>Cloud</td> <td>4 1</td> <td>1172</td>	Ľ	1435	N/A	N/A	0	026	1601 BIOCI	NIA	NIA	د.	/A	N/A	NI		I/A	Cloud	4 1	1172
1335 0.18 1157 0.020 [2.10] 12.45 0.727 1.40 1.77 83.5 1535 0.40 1.57 0.040 [2.14] 7.40 14.23 0.571 7.73 # 20.20 1555 0.52 2.09 0.040 [2.14] 7.35 13.54 0.403 0.71 778.20 20.87 1610 0.40 2.44 0.024 [2.14] 7.31 13.55 0.403 0.71 778.20 0.87 1610 0.40 2.44 0.024 [2.14] 7.31 13.55 0.403 0.71 778.20 0.87 1610 0.40 2.44 0.024 [2.14] 7.31 13.55 0.403 0.77 47.003 0.67 1620 0.13 2.74 0.024 1.27 13.55 0.400 0.47 47.003 0.67 0.47 47.003 0.47 47.003 47.003 0.47 47.003 47.003 47.003 47.003 47.003 47.003 47.003 47.003 47.003 47.003 47.003 47.00		1455	0.52	0.57	0 ·	026	11.39	7.35	14.94	01	540	2.53	227	<u>.</u> 7	69	6		
15550,0,52 2,09 0.02 (7.25,7,35) (3,94,0,603,0,71,7,798,2) 0.43,7,400,3 0.43,7,400,3 0.44,7,400,3	┢	1535	0.70	1.57	<u>0</u> .	626	12.24	7.40	14.23	0.	574	1.06	1377	3 **	0R	++	╋	+-
16 10 0.124 2.43 0.024 12.44 7.31 13.55 0.407 0.47 -40.35 0.02 16 16 0.13 2.101 0.014 12.24 7.31 13.55 0.407 0.47 -40.74 0.01 16 10 0.13 2.74 0.020 12.24 7.31 13.55 0.407 0.47 -40.74 0.01 16 10 0.13 2.74 0.020 12.24 7.31 13.55 0.407 0.47 -40.75 0.67 16 10 0.13 2.74 0.020 12.74 7.31 13.55 0.407 0.407 0.60 0.50 0.50 599.9 0.7		1555	0,52	2.09	7 0,	0.76	12.25	7. 35	13.96	0.4	20 <u>3</u>	0.71	- 398	.2	ÓR			\bot
1.9.13 0.13 2.74 0.020 12.24 7.71 13.27 0.000 0.10	┝	1610	0.10	2.48	0.	624 N1	12.24	7.31	3.54	0.0	007 607	0.47	+ - 402	3	OR	╇╋	+	+
WELL CAPACITY (Galons Per Fool): 0.75"=0.02; 1'=0.04; 1.25"=0.06; 2'=0.16; 3'=0.37; 4'=0.66; 5'=1.02; 5'=1.02; 5'=1.47; 12'=5.68 WELL CAPACITY (Galons Per Fool): 0.75"=0.02; 1'=0.04; 1.25"=0.06; 2'=0.16; 3'=0.37; 4'=0.66; 5'=1.02; 5'=1.02; 5'=1.47; 12'=5.68 TUBING INSIDE DIA. CAPACITY (Gal/EL): 18'=0.0006; 3/6"=0.0014; 1.25"=0.001; 3/6"=0.0014; 1.25"=0.0014; 3/6"=0.0014; 3/6"=0.0014; 3/6"=0.0015; 5/6"=0.016 PUROING FOUPMENT CODES: B= Balar, BP = Bladed P Lung; ESP = Flexibilis Durans to Pure Periodalis Purug; D = Oliber (Specify) SAMPLING FOUPMENT CODES: B= Balar, BP = Bladed P Lung; ESP = Flexibilis Purug; D = Oliber (Specify) SAMPLING FOUPMENT CODES: B= Balar, BP = Bladed P Lung; ESP = Flexibilis Purug; D = Oliber (Specify) SAMPLING PURU (File): SAMPLING ATA DAMPLED BY (PRINT) / AFFLAX COSE, Martin A BP = Bladed P Lung; ESP = Flexibilis Purug; D = Oliber (Specify) SAMPLING ATA SAMPLING ATA DEPTHN INVEL (fail): 15 DEPTHN INVEL (fail): 15 DEPTHN INVEL (fail): 15 SAMPLE DOCOMMENT SPECIFICATION BAMPLE POST SAMPLE DOCOMMENT SPECIFICATION BAMPLE POST SAMPLE DOCOMMENT SPECIFICATION BAMPLE POST SAMPLE DOCOME VIL II (ST A DOC) SAMPLE DOCOME VIL II (ST A DOC) GWI-DIS	_	1620	0.13	2.7	4 0	.026	12.24	7.31	13.51	Ŭ,	605	0.5	0 -399	.9	OR			1
WELL CAPACITY (Gallons Par Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.06; 5" = 1.07; 5" = 1.47; 12" = 5.80 WELL CAPACITY (Gallons Par Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.06; 5" = 1.07; 5" = 1.47; 12" = 5.80 TUBING INDED DIA CAPACITY (Gallons; 1.16" = 0.000; 316" = 0.001; 316" = 0.001; 316" = 0.001; 316" = 0.016									ļ								-	
WELL CAPACITY (Galons Per Fool): 0.75" = 0.02; 1'= 0.04; 1.25" = 0.06; 2'= 0.16; 3'= 0.37; 4'= 0.85; 5'= 1.02; 6'= 1.47; 12'= 5.88 WELL CAPACITY (Galons Per Fool): 0.75" = 0.02; 1'= 0.04; 1.25" = 0.06; 2'= 0.16; 3'= 0.37; 4'= 0.85; 5'= 1.02; 6'= 1.47; 12'= 5.88 TUBINO INSIDE DIA CAPACITY (Galers: 18"= 0.0006; 31/6"= 0.0014; 114" = 0.022; 51/8"= 0.001; 318"= 0.001; 318"= 0.016; 58("= 0.016] PURCING EQUIPMENT CODES: B Balar, BP = Bladder Pump; ESP = Electric Submersible Pump; P = Peristallic Pump; O = Other (Specify) SAMPLED BY (PANT) / AFLATION: Atthuility TTA: is 2 Cassing and in a statement code in a	$\left \right $				<u> </u>											+	+	
WELL CAPACITY (Gallons Par Fool): 0.75"=0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.85; 5"=1.02; 5"=1.47; 12"=5.88 WELL CAPACITY (Gallons Par Fool): 0.75"=0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.85; 5"=1.02; 5"=1.47; 12"=5.88 TUBING INSIDE DIA. CAPACITY (Gallons Par Fool): 0.75"=0.02; 376"=0.0014; 1/4"=0.0026; 5/16"=0.0014; 38"=0.000; 37"=0.0016; 5/16"=0.016; 5/16:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0						~												
WELL CAPACITY (Gallons Per Fool): 0.75" = 0.02; 1'= 0.04; 1.25" = 0.06; 2'= 0.16; 3'= 0.37; 4'= 0.65; 5'= 1.02; 6'= 1.47; 12'= 5.80 TUBING INSIDE DIA. CAPACITY (Gallons Per Fool): 0.75" = 0.02; 1'= 0.04; 1.25" = 0.006; 5/6" = 0.04; 326" = 0.040; 1/2" = 0.010; 5/6" = 0.010 PURCING EQUIPMENT CODES: B' Baller, BP = Bladder Pump; ESP = Elections Submersible Pump; DP = Peristenic Pump; D = 0.016; 5/6" = 0.010; 5/6" = 0.01	-								He -								+	
WELL CAPACITY (Gallons Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.85; 5" = 1.02; 5" = 1.47; 12" = 5.88 TUBING INSIDE DIA CAPACITY (Gallons Per Fool): 0.75" = 0.02; 11/2 = 0.016; 21/2" = 0.016; 3/2" = 0.016; 3/2" = 0.016; 3/2" = 0.016; 5/2" = 0.016; 5/2" = 0.016 PURCING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electris Submerable Pump; DP = Peristatic Pump; DP = Pump; Pump; DP =	-								-									
WELL CAPACITY (Gallons Per Fool): 0.75" = 0.02; 1"= 0.04; 1.25" = 0.06; 2"= 0.16; 3"= 0.37; 4"= 0.65; 5"= 1.02; 6"= 1.47; 12"= 5.88 TUBING SIDE DIA, CAPACITY (Gallel): 18"= 0.0006; 316" = 0.004; 316"= 0.004; 316"= 0.006; 12"= 0.016; 5"= 0.01									1									_
Indefines institute Dire CARE & DUDING State & DUDING State & DUDING State & DUDING De & DUDING DUDING & DUDING DUDING & DUDING DUDING & DUD	1 2	VELL CAPACITY (G	Sailons Per For	ol): 0.75" = 0.0)2; 1"=0	.04;	1.25" = 0.06	; 2" = 0,1	6; 3° = 0,37;	4" =	0.65; 5"	= 1.02; 6	i" = 1.47;	2" = 5.66				
BANPLED BY (PRINT) / AFFILIATION: ATH W (11/12) TYC/13 CC5504/A/L SAMPLER(S) SIGNATURE(S): Control (16/2) SAMPLER(S) SIGNATURE(S): Control (16/2) SAMPLER(S) SIGNATURE(S): Control (16/2) SAMPLER(S) SAMPLER(S) SIGNATURE(S): Control (16/2) SAMPLER(S)	P	URGING EQUIPMI	ENT CODES:	B = Baller,	= 0,0008, 8P ≈ 8I	adder P	ump; E	SP = Electri SA	c Submersible	Pump; TA	910 × 0.1 PP = Pi	eristaltic Pun	=0,010, np; O≖	Other (Spec	o cify)			
PULLIP OR TUBING TUBING File Descontanies Tubing File Descontanies File D	s	AMPLED BY (PRINT) / AF	FFILIATION: AT	huillis vis Casse	Un/AL	SAMPL	ER(S) Signati		2_			:	SAMPLING INITIATED AT:	1620	SAMPLING ENDED AT:	16	21	
FIELD DECONTAINER SPECIFICATION TURING Y (Horphoned) DUPLICATE: Y (N) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED AMALYSIS AND/OR SAMPLING EQUIPMENT SAMPLE ICODE # CONTAINERS MATERIAL CODE VOLUBAE (mL) PRESERVATIVE TOTAL VOL FIRMENT RENDED AMALYSIS AND/OR SAMPLING EQUIPMENT SAMPLE ICODE # CONTAINERS MATERIAL CODE VOLUBAE (mL) PRESERVATIVE TOTAL VOL FIRMENT RENDED AMALYSIS AND/OR SAMPLING EQUIPMENT SAMPLE ICODE # CONTAINERS MATERIAL CODE VOLUBAE (mL) PRESERVATIVE TOTAL VOL FIRMENT RENDED AMALYSIS AND/OR SAMPLING EQUIPMENT SAMPLE ICODE # # CONTAINERS MATERIAL CODE VOLUBAE (mL) PRESERVATIVE TOTAL VOL FIRMENT RENDED AMALYSIS AND/OR SAMPLING EQUIPMENT RENDED AMALYSIS AND/OR SAMPLE PLACED FIELD FOLD FOLD PRE SAMPLE PRESERVATIVE TOTAL VOL FIELD FOLD FOLD FOLD PRE SAMPLE PRESERVATION MARY // METORIZATION X CASTIN	DI DI	UMP OR TUBING EPTH IN WELL (Icel):	15			TUBIN	g Rial Code: Pe			·	FIEL	D-FILTERED: Filtration Equipm	Y nent Type:	(*)	Filter Size		ni jini	
SALPLE 10 CODE #CONTAINERS INTENDE CODE #CONTAINERS INTENDE CODE WOULDRE (mL) PREESERVATIVE TOTAL VOL FINAL PH (Stanuel Units) INTENDE O ANALYSIS AND/OR SAMPLENCE CODE FEWEN-DOI-004- GW-015 2 PE ISU each USED ADDED IN FIELD (mL) FINAL PH (Stanuel Units) INTENDE O ANALYSIS AND/OR SAMPLENCE CODE PART FEWEN-DOI-015 2 PE ISU each USED ADDED IN FIELD (mL) EPA 537M APP MS/MSSP 4 PE ISOn 16a4 ISOn 200 EPA 537M APP X Casting at 0.45 Jelow ground surface PAD Completes TD 19.7116 gr REMARKS: X COL and 0.45 Jelow ground surface PAD Completes TD 19.716 gr	┢	SAMF	FIELD PLE CONTAINER S	DECONTAMINATI	ON: FUM		<u> </u>	TUBING	Y (N (replaced	лон			DUPLICATE:	Y C	N) 		SAMPLE	EPUMP
FEWENDOI-001- GW-015 2 PE 150 each EPA537M APP ON-015 2 PE 150 each APP M3/MSP 4 PE 150 nieat APP X casing at 0.45 below ground surface. PAD completed. TD 19.716 gr X casing at 0.45 below ground surface. PAD completed. TD 19.716 gr X casing at 0.45 below ground surface. PAD completed. TD 19.716 gr		SALIPLE ID CODE	# Containers	NATERIAL CODE	VOLUME (ml) P	RESERVATIVE USED		TOTAL VOL DDED IN FIELD (m	L)	FINAL pH (I	Stanard Units)	INTENDED AN	alysis Andio Hod	IR SAMPLING EC COD	ivipment E	FLOW 1 ger r	RATE (m názste)
X Caring at 0.45 below ground surface. PAD confleteD. TD 19.716g2 WL 11.576gs	Ģ	Efter 1201-001- GW - 0(5	. 2	PE	150ead								EPA	537M	AP	P		
X Casing at 0.45 below ground surface. PAD completeD. TD 19.716 gr REMARKS: XX ON = OVER MARKS: XX ON = OVER MARKS: WL 11.576gs	<u>ן</u> יי	M\$/MSP	4	PE	150n1 (ad	4	÷		Stal			<u>.</u>	EAT	537 M	API	*		
X Casing at 0.45 below ground surface. PAD completeD. TD 19.716gr REMARKS: XX ON = Over rangen WL 11.576gs	┢		5m									~			+	_		
REMARKS: XX OR = Over ranges WL 11,57695			\bigcirc									<u>``</u>			1			-
	R	X Emarks: X)	Casing ton= 0	nt 0.4 ver rang	5 belo in	w 9.	round su	ir fice	. PMD (6m (letei). T W	D 19. L 11.	716g 576	r gs			
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;	N S	ATERIAL CODES	AG = A	nber Glass; APP = Afi	CG = Clear er Peristallic	Glass; Pump;	PE = Pol B = Ba	yethylene; iler; BP	PP = Polypro = Bladder Pum	pylene; p; l	S = Silic ESP = Elect	one; T = 1 ric Submers	'eflan; O = ible Pump;	Other (Spe	ecify)			•••••••
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Stabilization Official for range of variation of last three consecutive readings	L			RFPP = R	everse Flow	Perista §	llic Pump; tabilization Cri	SM = Stra liona for reng	w Method (Tub a of verielion of in	ing Gra Isi lhree	vily Drain); consecutivo	O = Oth readings	er (Specify)					

Revision Date: March 14, 2016

91517

Aeros	starSE!	Suc			GROL	JNDWA	TER SAN	IPLIN	g log	9							r;
Installation: +AllinolityE	M2027.0003 PE	MALLE	J			Ster	EE WARDEN	\mathfrak{P}	FORM	ER E	PTI	A 2	(1r	FF AK	LE M	1)	
WELL NO: FEWRA	101 - M	NOO Z			54	MPLE ID:	EWRN	01 - C	03-	GW-0	015	DAT	e: 9	- 4-1	7		
					×	PUI	RGING DAT	ΓA									
WELL	20	.าย	BNG	. V.	DD 20	L SCREEN INTE	RVAL DEPTH:	ST	ATIC DEPTH	1 4	10.0	64	PURC	se punip type Ni sp:	PA		
WELL VOLUME PUF	GE: 1 WELL	VOLUME = (1	OTAL WEL	UDEP	H BTOC -	STATIC DE	PTH TO WAT	TER) X	WELL C	APACITY					<u> </u>		{
(only fil out If app	icab(e)	=	20.0	5	^{FI} - [0	69 F0 ×	0.163	gai/fi	- 7,8	53 '	yai						
ECIJIPMENT-VOLLIN (only 55 out 17 app	AE PURGE: 1 Scoble)	EQUIPMENT	70 <u>C. ≃ PUN</u>	PVOL	J <u>ME + (</u> TUB g# = (TY X		LENGTH) gal	+ FLOW CE	LL VOLL gal	JME					
INITIAL PUMP OR TUBING	15		FINAL PUL	P OR TU WELL ((e)	BING mi:	15	PURG	ING TED AT:	12	ZD	PU		345	OTAL VOLUME	n 5	.02	
	VOLUME	CUMUL.	P	URGE	CEPTH	pH	TEMP.	03	NB.	DISSOLVE	Ð	ORP	TUE	YTIGIGS	COLO	د ا م	DOR
TRAE	PURGED (galions)	VOLUME PURGED (Galiops)	1	ATE (mqg	TO WATER (feet BTOG)	(standard units)	(°C)	⊶~ / m_S	en C	OXYGEN mg/l_		{mV}	Ø	(zUTV	(siasozit	c) (des	icríbe)
1220	NJA	M/A	0	. 066	10.02	NIA	NZA	N/	1	N/A	Ň	5 <i>71</i> 7	N	j A	Cleu	r n	one
1230	0.44	٥، لوز	0	066	10.90	7.26	16.64	0.4	910	6.72	2 2	.49.9	43	2		<u> </u>	+
1240	0.46	1.32	0	166	16.92	7.29	16.12	0.8	94	3,4	1 12	32.5	<u>Z</u>	19	_		+ - 1
1300	1 32	2.04	<u> 0</u> ,	166	10.52	7.27	15.17	0.7	86	4.12	-1'	99.3	<u> </u>	.5	$\parallel \mid$	—	+
1310	0.64	2.3	<u> </u>	044	10.75	7.14	15.39	0.4	77	3.93	-11	75.4	<u> </u>	0.4	┝╋	<u> </u>	+
1320	0.60	3.74	<u>6.</u>	064	10.93	7.29	15:30	0	012	3.9.6	1 7/	16:1 50 L	22	2	\square	+	+
1330	0.00 0.1.1	7.624		066	10.74	7 22	15.40	1 1 2	67 . a	4 6	2 1	51 2	20.	38	+		+
1340	0.00	<u> </u>		000	10.11	719	15.21	0.7	67	4 62		411	20	. LI	H	+	
1201	0.12	<u> </u>			10.11	1.01	1			7.07	<u>'</u> ''		20	. ,			
		·····					$\left \right\rangle$	K)								+	\neg
	****						1-46								1	1	
								1							T		
													/				
					[L		
					[ļ								\rightarrow	-
			L		L		Ĺ	L									$ \ge $
WELL CAPÁCITY (C	CAPACITY //	ot): 0,75*=0.0 Gat/Fil: 1/8*:	12; 1"=0 =0.0008*	.04; 3/16":	1.25" = 0.08; = 0.0014:	$2^* = 0.16$ $1/4^{"} = 0.0026$	3'=0.37; 5/16"=1	: 4"≕0 n.nna⊷	.65; 5* 3/8*=00	'≖1.02; 6' 396' 1/2"':	= 1.47; = 0.010	12" = i 5/8" ⊨	5,88 = 0.016	,			
PURGING EQUIPM	INT CODES:	B ≈ Bailer;	8P = 8	adder F	'ump; E	SP = Electric	Submersible	Pump;	PP = P	eristailic Pum	ip; (D = Other	(Specify)]
	A	रागाच नर		Т		SAN And		AIA		1	SAMPLING	3		SAMPLING		1	
SALIFLED BY (PRINT) / AI	FFLIATION:	5 Cossell	۵	SAMP	LER(S) SIGNAT	URPISI					INITIATEO	<u>AB</u>	42	ENDED AT:	13	46	
PUMP OR TUBING DEPTK IN WELL ((aet):	15			TUBIN	g Rial code: pe				FIEL	D-FILTERED: Filvation Equipm	Y ant Type;		♥	Filter Size		mm	
	FIELC	DECONTAMINATI	on: pum	P Y	R	TUBING	Y N (replaces	a)			DUPLICAT	8: (Y) N				
SANF	LE CONTAINER S	PECIFICATION			· ·	5A)	IPLE PRESERVA	TION T			INTENOE	n anai vsis	ANDIOR	SAMPLING FO	INPLIENT	SAMPLE I	PUMP ATE Imt
SAVPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME (ml		UBED	A	TOTAL VOL	:L)	FINAL pH (s	Stenard Units)	411E-12E	METHOD		CODE		per m	inute)
FEINRNOL-003-	1	ዕጉ	150-1	/								EPA 537M		APP		10	n
COM-015	~	<u>۲</u> ۲	each	_	-	_								7111			
614-915	2	re	2H			<u> </u>	$\rightarrow \otimes$					~	=				
		<u></u>						>>+					\rightarrow	×			
	-			_				-+							~		
د	E CALLA	L م. با «) <u>kr</u> i	und 5	urface.	PAn r	on-ri	(FTE)	50		a 10		Ð	30	101	
REMARKS:	LUSIA	8. 01.4.	- Tamfah	- '9' '					(B' DAL		6.21	- 19 	WL1	1.0	76	95 76
MATERIAL CODES		mher Glace	GG = Clear	Glaser	PE = Pol	velhvlene,		opviene*	S = Slike	いい T=T	ellon.	0 = Olh	er (Soeri	۲v۱			
SAMPLING EQUIPM	MENT CODES	APP = All	er Peristallic	Pump;	8 = For	lier; BP	= Bladder Pun	νρ; Ε!	3P = Eleci	tric Submaral	ble Pum	p;	(
[RFPP = R	everse Flow	Penata	attic Pump;	SM = Stran	w Method (Tut	ang Gravi	ty Drain);	U = Olhe	er (Spec	в <u>у)</u>					

Stabilization Criteda. for range of variation of last three consecutive readings pH: ± 0.2 units Temporature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity; all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

915/1=

.....

Aero	starSE	Sur			GROL	JNDWA		IPLI	NG LOC	3		Ą	грг				
staliation: MINUTAFE	1/2027.0003	FE WA	RRET	5	<u></u>	Site:	et-WARREN	م لا	orme	REF	TA 2	2 (1	AREA	-17			
HELL NO: FEMI	3 NOI -	M WH	070		SA	MPLE ID: K	FURNOL	- M	W-07	0-GW	- הלט	DAT	E:	8-30	- 29		
			<u>v </u>			PU	RGING DAT	A			<u> </u>						
VELL	1)"	πυ	IBING	, Mu	ab vel	L SCREEN INTE	RVAL DEPTH:		STATIC DEPTI	·	19		PUR	ge pump typ	00		
VELL VOLUME PUT	RGE: 1 WELL	. VOLUME = (AMETER (Inche TOTAL WEL	IDEPT	H BTOC -	STATIC DE	ZIZ 3 · FL EPTH TO WAT	ER) >	WELL C	APACITY	./ (ION I	AILER:	F F		
(only its out if app	stcable)	-	672.	~	FI - 1 -	155 Fi) X	0.6	gaUti	- 7	41	gel						
			\$5.1	5	12	• 17	0.05		0,								
QUIPMENT VOLUI	ME PURGE: 1	EQUIPMENT	VOL. ₽UN	Ib AOFF	IME + (TUB	NG CAPACI	TY X	TUBIN	G LENGTH	FLOW CE	ELL VOLU	ME					
(oray na para a spi	H(69216)		-	1	988 ≍ (ž X	F1 }	+	~41	/ 1	<u>0</u> al		3	Ø			
NTIAL FURIP OR TURING	20	,	FINAL PUM DEP3H IN	IP OR TUP WELL (Inc.		20	PURG	NG FD AT	124	0	PUR	GING H	44%	TOTAL VOLUM	E Q	96	
	VOLUME	CUMUL.	4 P	URGE		pH	TEMP.	(COND.	DISSOLVE	0	ORP	10 10	RBIDITY	COLOR	00	OR
TIME	PURGED (galions)	VOLUME		RATE	TO WATER	(stancara units)	(°c)	. :	µSlem	OXYGEN		(mV)		NTUs}	(doseriba) (desc	r(be)
12110	~	(dations)		A-19	Iteet STOCI	~~~~		<u></u>	<u>ncm</u>		<u> </u>				12 miles		no
1250	270	<u> </u>	1 10.	074	101711 12 11 5	7.25	14.74		299	7.01	6	بر	13	2	1	1-20	
1230	7 11.	3.0	5 10	.079	12.62	7.09	16.14	n	<u>0//</u> 91(-	1.50		14		12	+		
1260	1.52	6.5	3 0	0701	11.1.5	6.91	16.11	<u></u>	917	20.0	1 59	9.9	ц.	41		\square	
iuin	1.68	7.11	6	019	12.65	6.72	15.72	0.	915	6.50	1 60	287	3.1	71	\uparrow		
1420	0.79	7.9	0 0	079	12.68	7.01	14.89	D.	962	6.27	1.1	5.0	3.	76	$\uparrow \uparrow$		
1430	6.79	8.6	9 0	.679	12.67	7.08	15.08	ΰ.	905	6.22	2 10	5.6	3.	17			
1440	0.79	9.49	8 0	.079	12.68	7.06	15,08	Ö,	906	6.20) (6	36.4	3	.67		1	
1443	0.24	9.77	Z (1.079	12.68	7.06	15.07	6.	906	6.21	6	36.7	3	,05	1	1	•
								L		Į							
						4	ļ	ļ							<u> </u>		
		L				イト										<u> </u>	
															<u> </u>	—	
والمتار ومشارعة المتكون ومتعادية													<u> </u>				
															\leftarrow	+	
													·····			╄~~	1
VELL CAPACITY (C	allons Per Fo	of): 0.75" = 0.0)2: 1*≂0	.04: 1	.25" = 0.06;	2* = 0.16	3" = 0.37:	G	0.65 5	l '≖1.02; 6	• = 1.47:	12° =	5.88		1		
UBING INSIDE DIA	CAPACITY (Gal./FL): 1/8"	= 0.0006;	3/16″ ⇒	0.0014;	1/4" = 0.002	6; 5/16°≈0	.004;	3/8" = 0.1	006; 1/2"	≈ 0,010;	5/8" =	0.016				
URGING EQUIPM	ENT CODES:	B = Bailer;	BP = Bl	adder Pi	amp; E	SP = Electric SAI	Submersible I MPLING DA	^{Pump} TA	PP≃P	eristallic Purr	ър; О	≈ Other	(Specify	<u>)</u>			
AMPLED BY (PRINT) / A	FFILIATION: AS	LOULT	lies	SAMPL	ER(S) SIGNATI	JRE(5):	(_)				Saupling	IU	45	SAMPLING	11	412	*********
UMP OR TUBING	<u> </u>	wis casse	11A/111	TUBING		C			FIEL	D-Filtereo:	INITIATED A	T: 1 1	1	ENDED AT: Filter Size	1 1	190	
EPTH IN WELL (fact):	20			MATER	IAL CODE: PE					Fibration Equipm	ient Type;	<u> </u>					
	FIEL	DECONTAMINAT	ON: PUM	° Y (TUBING	Y N (replaced				DUPLICATE	: Y	<u> </u>		T	41401 C 6	0.05
47 4 74	CE COMPARENT	IFEGINGATION	I	Р	RESERVATIVE		TOTAL VOL	1507			INTENDED	ANALYSIS	AND/OR	SAMPLING EC	UIPMENT	PLOW RA	TE (mL
SAMPLE ID CODE	# CONTAINERS	NATERIAL CODE	VOLUȘIE (ml	1 7	USED	A	DDED IN FIELD (m	L)	FINAL pH (Stenard Units)	3	AETHOD		COD		bet 184	ivte)
EWENDI-MW-	2	05	ICA.	\sim							<u>ج</u> ا	PA 83714		ر حدم	, [·	
/·/6~ (0W-040	<u> </u>	re	ench	:		1								111 1		500	•
		ļ					ZAL.										
	ļ	Ļ	ļ					\geq	<u> </u>								
	ļ	ļ								<u> </u>				·····			
46-	l	Poten	Silam						L	\geq							
Y purpl	e dye h	on pern	nanjan	k													
LAUTTO,																	
	: AG = A	mber Glass:	CG = Clear	Glass:	PE = Pol	velhylene:	PP = Polyor	pylene	S = Silic	юпе; Т = Т	eflon: () = Olh	ar (Spaci	fy)			
MATERIAL CODES																	
AMPLING EQUIP	MENT CODES	: APP = Aft	er Peristaltic	Pump;	B≂Ba	lier; BP	= Bladder Pum	p;	ESP = Elec	Iric Submers	ble Pump;	۵					

`, e

Alg d 9/5/17 5/22/18

			1	ડમ	9												
Aero	starSE	Suc	·		GRO	JNDWA	TER SAN			G							
Instatistion: MINOLAGE	M2027.0003	FEWM	eren			57	FEWARREN	€-	FORME	D 15	PTI	421	Lee	PM	GAI	<u> </u>	
WELLNO: FIFIN	eNIN -	MW10	71		5/	MPLEID. F	E ALONIA	- 1	W071.	- 6W-	1 21		111 1 112: - 2	-20-	17	<i>}</i>	<u> </u>
100	RIGOI	11.000	• •			PL	RGING DA	ΓA				<u></u>	0				
WELL	ti -	π	JBING	14.		L SCREEN INT	ERVAL DEPTH		STATIC DEPT	н			PUF	RGE FUMP TYPE	I	·	
DIAMETER (inches):	RGE: 1 WEL	DI LVOLUME ≈ (AMETER (inches	: 74 L DEPT		STATIC D	FPTH TO WAT	(FR)	TO WATER H		3.9	1	OR	BALLER: PP			
(enly क्षि out il app	ptcab{e}	(n	(24.4) 25.4	z@) _{FI} - 13,	9 [FI) x	0.105	gain.	68	Ð	gal						
EQUIPMENT VOLU	ME PURGE:	I EQUIPMENT	VOL. = PUM	PVOL	UME + (TUB pai = (ING CAPAC	ITY X FL)	TUBIN +	G LENGTH) + FLOW C		DLUME	17		·		
INITIAL PUMP OR TUBING	3		FINAL PUM	PORIL	BING		PURG	ING			É	PURCING	145				
DEPTH IN WELL (feet):	30	1	OEPTH IN Y	VELL (fea	_{εψ:} 2	_0	INITIA	ED AT:	105	0		ENDED AT:	146	PURGED (galo	<u>as): 2</u>	<u>,92</u>	
TIME.	VOLUME PURGED (gallons)	COMUL VOLUMI PURGED	. рч Е П р (IRGE ATE IPM)	DEPTH TO WATER	Hq (standard) unitu	(°C)	m	cond. Patent S/Cm	Dissolv OXYGE mg/L	ed N	(mV)	Ti.	JRBIDIT¥ (HTU5)	(describe	OD(} (desc	HR (Ibe)
1050	NA	NIK	· N	IK	13.92	NYA	NA	N	IA	N/A		N/A	N/I	A	N/A	N//	4
1065	0.26	0.2	6 01)52	14.01	7.12	5.54	1.2	289	6.58	3	154.9	2	32	Clean	10	14
1105	0.62	0.7	8 0.0	52	4,03	7.11	14.67	1.5	256	5.9	4	164,5].	65			
1115	0.52	1.30	0.	052	14.03	2.0	14.23	1.	241	5.38	2	213.0	2.	35			
1125	0.52	1.82	0.	05 L	14/04	7.12	1408		235	5.4	8	224.1	2.	12	+	4	
129	0.52	2.34	0.0)52 NK2	14.05	1.11	10.1	1 • 4	771	5.4	<u>2</u>	228.8		72	┝╌┠─	+	
1143	0.156	2.00		67	14,62	7.12	14.06		735	5.6	<u>י</u>	242.0		<u>30</u>			
······	0.120	<u>~</u>	- 01		1,10	··· ·		<u></u>	~~~		•	1,12.0			1		
********							1								1	1	
				/			6										•••••
						\geq	k()										
							\sum			ļ							
	<u> </u>	[~	Ţ			<u> </u>					_		
		<u> </u>													<u> </u>		
<u></u>	<u> </u>														\downarrow		
WELL CAPACITY (G	i Gallons Per Fo	1 ol): 0.75*=0.(I 02; 1" = 0.		1.25" = 0.06;	2* = 0.1	3; 3° = 0.37;	<u>(</u> 4' =	0.65;) 5	*= 1.02; 6	S" = 1,4	l (7; 12"≈	5.88		1		
TUBING INSIDE DIA	CAPACITY (GaL/FL): 1/8"	= 0.0006; BD = Bis	3/16" =	= 0.0014;	1/4" = 0,002	6; 5/16" = ().004;	3/8" = 0.	006; 1/2"	= 0.01	0; 5/8" =	= 0,016	4			
Patolito Equiriti	ENT CODES.	D - Dailei,	DF ~ Dia		usup, c	SA	MPLING DA	TA	88-8	enstanic Pur	np;	0 = Other	(Shack)	/)			
SAMPLED BY (PRINT) / AI	FFRIATION: AS	in willis /	ASL	SAMPL	ER(S) SIGNATI	IRE(5):	\sim				SAMPL		15	SAMPLING	114	6	
Pump or tubing	20	<u></u>		TUĐINO	G				FÆ	LD-FILTERED:	L	Y (N)	·Fiter Size			
DEPTH IN WELL (feel):		DECONTAMINAT	ON: PLIKP	MATER	NAL CODE: PE	TUBINO	Y N trentar			Filtration Equips	nent Typ Di sei v	e: CATE: Y		<u> </u>			
SAM	PLE CONTAINER	SPECIFICATION		Í	<u> </u>	SA	MPLE PRESERVA	и Non				, in the second se		<u>ر</u>	i	AMPLE PL	₩Р
SAMPLE ID CODE	e containers	MATERIAL CODE	VOLUME (ml.)	þ	reservative Used		TOTAL VOL DDED IN FIELD (m	ι)	FINAL pH (Stanard (Jolis)	INTEN	ded Analysis Method	ANDIOR	SAMPLING EQ CODE	APMENT	FLOW RAT per minu	E (m). ta)
FEWENOI-MWO	¹¹⁻ 2	DE	150	1								EPA 537M		400		200)
64-020			100.	<u> </u>		-								Arr		200	
							~~~	7									
				<u> </u>			(	ᆇ			<u> </u>						·····
				1		·   ···				~~	<b>!</b>					·	
		<b></b>		. <b>.</b>						~					I		
REMARKS:																	
MATERIAL CODES	: AG = A	mber Glass;	CG = Clear (	Blass;	PE = Poly	/ethylene;	PP = Polypro	pylene	S = Silic	xone; T=7	eflon;	0 = Olhe	ar (Speci	íty)			
SAMPLING EQUIPN	AENT CODES	: APP = Aft RFPP = R	er Peristallic everse Flow	Pump; Peristal	B = Bai Itic Pump;	ier; BP SM = Sira	= Bladder Pum w Method (Tub	p; ing Gra	ESP = Elec vity Drain):	lric Submers O ≠ Oth	ible Pu er (Spi	imp; ecify)					
nHi+02 unite To-	nerature - *	2°C Speaking	Conductor	<u>5</u>	labilization Cri	leria for range	all mariation of la	st three	consecutive	rendinas.	)	or + 1047 /-	hicher	r le pront-t	Tuet.1-111		
1	.e		~~.t/in/10[11		≤ 20 NTU; (	plionally ± 5	SNTU or ± 109	6 (which	verer is gre	ascieny, ∑v.) ater)	- nagat.	≤i ⊥ (¥70 {%)	H BUILDYE	, is greater)	, ur trittil)	, ell (83(	ធរអូទ

Revision Date: March 14, 2016

9(5/17 5/22/18

Aeros	starSE!	Sar		GRO	UNDWA	TER SAN	IPLI	NG LOO	3						
Installation: Mitter Artes	M2027.0003	FE WA	RREN		Sites	CE WARED	3	F FO	RMER	FPTA T	3 (1	APPF	ARIT	42	)
WELL NO: FEWR	NOZ -	mwas	1	S/	MPLEID: F	EWRN	02-	001 -	64-0	25 DA	TE:	9-21	-17		<b>.</b>
			¥	¥	PU	RGING DA	rA		0.00				<u> </u>		
WELL		עד	BING	V Wet	L SCREEN INTE	RVAL DEPTH		STATIC DEPT	н 🖌	u ar	PU	rge pump typi	=		
DIAMETER (Inclus):	20	Va IIII	WETER (inches):	140030	· 33-1 -	20.3 R		TO WATER {	set BTOC):	16.75	OR	BAILER:	PP		
WELL VOLUME PUP	RGE: 1 WELL	. VOLUME ≈ (1	FOTAL WELL		STATIC DE	EPTH TO WAT	TER)	( WELL C	APACITY						
(only 13 out if app	ifcable}	z	30.3	FR:-,20 ⊡ 11	23 FI) ×	0.16	) શાસ્ત્રો (	* 2.	18 *	aj					
EQUIPMENT VOI UN	VIE PURGE: 1	EQUIPMENT	VOL = PUMP	VOLUME + (TUB	ING CAPACI	TY X	TUBING	G LENGTH	+ FLOW CEL	LVOLUME					
(anly fit out if app	ficable)			- And	×	Ft )	+	្នុស្ត		gai					
		<u>ــــــــــــــــــــــــــــــــــــ</u>	20041 b1100				11/2			Inupping		TOTAL VOLUM			×2*****
DEPTH IN WELL (leet):	25		DEPTH IN W	EL (feet);	25	INITIA	TED AT:	08	304	ENDED AT;	1035	PURGED (gala	n <del>s):</del> 4	. 012	2
	VOLUME	CUMUL	PU	IGE DEPTH	pH Istandard	TEMP.		COND.	DISSOLVED	ORP	זי	URBEDITY	COLOR	OD.	ØR
TIME	PURGED {gallons}	PURGED	. на 191	IE TO	Units	(~c)	m	s/cm	OXYGEN MgA.	(Vm)		(NTUS)	(describe	) {đesc	cribe)
0.904	N/A	suationis) م/د	0.0	74 11.9L	AV/A	N/A		10	11/4	010		IA.	100		
6310	0.151	0.15		17 66	7.50	12.1.1		<u></u> 444	5.24	IN K		<u></u> ?つ2	1	4	1
1815	0 156	0.31	ź	17.59	2.41	12.51	1	442	5.17	40.7		206	++	+-	
1840	D 65	196	7	17.72	7 58	12.48	0.	443	3.69	115.1	3	97	+	+	<u>†</u>
0905	0.65	1 5 87	<del>,</del>	17.74	7.45	17.23	10.	441	7 77	145.9		282		+	
ng 30	0.65	2.23		17.74	7.59	13.19		175	3.25	166.1		221		+	1
0940	1.205	2.49	$\frac{1}{2}$	17.1.3	7.57	13.72	0.1	137	3.37	152.5	1	64		1	$\mathbf{t}$
095D	0.25	2.714	$\frac{1}{2}$	17.102	7.57	13.97		44 A	3.79	1503	۲,	32		-	
1010	0.52	3.76	$\frac{1}{2}$	12.62	7.56	13.90	0.4	138	3.29	-139.3	<del>ز ا</del>	06	LIEA		1
1620	0.75	3.51	5	1768	7.56	14.00	0.4	141	3.90	12 9.0	5	72.5	1	1	1
1030	0.75	2.76	2	17.63	7.54	14.16	0.	440	3.99	-124.4	8	1.9		+	
1035	0.25	U. nr	<del>5   1</del>	17.13	7.54	14.14	0	439	4.00	121.7	Ž	1.6			L
<u> </u>	YE					1	1	<u> </u>			<u> </u>	<u> </u>		+	
						1								+	
													1	1	
						1	<b> </b>						1	1	
		··			1		1							1	
WELL CAPACITY (G	allons Per Fo	ot): 0.75* = 0.0	)2; 1° = 0.0	4; 1.25* = 0.06	; 2°≖0.16	; 3* = 0.37	4* =	0.65; 5	'=1.02; 6"	= 1.47; 12* =	5,88		- <b>L</b>		
TUBING INSIDE DIA	CAPACITY (	Gal./FL): 1/8"	= 0.0006;	/16" = 0.0014;	1/4" = 0.002	6; 5/16" =	0.004;	3/8" = 0.1	006; 1/2"=	0.010; 5/8"	= 0.016				
PURGING EQUIPM	ENI CODES:	R = panst	Dia 2 Bisc	oer Pump; c	SP = Elecino SA	MPLING DA	TA	Ph = b	ensiallic Pump	<u>); 0 = 0(ne</u>	r (Specir	<u>y</u> }			
SAMPLED BY (PRINT) / A		Sh Willis	<i>Ja</i> si	SAMPLER(S) SIGNAT	UREISE A	2			s	AMPLING	75	SAMPLING	10	71	
PLINE OR THANKS	<u>ې ( "</u>	avis Cusse	la mec	TEIRINA		<u> </u>		FIEI	N.FII TERFTY	NITHATED AF:	39	ENDED AT:	10	0.0	
DEPTH IN WELL (feet):	25			MATERIAL CODE: PE					Fibabon Equipme	ni Typ*:				1991)	
······································	FIELC	DECONTAMINAT	on: Pump	YŴ	TUDING	Y Heplaces	9		C	UPLICATE: Y	(N	2			
SAN	LE CONTAINER S	PECIFICATION			SA	APLE PRESERVA	Tion I			NTENDED ANAL VEN	S ANDIOP	SAMPI ING FO	UPAPAT	NAMPLE P	UMP NE (m)
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME (mL)	PRESERVATIVE		TOTAL VOL	.	FINAL PH	Stanard Units)	METHOD		COD	5	per mir	(ohn
FEILLONDON			150.01	USED	A	XDED IN FIELD (n	it)								· · · · · ·
60-025	2	PE	each		$\neg$					EPA 5371/	I	Ary	0	10	σ
	······									~		l			
											-				
		N/						$\sim$			- (				
			1									†	$\rightarrow$	<u> </u>	~~ <u>~</u> ~
¥Сц; remarks:	sing is	0.89 0	shove g	round su	whice p	PAD NO	+ C0	ing let	ed. 71	D of Ne W1	₩ Z _ //	9.44 t 6.06 b	9 5 9/5		
MATERIAL CODES	: AG = A	mber Glass;	CG = Clear G	ass; PE = Pol	yethylene;	PP = Polypr	opylene	S = S∰d	one; T≍Te	flon; O≍Oth	er (Spec	ify)			
SAMPLING EQUIPN	MENT CODES	: APP = Aft	er Peristaltic F	ump; <b>B</b> = Ba	iler, BP	= Bladder Pun	vp;	ESP = Elec	tric Submersib	le Pump;					
		RFPP = R	everse Flow P	eristaltic Pump; Stabilization Cr	SM ≈ Strav Berla for range	v Method (Tut	ing Gra	vity Drain); consecutive	O = Othe	r (Specify)					

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater) Revision Date: March 14, 2016

Jdy/ 915/17 5/22/18

ų,

,

Aerostar SES...

#### **GROUNDWATER SAMPLING LOG**

	M2027.0003	FE 1	100 ar			Ste	CENNANNEN D	3 60	2 m F	ER FR	TA	316	teel	CAR C	- a 7	<u>\</u>
WELLNO: FELLO	20102-		MWO	<u>ター</u>	5/	MPLEID:	FLIRAL	12-1	507	- 6W-	039		лте: Ø	1-2-	17	)
10,01		0000			اب بو	PU	RGING DAT	ra		0,4		<u></u>			<u> </u>	
WELL	7 0	TL	BING	1/1	OD WEL	L SCREEN INT	ERVAL DEPTH:	8	TATIC DEP	א אוי	11.	91	PUR	GE PUMP TYP	E C	
WELL VOLUME PU	RGE: 1 WELI	UVOLUME ⇒ (	NUETER (Inches	L DEP	TH BTOC -	STATIC DI	27 XFI EPTH TO WAT	IP IER\ X	WELL	(feel BTOC):	101		ON I	BAILER:	μ	
{only fit out if ep	picable}	#	' 38,5	ما	^{FI} - <b>N</b> 2	n91 ^{F0} *	0.163	gaVA	* 3.	,¢3	92) 92					
EQUIPMENT VOLU	MEPURGE	EQUIPMENT	VOL PLIM	P.VOL	HME + (TUB	ING CAPAC	іт <u>у х</u>	TUBING	LENGT	H) + FLOW CI	ELL VO	LUME				
(only fill out if ap	pEcable}		=		ुद्ध्यो ⇒ {		-A	dest.	(H)	<u> </u>	<u>.</u>	)ai				
INITIAL PUMP OR TUBING	23		FINAL PUM	P OR TU	IBING 3	3	PURG	NG	145	2	ľ	PURGING	600	TOTAL VOLUS	^{(ε} . 7	.62
area certar relace (road).	VOLUME	CUMUL.	Pi	URGE	DEPTH	pH	TEMP.	C	DND.	DISSOLV	ED	ORP		RBIDITY	COLOR	ODOR
TIME	PURGED (gallons)	VOLUME	. F	ATE gpm)	TO WATER	ទី១៩២០១៩០ (ខានាលា	(°୯)	mŠ	Sime C	OXVGE mpA.	N	(WW)	•	NTUs)	(deseribe)	(describe
1458	N/A	idalionsi		. 14	Heet BTOCI	NIA	N/A	81/				J/A	11	10	Clean	100
1505	6.27	0.25	2 0.	.04	17.0	7.12	15.14	n.	107	6.64	1 -	145.7	5	<u>///</u>	1	1.0,1
1516	0.40	0.9	3 0.	04	17.13	7.61	14.96	0.7	166	4.38		176.3	1	80		
1525	0.40	1.08	0	104	17.7	7.62	14.46	0.7	66	4,9	7 -	1133	7	2.9		
1536	0.40	1.48	٥.	DY	17.17	7.6	14.24	0	769	3.81	? ~	1495	4	5.6		
1645	D.40	1.88	0	04	17.17	7.60	14.00	0.	769	4.21	Ł	132.4	3	1.8		
1555	0,40	2.28	0	.04	17,17	7,59	13.97	0.7	67	3,90	<u>_</u>	124,5	2	1.7		<u>  (</u>
1600	0.40	2.68	0	.04	17.17	7.57	13.90	0.1	166	3.9	9	1/8.2	127	<u>ь</u>	┤╍┙	<u> </u>
			<u> </u>					<u> </u>		-			<u> </u>			
							(In)								+	
					l			¥—			-+		<u> </u>		-	1
					1		$\vdash$								1	
		· · · · · · · · · · · · · · · · · · ·													1	
										1					1	
	l	<u> </u>				L							<u> </u>			
WELL CAPACITY (C	Sallons Per Fo	ol); 0,75*=0.0	)2; 1*=0. -0.000₽;	04;	1.25" = 0.06; = 0.0014;	$C_{2} = 0.16$	£ 3* = 0.37; E € E 6485 = 4	; 4"≖। ⊳.∩⊳.⊌	0,65; 2/0 ² ↔ (	5" = 1.02; E	5" = 1.4: 	7; 12*≓ n ⊑ian	5.88			
PURGING EQUIPM	ENT CODES;	B = Baller;	= 0,0000, BP = Bk	adder f	-0.0014, Pump; E	SP = Electric	Submersible	Pump;	970 - 1 PP =	Peristallic Pur	-0.07 np;	O = Othe	r (Specify	•)		
	A	th withs		T		SA	MPLING DA	ATA			SAMPLI	NG 1.		SALIPLING		
SAMPLED BY (PRINT) / A	FFILIATION: Th	enz Klei	1/1SL	SAMP	LER(S) SIGNATI	URECENT	9				INITIATE	ED AT: 6	00	ENDED AT:	160	21
PUMP OR TUBING	33	ŭ	•	TUBIN	ig Bial cone-pe				Fi	ELD-FILTERED:	nani Tuna	r C	$\mathbb{D}$	Filter Size		यांग)
	FIELL	DECONTAMINATI	on: Pump	, Y	$\odot$	TUBING	Y (Nisplaced	2			DUPLIC	ATE: Y	(N	$\overline{}$		
SAM	PLE CONTAINER S	PECIFICATION				\$A.	MPLE PRESERVA	UON 1			INTEN		S ANOIOS	RANDING	ILIPLICAT S	ALIPLE PULIF
SAUPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME (mL)		USED		TOTAL VOL	4)	FINAL pH	l (Stenard Units)	1911594	METHOD	3 AND/OA	COD	E	per minute)
CM-033	2	PE	100ml		-							EPA 5376	,	AP	p	150
			<u> </u>	+-										-	·	
				1			₩Q									
				$\uparrow$				$\neg$	~							
						1										
X remarks: 1600 î	Casing Ocuelope	@ 0.95	abou	' GI	(ound 51	urface									•	
MATERIAL CODES	: AG = A	mber Giass:	CG = Clear (	Glass:	PE = Pol	Vethylene:	PP = Polyara	opylene:	S = SI	icone; T=	Teffon:	0 = Ofh	er (Spaci	fv)		
SAMPLING EQUIP	MENT CODES	APP = Aft	er Peristaltic	Pump;	B = Ba	ller; BP	= Bladder Pum	ip; E	SP = Ele	clinc Submers	ibie Pu	mp;		->1		
nilt + 0.2 tunite Tar	naraturai + 0	Spacific	Conductor	rensia 5	noc Pump; Babilization Cri EN Discontra	om = orrange lieria for range	w memod (Tub of variation of in	nig Grav ast finee c	ny Drain) onsecutive	<u>, U≃Oin</u> a readings ationally +01	er (Spe	IGITY)	ublahaua		Turkidi	

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity; all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

.

Revision Date: March 14, 2016

9/5/17 5/22/18

Aeros	starSE	Sue			GROL	INDWA	TER SAN	IPLI	NG LOO	3							
installation: Althout AFE	M2027,0003	FEWA	RREN	•		Site		ڪر	FORM	erz f	PT	A 3	CAP	EF I	тg	A-7	$\overline{1}$
WELL NO: FEWR	N02-		- MWO	03	SA	PLED: FE	EWRNO	2 - (	03-6	W-5-	$\overline{o}$	DAT	re: 9	-2-17	···· •		
			****		+	PU	RGING DAT	A	***	<u>×</u>							
WELL	20	n	ibing	Vu b	D 16	SCREEN INTE	RVAL DEPTH:		STATIC DEPTH	1 <del>K</del> j	<u> </u>	36	PUR	IGE PUMP TYPE	PI	3	
WELL VOLUME PUE	RGE: 1 WEL		AMETER (inches	DEPTH	BTOC -	STATIC DE		FR)	TO WATER (Is	APACITY	5 (	<u> </u>	OR	BAILER:	11		
ioniv lā aut il epa	itcable)	,				FIN Y		. ()	. A	- <u>01</u>	a l						
(	,		35.3	6 '	15.0	6	0,16	Ansir		· <b>Z</b> ¶	191					•	
EQUIPMENT VOLUI	ME PURGE:	GUIPMENT	VOL. = PUM	P VOLUN	AE + (TUBI	NG CAPACI	ĭ¥_ X	TUBIN	G LENGTH)	+ FLOW CE	LL VÖ	LUME					
(coly R out if app	oficable)		7	ga			<u></u>		98	_		al	·				
INITIAL PULIP OR TUBING			FINAL PUM	OR TUBIN	ig	~	IPURG	NG		-		PURGING		TOTAL VOLUME			
DEPTH IN WELL (lect):	<u>٥د</u>		DEPTH IN V	/ELL (/eet):	3	0	INITIA	ED AT:	1312	Ś	[	ENDED AT:	415	PURGED (ga%n	sk 3	.94	
TRAF	VOLUME	CUMUL.	. PL	RGE	DEPTH	9년 (Standard	TEMP.			DISSOLVE	P	ORP	TU	Reiolty	COLOR	0	DOR
1905	(galions)	PURGED		(m)	WATER	tanits}	1.01	n	S/cn	mgA_		(1134)		19103	1002010	1) (de)	201065
1313	NIA	NIK	02	5-77-1	5.04	N/A-	N/A-	N/	'A	N/A	Ť	NA	N	14	Class		0110
1325	0.49	0.49		071	5.23	7 10%	15.05	0.0	796	5.2	1	25.9	76	5.43	1	<u>}</u>	1
1330	0.49	0.98	<u> </u>	071	5 23	7.61	14,21	0.	990	3.55	<u>í</u>	-76.2		4.0		1	+
1335	n. 119	1.117		071	5.25	7.58	12 9.2	<u>, v</u>	au.	26	7	1331	18	2		+	
RUD	0.49	1,94		071	5 25	7.100	13.50		ocil.	2.70	<u>-</u> +	1472	14	50	$\vdash$	+	+
1245	A UG	2.45		02 1	5.24	7 (0)	13.00		ຸຈມາ	22.2		1221	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>			+
1350	1 49	2.94			A 74	764	1225		222	19.00.		122.1	9	1.7			
1255	0.20	3.14		04 1	K 74	7.9	13.14		020	2 11 3	2	127	7	<u>,,,</u>		+	+
1400	A 20	2 74		<u></u>	5 22	7.1.4	13.52		217	2.40		110.2			┝──╂─		+
1465	1.20	2.54		<u>011</u>	5.20	717	12 62	0.	700	4 7	<u></u>	087	<u></u>	2.7		+	1
	0.20	271	1 10.	6h	15 22	747	12.02	0.	707	1.20	<u> </u>	73.7	<u>ر</u> ج	$\frac{1}{10}$		+	
	0.20	291			520	7.02	13.20	0.	19 2	7.12		71.0		<u>  i ~]</u>		-	
	0,20		1 0	07	12:20	1.41	12:00	0.	19 2	4.1		د. 50	2	0.0			
															<u> </u>	+	
								-									
								<u> </u>									
																_	
WELL CAPACITY (G	ialions Per Fo	L075*≃0€	2' 1'≂01	)dr 12	<u>i</u> 25* = 0.08•	2" = 0.16	3* = 0.37*	4* =	0.65' 5"	= 1.02 6			5.88			1	
TUBING INSIDE DIA	. CAPACITY (	Gei./FL): 1/8"	= 0.0006;	3/16" = 0	.0014;	1/4* = 0,0026	i; 5/16" = (	004:	3/8" = 0.0	106; 1/2":	= 0,014	0;: 5/8"≕	0.016				
PURGING EQUIPME	ENT CODES:	B ≈ Bailer;	BP = Bla	dder Pun	np; ES	IP = Electric	Submersible I	onub:	PP = Pe	aristallic Pum	D';	O = Other	(Specify	)	*****		
	As	الألاس		r		SAN		14			SAMPLI	NG		SAMPLING	• -		
SAMPLED BY (PRINT) / AF	Te	rnupplein	(ASL)	SAMPLER	(8) SIGNATU	RE(S):					NITIATE		12	ENDED AT:	14	116	)
PUMP OR TUBING	Zn			TUBING	CODC- 22			_	FIEL	D-FILTERED;		<u>    (</u>	N)	Filter Size		πin	
197 II'S REELL ((BC)).	fieu	DECONTAMINATI	on: Pump	Y ()		TURING	Y Witnestacod	}		Later booking	UPLIC	ATE: Y	(N	~~~~~			
sahp	LE CONTAINER	PECIFICATION		$\Box$		şan	PLE PRESERVAT	ION					<u> </u>		ł	AMPLE	PULIP
SAMPLE IN CODE	# CONTAINERS	HATEGIAL CODE	VOLUME John	PRE	SERVATIVE		TOTAL VOL		FINAL of US	(abol I bagati	INTEND	ED ANALYSIS METHOD	AND/GR	SAMPLING EQU CODE	Phent	FLÓ₩ ₽∂ ₽#/mi	AJE (mL inute)
		#N(E)@@0082	FOLOME UNEY		useo	AD	DED IN FIELD (m	IJ.	i ijow pri to	round distal.						,	•
16WRN02-003-	2	PE	150mL	$\sim$								EPA 537M		hpo		10	n
ww - 430		10	each	<u> </u>	<u> </u>	_					_			APP		1 2(	<u>ر</u>
				<u> </u>		<u> </u>						~					
				ļ		2	26)						$\searrow$	<u> </u>			
	~~~			<b> </b>				_									
				<u> </u>											$ \rightarrow $	-	
ч Сач ^{REMARKS:} 1415	END	D.61 d PURG	bove gro .E	unil s	urthce												
MATERIAL CODES:	AG = A	mber Glass;	CG = Clear (ass;	PE = Poly	ethylene;	PP = Polypro	pylene:	S = Silica	one; T≃To	aflon;	0 ≈ Othe	r (Speci	fy)			
SAMPLING EQUIPM	ENT CODES	APP = Afte	er Peństałlic i	oump;	B = Bail	er; BP =	Bladder Pum	p;	ESP = Electr	ric Submersit	le Pur	np;					
·····		RTPP = Re	verse FIOW	-enstailic Slab	irump; #ization Crite	orvi = Straw His for range	el variation of la	ng Gra stihree	vay Urain); conseculiye_r	o = Othe	г (бре	city}					

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxyger: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

915/17 5/22/18

Aero	starSE	S	MB		GROL	JNDWA	TER SAN	IPLII TAIS		3						
Installation: JUNOTACE	H2027:0002	FEWA	ron A	FB		SKe	FE-WARREN	FP1	A31	AFFF	Arro	2)				
WELL NO: FEIN	RN07-	MOV OC	4		54	MPLE ID: FI	EWRN07	- 0r	11-61	ม-624		DA	7E: 9	1-2-	17	
<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>					PU	RGING DAT	ra	4							
WELL DIAMETER (inches):	2"	UT D	BING WETER (Inche	": ¹ /4	OD AB	L SCREEN INT	erval depth: 18,7671		STATIC DEPT TO WATER {&	н 2 на втосу: / Я	9 .78	3	PUR OR I	GE FUMP TYPI DAILER:	P	
Well volume pu	RGE: 1 WEL	l'Volume'⇒ ('	TOTAL WEL	L DEP		STATIC DI	EPTH TO WAT	ER) >	(WELL C	APACITY						
(anly fill out it spj	ofcable}	2	28.1	6	н · /У, З	10. 1	.16	gəVit	- .		gai					
EQUIPMENT VOLU	ME PURGE	FEQUIEMENT	/ <u>0L. = P</u> 0N	PVOU	JME(JUB	NG GAPAC	ITYX	TUBIN	J LENGIH	+ FLOW CE	Ell Vo	LUME				·····
(only fil oid it app	picelule)		*		ga) = (x	FL)		-AP	2 -	i	ani .				
Initial pump or tubing	ⁱ nt		FINAL PUN	IP OR TU	BING	1 T K	PURG	ING	11 5	22	ŀ	URGING	7110	TOTAL VOLUM	-	
DEPTH IN WELL (feet):	0K-1	CUMUL	DEPTHINT	WELL (le URGE	el): DEPTH	pH	INITIA TEMP.	ED AT:	IV :	DISSOLV	ED	ORP	יזטרי	PURGED (gala) RUDITY		0DOR
TIME	PURGED	VOLUME	. 1	RÁTE	то	(standard units)	(°C)		usicm	OXYGE	4	(mV)	(NTUs)	(describ	e} (describe)
	(granoris)	PORGED (nallops)		opm)	WATER (Icol BTOC)	74	<u> </u>	mb/	cm	mg/L					ļ	-
1638	NA		0	.05	13.75	N/A	N/A	N	IA	N/P		N/A	2	<u>/R:</u>	Chu	none
1045	0.42	0.4		05	12.76	1.13	13.66	1.0	200	10.0	2	577	22	2	┼╌┼╌╸	
1000	0.42	1 20		NE NE	12 01	1.67	12.38		<u>189</u> a ai	2:4	2	.70.1 Ar 1	13	5	╋╋	
1710	0.50	1.84		Δ <u>5</u>	2 96	1.57 1.57	12.00		<u>1 X ()</u> 1 2 1	5.0	<u>~</u>	101.7	2	51_	+ + -	
1730	0.60	2.34		.05	13.96	7.42	12.27	0.0	<u>79 </u>	5.44	2 -	95.6	21	5.7	┼┼─	
1740	0.50	2.91	0.	05	13.96	7,49	12.23	0.9	87	5.20	5 -	92.2	1	9.3		t
\leq																
								ļ		ļ		. <u> </u>				
							(~~~	<u> </u>				·····			<u> </u>	
							ļ	[<u></u>				
	ļ						-	<u> </u>		ļ <u>,</u>	\rightarrow				┼	
							ş									
WELL CAPACITY (C	allons Per Fo	ol): 0.75*=0.0	i2; 1*≂0	.04;	1.25" = 0.06;	2* ≈ 0.16	3; 3" = 0.37;	4* =	0.65; 5'	'≂1.02; €	s" = 1,4	7; 12*=	5.88			
TUBING INSIDE DIA	CAPACITY	(Gal./Ft.): 1/8"	= 0.0006;	3/16" : adder 9	= 0.0014;	1/4" = 0.002	6; <u>5/16"</u> = (0.004;	3/6" ≈ 0.0	006; 1/2" advitable Rus	= 0.01	0; 5/8" =	= 0,016			
n onosiko Equalita	LIT CODES.		Ds - Da	asuel 1		SA SA	MPLING DA	TA	rr - r	0(19(6))00 1.01	<u></u>		(opeon)	1		
SANIPLED BY (PRINT) / A	FFILIATION: AS	hwillis	(AOL)	SAIJPI	.er(5) Signati	URE(S):	2				SAMPL)		740	SAMPLING	17	41
PUMP OR TUBING		-	<u> </u>	TUBIN	G		- <u>-</u>		FIEL	D-FILTERED:		<u>γ (</u>	3	Filer Size		inits inits
DEPTH IN WELL (feel);	<u>X</u>	4		MATE	RAL CODE: PE	TINNA				Filvalion Equips	nest Type	e -				
SAU	PLE CONTAINER	SPECIFICATION	JOL PUM			SAL	MPLE PRESERVA	TION			DOPLIC	A1E. 3	<u> </u>	/		SAMPLE PURP
SALVOLE ID CODE FFWRN 01-004	# CONTAINERS	MATERIAL CODE	YOLUNE (ml	, ,	RESERVATIVE	A	TOTAL VOL	a.)	FINAL pH (Stanard Units)	INTENC)ed analysi Nethod	S AND/OR	SAMPLING EQ CODI	uipsient 1	FLOW RATE (mL per minute)
EWEN02-061-		05	150m				-					ED4 2574		£0.	,	10-
GW-024	L	140	ench	<u> </u>								L: A 03/M		TY		170
	<u> </u>					\rightarrow				• ••	\vdash	~				
		A					\Box							~ ~		
	[\pm						~						
¥ 1	L		ماميدام	<u> </u>	ul e. l	200	ad Pair	ed	L	`					<u> </u>	
REMARKS:	THE O	Wrat. co	leiow y) ^v = 0.07	u suri	pece / r.		,								
MATERIAL CODES		mber Glass	CG = Clear	Glace.	PE = Poh	vethylene	PP = Polyor	nviene	S = Sile	one T⊨1	fellon	0=0%	nr (Snar)	fv)		
SAMPLING EQUIP	MENT CODES	APP = Afl	er Peristaltic	Pump;	B = Ba	ller; BP	= Bladder Pum	ър; I	ESP = Elec	inic Submers	ble Pu	mp;	-i (ohaci	<u>91</u>		
	noaraturo:) /	RFPP = R	Conductor	Perisla	illo Pump ilabilization Cri	SM = Strat terla_for_range	w Melhod (Tub e of Variation of Ia	ing Gra	vity Drain); consecutive	O = Oth readings	er (Spe	rcity)	histor		Tuchlall	u oli sociliare

pH: ±0.2 units Temperature: ±0.2 °C Specific Conductance: ±5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ±0.2 mg/L or ± 10% (whichever is greater) Turbibility: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

915/17 5/22/18

ł

Aero	starSE	5 <i>e</i>			GROI	UNDWA	TER SAN	IPLIN	ig Loo	3						
Installation: MEROTAPE	M2027.0003	FEWP	TREN	C		Site;	PE WARREN		3 wild	ing 12	47	(Busic)	ine b?) (,AF	FF A	KE143)
WELLNO: FEW	RN03	- MND	01		SA	MPLE 10: F	EWRN	03-	001-	GW -	020) DA	1e: 9	11	17	
WELL		In	राज्यत		. Iwe	PU D SCREEN INTE		rA 	TATIC DEPT	4			Ipi 10			
DIAMETER (Inches):	à	Di	METER (Inches	*/'	1 23	5.35 _{FI} - 🕹	5-35-19	\$	IO WATER (In	el BTOG):	10.	18	081	BALER:	<u> </u>	
WELL VOLUME PU	RGE: 1 WEL	Volume = (1	TOTAL WEL	LDEP	TH BTOC	STATIC DE	EPTH TO WAT	TER) X	WELLC	APACITY						
qa Xino Di Yinoj	pistap(#}	2	25.1	35	10.	18" (0.16	ga2R	2,1	13	ÇBİ					
Equipment volu	ME PURGE: 1	EQUIPMENT	Vol., = Pum	P VOL	ume + (tub	ING CAPACI	тү х	TUBING	LENGTH)	+ FLOW C	ELL VO	LUME				
(only fi) out if ap	pīcable)			0	9 ⁰⁰ "D	.0076	20 "	ĴΟ.	25 921			gal				
INITIAL PUMP OR TUBING DEPTH IN WELL (feel);	, D.	0	FINAL PUN DEPTH IN	IP OR TU NELL (Ie	BING 60:	20	PURG	ING TED AT:	161	8		PURGING ENDED AT:	735	TOTAL VOLUM	iel: 17	7.037
	VOLUME	CUMUL,	4	UNGE	DEPTH	pH (standarit	TEMP.	¢	OND.	DISSOLV	EÐ	ORP	τu	REDITY	COLOR	ODOR
TIME	PURGED (gallons)	VOLUME PURGED	001	(ATE (APm)	TO WATER	uni(s)	(°୯)	ms	ann N	OXYGE mg/L	N	(mV).		NTUs)	(describe	i) (describe)
1018	N/A	L)/A		σ	9.96	NIA	NA	N	/#	NI /A		N/A	N	/ A	Clen	1000
1626	0.232	0.23	20.	DZŸ	11.12	7.41	17.53	0.7	50	11.4	l	-79.1	7.	06	Ĩ	
1636	0.232	0.40	+ 0.	029	1232	7.46	16,50	01	737	5.7	0	120.7-	20	.6	I	
1650	0.232	0.69	<u>4</u> 0.	<u>829</u>	13.61	7.49	110.91	0.	732	8.5	(-120.3	4	103		<u> </u>
100	0.176	0.92		017	14/10	7.48	6.76		130	55	ğ	<u>-119.1</u>	<u>7</u> ,	<u>62</u> 22	╄╋	
120	0.732	1.14		519 57Ú	15.00	<u> 7.47</u> 7.47	16146		<u>166</u> 769	56	$\frac{2}{2}$	110.1	0. U	711	┢┼╋	
1125	D. 232	1,102	<u>4</u> m	029	15.52	7.43	16.21		713	5.5	6	-116.1	<u>-</u> 11 	(0T)	H	
1730	0.232	1,84	5 0	529	15.62	7.48	16.40	ρ,	715	5.5	4	-115,3	4.	52		
1735	0,232	2.0	88 0.	٥Ĵ	15.50	7.42	16.45	0,	75	5.5	1	1165	Ч	.20		1
~															ļ	
*******						l		ļ							ļ	
			<u> </u>													
					<u> </u>	1										-
· · · · · · ·					<u> </u>											1
WELL CAPACITY (C	Gallons Per Fo	04): 0,75" = 0.0 Crattering dependent	12; 1* = 0.	.04;	1,25° = 0,06;	2" = 0,16	; 3° = 0.37;	4* ≃	0.65; 5"	=1.02; {	5* = 1.4	7; †2"=	5,88			
PURGING EQUIPM	ENT CODES:	B = Baller;	= 0.0006; BP = Bi	adder P	= 0.0014; 'ump; E	SP = Electric	o; b/16 ⁴ = 0 Submarsible i	2.004; Pump;	3/8" ≈ 0,1 PP = Pi	eristailic Pur	·= 0.01 пр;	0; 5/8* ≈ O ≍ Other	± 0.016 (Specify	}		
	11	<u> </u>	. T	T		SAI		TA			SAMPL	NG 1.		SAMPLING	7	20
SAMPLED BY (PRINT) / A	FFILIATION:	(lein, A.L	v://:s/4	SAMPI	LER(S) SIGNATI	URE(S):	fmg	<u>Ze</u>	~		INITIATI	DAT:	137	ENDED AT:	/	<u> </u>
PUMP OR TUBING DEPTH IN WELL (fast):		20		TUBIN	g Rial Code: Pe	\mathcal{C}	4		FIEL	D-FILTEREO; Fibration Equip:	ment Type	γ (9	Filter Size		1810
	FIELC	DECONTAMINATI	on: Pump	, Y	0	TUBING	Y Niepłaced)			DUPLIC	ate: y	(N)		
SAM	LE CONTAINER S	PECIFICATION			RESERVATIVE	SAL	TOTAL VOL				INTEN	DED ANALYSIE	AND/OR	SAMPLING EQ	APMENT	iample fump flow rate (ml
BAMPLE IB CODE	# CONTAINERS	NATERIAL CODE	VOLUME (mL		USED		IDED IN FIELD (mi	ч	FINAL pH (S	Slanard Units)		METHOD		CODE		par minute)
FEWRN03	n	85	175		ula		nela	1.		1		EPA 537M		10	2	***• ** ** ***************************
001-01-020	<i>d</i>	12			M/4		10/1	r	//	//†	<u> </u>			171	r	
				+												
				┼──				<u> </u>								
												······				
Chai	ion of	orround	Sich	1.0												
RELIARKS:	0	0	*	., ,				,								
			<u> </u>	0			ALVS		D		r. r					
MATERIAL CODES	: AG = A MENT CODES	nder Glass; APP = Afte	ug = Clear er Peristaltic	Glass; Pump;	PE = Pol B = Ba	yetnylene; ller; BP :	PP = Polypro 8ladder Pum	pylene; p; E	SP = Elect	one; T≍ ric Submers	i etton; ibie Pu	O ≠ Olhe mp;	er (Speci	IY)		
		RFPP = Ri	everse Flow	Perista	ilic Pump; Iabilization Cri	SM = Strav teria_for range	v Melhod (Tubi of variation of te	ing Grav Ist lisree c	ity Drain); onsecutive_	O ≈ Oth readinus.	er (Spo	icify)		·····		
pH;±0.2 units Ten	nperature: <u>+</u> 0	.2 °C Specific	Conductan	сө: <u>+</u> !	5% Dissolve > 20 NTU: <	ed Oxygen: : optionally <u>+</u> 5	all readings <u><</u> 2 NTU or <u>+</u> 10%	20% satı 6 (which	uralion; opt ever is grea	ionally, <u>+</u> 0.2 ater)	2 mg/L	or <u>+</u> 10% (v	hichever	'is greater)	Turbidity	r: all readings

Jun 9/5/17

5/22/18

Revision Date: March 14, 2016

÷γ

AerostarSES...

GROUNDWATER SAMPLING LOG

B							6)			<u> </u>		0	
installation: Attinct Ar B	M2027.0003	FEWAR	LREN	l		Silm	FEWARREN	Building	1247	(Base 1	vels)	(APFF	me	<u>=74-3)</u>
WELL NO: FEWI	RN03-	02 B .	- MW	002	S/		EWRNC	3-002-1	<u> - 142</u>	620 🛛	TE: 5	7-31-1	ר	
		r=			····	PU	RGING DA	ГА						
VIELL. DIAMETER (inches):	2		JBING IAMETER (in	chese 1/4	OD 25	L SCREEN INTI	IS. IS P	STATIC DEP	CH (net BTOC)-	11.6	PVRG	SE PUMP TYPE		
WELL VOLUME PU	RGE: 1 WEL	L VOLUME = (TOTAL W	ELL DEP	TH BTOC -	STATIC DI	PTH TO WAT	TER) X WELL	CAPACITY	10.0		ALEN, JJ	····	
(only Fil out il ap	pžçablo)	2	') C	15	е:- Н.	F0 x	016	gal/# * 2.	168	gal				
EQUIPMENT VOLU	ME PURGE: 1	I EQUIPMENT	VOL. = P	UMP VOL	UME + (TUB	ING CAPAC	TY X	TUBING LENGTH) + FLOW C	ELL VOLUME				· ·
(only fill out if up	picable)			Ð	gal = (D	~)/ ×	D a V	*a 5 8ª	_ 7					
INITIAL PUMP OR TUBING	3	<u> </u>	FINAL F	WMP OR TU	U / 19ING (~)		PURG	من مکرد <i>ان</i> این مرکز (<u> </u>	PURGING .		OTAL VOLUME		
DEPTH IN WELL (leat):	~~~		ОЕРТН	IN WELL (fe	el):	2,1,5	INITIA	HED ATE ISO		ENDED AT:	\$59	URGED (yalone)	•	
TIME	VOLUME PURGED (pallons)	VOLUM	L MC	RATE	TÓ WATER	pri (standard units)	(°C)	psion 27	OXYGE Mark	ED ORP N (mV)	ាមគ ដូរ	(BIDITY (TUs)	COLOR (describe)	ODOR (describe)
1512	2	- Heartering			11cel B(00)	7.42	18.19	0.121	090	277.	171	17	Class	at what
1517	1050	1050		160	11.95	7.1.3	11.84	B C43	<u>u</u> .1	V 27.4	3.1	88	(low	dane
1524	750	1860		150	13.25	1.34	16.50	0,534	2.44	37.10	8.0	20	Clear	none
1529	750	2550		130	14.11	7.34	1647	0, 34	3.2	2 30.7	30	10	clev	none
1534	750	3300		150	14.95	741	16.53	0.531	3, Z	293	2.3	13	clar	MOUL
\leq												h	<u> </u>	
												1		
			$ \rightarrow $						1					
							ļ		ļ					
		<u> </u>					H	~	<u> </u>					
							F		ļ	2			-	
		<u>.</u>					ļ							
	<u> </u>													
														
WELL CAPACITY (0	<u>I</u> Sallons Per Fo	of: 0.75" = 0.0)2 [.] 1"≍	= 0.04 ⁻	1 25" = 0.08	2"=0.16	3*=0.37		= 1.02 6		6 89		\geq	
TUBING INSIDE DIA	CAPACITY (Gal./Ft.): 1/8"	= 0.0006;	3/16"	= 0.0014;	1/4" = 0.0026	5; 5/16" = C).004; 3/8" = 0.	006; 1 <i>1</i> 2"	= 0.010; 5/8*:	= 0.018			
PURGING EQUIPM	ENT CODES:	8 = Bailer;	BP =	Bladder P	ump; E	SP = Electric	Submersible F	°ump; PP≖P TA	eristallic Pur	np; O = Olhe	(Specify)			
SAMPLEO BY (PRINT) / A		И.	Inc	CALLON	EQ(R) EICNAT	IDELEY A		1 a		SAMPLING 4 C	74	SAMPLING	<u>~?9</u>	
	1	incin /	1730	-			ung-	par		SNITIATED AT: 73	<u></u>	ENDED AT:	>>/	
DEPTH IN WELL ((ref):		20113	5	MATER	NAL CODE: PE	\mathcal{O}	1	/	Fifration Equips	Y 🕻	Nor	File: Size		กมส
	FIELC	DECONTAMINATI	on: Pl	Y Shu	Ò	Tuning	Y Nippiaced))		DUPLICATE: Y	Ø			
SAW	PLE CONTAINER S	SPECIFICATION		_		SAU	IPLE PRESERVAT	лон Г		INTENDED ANALYSI	ANORTO		SAI	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME ((mL) F	RESERVATIVE			FINAL #H (Stanard Units)	METHOD	,	CODE	105-091 FS	per minute)
FEWRND3	0	0 -	100		4/ 4			<u>y</u>	1.				<u> </u>	
-002-60-00	2	re	13		MA		NIA		14	EPA 537M		APP	1	50
					,									
							×	·						
							1							
			L											
4506	began .	F												
RELIARKS:		placminen	+ (vell										
MATERIAL CODES	. AG = A	mber Glass:	CG = Cles	ar Ginee'	PF = PAL	ethylene	PP a Poluoro	oviena: e = ciri	'one' - 7 7	efine: n - nite	v /Crank	4		
SAMPLING EQUIPM	MENT CODES	APP = Aft	er Peristal	tic Pump;	B = Dal	ler, BP =	Bladder Pum	p; ESP = Elec	nic Submers	ble Pump;	a fohacità	<u>/</u>		
		RFPP = R	everse Flo	w Perísta S	lito Pump; teblization Crit	SM = Straw erla_for renge	Method (Tubi	ng Gravity Drain); st three consecutive	0 = Oth readings	er (Specify)		<u></u>		
pH:±0,2 units Ten	1perature; <u>+</u> 0	.2 °C Specific	Conduct	ance: ±5	M Dissolve	d Oxygen: a	Il readings < 2	0% saturation; op	tionally, ± 0.2	mg/L or ± 10% (w	hichever i	is greater) Tu	rbldity:	all readings
Revision Dat	ie: March 14.	2016			201410°C	rhanura8à ∓ g	11 O OF <u>1</u> 10%	Avatisettin Adil 12 Que	a(#)					

Juli

AerostarSES...

GROUNDWATER SAMPLING LOG

ст. <i>н. FEW2</i> NO3 - <i>Level</i> (<i>V</i> , <i>V</i>) 203 сонта <i>FEW2</i> NO 3 - <i>v FEW2</i> NO 3 - <i>v C C K</i> (<i>K</i>) (<i>V</i> , <i>V</i>) <i>FF K</i> (<i>K</i> 3) (<i>K</i>) - <i>V FEW2</i> NO 3 - <i>v C K</i> (<i>K</i>) (<i>K</i>) <i>FF K</i> (<i>K</i> 3) (<i>K</i>) - <i>V K</i> (<i>K</i>) <i>K</i> (<i>K</i>	installation: Mitto 77 B	142027,0003	A GE	1.40		1	Site	CE-WARRENE COR	, <u> </u>	10	100	7.4				No	
The Try PEOR Provide Structure PEOR PEOR NO.3 / 28 3 - 04 / - 02 Text / PEOR PEOR NU PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR NU PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR NU PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PELL VOLUME - PROCE VIEL UPOL PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR PEOR <td>WELL NO FELLIN</td> <td>20102-1</td> <td>Land M</td> <td>WAR I</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>· lang</td> <td>1241</td> <td>(Bas</td> <td>e rue</td> <td><u>ks) (</u></td> <td>APPF</td> <td>MKer</td> <td>+ 3)</td>	WELL NO FELLIN	20102-1	Land M	WAR I					<u> </u>	· lang	1241	(Bas	e rue	<u>ks) (</u>	APPF	MKer	+ 3)
Numerican Part of the second of ADD (2018)	ILLING TEWI		10 2000		<u>></u>			EWEND	3-003	-0h	1-021)	0/	1E;	8-31.	.17	
Descensionary Descensionary Product Stress Product S	WELL		In	JOING		<u> </u>	PU SCREEN INTI	RGING DA	IA Iste	TIC (VEDTU	<u>*</u>			150	00 D B 8 5 4 D		·
NELL VOLUME F UNDEL VOLAUMER (CORAL VELL CENT) VELL CENADITY Informative Product ** (25.43 • 9,44 m + 0.163 ** 2.76 * Informative Product ** (25.43 • 9,44 m + 0.163 ** 2.76 * Informative Product ** (25.43 • 9,44 m + 0.163 ** 2.76 * Informative Product ** (1 * * n) * * * * Informative Product ** (1 * * n) * * * * * Informative Product *	DIAMETER (inclues):	2	D	IAMETER (inche	s: 14	0D 25.	43 Fi -	15.43 FI	TO	WATER (fee	et BTOC):	8.4	7	DR	BALER:	PF	>
0.125.43 n.9.44 mis. p. 0.63 where 2.76 with the control of the contr	WELL VOLUME PU	RGE: 1 WEL	l volume = {	TOTAL WEL	L DEP	TH BTOC -	STATIC DE	PTH TO WA	TER) X	WELL C/	APACITY						
Constraints (Line Publics : LEGLIPHENT ICL - Analysian (Line Publics Convent) → - Human LEGLIPHENT (VCL VCLUNE (Line Publics Pu	(only fill out if ap	picable)	=	(25.4)	3	FL • 9.4	49 FI) X	0.163	galih w	2.	76	gal					
(m) water spaced) - g = -(x n = + (M - D) Person (III) (D) (D) <th< td=""><td>EQUIRMENT VOLU</td><td>ME PURGE:</td><td>EQUIPMENT</td><td>VOL_≕PUN</td><td>IP-VOL</td><td>UME + (TUB</td><td>ING CAPACI</td><td>та х –</td><td>TUSING</td><td>ENGTH</td><td>SECOWO</td><td>ELL VOL</td><td>UME</td><td></td><td></td><td></td><td></td></th<>	EQUIRMENT VOLU	ME PURGE:	EQUIPMENT	VOL_≕PUN	IP-VOL	UME + (TUB	ING CAPACI	та х –	TUSING	ENGTH	SECOWO	ELL VOL	UME				
MK. ALLOW TO HUMBE Prod. Humber Prod. Pr	(only fill out if ap	picable)		64		gal = (x	Ft }	+	94			·				
UNLAW UNLAW <th< td=""><td>INITIAL PULIP OR TUBING</td><td>3 20</td><td></td><td>FINAL PUL</td><td>AP OR TU</td><td>BING</td><td>20</td><td>FURG</td><td>ING</td><td>1.04</td><td>n</td><td>શ</td><td>IRGING</td><td>no</td><td>TOTAL VOLUME</td><td>. //</td><td>45</td></th<>	INITIAL PULIP OR TUBING	3 20		FINAL PUL	AP OR TU	BING	20	FURG	ING	1.04	n	શ	IRGING	no	TOTAL VOLUME	. //	45
THE Display Value Arre To Display Provide Operation Provide Operation Provide Operation Provide Operation Provide Operation Provide Operation Provide		VOLUME	CUMUL	. P	UROE	OEPTH	pH	TEMP.	CON		DISSOLV	13 750	ORP	т Т	PURGED Igator IRBIDITY	COLOR	CDOR
IOIO NA N	TIME	PURGED	VOLUM		RATE	то	(standard unils)	(°୦)		- @	OXYGE	4	{mV}		(NTUS)	(describe) (describe)
IOIC M/R N/R M/R M/R <td>1010</td> <td></td> <td>inalions</td> <td></td> <td>nhail.</td> <td>JICAL BTOC</td> <td></td> <td></td> <td>ms/</td> <td>×</td> <td>nga.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1010		inalions		nhail.	JICAL BTOC			ms/	×	nga.						
1045 0.178 (0.178 (0.171 (1.171 (1.044 1.034 24.44 1045 0.13 1.044 13.71 7.77 10.034 7.77 3.87 7.773 10550 0.13 1.044 13.11 7.77 10.055 1.024 7.773 3.75 11000 0.13 1.044 13.01 7.771 10.056 7.773 3.773 1100 0.26 1.56 15.92 7.75 10.056 7.21 44.2 4.95 11100 0.26 1.56 15.92 7.75 10.056 7.21 44.2 4.95 11100 0.26 1.56 15.92 7.75 10.056 7.21 44.2 4.95 11100 0.26 1.56 15.92 7.75 10.056 7.21 44.2 4.95 11100 0.26 1.56 15.92 7.75 10.056 7.75 11.2 4.95 11100 0.26 1.56 1.97 10.056 10.056 10.056 10.056 10.056 10.056		N/14	N/N		026	8.45	NIA	N/A	N/1	9	N/A		N/A	<u></u>	<u>'/A</u>	C/CAR	none
1050 0.13 1.04 13.11 7.77 10.55 1.041 7.77 7.73 1100 0.13 1.04 13.11 7.77 10.55 1.041 7.12 7.43 9.37 1100 0.13 1.20 14.43 7.77 10.55 1.041 7.12 7.43 9.37 1110 0.26 1.56 1.542 7.75 10.541 1.055 7.21 14.45 1110 0.26 1.56 1.542 7.75 10.541 1.055 7.21 14.45 1110 0.26 1.56 1.542 1.562 1.542 1.056 7.21 14.54 1110 0.26 1.56 1.542 1.56	1040	018		6		271	7 17	10.69	1.05	2	7.7	3 [<u>6.9</u>		<u>4 · 4</u>		<u> </u>
10 S O 0.13 1.04 12.11 7.11 7.12 7.13 7.15 11 O O 0.13 1.30 14.13 7.17 11.51 1.04 7.22 7.32 7.73 11 10 O 0.26 1.56 1.52 7.75 11.04 7.22 7.42 7.73 11 10 O 0.26 1.56 1.52 7.75 11.04 7.22 7.44 7.73 11 10 O 0.26 1.56 1.52 7.75 11.04 7.21 44.2 4.45 11 10 O 0.26 1.56 1.52 7.75 11.04 7.21 44.2 4.45 11 10 O 0.26 1.56 2.05 7.60 7.21 44.2 4.45 11 10 O 0.07 0.02 1.25 0.06 2.00 2.01 2.00 2.01 2.00 2.01 2.00 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	1045	0.13			<u> </u>	13 61	1.16	16.53	1.03	光	7.7	<u>7-</u> [-	\$2.3	9	37		
1100 0.72 1.30 1.420 1	1050	013	1.04		┢	10.11	7.11	14.53	1.0		7.12	2 1	- 39.3		156		+
In 100 0.2 alg 1.3 g 2 1.3 g 2 1.4 g 4.4 g 4.4 g 4.4 g In 100 0.2 alg 1.3 g 2 1.5 g 1.6 g 7.2 f 1.4 g 4.4 g 4.4 g In 100 0.2 alg 1.6 g 1.6 g 7.2 f 1.4 g 4.4 g 4.4 g 4.4 g In 100 0.2 alg 1.6 g 1.6 g 1.6 g 7.2 f 1.4 g 4.4 g	110	D 71	15	$\frac{1}{2}$		16.92	7.11	1 64			1.2	<u> </u>	31.6	-7	13	\square	
Here of the second s		0.20	<u> </u>	0 -	<u> </u>	13.62	1.13	14.27	1.0:	20	7.6	7 -	44.2	- 4	. 73		
Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent Intervent<		L															
ELL CAPACITY (Galons Per Fork): 0.75" = 0.02; T = 0.04; 1.25" = 0.05; Z = 0.16; S = 0.37; 4 = 0.65; 5" = 1.02; 5" = 1.47; 12" = 6.86 BINO INSIDE DA. CAPACITY (Gal.PL; 14" = 0.006; 3/10" = 0.064; 1.47" = 0.003; 5/16" = 0.004; 3/10" = 0.016; 5/10" = 0.016 BINO INSIDE DA. CAPACITY (Gal.PL; 14" = 0.006; 3/10" = 0.004; 1.47" = 0.006; 1.47" = 0.006; 1.47" = 0.016; 5/10" = 0.016 BINO INSIDE DA. CAPACITY (Gal.PL; 14" = 0.006; 3/10" = 0.016; 5/10" = 0.016 BINO INSIDE DA. CAPACITY (Gal.PL; 14" = 0.006; 3/10" = 0.016; 5/10" = 0.016 BINO INSIDE DA. CAPACITY (Gal.PL; 14" = 0.006; 1/10" = 0.016; 5/10" = 0.016 BINO INSIDE DA. CAPACITY (Gal.PL; 14" = 0.006; 3/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016 BINO INSIDE DA. CAPACITY (Gal.PL; 14" = 0.006; 3/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.006; 5/10" = 0.006; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.016; 5/10" = 0.006; 5/10" = 0.016; 5/10" = 0.006; 5/10" = 0.											·	-					
ELL CAPACITY (Gallons Por Foul): 0.76"=0.02; 1"=0.04; 1.25"=0.05; 2"=0.16; 3"=0.37; 4"=0.055; 5"=1.02; 5"=1.01; 5"=0.16; JEND INSIDE DIA CAPACITY (Gallons Por Foul): 0.75"=0.02; 1"=0.004; 1.25"=0.00; 3.16"=0.004; 1.24"=0.005; 1.2"=0.016; 58"=0.016; JEND INSIDE DIA CAPACITY (Gallons Por Foul): 0.65; 5"=1.02; 5"=1.01; 5"=0.016; 58"=0.016; JERCEN FUNDIO EBB Ball EBP Bladder Pung: ESP = Electric Studenershile Pung; P= Perfisibile Pung; 0 Other Capacity) JERCEN FUNDIO (fab) James Pung: (fab) James Pung: 0 Other Capacity) JERCEN FUNDIO (fab) James Pung: (fab) James Pung: P= Perfisibile Pung; O = Other (Specity) JERCEN FUNDIO TUBIO (fab) James Pung: (fab) James Pung:	·																
PELL CAPACITY (Callons Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 6" = 1.02; 6" = 1.47; 12" = 5.88 MINON INSUE DU CAPACITY (Callons Per Fool): 0.75" = 0.00; 1.41" = 0.05; 6" = 1.02; 6" = 1.47; 12" = 5.88 MINON INSUE DU CAPACITY (Callons Per Fool): 0.75" = 0.006; 3.41" = 0.006; 3.41" = 0.006; 3.41" = 0.010; 5.41" = 0.010; MINON INSUE DU CAPACITY (Callons Per Fool): 0.75" = 0.006; 3.41" = 0.006; 3.41" = 0.010; 5.41" = 0.010; MINON INSUE DU CAPACITY (Callons Per Fool): 0.41" = 0.006; 3.41" = 0.010; 5.41" = 0.010; MINON INSUE DU CAPACITY (Callons Per Fool): 0.41" = 0.010; 5.41" = 0.010; MINON INSUE DU CAPACITY (Callons Per Fool): 0.41" = 0.010; 5.41" = 0.010; MINON INSUE DU CAPACITY (Callons Per Fool): 0.41" = 0.010; MINON INSUE DU CONTRAMINATION INFORMATION MINON INSUE DU CONTRAMINATION INFORMATION MINON EDUCONTRAMINATION INFORMATION INFORMATION MINON EDUCONTRAMINATION INFORMATION INFORM									5								
ELL CAPACITY (Galons Per Fool): 0.75" = 0.02; 1"= 0.04; 1.25"=0.00; 2"= 0.16; 3"= 0.37; 4"= 0.05; 6"= 1.47; 12"= 5.86 BINO BISCE DLA CAPACITY (Galons Per Fool): 0.75" = 0.02; 1"= 0.006; 3"= 0.014; 14"= 0.002; 6"= 0.007; 17"= 0.010; 56"= 0.016; BINO BISCE DLA CAPACITY (Galons Per Fool): 0.75" = 0.012; 1"= 0.006; 3"= 0.014; 14"= 0.002; 6"= 0.007; 3"= 0.016; 56"= 0.016; BINO BISCE DLA CAPACITY (Galons Per Fool): DE Balder Pump; ESP = Electric Submersible pump; D"= Other (Specify) SAMPLENT COOPE: B = Balder; DE Balder Pump; ESP = Electric Submersible pump; D"= Other (Specify) SAMPLENCE COOLER: THEND MATERING COOLER: Y N Field PERTIFIER: Y N MORT TOWNS THEND ELECONTAMENTON: PUMP; Y TUBRO Y N SAMPLE PERTIFIER: N SAMPLE PERTI									The				····				
FELL CAPACITY (Gallons Per Fool): 0.75" = 0.02: 11 = 0.04; 1.25" = 0.05; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 5' = 1.02; 5' = 1.02; 5' = 1.02; 5' = 1.02; 5' = 0.016 JEING INSIDE DIA CAPACITY (Gal.FL): 18" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.001; 3/6" = 0.0016; 1/2" = 0.016; 5/6" = 0.016 JEING INSIDE DIA CAPACITY (Gal.FL): 18" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.001; 3/6" = 0.016; 1/2" = 0.016; 5/6" = 0.016 JEING INSIDE DIA CAPACITY (Gal.FL): 18" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.001; 3/6" = 0.016; 1/2" = 0.016; 5/6" = 0.016 JEING INSIDE DIA CAPACITY (Gal.FL): 18" = 0.0006; 1/2" = 0.016;									 	Ŧ							+
HeLL CAPACITY (Gallons Per Fool): 0.75" = 0.02; 1/= 0.00; 1.25" = 0.06; 2'= 0.16; 3'= 0.037; 4'= 0.06; 3/8" = 0.006; 3/8" = 0														/			
VELL CAPACITY (Gallons Per Fool): 0.75" = 0.02; 1"= 0.04; 1.25" = 0.06; 2"= 0.16; 3"= 0.37; 4"= 0.05; 5"= 1.02; 6"= 1.47; 12"= 5.88 UBING BYSIDE CAPACITY (GalL/L): 18"= 0.006; 31"= 0.004; 1.25" = 0.004; 38"= 0.004; 38"= 0.008; 12"= 0.010; 56"= 0.016 URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP Pertualito Pump; D = 0 the (Gpecity) SAMPLING DATA MPRED BY (FRUT)/ AFFLUTION: Ann [will) MPRED BY (FRUT)/ AFFLUTION: Ann [will) MPRED TO CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP Pertualito Pump; D = 0 the (Gpecity) SAMPLING CAPACITY (GalL/R): TOTAL YOL MPRED CONTAINER SECIFICATION MPRED CONTAINER SECIFICATION MARLED CONTAINER MARLED CONTAINER SECIFICATION MARLED CONTAINER MARLED CONTAINER SECIFICATION MARLED CONTAINER SECIFICATION MARLED CONTAINER SECIFICATION									1							1	
RELL CAPACITY (Gallons Per Fool): 0.75" = 0.02; 1' = 0.04; 1.25" = 0.05; 2' = 0.16; 3' = 0.37; 4' = 0.05; 6' = 1.02; 6' = 1.47; 12' = 6.88 UIRGING INSUE CAPACITY (Gallons Capacity (Gallons Capacity C															······	\sim	
Hell CAPACITY (Gallons Per Fool): 0.75' = 0.02; 1' = 0.04; 1.25' = 0.05; 2' = 0.16; 3' = 0.37; 4' = 0.06; 5' = 1.02; 5' = 1.47; 12' = 5.08 UBING INDE DIA CAPACITY (Gal.RL; 1/8' = 0.006; 31/5' = 0.014; 1.4'' = 0.002; 5/16'' = 0.004; 31/5'' = 0.004; 1.4'' = 0.005; 16'' = 0.016; 38'' = 0.005; 12'' = 0.016 UBING INDE DIA CAPACITY (Gal.RL; 1/8'' = 0.006; 31/5'' = 0.014; 1.4'' = 0.002; 5/16'' = 0.004; 31/5'' = 0.016; 1.2'' = 0.016; 5/8'' = 0.016 UBING INDE DIA CAPACITY (Gal.RL; 1/8'' = 0.006; 31/5'' = 0.014; 1.4'' = 0.002; 5/16'' = 0.016; 38'' = 0.016; 1.2''' = 0.016; 1.2'' = 0.016; 1.2'' = 0.016; 1.2'' = 0.016; 1.2'' =																1	
UBING INSIDE DIA CAPACITY (Gal./FL): 1/8" = 0.0016; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.016; 5/8" = 0.016;	WELL CAPACITY (C	Sallons Per Fo	ot): 0.75* = 0.0	32; 1° = 0.	.04;	1.25* = 0.06;	2" = 0,16	3" = 0.37;	4* = 0,6	:5; 5° =	= 1,02;	i"≓1,47;	12" =	5.86			*****************
SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING S	TUBING INSIDE DIA PURGING EQUIPMI	L CAPACITY (ENT CODES:	Gal./Ft.): 1/8" B = Bailer:	= 0,0006; 8P = 8k	3/16" = adder P	= 0.0014; 1000: FS	1/4* = 0.0026 3P = Electric	5; 5/16° = 0 Submersible I).004; 3 20mo:	/8" = 0.00)6; 1/2" distaltic Pur	= 0.010;	5/8" =	0,016	à	All 1.11. 111	
MARKED BY UPRILING AND LING (42) SAMPLER(S) SIGNATURE(S) (42) SAMPLER(S) (42) SAM							SAN	APLING DA	TA			1924	0 - 04104	topoon	·		
Import Tubing The off Construction of the operation of the ope	SAMPLED BY (PRINT) / A	FFILIATION:	n willio	14 (450)) Saripi	ER(S) SIGNATU	RE(B):					SAMPLING		D	SAMPLING	1112	,
PETH IN WELL (Incl.) 20 MATERIAL CODE: PE Fitablin Equipment Type: SAMPLE DOCONTAMINATION: PUMP Y N TUBING Y (N (replaced)) DUPLICATE: Y N SAMPLE DOCONTAMIERS MATCRA EXPERIENCE SAMPLE DOCONTAMIERS MATERIAL CODE VOLUME (mL) SAMPLE PRESERVATIVE TOTAL VOL METHOD DAVALYSIS AND/CR SAMPLE PRESERVATIVE USED OUTLOTE: Y N SAMPLE DOCONTAMIERS MATCRA EXAMPLE PLET PLANE PRE 150 m L USED Cach WP O 20 PE 150 m L WITH MULL (ML phi / Stand L code VOLUME (mL phi / Stand L code VOLUME (mL phi / Stand L code WITH MULL PRESERVATIVE VOLUME (mL phi / Stand L code VOLUME (mL phi / Stand L code VOLUME (ML	PUMP OR TUBING	40	<u> </u>	ECr	าบระเพ	G				FIELD	FILTERED	Y	~7	5	Fitter She	1116	1870
PRED DECONTINUER BPECIFICATION OUPLICATE: (Y) N SAMPLE DECONTINUER BPECIFICATION SAMPLE PULSE RVATION MEDIDACONTINUER BPECIFICATION NOTAL VOL METHOD NOTAL VOL METHODNOTAL VOL METHOD NOTAL VOL	DEPTH IN WELL (feel):	10		nu	MATER	INL CODE: PE				Ē	stration Equips	riant Type;					
SAME PORT AND A CONTAILERS MATERIAL CODE VOLUME (mL) PRESERVATIVE TOTAL VOL METHOD ANALYSIS AND/CR SAMELING EQUIPMENT (CDE PORT FLOW ANALYSIS AND/CR SAMELING (CHAIN ANALYSIS AND/CR SAMELI	SAM	FIELE LE CONTAINER &	PECIFICATION	UN: PUMP	<u> </u>	<u>∼></u>	TUBING	T N (replaced				OUPLICAT	E: (Y) N			AND 5 DI MAD
ADDED IN FIELD (mt) MEHAD CODE VOLUME (mt) USED ADDED IN FIELD (mt) FINAL pit (Stenard Units) MEHAD CODE pet minde) JWEND3 - 003 - 2 PE 150 m L ERA 537M APP 100 JWEN 03 - 020 - 2 PE 150 m L Image: Control of the control of	ONIO CULCON			101	β P	RESERVATIVE	1	TOTAL VOL	-			INTENDE	D ANALYSIS	AND/OR	SAMPLING EQU	IPMENT F	LOW RATE (ml.
WHO3-003- 2 PE 150mL EPA537M APP 100 WPO 020 2 PE 150mL PE 150mL PE 100 WPO 03-003- 2 PE 150mL PE 150mL PE 100 WPO 03-003- 2 PE 150mL PE 100 PE 100 WARKS: X Strong 4:8 from ground, pud dug out but not completed PE NARKS: X × 3tmpLE 5 AFTER 3 consecutive studie pArameters. ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyathylene; PP = Polypropylene; S = Silicone; T = Tellon; 0 = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristalike Pump; B = Baller; B = Baller; B = Baller; B = Cleadder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristalike Pump; SM = Straw Method (Tubing Gravity Drain); 0 = Other (Specify) Sublistand Criticale for Indee Graves Flow Peristalike Pump; Stabilization Criticale for Indee Graves Pump; Stabilization Criticale for Indee Graves Pump; Stabilization Criticale for Indee Graves Pump;	SANFLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME (mL)	1	USED	AD	DED IN FIELD (ml	L) F	HAL pH (Ste	enard Units)		MEHHOD		CODE		bet (ujurga)
WM-020 A FC Cach Crassing AFP 100 WPN 03: 003: 2 PE 150 mL PE 150 mL PE 100 WW-930 2 PE 150 mL PE 150 mL PE 1000 WW-930 2 PE 150 mL PE 150 mL PE 1000 # Casing 4:8 from ground, pud dug out but not completed PE Polycopylene; S = Silicone; T = Tellon; O = Other (Specify) MARKS: X X ShmpLE D AFTER 3 ConSecutive stable parameters. ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristalile Pump; B = Baller, BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Roverse Flow Peristalile Pump; S = ST = Straw Method (Tubing Grave Vorte) Teality Stabilization Critical for Image Gravetters of Stable readings	EWEN03-003-	2	0to	150mL	1		1						EDA 23344		100		
# Cusing 4:8 from ground, pud dug out but not completed # Cusing 4:8 from ground, pud dug out but not completed # Cusing 4:8 from ground, pud dug out but not completed MARKS: X + Strmple D AFTER 3 consecutive stable parameters. ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellor; O = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristalike Pump; B = Balar, BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristalike Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Stabilization critical for ing a consecutive readings	0W-020		10	each	<u> </u>		1								<u>даг р</u>		100
* Casing 4.8 from ground, pad dug out but not completed * Casing 4.8 from ground, pad dug out but not completed MARKE: ** StrapLE D AFTER 3 consecutive studie parameters. ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tetion; O = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristelike Pump; B = Balar, BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristelike Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Substrated criteria for range dynahelin of float three consecutive readings	6W-970	2	re	Chen	<u> </u>			\searrow	<u>a</u>								
* Casing 4.8 from ground, pud dug out but not completed * Casing 4.8 from ground, pud dug out but not completed MARKS: * StropLE D AFTER 3 consecutive studie parameters. ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristalike Pump; B = Ballar; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristalike Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Sublitation criteria (or range dynatetion of less three consecutive readings					<u> </u>			(1	~	~		ļ					
* Casing 4:8 from ground, pad dug out but not completed * Casing 4:8 from ground, pad dug out but not completed * MARKS: * Stample D AFTER 3 consecutive studie phrameters. ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polyepopylene; S = Silicone; T = Telion; O = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Ballar; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Stabilization Citicsia (or range of watelian of lies three consecutive readinus											\searrow						
A CLASING TIE Trom Greenne, pain aug out put not Completed MARKE: X # Strople D After 3 consecutive shule phrameters. ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyathylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristalike Pump; B = Balarer, BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristalike Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Sublination Critical for range of water bound in the consecutive readings	<u>م لا</u>	L	0 C		1			. 3 -		1.2	~	L	·				
ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Telion; O = Other (Specify) IMPLING EQUIPMENT CODES: APP = After Peristalike Pump; B = Balarer, BP = Bladder Pump; ESP = Electric Submicrisible Pump; RFPP = Reverse Flow Peristalike Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Stabilization Criticitie for range of wategion of less three consecutive readmust	л. 25 μарки, ΣУ	stang 4	D ACTO	ground	par	a ang o	ur pul	- nor C	onpic	ic of							
ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyathylene; PP = Polypropylene; S = Silicone; T = Telion; O = Other (Specify) MPLING EQUIPMENT CODES: APP = After Peristalik Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristalik Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Stabilization Criteria for range of variation of less three consecutive readmus		- TOP DE	9 PE161	- 20	u 1136	cutive	3 PUNC	puran	wher s.								
MMPLING EQUIPMENT CODES: APP = After Peristalitic Pump; B = Baller; B = Bladler; B = Bladler; <t< td=""><td>MATERIAL CODES</td><td>ΔG = λ·</td><td>nher Glacer d</td><td>CG = Clear (</td><td>line</td><td>DE - Del.</td><td>athulanar</td><td>BB a Column</td><td>pulaas:</td><td>0.00</td><td></td><td>atta</td><td>0 - 0*</td><td>- (D</td><td>:</td><td></td><td></td></t<>	MATERIAL CODES	ΔG = λ·	nher Glacer d	CG = Clear (line	DE - Del.	athulanar	BB a Column	pulaas:	0.00		atta	0 - 0*	- (D	:		
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) Stabilization Criteria for range of vertation of test three consecutive readinus	SAMPLING EQUIPN	ENT CODES	APP = Afte	er Perislailic	Pump;	B = Bail	er, 8P=	Bladder Pum	priester t pri ESP	= Silicor = Electric	ne; I≃1 cSubmers	ble Pamp	v = Oine	г (арвсі	Y)		
THE REAL PROPERTY AND A CONTRACT OF A DESCRIPTION OF A DE			RFPP = Re	erse Flow	Perista 5	lic Pump; Inbilization Crit	SM = Straw eria for renoe	Method (Tubi	ng Gravity st three cons	Drain); eculive re:	0 = Olh adinus	er (Speci	fy)				

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

1

SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

SL Project No:	10007 0000						
	11/2027.0003						
stallation:	FE WARREN						
ate:	9-1-17	and the second second	The state of the state				
ample Technician(s):	Asn willis / Ser	emy Klein / Tra	wis Cassella				
ation ID:	-EWRN01 - 004	, , , ,	소 그는 소프				
Cation Description:	sle Dr and Old	Glory Rd Intersec	ction				
pe(s) of Sample (cir	cle all that apply):	Sediment	Surface V	Vater		Groundw	ater
Sample Collected fro	m (circle one):	Channel/Ditch	Holding Po	ond/Lagoo	'n	Lake/Pone	d
		River/Stream	Trench			Other	
		SEDIMENT S	AMPLE				
Sample ID:	FEWRN01-004-5	D-001 Sampl	le Collection Time:	084	15		
Sample Depth:	0-0.5	Sed	liment Description:	Well sor	ked silkes	and	
Collection Method:	50000		Analysis/Method:		EPA	537M	
Sample Container	ZSOML		Preservative		NC	NE	
		SURFACE WATE	R SAMPLE				
Sample Container.	FEWRN01-00- 0-015	SURFACE WATE ۱- ۲ ک۵۰۰ Sampl	R SAMPLE	0 8 Co	45 11c Hore		
Sample Container. Sample ID: Sample Depth: Analysis/Method:	FEWRNO1-004 0-0,5 EPA 5371	SURFACE WATE	R SAMPLE le Collection Time: Collection Method: Sample Container:	03 Co 2 X	45 Псцок 150 м	L	
Sample Container. Sample ID: Sample Depth: Analysis/Method: Preservative:	FEWRNO1-004 0-0,5 EPA 5371 NONE	SURFACE WATE	R SAMPLE le Collection Time: Collection Method: Sample Container: Quality (circle one):	0 8 Co 2 X Clear	45 <u>11c Joe</u> 150 m Cloudy	<u>ь</u> Turbid	Other
Sample Container. Sample ID: Sample Depth: Analysis/Method: Preservative:	FEWRNOI - 004 0-0,5 EPA 5371 NONE	SURFACE WATE <u> SURFACE WATE</u> Sampl (M S Water Q GROUNDWATER SA	R SAMPLE le Collection Time: Collection Method: Sample Container: Quality (circle one):	0 7 Co 2 X Clear	45 <u>11c Jor</u> 150 m Cloudy	L Turbid	Other
Sample ID: Sample Depth: Analysis/Method: Preservative:	FEWRNOI - 004 0-0,5 EPA 5371 NONE	SURFACE WATE <u>(- 5 W - 60 /</u> Sampl (M S Water Q GROUNDWATER SA Sampl	R SAMPLE le Collection Time: Collection Method: Sample Container: Quality (circle one):	03 Co 2 X Clear	45 <u>11c Jor</u> <u>150 m</u> Cloudy	L Turbid	Other
Sample ID: Sample Depth: Analysis/Method: Preservative: Sample ID: Sample Depth:	FEWRN01-004 0-0,5 EPA 5371 NONE	SURFACE WATE Sampl Samp	R SAMPLE le Collection Time: Collection Method: Sample Container: Quality (circle one): MPLE (GRAB) Collection Time:	03 Co 2 X Clear	45 <u>110 Hore</u> <u>150 m</u> Cloudy	L Turbid	Other
Sample Container. Sample Depth: Analysis/Method: Preservative: Sample ID: Sample Depth: Analysis/Method:	FEWRNOI - 004 0-0,5 EPA 5371 NONE	SURFACE WATE Sampl	R SAMPLE le Collection Time: Collection Method: Sample Container: Quality (circle one): MPLE (GRAB) Collection Time: Collection Method: Sample Container:	03 Co 2 x Clear	45 <u>11c Jor</u> <u>150 m</u> Cloudy	L Turbid	Other

July 1/2-

SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

ASL Project No: nstallation:	M2027.0003					
nstallation:						
	FE WARREN					
Date:	8.29-17					
Sample Technician(s):	Ash willis / Trav	is Carsella /	Jereny Kleir	n		
Station ID: FEWRN	101-005					
_ocation Description:			1	1.		
650', 75 NE of	Missle Drive and	Old Glory Ro	ad intersection	n		
Type(s) of Sample (circ	le all that apply):	Sediment	Surface W	ater	Ground	lwater
Sample Collected from	n (circle one):	Channel/Ditch	Holding Por	nd/Lagoon	Lake/Po	ond
		River/Stream)	Trench		Other_	-
	FEWRALD ADD	SEDIMENT SA	MPLE			
Sample ID:	FEWRN01-005-51	>D-901 D-001 Sample	Collection Time:	1100		
Sample Depth:	0-0,5	Sedi	ment Description: 0	rganic a	gravelly silt	
Collection Method:	Spoon		Analysis/Method:	J ,	EPA 537M	
Sample Container:	2 × 250mL		Preservative:		NONE	
Sample ID: Sample Depth:	FEWRNOL-005-2 D-015	SW -901 SW -001 Sample	Collection Time: _ collection Method: _	(10 collec	0 tore	
Analysis/ivietnod:		Noter 0	ample Container:	4 A	Charden Tartis	011
Preservative:	NONE	vvater Q	uality (circle one)	Clear	Cloudy Turbic	d Other
	G	ROUNDWATER SA				
Sample ID:		Semple	Sollection Time:			
Sample Depth:		C	ollection Method:			
Analysis/Method:	EPA 537M	S	ample Container: _			
Preservative:	NONE	Water Q	uality (circle one):	Clear	Cloudy Turbic	Other
COMMENTS: PA	rent and Duplicite G	k both 5D a	ad SW			
G	PS					

9/4/17/22/18

50 100 150

200

SAMPLE COLLECTION LOG SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

Project Name:	Site Inspections of	AFFF Areas (USA	CE Omaha I	District)				
ASL Project No:	M2027.0003							
Installation:	FE WARREN							
Date:	9-1-17				-2-1			
Sample Technician(s):	Ashbuillis	Seremy Klab	ITICAL	S. Cassella				
Station ID:	FEILIRA 102-	DOS	7 / 18401	s cassella				_
Location Description:	TEWKI002-	003						
650' 30" NE 07	NE corner of	building 13:	37					
Type(s) of Sample (cir	cle all that apply): (Surface - Sedime	mt-®	Surface W	/ater		Groundw	ater
Sample Collected fro	m (circle one):	Channel/I	Ditch	Holding Po	nd/Lagoo	n	Lake/Pond	b
		River/Stream	m	Trench			Other	
	* (Surface Soil)-SEE			PLE				
Sample ID:	FEWRNO 2-00	5- 55-001	Sample C	ollection Time:	082	5		
Sample Depth:	0-015		Sedime	nt Description:	organ	ic claum	silt	
Collection Method:	Spoon		- An	alvsis/Method:	0.90	EPA	537M	
Sample Container:	250mL			Preservative		NO	NE	
						-		
		SURFAC	E WATER S	AMPLE				
Sample to:			Sample C	ollection Time:				
Sample Depth:			- Colle	ection Method:				
Analysis/Method:	EPA	537M_	- Sam	ple Container:				
Preservative:	NC	INE E	Water Qual	ty (circle one):	Clear	Cloudy	Turbid	Other
		GROUNDW	ATED SAMD	EVCPARI				
		GROUNDWA		LE (GRAD)				
Sample ID:			Sample C	ollection Time:				
Sample Depth:		- 10 C	Colle	ection Method		/		
Analysis/Method:		537M	_ Com Sam	ple Container:				
Preservative:	NC	NE	Water Qual	ty (circle one):	Clear	Cloudy	Turbid	Other
0.0000								1
CONIVIENTS: *	Ditch DRY-ch	anged 50/5W	to 53					
						0		
						()11	5	
						ANY.		
M2027.0003			E-31			1 9	14/17 5	/22/18

100

t

SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

and the second se	WIZUZ7.0003					
stallation:	FE WARREN					
ate:	8-29-17					
ample Technician(s):	Ach willis / Journey	klein				
ation ID: GEWIRN	102 - not	FICIN				-
ocation Description:	102-006					
50', NE of the NE	corner of Quilding 133	2				
/pe(s) of Sample (circ	le all that apply):	(Sediment)	Surface W	/ater	Groundw	ater
Sample Collected from	n (circle one):	Channel/Ditch	Holding Po	nd/l agoon	Lake/Pon	4
Sample Conceled nor	n (onoic one).	Charmen/Ditch		nu/Lagoon	Lakerron	u -
		River/Stream			Other	
	MSIMSI	SEDIMENTS	DAIVIPLE M	13/MSD	\geq	
Sample ID:	tEWRN02-006-5D-	ooi Samp	ole Collection Time:	1235		
Sample Depth:	0-0.5	Sec	diment Description:	organic s	:11-	
Collection Method:	Spoon	<u> </u>	Analysis/Method:		EPA 537M	
Sample Container:	3 x 250ml		Preservative:		NONE	
Sample ID:	MS/MSD FEWRN02-006- SN	SURFACE WATE	ER SAMPLE	M5/M50 1235	2	
Sample ID: Sample Depth:	MS/MSD FEWRN02-006-SM	SURFACE WATE روم کار Samp	ER SAMPLE	MS/MSD 1235	2	
Sample ID: Sample Depth: Analysis/Method:	MS/MSD FEWRN02-006-5M 0-015 EPA 537M	SURFACE WATE	ER SAMPLE Collection Time: _ Collection Method: _ Sample Container:	MS/MSD 1235 Collector 6×15	OmL	
Sample ID: Sample Depth: Analysis/Method: Preservative:	MS/MSD FEWRN02-006-5M 0-0.5 EPA 537M NONE	SURFACE WATE	ER SAMPLE Collection Time: _ Collection Method: _ Sample Container: _ Quality (circle one):	MS/MSD 1235 Collector 6×15 Clear Clo	omL budy Turbid	Other
Sample ID: Sample Depth: Analysis/Method: Preservative:	MS/MSD FEWRN02-006-5M 0-0.5 EPA 537M NONE	SURFACE WATE	ER SAMPLE ole Collection Time: _ Collection Method: _ Sample Container: _ Quality (circle one): AMPLE (GRAB)	MS/MSD 1235 Collector 6 × 15 Clear Clo	omL Dudy Turbid	Other
Sample ID: Sample Depth: Analysis/Method: Preservative:	MS/MSD FEWRN02-006-SM 0-0.5 EPA 537M NONE	SURFACE WATE	ER SAMPLE ole Collection Time: _ Collection Method: _ Sample Container: _ Quality (circle one): AMPLE (GRAB)	MS/MSD 1235 Collector 6 X 15 Clear Clo	omL oudy Turbid	Other
Sample ID: Sample Depth: Analysis/Method: Preservative: Sample ID:	MS/MSD FEWRN02-006-5M 0-0.5 EPA 537M NONE	SURFACE WATE	ER SAMPLE De Collection Time: _ Collection Method: _ Sample Container: _ Quality (circle one): AMPLE (GRAB) De Collection Time: _	M5/M50 1235 Collector 6 X 15 Clear Clo	omL Dudy Turbid	Other
Sample ID: Sample Depth: Analysis/Method: Preservative: Sample ID: Sample Depth:	MS/MSD FEWRN02-006-5M 0-0.5 EPA 537M NONE	SURFACE WATE	ER SAMPLE	MS/MSD 1235 Collector 6 X 15 Clear Clo	omL oudy Turbid	Other
Sample ID: Sample Depth: Analysis/Method: Preservative: Sample ID: Sample Depth: Analysis/Method: Preservative:	MS/MSD FEWRN02-006-5M O-0.5 EPA 537M NONE G EPA 537M NONE	SURFACE WATE	ER SAMPLE De Collection Time: Collection Method: Sample Container: Quality (circle one): AMPLE (GRAB) De Collection Time: Collection Method: Sample Container: Quality (circle one):	MS/MSD 1235 Collector GX 15 Clear Clo	omL budy Turbid	Other

John 9/45/2018

0-

100

200

Project Na	ame:										
ASL Proje	ect No:	M2027.0003						_			-
Installation	n:	FE WARREN	· · · · · ·					-			- C
Site:		AREA	1								-C.
Date:		9-2-1	1								-
Sample Te	echnician:	Ash Lil	lis / Tra	uis Ca	ssella	15	ic remu	Kleir	,		
Well ID No	o.:	FEWRN	01-001	MW	001	. / .	t	Field			1
		101010	0. OC	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	001						-
			In	itial Mea	asuren	nents					
Well Total	Depth: * 1	0.85	ft BTOC	Water Le	vel. ¥	11.8	8	ft BTOC			
WELL VO	LUME PURGE:	1 WELL VOLUN	E = (TOTAL	WELL DE	ЕРТН ВТ	FOC -	STATIC D	EPTH TC	WATER)	X WELL CAPACIT	1 N
(only fill ou	ut if applicable)	=	(20.35	Ft - 11.98	Ft) x C	0.163	gal/ft =	1.43	Gal		
Calculated	d Well Volume:	1.43	Gallons			Well Dia	ameter:	2.0)	inches	
		1			T						
0		an e	0.044		011 .11	1	100			0.050	
С	alculations:	1" diameter =	0.041 gal/ft We	ر Il Purgiء	2" diam	eter = 0. tivites	163 gal/ft	,	4" diamete	er = 0.653 gal/ft	
C Purging M	alculations: Iethod (pump type	1" diameter =	0.041 gal/ft We	(ell Purgi	ing Ac	eter = 0. tivites low rate (incl. units):	50	4" diamete	er = 0.653 gal/ft	
C Purging M Time	alculations: lethod (pump type Flow Rate (ml/min)	1" diameter =	0.041 gal/ft We Temp (°C)	Cond.	pH	eter = 0. tivites low rate (Depth to water (BTOC	163 gal/ft incl. units): DO (mg/l)	50 ORP	4" diamete 10 – 140 Total Gal Pumped	er = 0.653 gal/ft	
C Purging M Time	ialculations: Iethod (pump type Flow Rate (ml/min)	1" diameter =	0.041 gal/ft We Temp (°C)	Cond. (mS/Cm)	pH	eter = 0. tivites low rate (Depth to water (BTOC) 11.71	incl. units): DO (mg/l)	50	4" diamete D ー 140 Total Gal Pumped ドノみ	er = 0.653 gal/ft Dominin Comments DEVELOPMENT	- JJARTHAN
С Purging M Time 0745 0 75 0	flethod (pump type Flow Rate (ml/min) 5 ເວ ຽເວ	1" diameter =	0.041 gal/ft We Temp (°C) N/A I4.22	Cond. (mS/Cm) N /A (1029	2" diami ing Ac PH N/A 7,56	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 [3.W]	$\frac{163 \text{ gal/ft}}{\text{incl. units}}$ $\frac{\text{DO}}{(\text{mg/l})}$ $\frac{\text{N}/\text{A}}{\text{Q}.\text{F}\text{F}}$	0RP	4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 50 – 140 Total Gal Pumped 5//4 0.6 – 6 5//4 0.6 – 6 140 140 140 140 140 140 140 140	er = 0.653 gal/ft	-sthered
С Purging M Тіте 0746 0750 0 8/2	iethod (pump type Flow Rate (ml/min)	1" diameter =	0.041 gal/ft We Temp (°C) N/A I4.22 N /A	Cond. (mS/Cm) N/A (1029 N/A	pH N/A 7.56	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 13.64 54.64	163 gal/ft incl. units): DO (mg/l) N/A 0.88 5%/A	0RP N/A -458.6 N/A	4" diamete 0 - 140 Total Gal Pumped N/A 0.66 3.56	er = 0.653 gal/ft Dominin Comments DEVELOPMENT Stopped to	- SJARTED Surge
C Purging M Time 0746 0750 0812 0816	alculations: Tethod (pump type Flow Rate (ml/min) 5 ه ه 5 ه ه 5 ه ه 5 ه ه 14 هه	1" diameter = 1" dia	0.041 gal/ft We Temp (°C) N/A I4.22 N/A N/A	Cond. (mS/Cm) N/A (.029 N/A N/A N/A	рН N/A 7,56 N/A	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 13.64 (4.5	incl. units): DO (mg/l) N/A 0.88 5.7/A N/A	0RP 0RP -458.6 N/A N/A	4" diamete 0 - 140 Total Gal Pumped N/Jr 0.66 3.56 3.56	er = 0.653 gal/ft Dominin Comments DEVELOPMENT 5 topped to . Resummed for vel	-SJARTED Surge
C Purging M Time 0746 0750 0812 0816 0818	alculations: Tethod (pump type Flow Rate (ml/min) د ه ه د ه د ه د ه د ه د ه د ه د	1" diameter = 1" dia	0.041 gal/ft We Temp (°C) N/A I4.22 N /A I4.22 N /A I4.22	Cond. (mS/Cm) N/A (1029 N/A N/A N/A 1.003	рН N/A 7.56 N/A 7.69	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 13.64 14.5 15.6	incl. units): DO (mg/l) N/A 0.88 5N/A N/A 0.21	0RP 0RP N/A -458.6 N/A N/A -610.3	4" diamete 0 - 140 Total Gal Pumped N/JA 0.66 3.56 3.56 5.04	er = 0.653 gal/ft Dominin Comments DEVELOPMENT Stopped to . Resummed devel	- SJTARFED Surge spinal
C Purging M Time 0746 0750 0750 0750 0750 0716 0716 0716 0716	alculations: Tethod (pump type Flow Rate (ml/min) 5 ۰ ۰ 5 ۰ ۰ 14	1" diameter = $\frac{1" \text{ diameter =}}{Turbidity}$ $\frac{Turbidity}{(NTUs)}$ $\frac{N/A}{* \times OR}$ $\frac{N/A}{N/A}$ $\frac{N/A}{OR}$ OR	0.041 gal/ft We Temp (°C) N/A 14.22 N/A 14.22 N/A 13.98 13.98	Cond. (mS/Cm) N/A (.029 N/A N/A N/A 1.003 1.003	2" diami ing Ac PH N/A 7.56 N/A N/A 7.69 7.69	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 13.64 14.5 15.6	$\frac{163 \text{ gal/ft}}{163 \text{ gal/ft}}$ incl. units): $\frac{DO}{(mg/l)}$ $\frac{N/A}{0.83}$ $\frac{5N/A}{N/A}$ $\frac{N/A}{0.21}$ 0.21	0RP 0RP N/A -458.6 N/A N/A -610.3 -614.9	4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 4" diameter 5.748 5.748 5.748	er = 0.653 gal/ft Dominin Comments DEVELOPMENT 5 topped to . Resummed to rectan 5 low Pe charge.	- SJARTED Surge openal ge-due to
C Purging M Time 0745 0750 0750 0812 0812 0813 0820 0840	relations: rethod (pump type Flow Rate (ml/min) 500 500 1400 1400 1400 500	1" diameter = $\frac{1" \text{ diameter =}}{1" \text{ diameter =}}$ $\frac{1" \text{ diameter =}}{1" \text{ diameter =}}$	0.041 gal/ft We Temp (°C) N/A 14.22 N /A 14.22 N /A 13.98 13.98 N /A	Cond. (mS/Cm) N/A (.029 N/A 1.003 1.003 N/A	2" diami ing Ac PH N/A 7.56 N/A 7.69 7.69 7.69	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 13.64 15.6 15.6 15.6	$\frac{163 \text{ gal/ft}}{163 \text{ gal/ft}}$ incl. units): $\frac{DO}{(mg/l)}$ $\frac{N/A}{0.88}$ $\frac{N/A}{0.21}$ 0.21 $\frac{N/A}{N/A}$	0RP N/A -458.6 N/A -610.3 -614.9 N/A	4" diameter $Total Gal Pumped P/\mu0.663.565.785.785.78$	er = 0.653 gal/ft DO mil / min Comments DEVELOPMENT Stopped to . Resummed to rechar s low be charge. Resummed clevel	- SJARTED Surge spenal ge-due to opment
C Purging M Time 0746 0750 0812 0816 0818 0820 0840 0840 0840	Iethod (pump type Flow Rate (ml/min) 500 500 1400 1400 1400 500 500	1" diameter = 1" dia	0.041 gal/ft We Temp (°C) N/A I4.22 N/A I4.22 N/A I3.98 I3.98 N/A I3.98 N/A I4.00	Cond. (mS/Cm) N/A (.029 N/A N/A 1.003 1.003 N/A 1.003	рН рН N/А 7.56 N/А 7.69 7.69 7.69 7.69 7.69	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 13.64 (3.64 14.5 15.6 15.6 13.0 14.9	incl. units): DO (mg/l) N/A 0.88 5.7/A N/A 0.21 0.21 0.73 0.73 0.73	0RP 0RP -458.6 N/A -458.6 N/A -610.3 -614.9 N/A -627.3	4" diameter Total Gal Pumped $N/JR0.663.563.565.045.787.1.12$	er = 0.653 gal/ft DO milfmin Comments DEVELOPMENT Stopped to a Resummed to rectan s low De charge. Resummed devel	- SJARTED Sarge openane ge-due to opment
C Purging M Time 0746 0750 0812 0812 0816 0818 0820 0840 0840 0850	The formation is the f	1" diameter = $\frac{1" \text{ diameter }=}{1" \text{ diameter }=}$ $\frac{1" \text{ diameter }=}{1" \text{ diameter }=}$	0.041 gal/ft We Temp (°C) N/A 14.22 N/A 14.22 N/A 13.98 13.98 13.98 N/A 14.00 14.00 14.00	Cond. (mS/Cm) N/A 1.029 N/A N/A 1.003 1.003 N/A 1.059 1.084	рН N/A 7.56 N/A 7.69 7.69 7.69 7.69 7.72 7.94	eter = 0. tivites low rate (Depth to water (BTCO) 11.71 13.64 14.5 15.6 15.6 15.6 13.0 14.9 14.9	$\frac{163 \text{ gal/ft}}{163 \text{ gal/ft}}$ incl. units): $\frac{DO}{(mg/l)}$ $\frac{N/A}{0.88}$ $\frac{N/A}{0.21}$ $\frac{0.21}{0.21}$ $\frac{N/A}{0.83}$ $\frac{0.82}{0.82}$	0RP N/A -458.6 N/A -458.6 N/A -610.3 -614.9 N/A -627.3 -626.1	4" diameter $Total Gal Pumped N/J_{R}0.663.565.045.787.19.08$	er = 0.653 gal/ft DO milfnin Comments DEVELOPMENT 5 topped to . Resummed do vel Turned of to rechar s low the charge. Resummed de vel 5 topped to surg	- SJTARFED Surge spenare ge-due to opment e
C Purging M Time 0746 0750 0812 0816 0818 0820 0840 0820 0840 0850 0905	alculations: Tethod (pump type Flow Rate (ml/min) 500 500 1400 1400 1400 1400 500 500 500 500 500 500	1" diameter = $\frac{1" \text{ diameter =}}{1" \text{ diameter =}}$ $\frac{1" \text{ diameter =}}{1" \text{ diameter =}}$	0.041 gal/ft We Temp (°C) N/A I4.22 N/A I3.98 I3.98 I3.98 I3.98 I3.98 I3.98 I3.98 I3.98 I3.98 I3.98	Cond. (mS/Cm) N/A (1029 N/A 1.003 1.003 N/A 1.059 1.084 N/A 1.059	рН N/A 7.56 N/A 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69	eter = 0. tivites low rate (Depth to water (BTOC) 11.71 13.64 14.5 15.6 15.6 15.6 15.6 15.6 15.6 14.9 14.7 14.7 14.7 14.7	$\frac{163 \text{ gal/ft}}{163 \text{ gal/ft}}$ incl. units): $\frac{DO}{(mg/l)}$ $\frac{N/A}{0.88}$ $\frac{5N/A}{0.21}$ $\frac{N/A}{0.82}$ $\frac{0.82}{0.82}$	0RP 0RP -458.6 N/A -458.6 N/A -610.3 -614.9 N/A -627.3 -626.1 N/A	4" diameter D - 140 Total Gal Pumped P/JA 0.66 3.56 5.04 5.78 7.1 9.08 7.08 7.07	er = 0.653 gal/ft DO mil/min Comments DEVELOPMENT 5 topped to . Resummed devel Twrned of to rechar 5 low de to surg Resummed devel	- SJTARFED Surge openant ge-due to opment le

						-		-	
					1		$\{ i_i \} \in \{i_i\}$		
					/				
	_						\rightarrow		
Results At End Of Purging:	OR	14.14	1:090	7.63	14.33	0.22	-623.3	10.66	

COMMENTS: * Cusing 0.55 above ground surface 7.31 = 5 well volumes ** OR = over range 1918 Developed after pursing 10.66 by (> 5 well volumes)

9 5 5/22/18

ASL Proje		And the other states of the second								
the second se	ect No:	M2027.0003		_						
nstallatio	n:	FE WARREN	-			_	_			
Site:		Aren	-							
Date:		9/2/8	1017	10						1
Sample T	echnician:	Traves	Cass	ella	Ka	leb	Bru	mba	acay h	
Well ID N	o.:	FEWR	LNO1-	MU	VOC	50			J	
	201	200	In	itial Mea	asuren	nents	0	1		
	Depth: QUI			IVVater Le		100	OTATIO D	ft BIOC		
oply fill of		-	101AL	Et IDS		Jes	STATIC L	SC	ONATER)	X WELL CAPA
Contry the of	d Well Volume:	56	Gallons	FL-DE	TXC	Wall Di	$gal/\pi = 0$	22	Gal	inchos
Jaiculater		122	Galions	-		VVeli Dia	ameter.	A	Sec. 16.	inches
C	Calculations:	1" diameter =	0.041 gal/ft		2" diam	eter = 0.1	163 gal/ft		4" diamete	er = 0.653 gal/ft
Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	pН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
MOS	Inchible	Durge			-			-		~
40	600 ml	ORE	17.9	1.18	2.68	12.25	0.04	112.8	0.79	
					11000	a non albait				
420	600 ml	OR	16,3	1.17	7,71	12.51	1.04	65.1	2140	м.
420	Stop pu	OR mp to	16,3	1.17	7,71	12.51	1.04	65.1	2140	ж.
420	500 ml Stop pu Initide	OR mpto	16,3 5-10-22	1.17	7.71	12.51	1.04	65.1	2140	м:
420	Stop pu Initide	OR mpt= oR OR	16,3 5-79 14,8	1.14	7.71	12.51	1.04	52.2	2.40	
420 420 424 434 435	5top pus Initide 1000 mC	OR mpte onmp OR p. Sung	16,3 50 mge 14,8 e	1.17	7,71	12.51	1.04	52.2	2.04	
420 420 424 434 435 437 437	500 ml Stop Pu Initiate 1000 ml Stop Pum Initiate P	OR mpte or or p. Surg	16,3 5-19 14,8 2 14,9	1.17	7,71	12.51	1.04	52.2 31.7	2. 40 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.	
420 424 434 434 435 437 437	Stop Pu Initide Iooo mt Stop Pum Initide P 1000 ml SQD ml	OR mpte oR p. Surg oR oR oR	16,3 5-792 14,8 2 14,9 16,1	1.17	7.71	12.51	1.04 3.57 3.62	52.2 31.7 10.6	2.40 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5	
420 424 434 434 437 437 437 437 437	500 ml Stop Pus Initiste 1000 ml Stop Pum Initiste 1000 ml SQD ml SQD ml	OR mp to or OR or or or or or	16,3 5-79 14,8 2 14,9 16,1 15,8	1.17 1.14 1.15 1.18 1.18	7.71 7.67 7.94 7.94 8.04	12.51	1.04 3.57 3.57 3.01 3.01	52,2 31.7 10.6 -17.9	2.40 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5	00
420 420 424 432 432 432 432 437 437 437 437 437 457 502	500 ml Stop Pus Initide Iooo ml Stop Pum Initide P 1000 ml SOO ml SOO ml SOO ml	OR mp to or or or or or or or or or o	16,3 5-79 14,8 14,9 16,1 15,8 15,8	1.17 1.14 1.15 1.18 1.17 1.17	7.71 7.67 7.94 7.94 7.98 9.04 7.98	12.51	1.04 3.57 3.62 3.01 2.99	65.1 52.2 31.7 10.6 -17.9 -24.9	2140 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.	00
420 424 424 434 435 437 437 437 437 437 457 502	600 ml Stop Pus Initiate Iooo ml Stop Pum Initiate P 1000 ml Soo ml Soo ml	OR mpto OR OR OR OR OR OR	16,3 5-79 14,8 2 14,9 16,1 15,8 15,8	1.17 1.14 1.15 1.18 1.17 1.17	7.71 7.67 7.94 7.94 7.98	12.51	1.04	31.7 52.2 31.7 10.6 -17.9 -24.7	2140 5.04 5.04 5.04 7.68 8.34 7.68 8.34 9.66	<i>BB</i>
420 424 434 432 432 432 432 432 437 457 457 457	500 ml Stop Pus Initide 1 Stop Pum Initide P 1000 ml S00 ml S00 ml	OR mp to or or or or or or or or or o	16,3 5-12 14,8 2 14,9 16,1 15,8 15,8	1.17 1.14 1.15 1.18 1.17 1.17	7.71 7.67 7.94 7.94 7.98 7.98	12.51	1,04 3,57 3,67 3,07 3,07 2,99	52.2 31.7 10.6 -17.9 -24.9	2140 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.	BO
420 424 434 437 437 437 437 437 437 437 502	600 ml Stop Pus Initiate 1000 ml Stop Pum Initiate P 1000 ml SOD ml SOD ml	OR mp to p. Sung OR OR OR OR OR	16,3 5-79 14,8 2 14,9 16,1 15,8 15,8	1.17 1.14 1.15 1.18 1.17 1.17	7.71 7.94 7.94 7.94 7.94 7.98	12.51	1.04	52,2 31.7 10.6 -17.9 -24.9	2140 5.04 5.04 5.04 7.68 8.34 7.68 9.66	00
420 424 434 437 437 437 437 437 437 437 437	600 ml Stop Pus Initide 1 1000 ml Stop Pum Initide P 1000 ml SOD ml SOD ml SOD ml	OR mp to p. Surg OR OR OR OR OR	16,3 5-77 14,8 2 14,9 16,1 15,8 15,8	1.17 1.14 1.15 1.18 1.17 1.17 TO	7.71	12.51	1.04	52,2 31.7 10.6 -17.9 -24,9	2140 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.	00

7 3/21.18

ONG .66 25 mms

M2027.0003

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FE WARREN
Site:	AKEA I
Date:	8-29-17
Sample Technician:	Ash Willis / Travis Cassella
Well ID No.:	FEHRNOI - MW-070-5W-

E Initial Measurements

			indi mode	aronionic				
Well Total Depth: 2	5.13	ft BTOC	Water Leve	: 12.10		ft BTOC		
WELL VOLUME PURGE:	1 WELL VOL	UME = (TOTAL	WELL DEP	ТН ВТОС -	STATIC D	EPTH TO WAT	ER) X	WELL CAPACITY
(only fill out if applicable)	H.	(25.13	Ft - 12.10 F	t) x 0.653	gal/ft = 8	7, 51 Gal		
Calculated Well Volume:	8.51	Gallons		Well D)iameter:	4.0	incl	nes
Calculations:	1" diamete	er = 0.041 gal/ft	2	' diameter = 0).163 gal/ft	4" dia	meter =	0.653 gal/ft

Well Purging Activites

Purging Method (pump type): Mon Soon

Flow rate (incl. units): 800 - 2000 m1/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	pН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments	
0743	(BOOML)	Jut of range	12.06	1.288	7.19	12.7	6.86	544.3	0.63	Surged before J	arting
0810	800mL	out of range	12.24	1.251	7.24	13.86	5.12	601.4	6.33	1	1
0855		out of range	12.54	1.311	7.31	13.41	5.41	619,8	13,33		
0935		01 052.4	12.33	1.355	7.20	14. 22	4.80	642.3	21.78		
0959	1200	67.0	12.20	1.354	7.25	14.13	5.80	618.7	26.64		
1020	1200	16.6	12.20	1.365	7.18	14.49	5.18	652.8	33.3		
1025	1200	11.0	12.11	1.365	7.19	14.52	5.20	653.1	34.88		
1030	1500	8.98	12.09	1.364	7.19	14.47	5.20	653 5	36.46		
1035	1500	6.66	12.11	1.366	7.20	14.44	5.20	654.4	38.44		
1040	2000	6.25	12.12	1.366	7.20	14,45	5.20	654.5	40.42		
1045	2000	6.18	12.12	1.366	7.00	14.45	5.20	654.5	43.06		
-	1000 C			11.1	1.				<u></u>		
				7		L					
Sec. 1	4.5.5			AND							
1			(1				-			
1				[1			
		1. 10	1-		-		-			1	
Results A	At End Of Purging:	4.18	12.12	1.366	7.20	19.45	5.20	654.5	44.64		

* WELL Maybe has some type of purple dye. COMMENTS: Raying 0740 0843 stopped to surge Tourier to Etnesto Perez - 145 0855 Shinge parge asam Potassium permanganate From TCE plume clean up from the 0 956 Stopped to surge 0 958 Start purge again NE. 1048 pirge child, developed after 44.64 gol

flyn 9/5/5/22/18

Shipped to Surge U 956 Stopped to Surge

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FEWARREN
Site:	AREAI
Date:	8-28-17
Sample Technician:	Ash Willis / Travis Cassella
Well ID No.:	FEWRNOI-MW071

Initial Measurements

Well Total Depth:	25.49	ft BTOC	Water Level:	13.88	ft BTOC		
WELL VOLUME PURGE	: 1 WELL VOLU	JME = (TOTAL	L WELL DEPTH	BTOC - ST	ATIC DEPTH T	O WATER)	X WELL CAPACIT
(only fill out if applicable)	· · · · ·	(25.49	Ft - 13.88 Ft)	x 0.653 gal	/ft = 7.58	Gal	
Calculated Well Volume:	7158	Gallons		Well Diame	eter: 4.0	1	inches
Calculations:	1" diamete	r = 0.041 gal/ft	2" c	liameter = 0.163	gal/ft	4" diamete	er = 0.653 gal/ft

Well Purging Activites

Duraina Mathad	nume trach		
Purging Method	pump type).	MONJOON	

Flow rate (incl. units): ~ 700m1/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рН	Depth to water (BTOC)	DO (mg/l)	ORP	Total Gal Pumped	Comments	
1450	700ml/min	N/A	N/A	N/A	NA	13.88	N/A	N/A	NIA	Surged before stark	led
1455	700 ml/min	* OR	13.06	2.860	7.09	14.25	1.04	229.3	0.92	0	
1515		31.6	12.55	2.159	7.18	14.36	1.02	96.3	4.62	Surgel after this re	endi
1520		216	12.41	2.156	7.16	14.40	1.06	76.6	5.54		
1532		120	12.33	2.149	7.28	14.40	1.00	41.4	7.76	Sungel after this.	read
1536		OR	12.38	2.154	7.29	14.30	1.02	31.8	8.5		
1546		6.99	12.14	2.141	7.16	14.55	1.01	29.6	10.35		
1550		7.00	12.12	2.138	7.17	14.54	1.00	27.0	11.08		
1552	1	5.54	12.12	2.141	7-18	14.55	0.97	24.3	11.45		
			<u> </u>			5					
	у Х				C	Ray?	~				
							_		/		
Results	At End Of Purging:	5,54	12.12	2.141	7.18	14.55	0.97	24.3	11.45		

COMMENTS: Surged three times. Development ended after pursing 11.45god * 012 - out of range

9/55/20/18

SI AFFF MULTIPLE SITES
M2027.0003
FE WARREN
AREA 2
9-2-17
Ashwillis / Sereny Klein
FEWRNO2-002 MWODI

Ø

Initial Measurements

Well Total Depth: *2	9.87	ft BTOC	Water Level:	*17.00	н	ft BTOC		
WELL VOLUME PURGE:	1 WELL	VOLUME = (TOTAL	WELL DEPTH	BTOC -	STATIC	DEPTH TO	WATER)	X WELL CAPACIT
(only fill out if applicable)	H	(29.87	Ft -17.04 Ft)	x 0.163	gal/ft =	2.09	Gal	
Calculated Well Volume:	2.09	Gallons		Well Di	iameter:	2.	0	inches
Calculations:	1" diar	neter = 0.041 gal/ft	2"0	liameter = 0	.163 gal/f	D	4" diamete	er = 0.653 gal/ft

Well Purging Activites

Purging Method (pump type): _______

Flow rate (incl. units): _______ 700 - 1800 m1/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)) ^{pH}	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1030	700	NA	NA	N/A	N/A	16,68	NIA	NIA	NIA	Starled Develap
1036	700	** OR	13.69	1.076	8.09	20.10	1.66	-296.9	0.74	
1052	700	DR	14.65	1.062	7.28	20.67	0.30	-544.6	3.7	Storaped to surve
053	750	N/A	N/A	N/A	NA	19.04	N/A	N/A	3.7	Resurned develo
1115	750	OR	11.27	1,075	7.65	21.32	5.50 -	98.5	8.06	Stopped to ship
118	700	NIA	NIA	NIR	N/A	19.95	NA	NIA	8.06	Resummed develop
135	700	ÓR	11.47	\$0.757	7.66	20.93	5.78	- 80.4	11.2	
140	700	OR	11.49	0,750	7.65	\$0.96	5,95	- 73.1	12.12	Stopped to surg
1145	1800	NIA	N/A	N/A	N/A	18.65	NIA	NIA	12.12	Resame Develor
1150	1800	oe	11.02	0.754	7.65	23.20	5.81	-70.8	14.5	Developed
		-								
				\geq	AL					
				C	-		-	1.5		
-										
Results /	At End Of Purging:	OR	11.02	0.754	7.45	23.20	5.81	-70.7	14.5	

COMMENTS: * Casing is 0.88 above ground surface ** OR = overrange 10.46 = 5 well volume 1150 Developed after persing 14.5 gel (75mell volumes)

SI AFFF MULTIPLE SITES
M2027.0003
FEWARREN
AREA 2
8-31-17
Ash willis / Travis Caseella / Terens Klein
FEWRN02-002 MW 002

Initial Measurements

Well Total Depth: * 38	.60	ft BTOC	Water Level:	*17.04	1	ft BTOC				7
WELL VOLUME PURGE:	1 WELL	VOLUME = (TOTAL	WELL DEPTH	BTOC -	STATIC D	EPTH TO	WATER)	Х	WELL CAPAG	CIT
(only fill out if applicable)	=	(38.60	Ft - 17.04Ft)	x 0.163	gal/ft = 3	.51	Gal			
Calculated Well Volume:	3.51	Gallons		Well Di	ameter:	2.0	/t	inche	es	
Calculations:	1" dia	meter = 0.041 gal/ft	2" d	iameter = 0.	163 gal/ft	2	4" diamete	er = 0	.653 gal/ft	

Well Purging Activites

Purging Method (pump type): ____Monsoon

Flow rate (incl. units): 900 - 15,000 m 1/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Тетр (°С) (Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1820	15000	NIA	NIA	NIA	NIA	16.99	NA	NIA	NIA	Development star
330	1000	** OR	13.41	0.406	7.89	18.78	0.95	12.9	3.98	
836	1000	OR	13.05	0.403	7. 88	18.81	0.97	13.3	5.57	stopped to surge
838	900	N/A	N/A	NIA	NIA	17.70	N/A	N/A	5,57	Resumnel pursing
1343	900	OR	12.67	0.400	7.80	18.88	1,50	15.5	7.95	- J.
1858	900	OR	12.21	0.392	7.81	18.90	1.12	16.4	10.33	Stopped to surg
1859	1000	N/A	NIA	NIA	NIA	17.85	NIA	NIA	10.33	Resurned pursion
1909	10001200	OR	12.05	0.392	8.00	19.30	1.09	3.0	10.65	
1920	1600	OR	11.67	0.392	8.05	19.10	1.17	3.2	14.87	
928	1600	8500	11.58	0.382	9.10	19.15	1.11	-70.5	18.25	
		850								
					A					
						2	-			
1			1			1				
		1					~~~			
			1							1
Resulte		350	11.57	0.382	9.10	16.15	1.11	-70.5	17.15	

COMMENTS: * Casing 0.98 above ground surface 17,57 = Swell volumes ** OR: over range 1928 DEVELOPED WERK purging 18.25 gul (>5 well volume)

Mu v 592/18/1

Project Name:	SI AFFF MULTIPLE SITES						
ASL Project No:	M2027.0003						
Installation:	FE WARREN						
Site:	13 2						
Date:	8/31/17						
Sample Technician:	Klain / Ash Willis / Travis Cassella						
Well ID No.:	FEWRNOZ-MW003						

Initial Measurements

Calculations:	1" diamete	r = 0.041 gal/ft	(2" diameter = 0.163 gal/ft) 4" diameter = 0.653 gal/ft
Calculated Well Volume:	3.23	Gallons	Well Diameter: 2.0 inches
(only fill out if applicable)	E.	(35.13	Ft - 15.31Ft x 0.163 gal/ft = 3, 23 Gal
WELL VOLUME PURGE:	1 WELL VOL	JME = (TOTAL	L WELL DEPTH BTOC – STATIC DEPTH TO WATER) X WELL CAPACI
Well Total Depth: * ろら、	3	ft BTOC	Water Level: * 15,3 tt BTOC

Well Purging Activites

Purging Method (pump type):	Monsoon	Flow rate (incl. units):	400 -	2250	ml/m	in

	Time	Flow Rate	Turbidity	Temp	Cond.	рН	Depth to water	DO	ORP	Total Gal	Comments
		(mivmin)	(IN I US)	(°C)	((mS/Cm)	P .	(BTOC	(mg/l)		Pumped	
	1653	1500	N/A	N/A	N/A	NA	15,33	N/A	N/A	NA	Development Start
	1700	1500	KK OR	13.28	0.400	8.20	16.9	1.17	8.6	277	
10	1705	1500	OR	12.63	0.389	6.83	16.95	1.29	48.2	4,75	Stopped to surg
	1706	2250	NIA	NIA	N/A	N/A	15.79	N/A	N/A	4.75	Resummed purges
	1716	2250	OR	11.77	0,375	6.67	16.92	1.34	50.1	10.69	Shopped to surge
24	17190	1300	NIA	NIA	NIA	N/A	15.10	N/A	N/A	10.69	Resumed to purp
	1734	1300	OR	12.25	0.378	6.81	16.32	2.09	44.2	14.12	
	1737	400	OR	12.22	0.378	6.85	15.79	1.57	38.0	15.15	
	1747	400	OK	13.30	0.386	7.17	15.69	1.32	35.9	16.21	
	752	400	OR	13.17	0.385	7.22	15.75	1.32	34.5	16.74	
						A	D				
						15					
				1							
1	Results A	t End Of Purging:		13:15	0.385	7.21	15.75	1.32	34.2	16.74	

COMMENTS: * Clusing is 0.78 above ground surface • 16.15=5 well volumes *#OR = over range • Surged before intic purging 1752 DEVELOPED AFTER PHYSING 16.74 (> Swal volument)

Alu h 502/18/1

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FE WARREN
Site:	AREA Z
Date:	8-31-17
Sample Technician:	Ash Willis /Travis Cassella / Jeremy Klein
Well ID No.:	FENRNOZ-004 MWOO4
	(A)

Initial IV	easu	irem	ents
------------	------	------	------

Well Total Depth: 30.3	2	ft BTOC	Water Leve	1: 14.79		ft BTOC	- 10	
WELL VOLUME PURGE:	1 WELL VC	DLUME = (TOTAL	WELL DEP	ТН ВТОС -	STATIC D	EPTH TO WATE	R) X	WELL CAPACIT
(only fill out if applicable)		(30.32	Ft - 14.79 F	t) x 0.163	gal/ft =	2.53 Gal		
Calculated Well Volume:	2.53	Gallons		Well Di	ameter:	2.0	inch	nes
Calculations:	ter = 0.041 gal/ft	2	" diameter = 0.	163 gal/ft	4" dian	neter =	0.653 gal/ft	

Well Purging Activites

	Purging Me	ethod (pump type):	Monsoon			Flow rate (incl. units):		500-1200ml		Imin	
	Time	Flow Rate	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	> ^{pH}	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
0807	0758	950	NIA	NA	NIA	N/A	14.85	N/A	NIA	N/A	Start development
	0315		** OR	11.71	0.943	7.72	16.08	4.69	-298.8	2.01	
	0825	L	OR	10.61	0.938	7.54	16.09	5.54	237.4	4,51	Stopped to surge
	0826	1200	NIA	NIA	N/A	NIA	15.75	N/A	N/A	4.516	Officia developing
	0336		OR	10.45	0.937	7.52	16.20	5.89	-185.7	7.34	. 0
	0846	4	OR	10.40	0.936	7.52	16.26	6.09	-137.0	10.17	Stopped to surge
	0850	1000	KI/A	NA	NIA	NIA	15.90	N/A	NIA	10,17	Resummed tevelopi
	0900		OR	10.41	0.936	7.52	15.82	6.09.	- 89.2	12.81	Stopped to Surge
	0902	500	N/A	NIA	N/A	NIA	15.69	N/A	N/A	12.81	Resummed develops;
10	0907	500	OR	10.91	0.947	1.56	15.50	6.41	-142.1	13.47	
0412	04490	T	820	10.89	0.949	7.53	15.35	6.20	-124.8	14.13	Development finish
						()	1				
					4	290				1	
- 1	Regulte A	t End Of Purging:	37.0	11 20	0.949	7.52	15 35	1.75	121.2	1413	

COMMENTS: * Casing sheking out of ground a 0.7 kn/hz +* OR = Outor Range 17.66 = Swell volumes Developed after parsing 14,13q1 (> Swell volumes)

April 3/251/

WELL DEVELOPMENT LOG

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FE WARREN
Site:	AREA3
Date:	8-31-17
Sample Technician:	Ash Willis /Travis Cassella / Jeremy Klein
Well ID No .:	FENRNO3-OOL D MWOUL

Initial Measurements

Well Total Depth: * 🤰	5,37	ft BTOC	Water Level:	+11,58	ft BTOC		
WELL VOLUME PURGE:	1 WELL VOLU	JME = (TOTAL	WELL DEPTH	BTOC - ST	ATIC DEPTH T	O WATER)	X WELL CAPACIT
(only fill out if applicable)	=	(25.37	Ft - 11.58 Ft)	x 0.163 ga	1/ft = 2.25	Gal	
Calculated Well Volume:	2.25	Gallons	1.0	Well Diam	eter:	2	inches
Calculations:	1" diameter	= 0.041 gal/ft	(2")0	liameter = 0.16	3 gal/ft	4" diamete	r = 0.653 gal/ft

Well Purging Activites

Purging Method (pump type): ______ Monsoon

Flow rate (incl. units): 100 - 500 ml/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рH	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1226	100	N/A	NTA	NIA	NA	10.97	NIA	NA	N/A	Start Developmen
230	100	864	18.01	0,027	7.89	12.07	10.36	-88.6	0.16	
1300	100	127	18.07	1.428	7.68	13,57	7.80	-174.4	0.95	- Stopped to surge
1330	601	477	18.25	1.428	7.59	14.64	8.40	-189.9	1.74	Stopped to surge
1332	100	NX	NA	NA	NA	14.90	NA	NA	1.74	Resummed purge
1400	100	86.2	16.92	1.380	7.59	15.43	7.42	-193.3	2,53	0
1450	00	61.2	17.19	1.378	7.60	17.06	11.77	-161.3	3.85	Stopped to suns
1152	300	N/A	N/A	NIA	NA	17.31	N/A	N/A	3.85	Round purge
1525	300	260	16.89	1,377	7.58	18.65	6.70	-173,5	6.47	
535	500	89.5	16.15	1.348	7.53	19.98	7.69	-190.3	7.79	
1545	500	125	15.00	1,360	7.47	20.84	6.83	170.0	9.11	
1555	500	103	15.95	1.402	7.57	21.53	7.07	-159.9	10.43	
1605	500	70.8	16.51	1.401	7.60	22.12	6.93	-176.5	11.75	
						1.1.1		1.2.1.1		
					AL	6				
							-			
			1. 60	1.1.5	71		1.01			
Results A	At End Of Purging:	68.1	16:52	1.901	1.60	12.20	6.94	-116.6	11.15	

COMMENTS: * Casing 0.14 from ground surface pro one one, but not completed • 11.24 (Swell volumes) • Surgel well before starting DEVELOPED after purging 5 well voltames 1605

WELL DEVELOPMENT LOG

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FE WARREN
Site:	AREA 3
Date:	8-30-17
Sample Technician:	Ash Willis /Travis Cassella / Jeremy Klein
Well ID No.:	FEWRNO3-002-00

かいの 2 Initial Measurements

			1					-	
Well Total Depth: 25.4	8 *	ft BTOC	Water Level:	12.48	×	ft BTOC			
WELL VOLUME PURGE:	1 WELL VO	LUME = (TOTAL	WELL DEPTH	BTOC - S	TATIC	DEPTH T	O WATER)	Х	WELL CAPACIT
(only fill out if applicable)	=	(25.48	Ft - 12.49Ft)	x 0.163 g	al/ft =	2.12	Gal		
Calculated Well Volume:	2.12	Gallons		Well Dian	neter:	2.0		inch	es
Calculations:	1" diamet	er = 0.041 gal/ft	(2" d	iameter = 0.16	63 gal/f	\supset	4" diamete	er = C).653 gal/ft

Well Purging Activites

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments	
0706	250	N/A	NIA	NIA	NIA	12.50	NIA	NA	NIA	DEVELOPMENTS	STAN
0710	250	** OR	14.26	0,560	7.77	13.80	8.69	179.3	0.26		
0722	250	OR	14.80	0,500	7.92	15.56	8.35	133.8	1.08	Stopped purget	6 54
0723	250	NA	N/A	NA	NIA	15.0	N/A	NIA	1.08	Resummed pury	ina
0735	250	OR	15.22	0.547	7.97	16.21	8.07	92.1	1.94		. 0
0750	@250	277.3	15.784	0,557	8.05	17.84	8.32	18.8	2.92	San Sector Sector	
0805	1250	717.2	15.84	0.557	8.04	17.82	8.33	19.0	3.92	Stopped to sur	se
0806	150	NA	N/A	N/A	N/A	17.05	N/A	N/A	3.92	Resummed purs	inc
0833	150	172.0	16.76	0.596	8.07	18.73	7.09	-112.3	4,99		0
0850	100	304	16.48	0.578	7.91	20.56	7.64	- 85.5	5.66		
020	100	265	16.49	0,579	90.7	22.62	7.65	- 84.6	8.03		
			1	2							
			(1	1	-				1		
_						_					
		0.1						-	0.5		
Results	At End Of Purging:	265	16.49	0.579	7.90	22.62	7.65	- 84.6	8.03		

COMMENTS: * Casing at ground surface * * 012 = out of Range 1020 DEVELOPED after purging 8.03 gol

9/ 3+2/18

WELL DEVELOPMENT LOG

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FE WARREN
Site:	AREA 3
Date:	8-29-17
Sample Technician:	Ash willis / Jeremy Klein
Well ID No.:	FEWRN03-003 MW003

Initial Measurements

Well Total Depth: * 2	5.32	ft BTOC	Water Level:	+ 6.86		ft BTOC			
WELL VOLUME PURGE:	1 WELL V	OLUME = (TOTAL	WELL DEPTH	BTOC - ST	ATIC D	ЕРТН ТС	WATER)	Х	WELL CAPACIT
(only fill out if applicable)	=	(25.32	Ft - 6.86 Ft)	x 0.163 ga	al/ft =	3.00	Gal		
Calculated Well Volume:	3.06	Gallons		Well Diam	eter:	2.0		inche	S
Calculations:	1" diam	eter = 0.041 gal/ft	(2" d	iameter = 0.16	3 gal/ft	>	4" diamete	er = 0.	653 gal/ft

Well Purging Activites

Purging Method (pump type): _____Monsoon

Flow rate (incl. units): 200-500 ml/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mŚ/Cm)	> ^{pH}	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1436	200mL/min	N/A	N/A	NIR	N/A	6.80	NIA	N/A	NA	DEVELOPE STARTED
1510	200	540	17.18	1.026	7.91	16.13	3.60	315.0	1.79	Stopped to Surge
1511	200	N/A	N/A	N/A	7.00	7.01	N/A	NA	N/A	Resummed development
1540	500ml/min	XX DR	16.43	1.011	191	18.82	5.74	294.8	5.48	
1610	500	DR	17.07	1.035	7.87	22.78	4.00	225.2	9.44	
1637	500	OR	17.28	1.019	7.87	23.8	3.22	-293.2	13.0	Stopped to surce
1638	500	NIA	N/A	NJA	NIA	22.02	NIA	NJA	13.0	Resummed development
1806	500	OR	17.20	1.018	7.86	22.56	4.98	- 43.0	16.7	
1810	500	OR	17.15	0.976	7.82	23.2	5.37	-122.3	17.22	
1815	500	DR	17.00	0.996	7.86	23.15	5.63	-116.4	17.88	
1820	500	OR	16.78	1.005	7.90	23.62	6.11	-117.5	18.54	
1825	500	OR	16.97	1.007	7.89	23.82	6.19	-118.7	19.20	
				- (m					
									~	
Results A	At End Of Purging:	OR	16.97	1.007	7.89	23.82	6.19	-118.7		

COMMENTS: + Casing 0.42 below ground surface x + OR - out of range 15gull = 5 well volumes 1825 DEVELOPED DONE AFTER PURGING 19.20 (> 5 well volumes)

JAN 9|5\$12778

Appendix F

New Monitoring Wells Construction Details

AFFF Area	Well Identification	Northing (feet)	Easting (feet)	Top of Casing Elevation (feet)	Ground Surface Elevation (feet)	Total Boring Depth (feet bgs)	Approximate Depth Groundwater Encountered during Drilling (feet bgs)	Wellhead Completion Type	Total Well Depth (feet bgs)	Screen Interval (feet bgs)	Screen Length (feet)
Former	MW-070	234305.36	740558.92	6133.20	6132.20	N/A	N/A	Flushmount	24	9-24	15
FPTA 2	MW-071	234680.66	740832.08	6128.2	6127.80	N/A	N/A	Flushmount	24	9-24	15
(AFFF	FEWRN01-MW001	234401.78	740945.32	6128.62	6129.06	20	19.2	Flushmount	20	9.44-19.44	10
Area 1)	FEWRN01-MW002	234194.01	740625.92	6131.07	6131.49	21	17.0	Flushmount	21	10.05- 20.05	10
	FEWRN02-MW001	237253.64	736697.91	6151.97	6152.33	30	29.0	Flushmount	30	19.19- 29.19	10
Former FPTA 3	FEWRN02-MW002	237150.56	736736.63	6152.27	6152.76	40	32.0	Flushmount	37.5	26.97- 36.97	10
(AFFF Area 2)	FEWRN02-MW003	237304.25	736943.37	6147.12	6147.47	35	32.0	Flushmount	35	24.15- 34.15	10
	FEWRN02-MW004	237463.58	737010.80	6146.52	6147.00	30	14.0	Flushmount	30	19.07- 29.07	10
Building	FEWRN03-MW001	234716.19	738044.37	6154.46	6155.01	26.11	9.0	Flushmount	26.11	14.82- 24.82	10
1247– Base Fuels	FEWRN03-MW002	234763.09	738091.93	6154.59	6155.04	26	8.0	Flushmount	26	14.87- 24.87	10
(AFFF Area 3)	FEWRN03-MW003	234817.24	738063.07	6154.06	6154.58	35	9.0	Flushmount	26	15.45- 25.45	10
AFFF = aqueou	is film forming foam	bgs = below gr	ound surface		FPTA = fire p	protection training	ng area	N/A = not appli	cable		

Table F-1 F.E. Warren Air Force Base New and Existing Monitoring Well Construction Details

Table F-2 GPS Coordinates

N/A = n	ot applicable
---------	---------------

Sample Location	Northing	Easting
FEWRN-005-(SW&SD)-001	234825.59	741360.07
FEWRN02-006-(SW&SD)-001	234832.34	742101.89
FEWRN02-005-SS-001	237605.26	737196.77
FEWRN01-004-(SW SD)-001	237982.06	737019.68

M2027.0003

F-1

8/7/18

Appendix G Groundwater Level Measurements

Station ID	Top of Casing Elevation ¹	Depth to Water (ft btoc)	Groundwater Elevation (amsl) September 5, 2017
FEWRN01-MW001	6128.62	11.14	6117.48
FEWRN01-MW002	6131.07	9.63	6121.44
MW-070	6133.20	12.28	6120.92
MW-071	6128.20	13.99	6114.21
FEWRN02-MW001	6151.97	15.84	6136.13
FEWRN02-MW002	6152.27	15.63	6136.64
FEWRN02-MW003	6147.12	14.22	6132.90
FEWRN02-MW004	6146.52	13.78	6132.74
FEWRN03-MW001	6154.46	8.42	6146.04
FEWRN03-MW002	6154.59	9.44	6145.15
FEWRN03-MW003	6154.06	8.53	6145.53

Table G-1 F.E. Warren Air Force Base Groundwater Level Measurements

¹NAVD 1988

amsl = above mean sea level

btoc = below top of casing

ft = foot/feet

ID = identification

FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS AT F.E. WARREN AIR FORCE BASE WYOMING

Prepared for:

Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 Lackland AFB, Texas 78236-9853

Contract No. FA8903-08-D-8772 Task Order 0065 CDRL A001A

December 2015

FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS AT F.E. WARREN AIR FORCE BASE WYOMING

Prepared for:

Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 Lackland AFB, Texas 78236-9853

Contract No. FA8903-08-D-8772 Task Order 0065 CDRL A001A

Prepared by:

CH2M HILL 9311 San Pedro Avenue, Suite 800 San Antonio, Texas, 78216

December 2015

REPORT DOCUMENTATION PAGE				Form Approved		
				QMB No. 0704-0188		
Public reporting for this collecti	on of information is estimated to	average 1 hour per re	esnonse in	cluding the time for reviewing		
instruction, searching existing da	ta sources, gathering and maintain	ing the data needed, an	ia completi	ng and reviewing the collection		
of information. Send comments	regarding this burden estimate of	or any other aspect of	this colled	ction of information, including		
suggestions for reducing this bu	rden, to Washington Headquarter	s Services. Directorate	for Inform	nation Operations and Reports.		
1215 Jefferson Davis Highway	Suite 1024 Arlington VA 22202	1302 and to the Offic	e of Mana	gement and Budget Paperwork		
$\mathbf{D} = 1 + \mathbf{C} + \mathbf{D} = \mathbf{C} + (0.704 \text{ D} 0.199)$	M_{1}^{-1} , An ingloid, $VA 22202^{-1}$	-1502, and to the Office		gement and Budget, Taperwork		
Reduction Project (0/04B0188),	wasnington, DC 20503.					
1. AGENCY USE ONLY (Leave	e blank) 2. REPORT DATE		3. REPORT TYPE AND DATES			
, , , , , , , , , , , , , , , , , , ,	, i l		COVE	RED		
			0011			
	D 1 2010					
	December 2015)	FINAL			
4. TITLE AND SUBTITLE			5. FUND	ING NUMBERS		
Preliminary Assessment Penart f	for Perfluoringted Compounds at		Contract	No EA8003 08 D 8772		
Themininary Assessment Report I				NO. 1 NJ 0065		
F.E. Warren Air Force Base, Wy	oming		Delivery	Order No. 0065		
6 AUTHOR(S)						
0. AUTHOR(S)						
HydroGeoLogic, Inc.						
7. DEDEODMANCE ODCANIZATION NAMES(C) AND ADDDESS(C) 8. DEDEODMANCE			FORMANCE			
7. TERI ORMANCE ORGANIZATION NAMES(3) AND ADDRESS(3)			0. FERI			
			ORG	ANIZATION REPORT		
HydroGeoLogic, Inc.			NUM	IBER		
404 Fast Ramsey Road	Suite 210					
San Antonio Texas 78216			1 1 5 0 6 5			
San Antonio, Texas 782	San Antonio, Texas 78210					
9. SPONSORING/MONITORIN	G AGENCY NAME(S) AND AD	DRESS(S)	10. SPO1	NSORING/MONITORING		
			AGE	NCY REPORT NUMBER		
AECEC/EVEW			nol			
AFCEC/EAEW	AFCEC/EXEW					
2261 Hughes Avenue, Suite 155 A001A						
Lackland AFB, Texas 7	8236-9853					
11 CUDDI EMENITA DV NOTES	2					
11. SUPPLEMENTARY NOTES	5					
12a. DISTRIBUTION/AVAILA	12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE					
Unlimited						
13. ABSTRACT (Maximum 200	(words)					
This is a Preliminary Assessment	t Report of sites or locations at F.H	E. Warren Air Force Ba	ise where p	erfluorinated compounds may		
have been released to the enviror	ment through the use or discharge	e of aqueous film-form	ing foam.	÷ •		
14 SUBJECT TERMS						
		DER OF TAGES				
16. PRICE CODE			E CODE			
17 SECUDITY						
17. SECUKITY	10. SECUKITY	19. SECUKITY		20. LIMITATION OF		
CLASSIFICATION OF CLASSIFICATION OF ABSTRACT.		ABSTRACT.				
REPORT	THIS PAGE.	ABSTRACT				
Unclassified Unclassified Unclassified Unlimi		Unlimited				

TABLE OF CONTENTS

LIST	ГOF	ACRO	NYMS AND ABBREVIATIONS	v
1.0	INTRODUCTION			
	1.1	BACK	GROUND	1-1
	1.2	PURP	OSE AND OBJECTIVES	1-2
	1.3	BASE	WIDE ENVIRONMENTAL SETTING	1-2
		1.3.1	Geology	1-2
		1.3.2	Hydrogeologic Setting	1-3
		1.3.3	Hydrologic Setting	1-3
		1.3.4	Ecological Receptors	1-4
	1.4	REPO	RT ORGANIZATION	1-4
	1.5	PREL	IMINARY ASSESSMENT METHODS	1-4
2.0	FIR	E TRA	INING AREAS	2-1
	2.1	FORM	IER FPTA 1	2-1
		2.1.1	Description and Operational History	2-1
		2.1.2	Waste Characteristics	2-1
		2.1.3	Pathway and Environmental Hazard Assessment	2-1
			2.1.3.1 Groundwater Pathway and Targets	2-1
			2.1.3.2 Surface Water Pathway and Targets	2-1
			2.1.3.3 Soil and Air Exposure Pathways and Targets	2-1
	2.2	FORM	IER FPTA 2	2-1
		2.2.1	Description and Operational History	2-1
		2.2.2	Waste Characteristics	2-2
		2.2.3	Pathway and Environmental Hazard Assessment	2-2
			2.2.3.1 Groundwater Pathway and Targets	2-2
			2.2.3.2 Surface Water Pathway and Targets	2-3
	a a		2.2.3.3 Soil and Air Exposure Pathways and Targets	2-3
	2.3	FORM	IER FPIA 3	2-4
		2.3.1	Weste Characteristics	2-4
		2.3.2	Dethyson on d Environmental Hazand Assagement	2-4 2-4
		2.3.3	2.2.2.1 Crowndwater Dethway and Targeta	2-4 2-4
			2.3.3.1 Oloulidwater Fathway and Targets	2-4 2-4
			2.3.3.2 Suilace water Failway and Targets	2-4 2_4
•			2.5.5.5 Son and An Exposure Failways and Fargets	2-7
3.0		N-FIRE	, TRAINING AREAS	3-1
	3.1	FIKE :	Famor Eine Station (Duilding 1501)	3-1 2-1
		3.1.1	2 1 1 1 Decomination and Operational Ulisters	3-1 2 1
			3.1.1.1 Description and Operational History	3-1 2 1
			2.1.1.2 waste Unaracteristics	2-1 2-1
			5.1.1.5 ratilway and Environmental Hazard Assessment	3-1 2 1
			5.1.1.5.1 Oroundwater Failway and Targets	J-1

			3.1.1.3.2	Surface Water Pathway and Targets	
			3.1.1.3.3	Soil and Air Exposure Pathways and Targets	
	3.1.2	Fire Stat	ion 1 (Buil	ding 324)	
		3.1.2.1	Description	on and Operational History	3-1
		3.1.2.2	Waste Cha	aracteristics	3-2
		3.1.2.3	Pathway a	nd Environmental Hazard Assessment	
			3.1.2.3.1	Groundwater Pathway and Targets	
			3.1.2.3.2	Surface Water Pathway and Targets	
			3.1.2.3.3	Soil and Air Exposure Pathways and Targets	
	3.1.3	Fire Stat	ion 2 (Buil	ding 1250)	3-2
		3.1.3.1	Description	on and Operational History	3-2
		3.1.3.2	Waste Cha	aracteristics	3-3
		3.1.3.3	Pathway a	nd Environmental Hazard Assessment	3-3
			3.1.3.3.1	Groundwater Pathway and Targets	
			3.1.3.3.2	Surface Water Pathway and Targets	
			3.1.3.3.3	Soil and Air Exposure Pathways and Targets	
3.2	OTHE	R			
	3.2.1	Building	, 930 (Haza	rdous Waste)	
		3.2.1.1	Description	on and Operational History	3-3
		3.2.1.2	Waste Cha	aracteristics	
		3.2.1.3	Pathway a	nd Environmental Hazard Assessment	
			3.2.1.3.1	Groundwater Pathway and Targets	
			3.2.1.3.2	Surface Water Pathway and Targets	
			3.2.1.3.3	Soil and Air Exposure Pathways and Targets	
	3.2.2	Building	g 1240 (Tru	ck Maintenance)	3-4
		3.2.2.1	Description	on and Operational History	3-4
		3.2.2.2	Waste Cha	aracteristics	
		3.2.2.3	Pathway a	nd Environmental Hazard Assessment	
			3.2.2.3.1	Groundwater Pathway and Targets	3-4
			3.2.2.3.2	Surface Water Pathway and Targets	
			3.2.2.3.3	Soil and Air Exposure Pathways and Targets	
	3.2.3	Building	, 1247 (Bas	e Fuels)	3-4
		3.2.3.1	Description	on and Operational History	
		3.2.3.2	Waste Cha	aracteristics	
		3.2.3.3	Pathway a	nd Environmental Hazard Assessment	3-5
			3.2.3.3.1	Groundwater Pathway and Targets	
			3.2.3.3.2	Surface Water Pathway and Targets	
			3.2.3.3.3	Soil and Air Exposure Pathways and Targets	
	3.2.4	Building	; 1285 (Haz	rmart)	3-7
		3.2.4.1	Description	on and Operational History	3-7
		3.2.4.2	Waste Cha	aracteristics	
		3.2.4.3	Pathway a	nd Environmental Hazard Assessment	
			3.2.4.3.1	Groundwater Pathway and Targets	3-7
			3.2.4.3.2	Surface Water Pathway and Targets	
			3.2.4.3.3	Soil and Air Exposure Pathways and Targets	3-7

4.0	SUN	MMAR	Y AND C	CONCLUSIONS	
	4.1	SUM	MARY		
		4.1.1	Fire Tra	ining Areas	
			4.1.1.1	Fire Training Areas Closed Prior to 1970	
			4.1.1.2	Fire Training Areas Operational After 1970	
		4.1.2	Non-Fir	e Training Areas	
			4.1.2.1	Fire Stations	
			4.1.2.2	Other	
	4.2	CONC	CLUSION	S	
5.0	REI	FEREN	CES		5-1

LIST OF TABLES

Table 1.1	Fire Training Areas and Non-Fire Training Areas Identified for Potential AFFF Releases, F.E. Warren AFB, Wyoming	1-2
Table 4.1	Preliminary Assessment Report Summary and Findings, F.E. Warren AFB, Wyoming	4-2

LIST OF FIGURES

 Figure 1.1 All Identified Locations, F.E. Warren AFB, Wyoming Figure 2.1 Locations in the Eastern Portion of F.E. Warren AFB, Wyoming Figure 2.2 Former FPTA 3, F.E. Warren AFB, Wyoming Figure 3.1 Former Fire Station, F.E. Warren AFB, Wyoming Figure 3.2 Locations in the Central Portion of F.E. Warren AFB, Wyoming Figure 3.3 Building 930 (Hazardous Waste), F.E. Warren AFB, Wyoming 	,
--	---

LIST OF APPENDICES

Appendix A	Photo Documentation
------------	---------------------

- Appendix BField DocumentationAppendix CRecords of Communic Records of Communication

LIST OF ACRONYMS AND ABBREVIATIONS

AFB	Air Force Base
AFCEC	Air Force Civil Engineer Center
AFFF	aqueous film-forming foam
ANG	Air National Guard
Base	F.E. Warren Air Force Base
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
EDR	Environmental Data Resources, Inc.
FPTA	Fire Protection Training Area
FTA	Fire Training Area
HGL	HydroGeoLogic, Inc.
JP-4	jet propellant fuel number 4
JP-8	jet propellant fuel number 8
IRP	Installation Restoration Program
OWS	oil-water separator
PA	preliminary assessment
PFC	perfluorinated compound
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
RIV	Rapid Intervention Vehicle
SI	Site Inspection
USAF	U.S. Air Force
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service

FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS F.E. WARREN AIR FORCE BASE WYOMING

1.0 INTRODUCTION

The Air Force Civil Engineer Center (AFCEC) contracted with HydroGeoLogic, Inc. (HGL) and subcontractor CH2M HILL (the HGL Team) to perform preliminary assessment (PA) activities at multiple U.S. Air Force (Air Force or USAF) and Air National Guard (ANG) Fire Training Areas (FTAs) to determine probable environmental release of perfluorinated compounds (PFCs). Specifically, HGL is completing PA activities consistent with the U.S. Environmental Protection Agency (USEPA) Guidance for Preparing Preliminary Assessments under the Comprehensive Environmental releases of PFCs at 82 Air Force and ANG installations from FTAs and other known and suspected PFCs or aqueous film-forming foam (AFFF) usage or storage areas. The work is being performed by HGL and its team subcontractor, CH2M HILL, under the existing 4P Architecture and Engineering Contract, Contract Number FA8903-08-D-8772, Task Order 0065.

Under authority of CERCLA and the Superfund Amendments and Reauthorization Act of 1986, CH2M HILL conducted a PA visit at F.E. Warren Air Force Base (AFB) during the week of August 24, 2015. F.E. Warren AFB is an active Air Force installation in Laramie County, Wyoming. The location of F.E. Warren AFB and the locations identified on F.E. Warren AFB during this PA visit are shown on Figure 1.1.

1.1 BACKGROUND

PFCs are compounds used in the formulation of AFFF, which the Air Force has used in fire training exercises, suppressing aircraft and other vehicle fires, and in aircraft hangar fire suppression systems. Although PFCs are not regulated under CERCLA or the Resource Conservation and Recovery Act (RCRA), there is evidence that perfluorooctane sulfonate (PFOS) (and less so perfluorooctanoic acid [PFOA]) is a possible environmental contaminant following AFFF release. Both compounds may present potential, non-carcinogenic risks to human health and the environment (Chang et al., 2014; Porter, 2011; Rak and Vogel, 2009; USAF, 2012).

Several federal government documents confirm the initial use of AFFF by the Air Force beginning in 1970:

- Military Specification for AFFF (MIL-F-24385) formally issued in 1969
- General Accounting Office determination on sole source award protest to provide AFFF to the Navy in December 1969
- A History of USAF Fire Protection Training at Chanute Air Force Base, 1964-1976 (Coates, 1977)

Based on Air Force performance testing results on AFFF, the Air Force Director of Civil Engineering, M.G. Goddard, issued authorization in 1970 for the Air Force to procure AFFF. No usage within the Air Force is documented or suspected prior to 1970.

1.2 PURPOSE AND OBJECTIVES

The objective of this PA Report is to identify locations at F.E. Warren AFB where PFCs may have been released into the environment and to provide an initial assessment of possible migration pathways and receptors of potential contamination. In 1991, the Air Force began a program to replace existing non-engineered FTAs with new engineered FTAs that use propane fuel. At F.E. Warren AFB, an FTA is currently being constructed that will use propane.

This PA Report documents the known FTAs, as well as additional locations where AFFF may have been released into the environment at F.E. Warren AFB (Table 1.1). The purpose of the PA is to determine the potential environmental release of PFCs specifically from AFFF usage and storage. This PA Report differentiates locations that pose little or no potential threat to human health and the environment from locations that warrant further investigation.

AFFF Releases, F.E. Warren AFB, Wyoming
Fire Training Areas
Former Fire Protection Training Area (FPTA) 1
Former FPTA 2
Former FPTA 3
Non-Fire Training Areas
Fire Stations
Former Fire Station (Building 1501)
Fire Station 1 (Building 324)
Fire Station 2 (Building 1250)
Other
Building 930 (Hazardous Waste)
Building 1240 (Truck Maintenance)
Building 1247 (Base Fuels)
Building 1285 (Hazmart)

 Table 1.1

 Fire Training Areas and Non-Fire Training Areas Identified for Potential

 AFFF Releases, F.E. Warren AFB, Wyoming

1.3 BASEWIDE ENVIRONMENTAL SETTING

A detailed description of the geology, hydrogeology, and hydrology is presented in the Final Supplemental Preliminary Assessment Report (Parsons Engineering, 2003) and is summarized in the sections below. Ecological receptors listed below are presented in the Environmental Data Resources (EDR) report (EDR, 2015).

1.3.1 Geology

The majority of the region is underlain by tertiary units that are of sedimentary origin and generally consist of sand, gravel, clay, siltstone, and limestone. These units are overlain by Quaternary

sediments that include alluvial terrace and floodplain deposits. These sediments are generally unconsolidated and consist of lenticular beds of clay, silt, sand, gravel, and boulders.

Beneath the Base, the tertiary-age (late Miocene) Ogallala unit can be described as a heterogeneous mixture of sand and gravel beds, silt, clay, and thin limestone units. The beds are sometimes cemented by calcium carbonate. Lenses of sand and gravel are generally sporadic, but consistently occur from the surface to a depth of about 10 feet below ground surface (bgs) in the southwestern part of the Base. Below this depth, the predominant sediments are fine-grained, but sand and gravel still occur. The Ogallala is about 300 feet thick in the northern part of the Base, thinning to the south to approximately 30 feet in valleys where it has been deeply eroded.

1.3.2 Hydrogeologic Setting

The unconfined High Plains aquifer is the principal source for water supply wells in the area surrounding F.E. Warren AFB. Numerous wells near the Base are used for domestic and livestock water supply. Depth to the water table in this area is variable, being at the land surface near streams that act as discharge areas, and increasing in depth with distance from discharge areas. In the southern portion of the Base, the depth to the water table generally ranges from about 10 to 40 feet bgs. The direction of groundwater flow in the shallow aquifer zone is generally toward the discharge areas of Crow Creek, Diamond Creek, and the unnamed tributary to Crow Creek. Groundwater beneath the Base is recharged locally by some areal infiltration of precipitation despite the relatively dry climate. Groundwater is discharged via evapotranspiration in the riparian areas, flow into streams, and springs and seeps near the streams.

Drinking water at F.E. Warren AFB is obtained from the Cheyenne Public Utilities, which uses both groundwater and surface water sources. The City owns and operates about 35 groundwater wells located west and northwest of Cheyenne. The wells pump from the Ogallala and White River Aquifers. Surface water is collected from the Douglas Creek Drainage, located in the Snowy Range Mountains, about 75 miles west of Cheyenne. Surface water is also collected from the Crow Creek Drainage, located in the Pole Mountain/Vedauwoo area, about 30 miles west of Cheyenne (Board of Public Utilities, 2014). All drinking water sources used by the City of Cheyenne are located upstream or upgradient of the F.E. Warren watershed. No active or contingent drinking water wells are located on Base.

1.3.3 Hydrologic Setting

Surface water at the Base occurs as stream flow, seeps, and lakes. Stream flow results from groundwater discharge and from rainfall and snowmelt runoff. Crow Creek is the major perennial stream that drains southern areas of the Base. Overall, Crow Creek is a gaining stream (that is, receives groundwater discharge) through the Base area. Two tributaries to Crow Creek also drain the southern part of the Base: an unnamed tributary and Diamond Creek. The unnamed tributary is an interrupted stream, with alternating reaches that are perennial, intermittent, or ephemeral. Diamond Creek, the second largest stream on F.E. Warren AFB, is perennial along most of its length, with low flows maintained by groundwater discharge. The upper reach of Diamond Creek, covering the first 300 yards or so on the Base, is intermittent. Diamond Creek is also a gaining creek across the Base except in periods of loss during the warmer months of July through September. These stream discharge losses are likely due to evaporation. Seeps contribute to stream flows in Crow Creek and its unnamed tributary throughout the year.

1.3.4 Ecological Receptors

The following endangered species are known to inhabit Laramie County (EDR, 2015):

- Bald Eagle Bird
- Mountain Plover Bird
- Preble's Meadow Jumping Mouse Mammal
- Black-footed Ferret Mammal
- Colorado Butterfly Plant Plant

It is possible that these endangered species may be found within the boundaries of F.E. Warren AFB. Additionally, the Colorado Butterfly Plant Research Natural Area is located across the majority of the Base.

1.4 REPORT ORGANIZATION

This PA Report is organized as follows:

- Section 1.0, Introduction, provides a project overview and describes the methods used to conduct the PA.
- Section 2.0, Fire Training Areas, describes the FTAs identified during the PA visit.
- Section 3.0, Non-Fire Training Areas, describes the non-FTAs identified during the PA visit.
- Section 4.0, Summary and Conclusions, summarizes and provides conclusions for both FTAs and non-FTAs.
- Section 5.0, References, lists the references cited in this report.

In addition, the following support information is appended to this report:

- Appendix A, Photo Documentation
- Appendix B, Field Documentation
- Appendix C, Records of Communication

If a location's operational history indicates that AFFF was not used, then no pathway and environmental hazard assessments were completed for that particular location.

1.5 PRELIMINARY ASSESSMENT METHODS

This PA Report was prepared in accordance with the following guidance documents:

- CERCLA Guidance (USEPA, 1991)
- Interim Air Force Guidance (USAF, 2012)
- U.S. Fish and Wildlife Service (USFWS) Guidance (USFWS, 2015)

The performance of this PA included the following activities:

- Reviewing information and reports in the Administrative Record.
- Reviewing documents related to Air Force use of AFFF.

- Conducting a 1-day visit to F.E. Warren AFB.
- Conducting interviews with government personnel including the Water Program Manager; Fire Department staff (Fire Inspector, Health and Safety Officer, and Assistant Chief of Special Operations); Hazardous Waste staff; fuel technicians; and the Environmental Chief.
- Visiting and photographing locations where AFFF has been stored, released, or used.
- Performing an environmental data records search to document nearby populations and recording water supply well information and wetlands information.

FIGURE

2.0 FIRE TRAINING AREAS

2.1 FORMER FPTA 1

2.1.1 Description and Operational History

Former FPTA 1 (also known as IRP Site FT008) was an FTA located in the central part of the Base. Former FPTA 1 was located about 150 yards south of Crow Creek and was used from 1950 to 1965. Two bermed pits were located at the FPTA, and these pits ranged from approximately 150 to 300 feet in diameter. No fuel storage facilities were present. Waste oils, solvents, gasoline, jet propellant fuel number 4 (JP-4), and other combustible liquids were used in the training exercises. Training exercises were conducted three to four times per month, and an estimated 500 gallons of flammable liquids were used as extinguishing agents (U.S. Geological Survey, 1991). Activity at FPTA 1 ceased prior to the introduction of AFFF in 1970. This IRP site was remediated to address petroleum-hydrocarbon-contaminated soil. The geographical coordinates of former FPTA 1 are 41°8'50.72"N and 104°51'42.62"W. The location of former FPTA 1 is shown on Figures 1.1 and 2.1.

2.1.2 Waste Characteristics

Not applicable.

2.1.3 Pathway and Environmental Hazard Assessment

Not applicable.

2.1.3.1 Groundwater Pathway and Targets

Not applicable.

2.1.3.2 Surface Water Pathway and Targets

Not applicable.

2.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

2.2 FORMER FPTA 2

2.2.1 Description and Operational History

Former FPTA 2 (also known as IRP Site FT009) is located between Omaha and Missouri Avenues and between Third and Fourth Streets and is approximately 0.25 mile south of Crow Creek. FPTA 2 consisted of two unlined, bermed training pits that were used from 1965 to 1989. No retention ponds were present. Waste oils, solvents, hydraulic fluid, and other combustible liquids were used in training exercises until 1974. After 1974, only JP-4 was used in the training exercises.

No fuel storage facilities were at the site. Fire training exercises occurred twice per month, and 300 to 400 gallons of JP-4 were consumed per exercise. AFFF and water were used to extinguish fires from 1972 until the FPTA was closed in 1989 (U.S. Geological Survey, 1991). This site was considered to need no remedial action, as presented in the Final Record of Decision for Operable Unit 5 (USAF, 1994). The geographical coordinates are 41°8'34.40"N and 104°51'32.70"W. The location of former FPTA 2 is shown on Figures 1.1 and 2.1.

2.2.2 Waste Characteristics

An unknown amount of AFFF was used to extinguish flames during fire training activities at former FPTA 2. The burn pits were unlined, and water from the pits infiltrated soils and likely migrated to the uppermost, shallow groundwater.

2.2.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows 63 day care facilities (includes large day care operations and small in-home day care facilities); 2 nursing homes; 26 schools (includes public and private schools and academies); 89 hospitals, clinics, and doctor offices (includes outpatient surgery centers, home health care agencies, rehabilitation centers, pharmacies, and urgent care centers); and 2 colleges within the potential migration area of 4 miles from any given potential release location of PFCs. One elementary school, Freedom Elementary, is located on Base, and one elementary school, Pioneer Park Elementary, is located nearby but off Base. The closest elementary school is at least 0.5 mile south-southeast (hydrologically upgradient) of former FPTA 2. The on-Base child development center is located approximately 1 mile northeast (hydrologically upgradient) of former FPTA 2.

2.2.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeologic settings are provided in Section 1.3. Groundwater in this area generally flows northeast toward Crow Creek, which is located approximately 0.2 mile northeast of former FPTA 2. AFFF likely infiltrated soils at former FPTA 2 and entered the uppermost, shallow groundwater beneath the training area. Shallow groundwater in this area flows to the northeast and discharges into Crow Creek.

F.E. Warren AFB drinking water sources are all located more than 4 miles upgradient of the Base and do not support a complete drinking water exposure pathway. The fact that F.E. Warren AFB does not use the groundwater below the Base as a supply of drinking water would also render this drinking water exposure pathway incomplete for F.E. Warren AFB workers and residents. However, because of the relatively shallow depth to groundwater in some areas (approximately 12 feet bgs at former FPTA 2 [AECOM Technical Services, Inc., 2013]), excavation workers could be exposed to groundwater.

No public water supply or residential wells are located between this location and Crow Creek, where groundwater likely daylights (EDR, 2015).

2.2.3.2 <u>Surface Water Pathway and Targets</u>

The surface water drainage near former FPTA 2 flows northeast to Crow Creek. Crow Creek flows east and discharges off Base via Outfall OFF 1. Crow Creek discharges into Wyoming Hereford Ranch Reservoir Number 1 approximately 6 miles off Base. F.E. Warren AFB drinking water does not come from surface water sources located within the watershed of F.E. Warren AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water. Because runoff flows into nearby drainages, a complete exposure pathway for non-ingestion exposures exists, such as dermal exposure to humans. Ingestion by aquatic or other animals is also a potential pathway for ecological receptors.

A 100-year flood zone is along Crow Creek located north and northeast of former FPTA 2. The nearest waterbody is Crow Creek located approximately 0.2 mile northeast. Wetlands are also located along the banks of Crow Creek.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of former FPTA 2 (EDR, 2015; USFWS, 2015). Local waterways, particularly Lake Pearson, are used for recreational fishing (Wright, 2015, personal communication; Appendix C). However, Lake Pearson is not located downstream of former FPTA 2.

2.2.3.3 Soil and Air Exposure Pathways and Targets

AFFF was released to the soils during fire training activities. The training pits were both unlined. No residents or workers are present at former FPTA 2. The nearest residents are approximately 0.3 mile south of former FPTA 2. Workers are present approximately 0.1 mile to the west. The well-vegetated area surrounding former FPTA 2 would preclude any fugitive dust emissions and potential exposures. Current and planned land use does not involve potential human health exposure, and no intrusive work is currently planned that would allow for dermal soil exposures to utility or construction workers. The potential of exposure to burrowing animals, if present, would exist.

The population within 4 miles of the area is approximately 32,580. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Freedom Elementary School, located approximately 0.5 mile to south-southeast of former FPTA 2 (EDR, 2015). The nearest day care facility is the F.E. Warren AFB Child Development Center, located approximately 1 mile to the northeast.

The former FPTA 2 area is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. The Colorado Butterfly Plant Research Natural Area is located within the former FPTA 2 area.

2.3 FORMER FPTA 3

2.3.1 Description and Operational History

Former FPTA 3 is located in the northern portion of the Base and was opened in 1990. FPTA 3 was operated until approximately 2000. FPTA 3 consisted of an aircraft carcass in a polyethylenelined training pit and a polyethylene-lined retention pond. The training pit was connected to an oilwater separator (OWS), and water from the pit was piped to the retention pond. No outlet piping was present in the pond and it is presumed that the contents of the retention pond were left in place to evaporate. Jet propellant fuel number 8 (JP-8) was used as a fuel. FPTA 3 was shut down in 2000 because one of the liners beneath the training pit was found to be leaking; however, the leak did not extend beyond the second liner (Riedel, 2015, personal communication; Appendix C). Most of the recent training conducted at FPTA 3 was for structural training; therefore, AFFF was used only in a limited capacity (Kimble, 2015, personal communication; Appendix C).

Former FPTA 3 was decommissioned in 2007 (Riedel, 2015, personal communication; Appendix C) and a new FPTA being built at this location will use propane (Kimble, 2015, personal communication; Appendix). During the decommissioning, the retention pond was drained and the liner was removed. The pond was then backfilled with clean material. The site was then graded with 6 inches of topsoil and re-vegetated. In addition to removal of the retention pond, the OWS was removed, and inlet and outlet pipes on both sides of the OWS were capped and left in place (TolTest, 2008). Since this FPTA was decommissioned in 2007, no training using AFFF has occurred (Kimble, personal communication; Appendix C).

Because this system was contained, and both the pit and the pond were lined, AFFF is not likely to have impacted the surrounding environmental media. The geographic coordinates are 41°9'3.43"N and 104°52'26.32"W. The location of former FPTA 3 is shown on Figures 1.1 and 2.2.

2.3.2 Waste Characteristics

Not applicable.

2.3.3 Pathway and Environmental Hazard Assessment

Not applicable.

2.3.3.1 Groundwater Pathway and Targets

Not applicable.

2.3.3.2 Surface Water Pathway and Targets

Not applicable.

2.3.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

FIGURES

3.0 NON-FIRE TRAINING AREAS

3.1 FIRE STATIONS

3.1.1 Former Fire Station (Building 1501)

3.1.1.1 Description and Operational History

The former fire station (Building 1501) was located at the north end of the Base and was built in 1987 to support the Peacekeeper missile operations. This small two-bay fire station had two trucks. While AFFF was never used at the former fire station, it may have been stored in small quantities on the trucks (Riedel, 2015, personal communication; Appendix C). It is estimated that the former fire station was active until approximately 1998 (Watson, 2015, personal communication; Appendix C). No use, leaks, or spills of AFFF are known to have occurred (Riedel, 2015, personal communication; Appendix C). The geographical coordinates of the former fire station (Building 1501) are 41°10'8.77"N and 104°52'45.25"W. The location of the former fire station (Building 1501) is shown on Figures 1.1 and 3.1.

3.1.1.2 <u>Waste Characteristics</u>

Not applicable.

3.1.1.3 <u>Pathway and Environmental Hazard Assessment</u>

Not applicable.

3.1.1.3.1 Groundwater Pathway and Targets

Not applicable.

3.1.1.3.2 Surface Water Pathway and Targets

Not applicable.

3.1.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.1.2 Fire Station 1 (Building 324)

3.1.2.1 Description and Operational History

Fire Station 1 is located in Building 324, which was built in 1909 and currently serves as one of two fire stations on Base. The building originally served as a horse stable (Kimble, 2015, personal communication; Appendix C) but sometime prior to 1979, the building was converted to Fire Station 1 (Watson, 2015, personal communication; Appendix C). Fire Station 1 has two fire trucks, Engine 4 and Engine 8, that each holds 20 gallons of AFFF. The trucks are pump tested but not foam tested and, because the station does not have crash trucks, time and distance testing is not

required. No washing or refilling of trucks with AFFF occurs at Fire Station 1 (Kimble, 2015, personal communication; Appendix C). All use of AFFF for training is currently suspended as directed by the Air Force (Kimble, 2015, personal communication; Appendix C). AFFF use at Fire Station 1 is very limited, and no leaks or spills are known to have occurred here (Kimble, 2015, personal communication; Appendix C). Floor drains in Building 324 connect to the sanitary sewer that goes off Base to a publicly owned treatment works (Wright, 2015, personal communication; Appendix C). The geographical coordinates of Fire Station 1 (Building 324) are 41°9'1.20"N and 104°51'26.72"W. The location of Fire Station 1 (Building 324) is shown on Figures 1.1 and 2.1.

3.1.2.2 <u>Waste Characteristics</u>

Not applicable.

3.1.2.3 <u>Pathway and Environmental Hazard Assessment</u>

Not applicable.

3.1.2.3.1 Groundwater Pathway and Targets

Not applicable.

3.1.2.3.2 Surface Water Pathway and Targets

Not applicable.

3.1.2.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.1.3 Fire Station 2 (Building 1250)

3.1.3.1 Description and Operational History

Fire Station 2 (Building 1250) was built in 1941 and currently serves as one of two fire stations on Base. Fire Station 2 likely became active in the 1950s or 1960s when helicopter use began (Wright, 2015, personal communication; Appendix C). Fire Station 2 has three fire trucks, Engine 5 and Rapid Intervention Vehicles (RIVs) 1 and 2, each of which holds 60 to 70 gallons of AFFF. The trucks are pump tested but not foam tested. While the RIVs are capable of serving as crash trucks and carry AFFF, they are not used in for that purpose (Kimble, 2015, personal communication; Appendix C). The trucks are refilled with AFFF inside Fire Station 2 using 5-gallon buckets that are stored onsite (Kimble, 2015, personal communication; Appendix C). Floor drains in Building 1250 discharge to an OWS that connects to the sanitary sewer (Watson, 2015, personal communication; Appendix C). AFFF use at Fire Station 2 is very limited, and no leaks or spills are known to have occurred here (Kimble, 2015, personal communication; Appendix C). The station 2 (Building 1250) are 41°9'1.20"N and 104°51'26.72"W. The location of Fire Station 2 (Building 1250) is shown on Figures 1.1 and 3.2.

3.1.3.2 <u>Waste Characteristics</u>

Not applicable.

3.1.3.3 Pathway and Environmental Hazard Assessment

Not applicable.

3.1.3.3.1 Groundwater Pathway and Targets

Not applicable.

3.1.3.3.2 Surface Water Pathway and Targets

Not applicable.

3.1.3.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.2 OTHER

3.2.1 Building 930 (Hazardous Waste)

3.2.1.1 Description and Operational History

Building 930, built in 1993, serves as the hazardous waste storage building. Waste AFFF has periodically been stored at this building until transport and final disposal off Base. Records from January 13, 2005, show that four 55-gallon drums of AFFF were submitted to the hazardous waste storage facility by the fire department for off-Base disposal. However, no leaks or spills of AFFF geographical coordinates of Building 930 (Hazardous Waste) are 41°7'59.88"N and 104°52'11.12"W. The location of Building 930 (Hazardous Waste) is shown on Figures 1.1 and 3.3.

3.2.1.2 <u>Waste Characteristics</u>

Not applicable.

3.2.1.3 <u>Pathway and Environmental Hazard Assessment</u>

Not applicable.

3.2.1.3.1 Groundwater Pathway and Targets

Not applicable.

3.2.1.3.2 Surface Water Pathway and Targets

Not applicable.

3.2.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.2.2 Building 1240 (Truck Maintenance)

3.2.2.1 Description and Operational History

Building 1240, built in 1995, serves as the truck maintenance facility. Building 1240 formerly had an AFFF system that was replaced with a water suppression system in 2012. No additional information is known about the former AFFF system; however, no known system discharges, leaks or spills are known to have occurred (Watson, 2015, personal communication; Appendix C). Building 1240 is connected to a polyethylene-lined containment pond located between Buildings 1240 and 1247, and if spills occur, they can be diverted to this pond as necessary (McKinley, 2015, personal communication; Appendix C). The pond liner was replaced with a new polyethylene liner in approximately 2013 (Watson, 2015, personal communication; Appendix C). In the past, the pond has filled with water and been pumped out to the nearby grassy areas, but this has been done only when the pond fills with rainwater (Watson, 2015, personal communication; Appendix C). The geographical coordinates of Building 1240 (Truck Maintenance) are 41°8'37.86"N and 104°52'8.10"W. Building 1240 (Truck Maintenance) is shown on Figures 1.1 and 3.2.

3.2.2.2 <u>Waste Characteristics</u>

Not applicable.

3.2.2.3 <u>Pathway and Environmental Hazard Assessment</u>

Not applicable.

3.2.2.3.1 Groundwater Pathway and Targets

Not applicable.

3.2.2.3.2 Surface Water Pathway and Targets

Not applicable.

3.2.2.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.2.3 Building 1247 (Base Fuels)

3.2.3.1 Description and Operational History

Building 1247 (Base Fuels) was built in 1995 and has an active AFFF system with overhead lines. The AFFF tank size is unknown, but it is estimated it to be 200 to 300 gallons (Shafer, 2015, personal communication; Appendix C). Building 1247 is connected to a polyethylene-lined containment pond located between Buildings 1240 and 1247, and spills can be diverted to this

pond as necessary (McKinley, 2015, personal communication; Appendix C). The pond liner was replaced with a new polyethylene liner in approximately 2013 (Watson, 2015, personal communication; Appendix C). In the past, the pond has filled with water and been pumped out to the nearby grassy areas, but this has been done only when the pond fills with rainwater (Watson, 2015, personal communication; Appendix C).

An AFFF leak occurred in the bay of Building 1247 when a pipe in the fire suppression system froze and broke; however, the year of the leak is not known. All AFFF was contained inside the hangar (Shafer, 2015, personal communication; Appendix C). Floor drains in this building discharge to an OWS and then to the sanitary sewer (which flows to a publicly owned treatment works) unless manually diverted to the containment pond (Wright, 2015, personal communication; Appendix C). It is not clear if the valve to the containment pond was opened during the spill; however, the AFFF either entered the OWS (which flows to the sanitary sewer) or the containment pond (where it would have been left to evaporate). The geographical coordinates of Building 1247 (Base Fuels) are 41°8'36.36"N and 104°52'12.08"W. The location of Building 1247 (Base Fuels) is shown on Figures 1.1 and 3.2.

3.2.3.2 <u>Waste Characteristics</u>

If AFFF was diverted to the containment pond during the AFFF leak, AFFF may have been released when the pond filled with rainwater and was pumped out and released to nearby grassy areas.

3.2.3.3 <u>Pathway and Environmental Hazard Assessment</u>

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows 63 day care facilities (includes large day care operations and small in-home day care facilities); 2 nursing homes; 26 schools (includes public and private schools and academies); 89 hospitals, clinics, and doctor offices (includes outpatient surgery centers, home health care agencies, rehabilitation centers, pharmacies, and urgent care centers); and 2 colleges within the potential migration area of 4 miles from any given potential release location of PFCs. One elementary school, Freedom Elementary, is located on Base, and one elementary school, Pioneer Park Elementary, is located nearby but off Base. The closest elementary school is at least 1 mile southeast (hydrologically upgradient) of Building 1247. The on-Base child development center is located approximately 1.5 miles northeast (hydrologically upgradient) of Building 1247.

3.2.3.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeologic settings are provided in Section 1.3. Groundwater in this area generally flows northeast toward Crow Creek, which is located approximately 0.7 mile northeast of Building 1247. If AFFF was contained in the rainwater that was released to surrounding grassy areas, it likely infiltrated soils and entered the uppermost, shallow groundwater beneath the area. Shallow groundwater in this area flows to the northeast and discharges into Crow Creek.

F.E. Warren AFB drinking water sources are all located more than 4 miles upgradient of the Base and do not support a complete drinking water exposure pathway. The fact that F.E. Warren AFB does not use the groundwater below the Base as a supply of drinking water would also render this drinking water exposure pathway incomplete for F.E. Warren AFB workers and residents. Because of the depth to groundwater in this area (approximately 18 feet bgs [AECOM Technical Services, Inc., 2013]), excavation workers would not be exposed to groundwater.

No public water supply or residential wells are located between this location and Crow Creek, where groundwater likely daylights (EDR, 2015).

3.2.3.3.2 Surface Water Pathway and Targets

The surface water drainage near Building 1247 flows northeast to Crow Creek. Crow Creek flows east and discharges off Base via Outfall OFF 1. Crow Creek discharges into Wyoming Hereford Ranch Reservoir Number 1 approximately 6 miles off Base. F.E. Warren AFB drinking water does not come from surface water sources located within the watershed of F.E. Warren AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water. Because runoff flows into nearby drainages, a complete exposure pathway for non-ingestion exposures exists, such as dermal exposure to humans. Ingestion by aquatic or other animals is also a potential pathway for ecological receptors.

A 100-year flood zone is along Crow Creek located north and northeast of Building 1247. The nearest waterbody is Crow Creek located approximately 0.4 mile north-northeast. Wetlands are also located along the banks of Crow Creek.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of Building 1247 (EDR, 2015; USFWS, 2015). Local waterways, particularly Lake Pearson, are used for recreational fishing (Wright, 2015, personal communication; Appendix C). However, Lake Pearson is not located downstream of Building 1247.

3.2.3.3.3 Soil and Air Exposure Pathways and Targets

AFFF may have been released to the soils during removal of rainwater from the containment pond. Workers are present in Building 1247. The nearest residents are approximately 0.7 mile southsoutheast of Building 1247. The well-vegetated and/or paved area surrounding Building 1247 and the containment pond would preclude any fugitive dust emissions and potential exposures. Current and planned land use does not involve potential human health exposure, and no intrusive work is currently planned that would allow for dermal soil exposures to utility or construction workers. The potential of exposure to burrowing animals, if present, would exist. The population within 4 miles of the area is approximately 32,580. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Freedom Elementary School, located approximately 1 mile southeast of Building 1247 (EDR, 2015). The nearest day care facility is the F.E. Warren AFB Child Development Center, located approximately 1.5 miles to the northeast.

The Building 1247 area is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. The Colorado Butterfly Plant Research Natural Area is located within the former Building 1247 area.

3.2.4 Building 1285 (Hazmart)

3.2.4.1 Description and Operational History

Building 1285, built in 1995, serves as the Base Hazmart. AFFF is stored here for distribution as needed on base. During the PA visit to Building 1285, thirty-nine 55-gallon drums of AFFF were being stored at the location. Building 1285 has a temporary berm inside the building but no floor drains. All AFFF is stored with secondary containment. If a spill occurs, it would be cleaned up by a contractor (Wright, 2015, personal communication; Appendix C). However, no leaks or spills are known to have occurred here (McKinley, 2015, personal communication; Appendix C). The approximate geographical coordinates of Building 1285 (Hazmart) are 41°8'48.78"N and 104°52'4.58"W. The location of Building 1285 (Hazmart) is shown on Figures 1.1 and 3.2.

3.2.4.2 <u>Waste Characteristics</u>

Not applicable.

3.2.4.3 <u>Pathway and Environmental Hazard Assessment</u>

Not applicable.

3.2.4.3.1 Groundwater Pathway and Targets

Not applicable.

3.2.4.3.2 Surface Water Pathway and Targets

Not applicable.

3.2.4.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

FIGURES

4.0 SUMMARY AND CONCLUSIONS

The following sections summarize the findings of the PA for AFFF on F.E. Warren AFB and provide conclusions based on those findings.

4.1 SUMMARY

4.1.1 Fire Training Areas

4.1.1.1 Fire Training Areas Closed Prior to 1970

FTAs that were closed prior to 1970 would not have had AFFF applied for firefighting and are not considered to have been impacted by PFOA or PFOS from AFFF use. Former FPTA 1 was closed prior to 1970.

4.1.1.2 Fire Training Areas Operational After 1970

Former FPTA 2 was used from 1965 until 1989. Former FPTA 3 was used from 1990 to 2000. Former FPTA 2 was unlined and could contain PFOA- and PFOS-impacted media. Therefore, contaminants could be present in soils and in groundwater underlying this location. Former FPTA 3 was a contained system with a lined pit and retention pond. Environmental media are not thought to have been impacted by fire training activities at former FPTA 3.

4.1.2 Non-Fire Training Areas

4.1.2.1 <u>Fire Stations</u>

F.E. Warren AFB currently has two fire stations on Base, Fire Station 1 (Building 324) and Fire Station 2 (Building 1250). Additionally, one former fire station exists (Building 1501). No operational activities at any of these fire stations are thought to have resulted in PFOA- or PFOS-impacted media.

4.1.2.2 <u>Other</u>

Other identified buildings are Building 930, where hazardous waste is held for off-Base disposal; Building 1240, where an AFFF system previously existed; Building 1247, where an AFFF system currently exists; and Building 1285, where AFFF is stored. No leaks or spills are known to have occurred in Buildings 930 and 1240, and they are not likely to have media impacted by PFOA and PFOS. A release of AFFF from the pipes in Building 1247 may have been released to the containment pond, which on occasion was pumped out when it filled with rainwater and released to the surrounding grassy areas. Nearby media may have been impacted by PFOA and PFOS.

4.2 CONCLUSIONS

Table 4.1 summarizes the findings from this PA Report and presents possible future location management decisions. The identified locations are categorized by group as follows:

• Group 1 – High mass of AFFF released and probability of groundwater contamination.

- Group 2 Unknown mass or medium mass of AFFF released.
- Group 3 Low mass of AFFF released.
- Group 4 No AFFF released.

Based on the group designation and rationale for each location, recommendations are provided in Table 4.1. In accordance with the USEPA CERCLA PA and Site Inspection (SI) guidance documents (USEPA 1991; USEPA 1992), each identified location is recommended for one of the following actions: Implement removal action due to imminent threat; Close out due to no release; Initiate a Remedial Investigation (RI); or Initiate an SI.

- Removal actions, as defined in CERCLA Section 104, are actions taken to eliminate, control, or otherwise mitigate a threat posed to public health or the environment due to a release or threatened release of hazardous substances (USEPA, 1991).
- Close out or no further remedial action planned is defined as a disposition decision that further response under the federal Superfund is not necessary (USEPA, 1991).
- RI is defined as a field investigation to characterize the nature and extent of contamination at a location. The RI supports development, evaluation, and selection of the appropriate response alternative (USEPA, 1991).
- SI is defined as an investigation to collect and analyze waste and environmental samples to support an evaluation (USEPA, 1992).

Locations	Group	Rationale	Recommendations
Former FPTA 1	Group 4	Pre-1970.AFFF not used.	Close out with no additional investigation.
Former FPTA 2	Group 1	 AFFF used to extinguish fires. Training pit unlined. Unknown quantity of AFFF used but likely significant due to years of operation. 	Initiate SI.
Former FPTA 3	Group 4	 AFFF used to extinguish fires. Contained system with lined training pit and retention pond that is not known to have released AFFF to the environment. 	Close out with no additional investigation.
Former Fire Station (Building 1501)	Group 4	 Small two-bay station with only two trucks. AFFF was not used at this station, although it may have been stored in small quantities on the trucks. No known leaks or spills. 	Close out with no additional investigation.

Table 4.1Preliminary Assessment Report Summary and FindingsF.E. Warren Air Force Base, Wyoming

Locations	Group	Rationale	Recommendations
Fire Station 1 (Building 324)	Group 4	 No washing or refilling of trucks with AFFF occurs at this station. Trucks are pump tested but not foam tested. No storage of AFFF. No known leaks or spills have occurred. 	Close out with no additional investigation.
Fire Station 2 (Building 1250)	Group 4	 Trucks are filled using 5-gallon buckets inside the bays, and the floor drains flow to an OWS and then to the sanitary sewer to an off-Base treatment plant. Trucks are pump tested but not foam tested. AFFF use at this station is very limited. No known leaks or spills have occurred. 	Close out with no additional investigation.
Building 930 (Hazardous Waste)	Group 4	AFFF stored until final disposal off Base.No known leaks or spills.	Close out with no additional investigation.
Building 1240 (Truck Maintenance)	Group 4	 Former AFFF system from 1995 to 2012. No known AFFF system discharges occurred. 	Close out with no additional investigation.
Building 1247 (Base Fuels)	Group 3	 Has AFFF system. One spill, but all AFFF was contained in building and in either containment pond or OWS. Containment pond allowed to evaporate; however, when filled with rainwater, it was occasionally pumped out and released to grassy areas. 	Initiate SI.
Building 1285 (Hazmart)	Group 4	AFFF storage.No known leaks or spills.	Close out with no additional investigation.

Table 4.1Preliminary Assessment Report Summary and FindingsF.E. Warren Air Force Base, Wyoming

5.0 **REFERENCES**

- AECOM Technical Services, Inc. 2013. Long-term Monitoring and Maintenance Program Zones A, B, C, D, and E 2013 Annual Report. December.
- Board of Public Utilities. 2014. "Water The Clear Choice" Consumer Confidence Report January 1 to December 31, 2013. City of Cheyenne, Wyoming. April.
- Chang, E.T., H.O Adami, P. Boffetta, P. Cole, T.B. Starr, and J.S. Mandel. 2014. A Critical Review of Perfluoroocanoate and Perfluorooctanesulfonate Exposure and Cancer Risk in Humans, Critical Reviews in Toxicology, 44(S1): 1-81.
- Coates, C.Y. (Center Historian). 1977. A History of USAF Fire Protection Training at Chanute Air Force Base, 1964–1976. Chanute Technical Training Center, Chanute AFB, Illinois. February.
- Environmental Data Resources, Inc. (EDR). 2015. EDR Offsite Receptor Report 4397049.3s, EDR NEPACHECK 4397049.2s, EDR GEOCHECK 4397049.1s. August.
- Kimble, Floyd (Assistant Chief, Special Operations). 2015. Personal communication. August 26.
- McKinley, Andy (Environmental Chief). 2015. Personal communication. August 26.
- Parsons Engineering. 2003. Final Supplemental Preliminary Assessment Report. April.
- Porter, R., 2011. AFCEE/TDV Emerging Issues. Perfluorinated Compounds. Air Force Restoration and Technology Transfer Workshop. March.
- Rak, Andrew and Catherine M. Vogel. 2009. Increasing Regulation of Perfluorinated Compounds and the Potential Impacts at Air Force Installations. Prepared for the U.S. Air Force. March.
- Riedel, Ronnie (Fire Department Health and Safety Officer). 2015. Personal communication. August 26.
- Shafer, Chris (Fuel Technician). 2015. Personal communication. August 26.
- Toltest, Inc. (Toltest). 2008. Project Summary Report. Prepared for Tank Removal and Closure. March.
- Trevi Joe (Hazardous Waste Technician). 2015. Personal communication. August 26.
- U.S. Air Force (USAF). 1994. Final Record of Decision for Operable Unit 5. September.
- U.S. Air Force (USAF). 2012. Interim Air Force Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations. August.
- U.S. Environmental Protection Agency (USEPA). 1991. Guidance for Preparing Preliminary Assessments under CERCLA. September.
- U.S. Environmental Protection Agency (USEPA). 1992. Guidance for Performing Site Inspections under CERCLA. September.
- U.S. Fish and Wildlife Service (USFWS). 2015. U.S. Fish and Wildlife Service. Geospatial Fisheries Information Network (GeoFIN). Available at: <u>http://ecos.fws.gov/geofin/</u>.
- U.S. Geological Survey. 1991. Remedial Investigation for F.E. Warren Air Force Base Wyoming. May.
- Watson, Tom (90MW Quality Assurance). 2015. Personal communication. August 26.
- Wright, Shain (Water Program Manager). 2015. Personal communication. August 26.

APPENDIX A

PHOTO DOCUMENTATION

eum: F	EW	nen	1111 8-26-15
roject Num	ber:		Observation Period: Start: 1-30 Stop:
Veather:	SUM	V	
Photo	Time	Line Manager	Location/Decemberton
10.	ZA	That puseruur	DIAA 204 Station 1 Pool
7 1	20	-	bidg sat signan I buy
31	31		RIDA 1960 Station a Bandaria
PH	32		Station 2 AFFE STRAID
5 1	148		Pase Evel Building 1247 the Riven
10 1	HI		Pina DHT MA ARE NEW INS
717	47		Bit bit and and the
8 1	48		" " " Amersion value to and
911	55	E	Retention and which supports 1340+1347
10 13	210	101-	FOLMERFTA
11 13	11	WE	Craw Creek
12 6	215		Hag 1385 Hazmart storage-31 drums
TS 3	224		Blag 1501 Former, Fire Stattin
14 0	23		Stam water pina that also pages to clew ch
5 2	21-	X	FITTA - FOIMER LOCATION

Photo 3

HGL—Preliminary Assessment Report—F.E. Warren Air Force Base, Wyoming

Photo 2

Photo 4

Preliminary Assessment Report

HGL—Preliminary Assessment Report—F.E. Warren Air Force Base, Wyoming

Photo 7

Photo 6

Photo 8

Preliminary Assessment Report

Photo 11

Photo 10

Photo 12

Preliminary Assessment Report

Preliminary Assessment Report

HGL—Preliminary Assessment Report—F.E. Warren Air Force Base, Wyoming

Photo 14

APPENDIX B

FIELD DOCUMENTATION

APPENDIX B.1

POTENTIAL HAZARDOUS WASTE SITE FORMS
This page was intentionally left blank.

				Identification			
Potential Hazardous Waste Site Preliminary				State: WY	CERCLIS #:		
	Asse	essment For	rm		CERCLIS Disc	overy Date:	
		1. Gener	ral Site Information	on			
Name: F.E. Warre	en AFB	Street Address:					
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
Latitude: 41° 8'50.72"N	Longitude: 104°51'42.62"W	Approximate Area of Site:3 Acres Square Ft		Status of Site:	tatus of Site:		
Site Name: Form	er Fire Protection Trai	ning Area 1		1			
2. Owner/Operator Information							
Street Address:			Street Address:				
City:			City:				
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:		
Type of Ownership: Private County Federal Agency Municipal Name: _DOD_ Not Specified State Other		Type of Ownership: Private County Federal Agency Municipal Name: Not Specified State Other Indian Indian					
		3. Site Ev	aluator Informat	ion			
Name of Evaluato Kelly Teplitsky Street Address: 9	or: 191 South Jamaica Str	Agency/Organiza CH2M HILL reet	City: Englewood		Date Prepared: 09/11/15 State: CO		
Name of EPA or S	State Agency Contact:		Street Address:				
City:	ity: State: Telephone:		Telephone:				
		4. Site Dispos	sition (for EPA us	e only)			
Emergency Respo Recommendation	onse/Removal Assessr n: Yes	nent	CERCLIS Recommendation: Signature: Higher Priority SI Lower Priority SI NRRAP		I):		
	Date:		RCRA Other: Date:		Position:		

5. General Site Characteristics					
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):				·	
☐ Industrial Agricu Commercial Mining Residential DOD Forest/Fields DOE	lture DOI Other Federal Facility:	Urba Vbu Rura	n Irban I	Beginning Year _1950s_ Ending Year 1965_	
	Other			Unknown	
Type of Site Operations (check	< all that apply):			Waste Generated: NA	
Manufacturing (must check subcations) Manufacturing (must check subcations) Lumber and Wood Product Inorganic Chemicals Plastic and/or Rubber Prod Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Agricultural Chemicals Miscellaneous Chemical Prod Primary Metals Metal Coating, Plating, Eng Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals	ttegory) s ucts ls oducts raving Products	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill DOD DOE DOI Other Federal Facility RCRA Treatment, Stor Large Quantity Small Quantity Subtitle D Industriat "Converter" "Protective File Non-or Late F Note Specified	ty orage, or Disposal Generator Generator al al al	 Onsite Offsite Onsite and Offsite Waste Deposition Authorized By: Present Owner Former Owner Present & Former Owner Unauthorized Unauthorized Unknown Waste Accessible to the Public: Yes No Distance to Nearest Dwelling, School, or Workplace:	
		Other		NA feet	
	6. Waste Cha	aracteristics Inform	mation		
	(Refer to F	PA Table 1 for WC Sco	re)		
Source Type:	Source Waste Quantity:	Tier*·	General Type of	Waste	
(check all that apply)	(include unit)		(check all that and		
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hos Radioactive Wa Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Nining Waste Pital Waste Ste Other_AFFF_ emolition Waste	
Contaminated GW Plume			Physical State of	Waste as Deposited (check all	
(unidentified source)			that apply):		
(unidentified source) Contaminated Soil Other No Sources				Solid Sludge Powder Liquid Gas	
"C=Constituent, W=Wast	estream, v=volume, A=Area				

	7. Ground Water Pathw	ay		
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by		
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:		
Yes	T Yes			
✓ No	✓ No			
		0 - 1/4 MileNA		
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile NA		
Well:	Have Primary Target Drinking			
reet	Water Wells Been Identified:	>1/2 - 1 MileNA		
Type of Drinking Water Wells Within 4	Yes			
Miles	✓ No	>1 - 2 MileNA		
(check all that apply):	If Yes, Enter Primary Target			
Municipal	Population:	>2 - 3 MileNA		
	People ³			
		NA		
Depth to Shallowest Aquifer:	Nearest Designated Wellhead	Total Within 4 Miles ⁴ NA		
~ 12 Feet	Protection Area [°] :			
Karst Terrain/Aquifer Present:	Underlies Site			
	>0-4 Miles	*Use population #s for PA Table 2		
Yes	None Within 4 Miles	*Note nearest well for #5 on GW Pathway Scoresheet		
	8 Surface Water Pathw	av		
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source t	to	
that apply).	15 Miles Downstream (check an	Surface Water:	.0	
	Pond Lake	_NA_Feet		
	Other			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:		
		Annual - 10 yr Floodplain		
Yes		>10yr - 100yr Floodplain		
		>100yr - 500yr Floodplain		
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target Drinking water Intakes:		
Yes				
✓ No		Name: Water Body: Flow (cfs): Population Served:		
Have Primary Target Drinking Water Int	akes Been Identified:			
Yes If Yes, Distan	ce to Nearest Drinking			
No Water Intake	e : Miles ⁶			
If Yes, Enter Population Served by Targe	et Intake:			
		Total within 15 Miles ⁴		
NA People⁴				
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target Fisheries ¹⁰ :	\neg	
If Yes, Distance	e to Nearest Fishery:	Water Body/ Fishery Name : Flow (cfs):		
	Miles			
Have Primary Target Fisheries Been Ider				
Yes 🗸 No				

8. Surface Water Pathway (continued)						
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water				
Path:		Migration Pat	:h:	15 1/		
Yes No		Yes If Yes, Distance to Nearest Sensitive No Environment: _ Miles				
Have Primary Target Wetlands Been Identified:		Have Primary	Targ	et Sensitive	e Environments Been Identified:	
Yes No	Yes No					
List All Wetlands:		List All Sensi	tive E	Environment	ts ¹¹ :	
<u>Water Body</u> : <u>Flow (cfs)</u> : <u>Frontage miles:</u>	Water Body :		Flow (cfs):	Sensitive Environment Type:		
	9. Soil E	xposure Path	way	,		
Are People Occupying Residence or	Number of Worke	ers Onsite ⁴ :		Have Terre	strial Sensitive Environments Been	
Attending School or Daycare on or				Identified o	on or Within 200 Feet of Areas of	
Within 200 Feet of Area of Known or	✓ None	0		Known or S	uspected Contamination:	
Suspected Contamination:	101 -	1,000				
	> 1,00	00		Yes		
					No	
No			If Yes, Lis		Each Terrestrial Sensitive	
	Population Within 1 Mile: _NA People ⁷			Environment ⁵ :		
If Yes, Enter Total Residential						
Population:						
NA People ²						
				*Refer to PA Table 7 for environment types		
	10.	Air Pathway				
Is there a Suspected Release to Air ¹ :		Wetlands Loc	ated	Within 4 M	iles of the Site ⁶ :	
Yes		Yes				
Enter Total Deputation on or Within:		No No		II 165, HOV	winany Acres Acres	
		Other Sensitiv	ve En	vironments	Located Within 4 Miles of the Site:	
Onsite						
0-1/4 Mile						
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :			s Within 1/2 Mile of the Site ⁶ :	
>1/2-1 Mile	>1/2-1 Mile		<u>Sensi</u>	tive Environi	ment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite				
>2-3 Miles		0-1/4 Mile				
>3-4 Miles		>1/4-1/2 Mile				
Total Within 4 Miles ³⁻⁵ _NA_		*Refer to PA Table 10 for calculations on air pathway exposures				

					Identification	
Poter	Potential Hazardous Waste Site Preliminary			State: WY	CERCLIS #:	
	Asse	ssment For	m		CERCLIS Disco	very Date:
		1. Gener	al Site Informatio	on		
Name: F.E. Warren	AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude: 41° 8'34.40"N	Longitude: 104°51'32.70"W	Approximate Are Acres Square Ft	a of Site:3	Status of Site: Active [Inactive]	Not Specified	etc.)
Site Name: Former	Fire Protection Train	ning Area 2		-		
between Third and Fourth Streets and is about a quarter of a mile south of Crow Creek. This FPTA consisted of two unlined, bermed training pits that were used from 1965 until 1989. No retention ponds were present.						
	2. Owner/Operator Information					
Owner: F.E. Warre	n AFB		Operator: Same a	is owner		
Street Address:			Street Address:			
City:			City:			
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership: Private County Federal Agency Municipal Name: _DOD_ Not Specified State Other		Type of Ownership: Private County Federal Agency Municipal Name: Not Specified State Other Indian Other				
		3. Site Eva	l aluator Informati	ion		
Name of Evaluator Kelly Teplitsky Street Address: 919	: 91 South Jamaica Str	Agency/Organiza CH2M HILL eet	city: Englewood		Date Prepared: 09/11/15 State: CO	
Name of EPA or Sta	ate Agency Contact:		Street Address:			
City:	State: Telephone:					
		4. Site Dispos	ition (for EPA use	e only)		
4. Site Disposi Emergency Response/Removal Assessment Recommendation: Yes No		CERCLIS Recommendation: Signature: Higher Priority SI Lower Priority SI NFRAP RCRA Position:		:		
Da	Date:					

5. General Site Characteristics					
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):					
☐ Industrial ☐ Agricul ☐ Commercial ☐ Mining ☑ Residential ☑ DOD	ture DOI Other Federal Facility:	Urba Vbu Subu	n ırban I	Beginning Year _1965_ Ending Year 1989_	
Forest/Fields DOE	Other			Unknown	
Type of Site Operations (check	all that apply):			Waste Generated: NA	
Manufacturing (must check subca Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Products Plastic and/or Rubber Products Plants, Varnishes Industrial Organic Chemicals Agricultural Chemicals Miscellaneous Chemical Pro Primary Metals Metal Coating, Plating, Engi Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Oil and Gas Non-metallic Minerals	tegory) ; ucts s ducts raving Products	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill JOD DOE DOI Other Federal Facili RCRA Treatment, Sto Small Quantity Subtitle D Industria "Converter" "Protective File Non-or Late F Note Specified	ity orage, or Disposal generator Generator al al ar" iler"	 ✓ Onsite Offsite Onsite and Offsite Waste Deposition Authorized By:	
		Other		350 feet	
	6. Waste Cha	aracteristics Inform	nation	·	
	(Refer to F	PA Table 1 for WC Sco	re)		
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste	
(check all that apply)	(include unit)		(check all that app	ply):	
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigment: Laboratory/Hos Radioactive Wa Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste S Mining Waste Explosives Siste Other_AFFF_ emolition Waste	
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all	
(unidentified source)			that apply):	7 Solid	
(unidentified source) Contaminated Soil Other				Solid Sludge Powder	
No Sources				Gas	
*C=Constituent, W=Wast	estream, V=Volume, A=Area			-	

	7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by				
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:				
☐ Yes	7 Yes					
✓ No	No					
		0 - 1/4 MileNA				
If Yes, Distance to nearest Drinking		>1/4 1/2 Milo NA				
Well:	Have Primary Target Drinking	~1/4 - 1/2 WileNA				
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA				
Type of Drinking Water Wells Within 4						
Miles	I les ✓ No	>1 - 2 Mile NA				
(check all that apply):	_					
	If Yes, Enter Primary Target	>2 - 3 MileNA				
Private	Population:					
✓ None		>3 - 4 MileNA				
Depth to Shallowest Aquifer:	Nearest Designated Wellhead					
~ 12 Feet	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA				
Kanat Tanain (Asulfan Dassanti						
Karst Terrain/Aquiter Present:		*				
☐ Yes	✓ None Within 4 Miles	* Use population #s for PA Table 2				
✓ No	_	"Note nearest well for #5 on GW Pathway Scoresheet				
	8. Surface Water Pathw	ay				
Type of Surface Water Draining Site and	l 15 Miles Downstream (check all	Shortest Overland Distance From Any Source to				
that apply):		Surface Water:				
Stream River D	Pond	Feet				
		0.2 Miles				
	501CI					
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:				
		Annual - 10 yr Floodplain				
Yes		>10yr - 100yr Floodplain				
		>100yr - 500yr Floodplain				
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:				
☐ Yes						
. ✓ No		Name: Water Body: Flow (cfs): Population Served:				
Have Primary Target Drinking Water Int	akes Been Identified:					
Yes If Yes, Distan	ce to Nearest Drinking					
No Water Intake	e : Miles ⁶					
If Yes, Enter Population Served by Targe	et Intake:					
		Total within 15 Miles ⁴				
NA People⁴						
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target Fisheries ¹⁰ :				
If Yes. Distance	ce to Nearest Fishery:	Water Body/ Fishery Name : Flow (cfs)				
	Miles					
Have Primary Target Fisheries Been Ider	ntified:	╡ ──── │				
Yes Vo						

8. Surface Water Pathway (continued)					
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water			
Path:		Migration Path	l:		
✓ Yes □ No		☐ Yes If Yes, Distance to Nearest Sensitive ☑ No Environment: _0 Miles			
Have Primary Target Wetlands Been Identified:		Have Primary	Farget Sensitive	e Environments Been Identified:	
☐ Yes ✓ No	☐ Yes ☑ No				
List All Wetlands:		List All Sensiti	ive Environmen	ts ¹¹ :	
Water Body : Flow (cfs): Frontage miles:		Water Body :	Flow (cfs):	Sensitive Environment Type:	
	9. Soil F	xposure Pathy	 wav		
Are People Occupying Residence or	Number of Works	ers Onsite ^{4.}	Have Terre	strial Sensitive Environments Been	
Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination:	tending School or Daycare on or ithin 200 Feet of Area of Known or spected Contamination:		Identified c Known or S	on or Within 200 Feet of Areas of Suspected Contamination:	
☐ Yes				No	
If Yes, Enter Total Residential Population:	Population Within	n 1 Mile: cople ⁷	If Yes, List Environm _Colorado Area	Each Terrestrial Sensitive ent ⁵ : D Butterfly Plant Research Natural	
	10.	Air Pathway			
Is there a Suspected Release to Air ¹ : Yes No Enter Total Population on or Within:		Wetlands Loca	ted Within 4 M If Yes, Hov	liles of the Site ⁶ : v Many Acres: Acres	
Onsite		Other Sensitive Environments Located Within 4 Miles of the Site:			
0-1/4 Mile		✓ Yes No			
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :			
>1/2-1 Mile		Distance: S	ensitive Environ	ment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite 0 0-1/4 Mile	Colorado Butte	rfly Plant Research Natural Area	
>2-3 Miles		51/4 4/2 MAT			
>3-4 Miles		>1/4-1/2 Mile *Refer to PA Table 10 for calculations on air pathway exposures			
Total Within 4 Miles ³⁻⁵ _32,580_					

					Identification	ו
Pote	Potential Hazardous Waste Site Preliminary			nary	State: WY	CERCLIS #:
	Asse	ssment For	m		CERCLIS Disco	overy Date:
		1. Gener	al Site Information	on		
Name: F.E. Warrer	n AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude: 41° 9'3.43"N	Longitude: 104°52'26.32"W	Approximate Area of Site:3 Acres Square Ft		Status of Site:	Not Specified	, etc.)
Site Name: Forme	r Fire Protection Train	ning Area 3		•		
Site Description: The Former FPTA 3 is located in the northern portion of the Base and was opened in 1990. This FPTA was operated until approximately 2000. The FPTA consisted of an aircraft carcass in a poly-lined training pit surrounded by concrete and a poly-lined retention pond. The training pit was connected to an OWS and water from the pit was piped to the retention pond. Contents of the retention pond were left in place to evaporate.						
		2. Owner/0	Operator Informa	ation		
Owner: F.E. Warre	n AFB		Operator: Same a	as owner		
Street Address:			Street Address:			
City:			City:			
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership:		Type of Ownership: Private County Federal Agency Municipal Name: Other Indian Other				
		3 Site Fv	 aluator Informat	ion		
Name of Evaluator: Agency/Organizat Kelly Teplitsky CH2M HILL Street Address: 9191 South Jamaica Street		ation: Date Prepared: 09/11/15 City: Englewood State: CO		d:		
Name of EPA or St	ate Agency Contact:		Street Address:			
City:	ity: State: Telephone:		Telephone:			
		4. Site Dispos	ition (for EPA us	e only)		
Emergency Response/Removal Assessment Recommendation:		CERCLIS Recommendation: Signature: Higher Priority SI Name (typed): NFRAP Name (typed):):		
Di			Date:		Position:	

5. General Site Characteristics					
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):					
Industrial Agricul Commercial Mining Residential	ture DOI Other Federal Facility:	Urba VIba	n Irban	Beginning Year _1990_ Ending Year 2000_	
Forest/Fields DOE	Other		I	Unknown	
Type of Site Operations (check	all that apply):			Waste Generated: NA	
Manufacturing (must check subcategory) Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Products Paints, Varnishes Industrial Organic Chemicals Agricultural Chemicals Agricultural Chemicals Agricultural Chemical Products Primary Metals Metal Coating, Plating, Engraving Atel Forging, Stamping Fabricated Structural Metal Products Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas		Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill JOD DOD DOE DOI Other Federal Facility		 Onsite Offsite Onsite and Offsite Waste Deposition Authorized By: Present Owner Former Owner Present & Former Owner Unauthorized Unauthorized Unknown Waste Accessible to the Public: Yes No Distance to Nearest Dwelling, School, or Workplace:	
		Note Specified Other		NA feet	
	6. Waste Cha	racteristics Inform	nation		
	(Refer to P	A Table 1 for WC Sco	re)		
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste	
(check all that apply)	(include unit)		(check all that app	oly):	
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigment Laboratory/Hos Radioactive Wa Construction/Do	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Spital Waste Explosives Uste Other_AFFF_ emolition Waste	
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all	
(unidentified source) Contaminated SW/Sediment (unidentified source)			that apply):	Solid	
Contaminated Soil Other No Sources				Sludge Powder Liquid	
*C=Constituent, W=Wast	estream, V=Volume, A=Area			Gas	

	7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by				
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:				
☐ Yes	☐ Yes					
✓ No	✓ No					
		0 - 1/4 MileNA				
If Yes, Distance to nearest Drinking		>1/4 1/2 Milo NA				
Well:	Have Primary Target Drinking					
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA				
Type of Drinking Water Wells Within 4						
Miles	I les ✓ No	>1 - 2 Mile NA				
(check all that apply):	_					
	If Yes, Enter Primary Target	>2 - 3 MileNA				
Private	Population:					
✓ None		>3 - 4 MileNA				
Depth to Shallowest Aquifer:	Nearest Designated Wellhead					
~ 12 Feet	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA				
Kanat Tanasia (Asulifan Duasanti						
Karst Terrain/Aquiter Present:		*				
☐ Yes	✓ None Within 4 Miles	* Use population #s for PA Table 2				
✓ No	_	*Note nearest well for #5 on GW Pathway Scoresheet				
	8. Surface Water Pathw	ay				
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source to				
that apply):		Surface Water:				
Stream River D		Feet				
		NA Miles				
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:				
		Annual - 10 yr Floodplain				
Yes		>10yr - 100yr Floodplain				
		>100yr - 500yr Floodplain				
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:				
∠ No		Name: Water Body: Flow (cfs): Population Served:				
Have Primary Target Drinking Water Int	akes Been Identified:					
Yes If Yes, Distan	ce to Nearest Drinking					
Water Intake	e : Miles⁵					
If Yes, Enter Population Served by Targe	et Intake:					
		Total within 15 Miles ⁴				
NA People⁴						
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target Fisheries ¹⁰				
	re to Nearest Fishery.	Water Rody/Eichery Name : Elow (cfc):				
	Miles	<u>water bouy/ risnery Name</u> : <u>riow (CTS)</u> :				
Have Primary Target Fisheries Been Ider	Have Primary Target Fisheries Been Identified:					

	8. Surface Water Pathway (continued)					
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water				
Path:		Migration Path:				
✓ Yes □ No		□ YesIf Yes, Distance to Nearest Sensitive☑ NoEnvironment: _0 Miles				
Have Primary Target Wetlands Been Identified:		Have Primary Ta	arget Sensitive	e Environments Been Identified:		
☐ Yes ✓ No	Yes No					
List All Wetlands:		List All Sensitiv	e Environment	ts ¹¹ :		
<u>Water Body</u> : <u>Flow (cfs)</u> : <u>Frontage miles:</u>		Water Body :	Flow (cfs):	Sensitive Environment Type:		
	9. Soil E	xposure Pathwa	av			
Are People Occupying Residence or	Number of Worke	ers Onsite ⁴ :	Have Terres	strial Sensitive Environments Been		
Attending School or Daycare on or			Identified o	on or Within 200 Feet of Areas of		
Within 200 Feet of Area of Known or Suspected Contamination:	✓ None 1 - 10 101 -	0 1.000	Known or S	uspected Contamination:		
	> 1,00	00	✓ Yes			
Yes				L_ No		
✓ No			If Yes, List	Each Terrestrial Sensitive		
If Yes. Enter Total Residential	Population Within	n 1 Mile: Environment ² : Colorado Butterfly Plant Re		ent ^a : o Butterfly Plant Research Natural		
Population:			Area			
		opie				
	10.	Air Pathway				
Is there a Suspected Release to Air ¹ :		Wetlands Locate	ed Within 4 M	iles of the Site ⁶ :		
Yes		√ Yes				
		🗌 No	If Yes, Hov	v Many Acres: Acres		
Enter Total Population on or Within:		Other Sensitive	Environments	Located Within 4 Miles of the Site		
Onsite						
0-1/4 Mile			No			
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :				
>1/2-1 Mile		Distance: Sei	nsitive Environi	ment Type/Wetlands Area (acres):		
>1-2 Miles		Onsite Co	olorado Butte	rfly Plant Research Natural Area		
>2-3 Miles		0 ⁻ ⊥/4 ₩IIIC				
>3-4 Miles		>1/4-1/2 Mile				
Total Within 4 Miles ³⁻⁵ _NA		Refer to PA Table 10	o for calculations o	n an paulway exposures		

					Identification	า
Pote	Potential Hazardous Waste Site Preliminary				State: WY	CERCLIS #:
	Asse	essment For	m		CERCLIS Disco	overy Date:
		1. Gener	al Site Informati	ion	•	
Name: F.E. Warr	en AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude: 41° 9'3.43"N	Longitude: 104°52'26.32"W	Approximate Are 1.1 Acres	a of Site: s quare Ft	Status of Site:	Not Specified	;, etc.)
Site Name: Form	er Fire Station			•		
Site Description: This former fire station was located at the north end of the Base in Building 1501 and was built in 1987 to support the peacekeeper missile operations. It was a small two bay station that had two trucks. While AFFF was never used at this station, it may have been stored in small quantities on the trucks (Riedel, 2015, personal communication; Appendix C). It is estimated that this station was active until approximately 1998 (Watson, 2015, personal communication; Appendix C). No use, leaks, or spills of AFFF is known to have occurred (Riedel, 2015, personal communication; Appendix C).						
2. Owner/Operator Information						
Owner: F.E. War	ren AFB	-	Operator: Same	as owner		
Street Address:			Street Address:			
City:			City:			
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership: Private County Federal Agency Municipal Name: _DOD Not Specified State Other Indian Other			Type of Ownersh Private Federal Agency Name: State Indian	hip: County Munici Not Sp Other	/ pal becified	
		3. Site Eva	aluator Informat	tion		
Name of Evaluat Kelly Teplitsky Street Address: S	or: 9191 South Jamaica Str	Agency/Organiza CH2M HILL reet	tion: City: Englewood		Date Prepare 09/11/15 State: CO	d:
Name of EPA or S	State Agency Contact:		Street Address:			
City: State:		1	Telephone:			
		4. Site Dispos	sition (for EPA us	se only)		
Emergency Resp Recommendatio	onse/Removal Assessr n:	nent	CERCLIS Recomn	nendation: ity SI	Signature:	
	Yes No		Lower Priori	ity SI	Name (typed Position:):
	Date:		Date:			

5. General Site Characteristics				
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:
that apply):		_		
□ Industrial □ Agricul □ Commercial □ Mining ☑ Residential ☑ DOD □ Forest/Fields □ DOE	ture DOI Other Federal Facility:	☐ Urba ☑ Subu ☐ Rura	ın ırban I	Beginning Year _1987_ Ending Year 1998_
	Other			Unknown
Type of Site Operations (check	all that apply):			Waste Generated: NA
Manufacturing (must check subcat Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Produ Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Miscellaneous Chemical Pro Primary Metals Metal Coating, Plating, Engr Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals	tegory) s ucts s ducts aving Products	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill ODD DOE DOI Other Federal Facili RCRA RCRA Treatment, Sto Large Quantity Small Quantity Subtitle D Industria "Converter" "Protective File "Non-or Late F	ity orage, or Disposal generator Generator al al al	 ✓ Onsite Offsite Onsite and Offsite Waste Deposition Authorized By:
		Other		NA feet
	6. Waste Cha	aracteristics Inform	nation	
	(Refer to F	PA Table 1 for WC Sco	re)	
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste
(check all that apply)	(include unit)		(check all that app	oly):
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hos Radioactive Wa Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste s Mining Waste pital Waste Explosives ste Other_AFFF_ emolition Waste
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all
(unidentified source) Contaminated SW/Sediment (unidentified source) Contaminated Soil Other			that apply):] Solid] Sludge] Powder
No Sources				Liquid
*C=Constituent, W=Wast	estream, V=Volume, A=Area		L	Gas

7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:			
☐ Yes	☐ Yes				
✓ No	✓ No				
		0 - 1/4 MileNA			
If Yes, Distance to nearest Drinking		>1/4 1/2 Mile NA			
Well:	Have Primary Target Drinking	NA			
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA			
Type of Drinking Water Wells Within 4					
Miles	✓ No	>1 - 2 Mile NA			
(check all that apply):					
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile			
Private	Population:				
✓ None		>3 - 4 MileNA			
Depth to Shallowest Aquifer:	Nearest Designated Wellhead				
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA			
Karst Terrain / Aquifer Present:					
Karst Terrain/Aquiter Fresent.	>0-4 Miles	*ulas sagulating #s for DA Table 2			
Yes	None Within 4 Miles	*Note population #s for PA Table 2			
√ No		Note hearest well for #5 on GW Pathway Scoresheet			
	8. Surface Water Pathwa	ау			
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source to			
that apply):		Surface Water:			
Stream River F	Pond Lake	Feet			
Bay Ocean C	Dther	NA Miles			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
		Annual - 10 yr Floodplain			
Yes		>10yr - 100yr Floodplain			
		\sim >100yr - 500yr Floodplain >500yr Floodplain			
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:			
☐ Yes					
		Name: Water Body: Flow (cfs): Population Served:			
Have Primary Target Drinking Water Int	akes Been Identified:				
	ce to Nearest Drinking				
Vistor Intes, Distan					
	thetelse				
in res, Enter Population Served by Targe					
NA People ⁴	Total within 15 Miles ⁴				
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target Fisheries ¹⁰ :			
If Yes, Distance	e to Nearest Fishery:	Water Body/ Fishery Name : Flow (cfs):			
	Miles	· · · · · · · · · · · · · · · ·			
Have Primary Target Fisheries Been Ider	ntified:				
Yes 🗹 No					
I – –					

8. Surface Water Pathway (continued)						
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water				
Path:		Migration Path	Migration Path:			
✓ Yes □ No		Yes If Yes, Distance to Nearest Sensitive ✓ No Environment: _ Miles				
Have Primary Target Wetlands Been Id	Have Primary Target Wetlands Been Identified:		Farget Sensitive	e Environments Been Identified:		
☐ Yes ✓ No	☐ Yes ✓ No					
List All Wetlands:		List All Sensit	ive Environment	ts ¹¹ :		
<u>Water Body</u> : <u>Flow (cfs)</u> : <u>Frontage miles:</u>		Water Body :	Flow (cfs):	Sensitive Environment Type:		
	9. Soil F	xposure Pathy	wav			
Are People Occupying Residence or	Number of Worke	ers Onsite ⁴	Have Terre	strial Sensitive Environments Been		
Attending School or Daycare on or		ers Offsite .	Identified o	on or Within 200 Feet of Areas of		
Within 200 Feet of Area of Known or Suspected Contamination:	Within 200 Feet of Area of Known or Suspected Contamination:		Known or S	uspected Contamination:		
	> 1,00	00		Yes		
Yes						
<u>.</u> No	Population Withir	n 1 Mile:	If Yes, List Environm	: Each Terrestrial Sensitive ent ⁵ :		
If Yes, Enter Total Residential						
	_NA Pe	eople ⁷				
NA People ²			*Refer to PA	*Refer to PA Table 7 for environment types		
	10.	Air Pathway				
Is there a Suspected Release to Air ¹ :		Wetlands Loca	ted Within 4 M	liles of the Site ⁶ :		
· ☐ Yes ✓ No Enter Total Population on or Within:		✓ Yes No	If Yes, Hov	v Many Acres: Acres		
Onsito		Other Sensitive Environments Located Within 4 Miles of the Site:				
		✓ Yes □ No				
0-1/4 Mile						
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :				
>1/2-1 Mile		Distance: S	ensitive Environi	ment Type/Wetlands Area (acres):		
>1-2 Miles		Onsite (Colorado Butte	rfly Plant Research Natural Area		
>2-3 Miles						
>3-4 Miles		>1/4-1/2 Mile	10 for calculations o	n air pathway exposures		
Total Within 4 Miles ³⁻⁵ _NA						

					Identification	ו	
Potential Hazardous Waste Site Preliminary			nary	State: WY	CERCLIS #:		
	Asse	essment For	'n		CERCLIS Disco	overy Date:	
		1. Gener	al Site Informati	on			
Name: F.E. Warr	en AFB	Street Address:					
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
Latitude: 41° 9'3.43"N	Longitude: 104°52'26.32"W	Approximate Are <1 Acres S	a of Site: quare Ft	Status of Site: Active Inactive	Not Specified	, etc.)	
Site Name: Fire	Station 1	•		•			
stations on Base. The building originally served as a horse stable (Kimble, 2015, personal communication; Appendix C) but sometime prior to 1979, the building was converted to Fire Station 1 (Watson, 2015, personal communication; Appendix C). This station has two fire trucks, Engine 4 and Engine 8, that each hold 20 gallons of AFFF. The trucks are pump tested but not foam tested and because the station does not have crash trucks, no time and distance testing is required.							
2. Owner/Operator Information							
Owner: F.E. War	ren AFB		Operator: Same a	as owner			
Street Address:			Street Address:				
City:		-	City:				
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:		
Type of Ownership: Private County Federal Agency Municipal Name: _DOD Not Specified State Other Indian Other			Type of Ownersh Type of Ownersh Frivate Sederal Agency State Indian	ip: County Municip _ Not Sp Other_	, pal ecified		
		3. Site Eva	aluator Informat	ion	-		
Name of Evaluat	or:	Agency/Organiza	tion:		Date Prepare	d:	
Street Address: 9	9191 South Jamaica Sti	reet	City: Englewood		State: CO		
Name of EPA or	State Agency Contact:		Street Address:				
City: State:		Telephone:					
		4. Site Dispos	sition (for EPA us	e only)			
Emergency Resp Recommendatio	onse/Removal Assessr n:	nent	CERCLIS Recomm	nendation: ity SI	Signature:		
	Yes		Lower Priorit	ty SI	Name (typed	Name (typed):	
	 Date:		Other: Date:		Position:		

5. General Site Characteristics					
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):	,	0			
Industrial Agricu Commercial Mining	ture DOI Other Federal	Urba I Urba	n ırban	Beginning Year _?_	
Residential DOD	Facility:	🗌 Rura	I	Ending Year present_	
Forest/Fields DOE	Other			Unknown	
Type of Site Operations (check	all that apply):			Waste Generated: NA	
Manufacturing (must check subca Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Produ Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Miscellaneous Chemical Pro Primary Metals Metal Coating, Plating, Eng Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing	tegory) s ucts s ducts raving Products	 Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill ✓ DOD DOE DOI Other Federal Facili RCRA Treatment, Stoc Large Quantity Small Quantity Subtitle D 	ity prage, or Disposal generator Generator	✓ Onsite Offsite Onsite and Offsite Onsite and Offsite ✓ Present Owner Former Owner Present & Former Owner Unauthorized Unknown Waste Accessible to the Public: Yes Nu	
Mining			al	✓ No	
 Metals Coal Oil and Gas Non-metallic Minerals 		Converter ''Protective File ''Non-or Late F Note Specified Other	r" iler"	Distance to Nearest Dwelling, School, or Workplace: NA feet	
	6. Waste Cha	aracteristics Inform	nation	•	
	(Refer to P	A Table 1 for WC Sco	re)		
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste	
(check all that apply)	(include unit)		(check all that app	oly):	
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigment Laboratory/Hos Radioactive Wa Construction/D	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste spital Waste ste Mining Waste Mining Waste Ste Mining Waste Mining Waste Other_AFFF_ emolition Waste	
Contaminated GW Plume			Physical State o	f Waste as Deposited (check all	
(unidentified source)			that apply):	□ solid	
(unidentified source) Contaminated Soil Other				_ Solid _ Sludge _ Powder	
No Sources				- Liquid	
*C=Constituent, W=Wast	estream, V=Volume, A=Area			Gas	

7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:			
☐ Yes	☐ Yes				
✓ No	✓ No				
		0 - 1/4 MileNA			
If Yes, Distance to nearest Drinking		>1/4 1/2 Mile NA			
Well:	Have Primary Target Drinking	NA			
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA			
Type of Drinking Water Wells Within 4					
Miles	✓ No	>1 - 2 Mile NA			
(check all that apply):					
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile			
Private	Population:				
✓ None		>3 - 4 MileNA			
Depth to Shallowest Aquifer:	Nearest Designated Wellhead				
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA			
Karst Terrain / Aquifer Present:					
Karst Terrain/Aquiter Fresent.	>0-4 Miles	*ulas sagulating #s for DA Table 2			
Yes	None Within 4 Miles	*Note population #s for PA Table 2			
√ No		Note hearest well for #5 on GW Pathway Scoresheet			
	8. Surface Water Pathwa	ау			
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source to			
that apply):		Surface Water:			
Stream River F	Pond Lake	Feet			
Bay Ocean C	Dther	NA Miles			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
		Annual - 10 yr Floodplain			
Yes		>10yr - 100yr Floodplain			
		\sim >100yr - 500yr Floodplain >500yr Floodplain			
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:			
☐ Yes					
		Name: Water Body: Flow (cfs): Population Served:			
Have Primary Target Drinking Water Int	akes Been Identified:				
	ce to Nearest Drinking				
Vistor Intes, Distan					
	thetelse				
in res, Enter Population Served by Targe					
NA People ⁴	Total within 15 Miles ⁴				
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target Fisheries ¹⁰ :			
If Yes, Distance	e to Nearest Fishery:	Water Body/ Fishery Name : Flow (cfs):			
	Miles	· · · · · · · · · · · · · · · ·			
Have Primary Target Fisheries Been Ider	ntified:				
Yes 🗹 No					
I – –					

8. Surface Water Pathway (continued)						
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water				
Path:		Migration Path	1:			
✓ Yes □ No		□ Yes If Yes, Distance to Nearest Sensitive ☑ No Environment: _ Miles				
Have Primary Target Wetlands Been Id	entified:	Have Primary	Have Primary Target Sensitive Environments Been Identified:			
☐ Yes ✓ No	☐ Yes ☑ No					
List All Wetlands:	List All Sensit	ive Environmen	ts ¹¹ :			
<u>Water Body</u> : <u>Flow (cfs)</u> : <u>Frontage miles:</u>		Water Body :	Flow (cfs):	Sensitive Environment Type:		
·						
	9. Soil E	xposure Pathy	wav			
Are People Occupying Residence or	Number of Worke	ers Onsite ⁴ :	Have Terre	strial Sensitive Environments Been		
Attending School or Daycare on or			Identified o	on or Within 200 Feet of Areas of		
Within 200 Feet of Area of Known orNoneSuspected Contamination:1 - 100101 -		0 1,000	Known or S	Suspected Contamination:		
	> 1,00	00		Yes		
Yes						
	Population Withir	1 Mile: Environment ⁵ :		ent ⁵ :		
Population:						
	_NA Pe	_NA People ⁷				
NAPeople ²			*Refer to PA	*Refer to PA Table 7 for environment types		
	10.	Air Pathway				
Is there a Suspected Release to Air ¹ :		Wetlands Loca	ted Within 4 M	liles of the Site ⁶ :		
☐ Yes ☑ No Enter Total Population on or Within:		✓ Yes □ No	If Yes, Hov	w Many Acres: Acres		
		Other Sensitive Environments Located Within 4 Miles of the Site:				
		✓ Yes □ No				
0-1/4 Mile						
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :				
>1/2-1 Mile		<u>Distance:</u>	ensitive Environ	ment Type/Wetlands Area (acres):		
>1-2 Miles		Onsite	Colorado Butte	rfly Plant Research Natural Area		
>2-3 Miles						
>3-4 Miles		>1/4-1/2 Mile				
Total Within 4 Miles ³⁻⁵ _NA				πι σπ. ματιτιναγ σλμοσύτος		

			_			Identificatio	n
Pote	ntial Hazardo	ous Waste S	Site Prelimin	nary		State: WY	CERCLIS #:
	Asse	ssment For	m			CERCLIS Disc	overy Date:
		1. Gener	al Site Informatio	on			
Name: F.E. Warrer	ו AFB	Street Address:					
City: Cheyenne		State: WY	Zip Code:	County:		Co. Code:	Cong. Dist:
				Laramie			
Latitude:	Longitude:	Approximate Are	a of Site:	Status of S	ite:		
41° 9'1.20"N	104°51'26.72"W	<1 Acres		Active		Not Specified	
		S	quare Ft	Inactive	e [NA (GW plume	e, etc.)
Site Name: Fire St	ation 2	-		-			
site Description: F stations on Base. T communication; A each hold 60 to 70 and carry AFFF, th with AFFF inside th C). Drains in Buildi	This station 2 is located This station likely beca ppendix C). This station gallons of AFFF. The ey are not used in tha his station using 5-gal ng 1250 flow to an O	a in Building 1250, ame active in the 1 on has three fire tr trucks are pump to it manner (Kimble, lon buckets that an WS that then conn	which was built in .950s or 1960s whe rucks, Engine 5 and ested but not foam . 2015, personal co re stored onsite (Ki ects to the sanitar	1941, and en helicopte l Rapid Inter n tested. Wh mmunicatio imble, 2015 y sewer (Wa	curren ers use rventio hile th on; Ap o, perso atson,	be began (Wrig on Vehicles (R e RIVs can ser pendix C). The onal commun 2015, person	one of two fire ht, 2015, personal RIV) 1 and 2, that rve as crash trucks e trucks are refilled ication; Appendix nal communication;
Appendix C).							
2. Owner/Operator Information							
Owner: F.E. Warre	n AFB		Operator: Same as owner				
Street Address:			Street Address:				
City:			City:				
State: ND	Zip Code:	Telephone:	State:	Zip Code:		Telephone:	
Type of Ownership):	•	Type of Ownershi	ip:			
□ Private □ County □ Federal Agency □ Municipal Name: _DOD □ Not Specified □ State □ Other □ Indian □ Other		l ified	Private County Federal Agency Municipal Name: Not Specified State Other Indian Other				
		3. Site Eva	aluator Informati	ion			
Name of Evaluato	:	Agency/Organiza	tion:			Date Prepare	ed:
Kelly Teplitsky		CH2M HILL				09/11/15	
Street Address: 91	91 South Jamaica Stro	eet	City: Englewood			State: CO	
Name of EPA or St	ate Agency Contact:		Street Address:				
City: State:		Telephone:					
		4. Site Dispos	ition (for EPA use	e only)			
Emergency Respon	nse/Removal Assessm	ient		endation:		Signature:	
	Yes		Lower Priority	y SI		Name (typed):
Da	No ال		RCRA Position: Other: Date:				

5. General Site Characteristics					
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):					
☐ Industrial ☐ Agricul ☐ Commercial ☐ Mining ☑ Residential ☑ DOD	ture DOI Other Federal Facility:	Urba	n ırban I	Beginning Year _1950s?_ Ending Year present_	
Forest/Fields DOE	Other			Unknown	
Type of Site Operations (check	all that apply):	-		Waste Generated: NA	
Manufacturing (must check subcat Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Produ Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Miscellaneous Chemical Pro Primary Metals Metal Coating, Plating, Engr Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals	tegory) s ucts s ducts raving Products	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill DOD DOE DOI Other Federal Facili RCRA Treatment, Sto Large Quantity Small Quantity Subtitle D "Converter" "Protective File "Non-or Late F Note Specified	ity orage, or Disposal generator Generator al al er"	 ✓ Onsite Offsite Onsite and Offsite Waste Deposition Authorized By: ✓ Present Owner Former Owner Present & Former Owner Unauthorized Unknown Waste Accessible to the Public: Yes Yes No Distance to Nearest Dwelling, School, or Workplace: 	
		Other		NA feet	
	6. Waste Cha	aracteristics Inform	nation		
	(Refer to F	PA Table 1 for WC Sco	re)		
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste	
(check all that apply)	(include unit)		(check all that ap	ply):	
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigment Laboratory/Hos Radioactive Wa Construction/D	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Spital Waste Explosives aste Other_AFFF_ emolition Waste	
Contaminated GW Plume			Physical State o	f Waste as Deposited (check all	
(unidentified source)			that apply): Г	Solid	
(unidentified source) Contaminated Soil Other				Sludge Powder	
*C=Constituent, W=Waste	estream, V=Volume, A=Area		ן כ	Gas	

7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:			
☐ Yes	☐ Yes				
✓ No	✓ No				
		0 - 1/4 MileNA			
If Yes, Distance to nearest Drinking		>1/4 1/2 Mile NA			
Well:	Have Primary Target Drinking	~1/4 - 1/2 WileNA			
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA			
Type of Drinking Water Wells Within 4					
Miles	✓ No	>1 - 2 Mile NA			
(check all that apply):					
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile			
Private	Population:				
✓ None		>3 - 4 MileNA			
Depth to Shallowest Aquifer:	Nearest Designated Wellhead				
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA			
Karst Terrain / Aquifer Present:					
Karst Terrain/Aquiter Fresent.	>0-4 Miles	*ulas manufation de fan DA Table 2			
Yes	None Within 4 Miles	*Note population #S for PA Table 2			
√ No		Note hearest well for #5 on GW Pathway Scoresheet			
	8. Surface Water Pathwa	ау			
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source to			
that apply):		Surface Water:			
Stream River F	Pond Diske	Feet			
Bay Ocean C	Dther	NA Miles			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
		Annual - 10 yr Floodplain			
Yes		>10yr - 100yr Floodplain			
		> 500yr Floodplain			
Drinking Water Intake Located Along the	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:			
☐ Yes					
✓ No		Name: Water Body: Flow (cfs): Population Served:			
Have Primary Target Drinking Water Int	akes Been Identified:				
Yes If Ves Distan	ce to Nearest Drinking				
✓ No Water Intake	e: Miles ⁶				
If Yes, Enter Population Served by Targe	t Intake:				
		Total within 15 Miles ⁴			
NA People⁴					
Fisheries Located Along the Surface Wat	ter Migration Path:	List All Secondary Target Fisheries ¹⁰ :			
If Yes. Distance	Water Body/ Fisherv Name : Flow (cfs)				
	Miles				
Have Primary Target Fisheries Been Ider	ntified:	T			
Yes Vo					

8. Surface Water Pathway (continued)					
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water			
Path:		Migration Path:			
✓ Yes □ No		□ Yes If Yes, Distance to Nearest Sensitive ☑ No Environment: _ Miles			
Have Primary Target Wetlands Been Identified:		Have Primary Target Sensitive Environments Been Identified:			
☐ Yes ✓ No	Yes No				
List All Wetlands:		List All Sensitiv	e Environment	ts ¹¹ :	
Water Body : Flow (cfs): Frontage miles:		Water Body :	Flow (cfs):	Sensitive Environment Type:	
	9. Soil E	xposure Pathw	av		
Are People Occupying Residence or	Number of Worke	ers Onsite ⁴ :	Have Terres	strial Sensitive Environments Been	
Attending School or Daycare on or			Identified o	on or Within 200 Feet of Areas of	
Within 200 Feet of Area of Known or Suspected Contamination:	Within 200 Feet of Area of Known orNoneSuspected Contamination:1 - 10101 -101 -		Known or S	uspected Contamination:	
	> 1,00	00		Yes	
Yes				✓ No	
✓ No	Population Withir	n 1 Mile:	If Yes, List Environm	If Yes, List Each Terrestrial Sensitive Environment ⁵ :	
If Yes, Enter Total Residential	NA People ⁷				
Population:					
NA People ²			- *Refer to PA	Table 7 for environment types	
	10	Air Pathway			
Is there a Suspected Release to Air ¹ .	10.		ed Within 4 M	iles of the Site ⁶ .	
Yes No		Yes No	If Yes, Hov	v Many Acres: Acres	
Enter Total Population on or Within:					
Onsite		Other Sensitive Environments Located Within 4 Miles of the Site:			
0-1/4 Mile		Ves No			
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :			
>1/2-1 Mile		Distance: Se	nsitive Environi	nent Type/Wetlands Area (acres):	
>1-2 Miles		Onsite Co 0-1/4 Mile	olorado Butte	rfly Plant Research Natural Area	
>2-3 Miles					
>3-4 Miles		>1/4-1/2 Mile	0 for calculations o	n air pathway exposures	
Total Within 4 Miles ³⁻⁵ _NA					

					Identification		
Poter	Potential Hazardous Waste S			nary	State: WY	CERCLIS #:	
	Assessment For				CERCLIS Disco	very Date:	
		1. Gener	al Site Informatio	on	•		
Name: F.E. Warren	AFB	Street Address:					
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
Latitude:	Longitude:	Approximate Are	a of Site:	Status of Site:			
41° 7'59.88"N	104°52'11.12"W	<1 Acres		Active	Not Specified		
		So	quare Ft	Inactive	NA (GW plume,	etc.)	
Site Name: Buildin	g 930 (Hazardous wa	iste)		•			
Site Description: Bu	uilding 930, built in 19	993, serves as the	hazardous waste b	uilding. AFFF has	periodically be	en stored at this	
building until trans	port and final dispos	al off base. On Jan	uary 13, 2005 reco	rds show that fou	ur 55-gallon dru	ums were	
disposed of by the	fire department. How	wever, no leaks or	spills of AFFF are k	nown to have oc	curred here (Tr	avinio, 2015,	
personal communi	cation; Appendix C).						
		2. Owner/O	Operator Informa	tion			
Owner: F.E. Warre	n AFB		Operator: Same a	s owner			
Street Address:			Street Address:				
City:			City:				
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:		
Type of Ownership	:		Type of Ownershi	p:	1		
☐ Private	County		Private County				
Federal Agency	Municipa	I	Federal Agency				
Name: _DOD_	_ Not Spec	ified	Name: Not Specified				
	Other						
		3. Site Eva	aluator Informati	on			
Name of Evaluator	:	Agency/Organiza	tion:		Date Prepared	1:	
Kelly Teplitsky		CH2M HILL	r		09/11/15		
Street Address: 919	91 South Jamaica Stro	eet	City: Englewood State: CO				
Name of EPA or State Agency Contact:			Street Address:				
City: State:		Telephone:					
		4. Site Dispos	ition (for EPA use	e only)			
Emergency Respon	se/Removal Assessm	ient	CERCLIS Recomme	endation:	Signature:		
Recommendation:			Higher Priorit	y SI			
	Yes		Lower Priority	/ SI	Name (typed)	:	
	No		RCRA Position:				
Da	te:		Other:				
			Date:				

5. General Site Characteristics				
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:
that apply):				
☐ Industrial ☐ Agricu ☐ Commercial ☐ Mining ☑ Residential ☑ DOD	Ilture DOI Other Federal Facility:	Urba J Subu	ın ırban	Beginning Year _1993_ Ending Year present_
Forest/Fields DOE	Other		u	Unknown
Type of Site Operations (check	k all that apply):			Waste Generated: NA
Manufacturing (must check subca Lumber and Wood Product Inorganic Chemicals Plastic and/or Rubber Prod Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Miscellaneous Chemical Pro Primary Metals Metal Coating, Plating, Eng Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals	ategory) s ucts ls oducts raving Products	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill ODD DOE DOI Other Federal Facili RCRA RCRA Small Quantity Small Quantity Subtitle D Industria "Converter" "Protective File "Non-or Late F Note Specified	ity prage, or Disposal generator Generator al al al	 ✓ Onsite Offsite Onsite and Offsite Waste Deposition Authorized By: ✓ Present Owner Former Owner Present & Former Owner Unauthorized Unauthorized Unknown Waste Accessible to the Public: Yes ✓ No Distance to Nearest Dwelling, School, or Workplace:
		Other		NA feet
	6. Waste Cha	aracteristics Inform	mation	<u> </u>
	(Refer to F	A Table 1 for WC Sco	re)	
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste
(check all that apply)	(include unit)		(check all that app	olv):
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigment: Laboratory/Hos Radioactive Wa Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste S S S S S S S S S S S S S S S S S S S
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all
(unidentified source)			that apply): Г	Solid
Contaminated Soil] Sludge] Powder 2 Liquid
*C=Constituent \M=\Mad	testream V-Volume A-Area			Gas
"C=Constituent, W=Wasi	lestream, v=volume, A=Area			

7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:			
☐ Yes	☐ Yes				
✓ No	✓ No				
		0 - 1/4 MileNA			
If Yes, Distance to nearest Drinking		>1/4 1/2 Mile NA			
Well:	Have Primary Target Drinking	~1/4 - 1/2 WileNA			
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA			
Type of Drinking Water Wells Within 4					
Miles	✓ No	>1 - 2 Mile NA			
(check all that apply):					
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile			
Private	Population:				
✓ None		>3 - 4 MileNA			
Depth to Shallowest Aquifer:	Nearest Designated Wellhead				
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA			
Karst Terrain / Aquifer Present:					
Karst Terrain/Aquiter Fresent.	>0-4 Miles	*use menulation the few DA Table 2			
Yes	None Within 4 Miles	*Note population #S for PA Table 2			
✓ No		Note hearest wentor #5 of GW Pathway scoresheet			
	8. Surface Water Pathwa	ау			
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source to			
that apply):		Surface Water:			
Stream River F	Pond Diske	Feet			
Bay Ocean C	Dther	NA Miles			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
		Annual - 10 yr Floodplain			
Yes		>10yr - 100yr Floodplain >100yr - 500yr Floodplain			
		> 500yr Floodplain			
Drinking Water Intake Located Along the	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:			
☐ Yes					
		Name: Water Body: Flow (cfs): Population Served:			
Have Primary Target Drinking Water Int	akes Been Identified:				
	co to Nearest Drinking				
✓ No Water Intake	Miles ⁶				
If Yes, Enter Population Served by Targe					
NA People ⁴	Total within 15 Miles ⁴				
Fisheries Located Along the Surface Wat	List All Secondary Target Fisheries ¹⁰ :				
If Yes, Distance	Water Body/ Fishery Name : Flow (cfs):				
	Miles				
Have Primary Target Fisheries Been Ider]				
Yes J No					

	8. Surface Water Pathway (continued)				
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water			
Path:		Migration Path:			
✓ Yes □ No	☐ Yes ✓ No	lf Yes, Enviro	Distance to Nearest Sensitive pnment: _ Miles		
Have Primary Target Wetlands Been Identified:		Have Primary Ta	rget Sensitive	e Environments Been Identified:	
☐ Yes ✓ No			☐ Yes ✓ No		
List All Wetlands:		List All Sensitive	e Environment	ts ¹¹ :	
Water Body : Flow (cfs): Frontage miles:		Water Body :	Flow (cfs):	Sensitive Environment Type:	
·					
	9. Soil E	xposure Pathwa			
Are People Occupying Residence or	Number of Worke	ers Onsite ^{4.}	Have Terre	strial Sensitive Environments Been	
Attending School or Daycare on or			Identified o	on or Within 200 Feet of Areas of	
Within 200 Feet of Area of Known or Suspected Contamination:	None ✓ 1 - 10 101 -	0 1,000	Known or S	uspected Contamination:	
	> 1,00	00		Yes	
Yes				✓ No	
✓ No	Population Withir	n 1 Mile	If Yes, List Environm	Each Terrestrial Sensitive ent ⁵ :	
If Yes, Enter Total Residential		TI WIIE.			
Population:	NA People ⁷				
		opie	-		
			*Refer to PA	Table 7 for environment types	
	10.	Air Pathway			
Is there a Suspected Release to Air ¹ :		Wetlands Locate	d Within 4 M	iles of the Site ⁶ :	
☐ Yes ✓ No		✓ Yes □ No	If Yes, Hov	v Many Acres: Acres	
Enter Total Population on or Within:		Othor Sonsitivo I	Invironmonto	Located Within 4 Miles of the Site:	
Onsite		Other Sensitive Environments Located within 4 Miles of the Site:			
0-1/4 Mile			Ves No		
>1/4-1/2 Mile		List All Sensitive	Environment	s Within 1/2 Mile of the Site ⁶ :	
>1/2-1 Mile		Distance: Ser	nsitive Environi	ment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite Co 0-1/4 Mile	olorado Butte	rfly Plant Research Natural Area	
>2-3 Miles					
>3-4 Miles		>1/4-1/2 Mile) for calculations o	n air pathway exposures	
Total Within 4 Miles ³⁻⁵ _NA					

				Identification		
Potential Hazardous Waste Site Preliminary			nary	State: WY	CERCLIS #:	
Assessment For				CERCLIS Discov	very Date:	
	1. Genera	al Site Informatio	on			
	Street Address:					
	State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
gitude:	Approximate Area	a of Site:	Status of Site:			
°52'8.10"W	<1 Acres		✓ Active	Not Specified		
	Sc	quare Ft	Inactive	NA (GW plume,	etc.)	
40 (Truck mainte	nance)					
ig 1240, built in 1	.995, serves as the	e truck maintenanc	e facility. This bu	ilding formerly	had an AFFF	
ed with a water s	uppression systen	n in 2012. No addit	ional information	n is known abou	ut the former	
no known leaks o	or spills are knowr	n to have occurred	(Watson, 2015, p	personal comm	unication;	
ng is connected t	o a poly-lined con	itainment pond loc	ated between Bu	uildings 1240 ar	nd 1247 and spills	
	2. Owner/C	Operator Informa	tion			
3		Operator: Same a	s owner			
Street Address:		Street Address:				
		City:				
Code:	Telephone:	State:	Zip Code:	Telephone:		
		Type of Ownershi	p:			
County		Private County				
Municipal		Federal Agency	Municip	al		
🗌 Not Speci	fied	Name: Not Specified				
Other		Indian				
	3. Site Eva	aluator Informati	on			
	Agency/Organizat	tion:		Date Prepared:		
	CH2M HILL			09/11/15		
outh Jamaica Stre	et	City: Englewood State: CO				
Name of EPA or State Agency Contact:		Street Address:				
City: State:		Telephone:				
	4. Site Dispos	ition (for EPA use	only)			
emoval Assessm	ent .	CERCLIS Recomme	endation:	Signature:		
		Higher Priority	y SI			
Yes No		Lower Priority	' SI	Name (typed):		
		RCRA Position: Other: Date:				
	al Hazardo Asses gitude: °52'8.10"W t0 (Truck mainte g 1240, built in 1 ed with a water s no known leaks o ng is connected t d with a water s no known leaks o ng is connected t d Municipal Municipal Municipal Other Code: Code: Code: uth Jamaica Stree gency Contact: gency Contact:	Assessment For Assessment For I. General Street Address: State: WY gitude: State: WY gitude: State: WY gitude: Approximate Area State: WY gitude: Code: Code: County Municipal Not Specified Other Code: County Agency/Organizat A	I Hazardous Waste Site Prelimin Assessment Form I. General Site Informatio Street Address: State: WY Zip Code: State: WY Zip Code: State: WY Code: City: City: City: Code: City: City: Code: City: City: Code: City: ity: City: City:	Il Hazardous Waste Site Preliminary Assessment Form I. General Site Information Street Address: State: WY Zip Code: County: Laramie istatus of Site: ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Il Hazardous Waste Site Preliminary Assessment Form State: WY I. General Site Information State: WY State: WY Zip Code: State: WY Zip Code: State: WY Zip Code: I. General Site Information Co. Code: State: WY Zip Code: Image: State State: WY Zip Code: State: WY Zip Code: Image: State State: Status of Site: Not Specified Image: State State: Status of Site: Not Specified Image: State State: State	

5. General Site Characteristics				
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:
that apply):				
Industrial Agricu Commercial Mining Residential DOD	lture DOI Other Federal Facility:	Urba	n Irban	Beginning Year _1995_ Ending Year present_
Forest/Fields DOE	Other		I	Unknown
Type of Site Operations (check	c all that apply):			Waste Generated: NA
Manufacturing (must check subcation) Manufacturing (must check subcation) Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Prod Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Agricultural Chemicals Miscellaneous Chemical Prod Primary Metals Metal Coating, Plating, Eng Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals	itegory) s ucts ls oducts raving Products	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill ODD DOE DOI Other Federal Facili RCRA RCRA Treatment, Sto Large Quantity Small Quantity Subtitle D Industria "Converter" "Protective File "Non-or Late F	ity orage, or Disposal o Generator Generator al al al	 ✓ Onsite Offsite Onsite and Offsite Waste Deposition Authorized By: ✓ Present Owner Former Owner Present & Former Owner Unauthorized Unauthorized Unknown Waste Accessible to the Public: Yes ✓ No Distance to Nearest Dwelling, School, or Workplace:
		Other		NAfeet
	6. Waste Cha	aracteristics Inform	nation	
	(Refer to F	A Table 1 for WC Sco	re)	
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste
(check all that apply)	(include unit)	-	(check all that and	nlv).
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigment Laboratory/Hos Radioactive Wa Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Spital Waste Explosives Uste Other_AFFF_ emolition Waste
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all
(unidentified source)			that apply):	Solid
				Sludge
Other				Powder
				Gas
*C=Constituent, W=Wast	estream, V=Volume, A=Area		_	

7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:			
☐ Yes	☐ Yes				
✓ No	✓ No				
		0 - 1/4 MileNA			
If Yes, Distance to nearest Drinking		>1/4 1/2 Mile NA			
Well:	Have Primary Target Drinking	>1/4 - 1/2 Wile			
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA			
Type of Drinking Water Wells Within 4					
Miles	✓ No	>1 - 2 Mile NA			
(check all that apply):					
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile			
Private	Population:				
✓ None		>3 - 4 MileNA			
Depth to Shallowest Aquifer:	Nearest Designated Wellhead				
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA			
Karst Terrain / Aquifer Present:					
Karst Terrain/Aquiter Fresent.	>0-4 Miles	*use menulation the few DA Table 2			
Yes	None Within 4 Miles	*Note population #S for PA Table 2			
✓ No		Note hearest wentor #5 of GW Pathway scoresheet			
	8. Surface Water Pathwa	ау			
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source to			
that apply):		Surface Water:			
Stream River F	Pond Diske	Feet			
Bay Ocean C	Dther	NA Miles			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
		Annual - 10 yr Floodplain			
Yes		>10yr - 100yr Floodplain >100yr - 500yr Floodplain			
		> 500yr Floodplain			
Drinking Water Intake Located Along the	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:			
☐ Yes					
		Name: Water Body: Flow (cfs): Population Served:			
Have Primary Target Drinking Water Int	akes Been Identified:				
	co to Nearest Drinking				
✓ No Water Intake	Miles ⁶				
If Yes, Enter Population Served by Targe					
NA People ⁴	Total within 15 Miles ⁴				
Fisheries Located Along the Surface Wat	List All Secondary Target Fisheries ¹⁰ :				
If Yes, Distance	Water Body/ Fishery Name : Flow (cfs):				
	Miles				
Have Primary Target Fisheries Been Ider]				
Yes J No					

	8. Surface Water Pathway (continued)				
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water			
Path:		Migration Path:			
✓ Yes □ No	☐ Yes ✓ No	lf Yes, Enviro	Distance to Nearest Sensitive pnment: _ Miles		
Have Primary Target Wetlands Been Identified:		Have Primary Ta	rget Sensitive	e Environments Been Identified:	
☐ Yes ✓ No			☐ Yes ✓ No		
List All Wetlands:		List All Sensitive	e Environment	ts ¹¹ :	
Water Body : Flow (cfs): Frontage miles:		Water Body :	Flow (cfs):	Sensitive Environment Type:	
·					
	9. Soil E	xposure Pathwa			
Are People Occupying Residence or	Number of Worke	ers Onsite ^{4.}	Have Terre	strial Sensitive Environments Been	
Attending School or Daycare on or			Identified o	on or Within 200 Feet of Areas of	
Within 200 Feet of Area of Known or Suspected Contamination:	None ✓ 1 - 10 101 -	0 1,000	Known or S	uspected Contamination:	
	> 1,00	00		Yes	
Yes				✓ No	
✓ No	Population Withir	n 1 Mile	If Yes, List Environm	Each Terrestrial Sensitive ent ⁵ :	
If Yes, Enter Total Residential		TI WIIE.			
Population:	NA People ⁷				
		opie	-		
			*Refer to PA	Table 7 for environment types	
	10.	Air Pathway			
Is there a Suspected Release to Air ¹ :		Wetlands Locate	d Within 4 M	iles of the Site ⁶ :	
☐ Yes ✓ No		✓ Yes □ No	If Yes, Hov	v Many Acres: Acres	
Enter Total Population on or Within:		Othor Sonsitivo I	Invironmente	Located Within 4 Miles of the Site:	
Onsite		Other Sensitive Environments Located within 4 Miles of the Site:			
0-1/4 Mile			Ves No		
>1/4-1/2 Mile		List All Sensitive	Environment	s Within 1/2 Mile of the Site ⁶ :	
>1/2-1 Mile		Distance: Ser	nsitive Environi	ment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite Co 0-1/4 Mile	olorado Butte	rfly Plant Research Natural Area	
>2-3 Miles					
>3-4 Miles		>1/4-1/2 Mile) for calculations o	n air pathway exposures	
Total Within 4 Miles ³⁻⁵ _NA					

					Identificatio	n	
Potential Hazardous Waste Site Preliminary					State: WY	CERCLIS #:	
	Assessment For				CERCLIS Disc	overy Date:	
		1. Genei	ral Site Informati	on	•		
Name: F.E. Warrer	n AFB	Street Address:					
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
Latitude: 41° 8'37.86"N	Longitude: 104°52'8.10"W	Approximate Are <1 Acres	a of Site: Gquare Ft	Status of Site: Active	Not Specified	e, etc.)	
Site Name: Buildir	ng 1247 (Base Fuels)	Į		_I			
tank size is unknown but staff estimates it to be 200 to 300 gallons (Schafer, 2015, personal communication; Appendix C). This building is connected to a poly-lined containment pond located between Buildings 1240 and 1247 and spills can be diverted to this pond as necessary (McKinley, 2015, personal communication; Appendix C).					n; Appendix C). spills can be		
		2. Owner/	Operator Inform	ation			
Owner: F.E. Warre	n AFB		Operator: Same as owner				
Street Address:		Street Address:					
City:		City:					
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:		
Type of Ownership):	1	Type of Ownersh	ip:			
□ Private □ County □ Federal Agency □ Municipal Name: _DOD □ Not Specified □ State □ Other □ Indian □ Other		Private County Federal Agency Municipal Name: Not Specified State Other Indian Indian					
		3. Site Ev	aluator Informat	tion			
Name of Evaluato Kelly Teplitsky	:	Agency/Organiza CH2M HILL	tion:		Date Prepare 09/11/15	Date Prepared: 09/11/15	
Street Address: 91	91 South Jamaica St	reet	City: Englewood State: CO				
Name of EPA or State Agency Contact:		Street Address:					
City: State:		Telephone:					
		4. Site Dispos	sition (for EPA us	e only)			
Emergency Respon	nse/Removal Assessr	nent		nendation:	Signature:		
	Yes		Lower Priori	ty SI	Name (typed	l):	
Di	□ No ate:		RCRA Other: Date:		Position:		

5. General Site Characteristics				
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:
that apply):				
Industrial Agricu Commercial Mining Pesidential	llture DOI Other Federal	Urba	n ırban	Beginning Year _1995_ Ending Year present
Forest/Fields		Rura	l	
	Other			Unknown
Type of Site Operations (check	k all that apply):			Waste Generated: NA
Manufacturing (must check subca Lumber and Wood Product Inorganic Chemicals Plastic and/or Rubber Prod Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Miscellaneous Chemical Pro Primary Metals Metal Coating, Plating, Eng Metal Forging, Stamping	ategory) s ucts Is oducts iraving	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill JODD DOE DOI Other Federal Facili RCRA Treatment, Sto	ity prage, or Disposal	✓ Onsite Offsite Onsite and Offsite Onsite and Offsite ✓ Present Owner Former Owner Present & Former Owner Unauthorized Unauthorized Unknown Waste Accessible to the Public:
 Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals 	Products	Large Quantity Small Quantity Subtitle D Industria "Converter" "Protective File "Non- or Late F Note Specified Other	y Generator Generator al al yr" iler"	 Yes No Distance to Nearest Dwelling, School, or Workplace: 0_ feet
	6. Waste Cha	aracteristics Inform	nation	
	(Refer to F	PA Table 1 for WC Sco	re)	
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste
(check all that apply) Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume	(include unit)		(check all that app Metals Organics Inorganics Solvents Paints/Pigment: Laboratory/Hos Radioactive Wa Construction/Do	bly): Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste s Mining Waste Explosives ste Other_AFFF_ emolition Waste
			Physical State Of	waste as Deposited (check all
Contaminated SW/Sediment			that apply):	_
(unidentified source) Contaminated Soil Other No Sources				Solid Sludge Powder Liquid Gas
*C=Constituent, W=Wast	testream, V=Volume, A=Area			

7. Ground Water Pathway						
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by				
Within 4 Miles:	Ground Water ¹	Ground Water Withdrawn From:				
		0 - 1/4 MileNA				
If Yes, Distance to nearest Drinking						
Well:	Have Primary Target Drinking	- >1/4 - 1/2 MileNA				
Feet	Water Wells Been Identified:					
	Water Wells Been dentined.	>1/2 - 1 MileNA				
Type of Drinking Water Wells Within 4	Yes					
Miles	✓ No	>1 - 2 MileNA				
(check all that apply):	If Yes Enter Primary Target					
Municipal	Population:	>2 - 3 MileNA				
Private	People ³					
None	· copie	>3 - 4 MileNA				
Depth to Shallowest Aquifer:	Nearest Designated Wellhead					
NA	Protection Area ⁶ :	Iotal Within 4 Miles* _NA				
Karst Tarrain (Aquifar Dracanti						
Karst Terrain/Aquiter Present.		*				
☐ Yes	✓ None Within 4 Miles	* Use population #s for PA Table 2				
✓ No	_	[™] Note nearest well for #5 on GW Pathway Scoresheet				
	8. Surface Water Pathw	ay				
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distance From Any Source to				
that apply):	,	Surface Water:				
	Feet					
	Dther	0.4 Wiles				
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:				
		Annual - 10 yr Floodplain				
✓ Yes		>10yr - 100yr Floodplain				
No		>100yr - 500yr Floodplain				
		>500yr Floodplain				
Drinking Water Intake Located Along the	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:				
☐ fes ☑ No		Name: Water Body: Flow (cfs): Population Served:				
Have Primary Target Drinking Water Int	akes Been Identified:					
Yes If Vec Dictor	ce to Nearest Drinking					
✓ No Water Intake	e: Miles ⁶					
If Yes, Enter Population Served by Targe						
	Total within 15 Miles ⁴					
NA People⁴						
Eicheries Located Along the Surface Was	ter Migration Path	List All Secondary Target Ficherics ¹⁰				
	to Nearest Eichory	List All Secondary Target Fisheries :				
Yes No IT Yes, Distanc	e to nearest Fishery: Milos	<u>Water Body/ Fishery Name</u> : <u>Flow (cfs)</u> :				
Llove Drimony Toyot Fishering Description		┥				
Have Primary Target Fisheries Been Ider						
Yes 🗸 No						
	continued)					
---	-------------------	---	-----------------------	--	--	--
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water				
Path:		Migration Pat	h:			
✓ Yes □ No		□ Yes If Yes, Distance to Nearest Sensitive ☑ No Environment: _ Miles				
Have Primary Target Wetlands Been Id	entified:	Have Primary Target Sensitive Environments Been Identified:				
☐ Yes ✓ No		☐ Yes ✓ No				
List All Wetlands:		List All Sensi	tive Environme	nts ¹¹ :		
Water Body : Flow (cfs): Frontage miles:		Water Body :	<u>Flow (cfs)</u> :	Sensitive Environment Type:		
	9. Soil E	xposure Path	wav			
Are People Occupying Residence or	Number of Worke	ers Onsite ⁴ :	Have Terr	estrial Sensitive Environments Been		
Attending School or Daycare on or			Identified	on or Within 200 Feet of Areas of		
Within 200 Feet of Area of Known or Suspected Contamination:	None	0 1 <i>.</i> 000	Known or	Suspected Contamination:		
	> 1,00	00		Yes		
☐ Yes				✓ No		
✓ No			If Yes, Li	If Yes, List Each Terrestrial Sensitive		
	Population Within	n 1 Mile:	ment ⁵ :			
If Yes, Enter Total Residential						
	_NA Pe	eople ⁷	_			
NA People ²			*Refer to P	*Refer to PA Table 7 for environment types		
	10.	Air Pathway				
Is there a Suspected Release to Air ¹ :		Wetlands Loc	ated Within 4 I	Miles of the Site ⁶ :		
Ves No		Yes If Yes, How Many Acres: Acres				
		Other Sensitiv	ve Environmen	ts Located Within 4 Miles of the Site:		
Onsite			√ Ye	S		
0-1/4 Mile			No			
>1/4-1/2 Mile		List All Sensiti	ve Environmer	nts Within 1/2 Mile of the Site ⁶ :		
>1/2-1 Mile		Distance:	Sensitive Enviro	nment Type/Wetlands Area (acres):		
>1-2 Miles		Onsite 0-1/4 Mile	Colorado Butt	erfly Plant Research Natural Area		
>2-3 Miles						
>3-4 Miles		>1/4-1/2 Mile				
Total Within 4 Miles ³⁻⁵ _32,580			e to for calculations	on an patriway exposures		

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

						Identification		
Pote	ntial Hazard	ous Waste S	Site Prelim	nin	ary	State: WY	CERCLIS #:	
	Asse	essment Foi	CERCLIS Discovery Date:				overy Date:	
		1. Genei	ral Site Informa	tior	n	•		
Name: F.E. Warrer	n AFB	Street Address:						
City: Cheyenne		State: WY	Zip Code:	C L	County: Laramie	Co. Code:	Cong. Dist:	
Latitude: 41° 8'48.78"N	Longitude: 104°52'4.58"W	Approximate Area of Site: <1 Acres Square Ft		9	Status of Site: Active Inactive	of Site: tive INot Specified active NA (GW plume, etc.)		
Site Name: Buildir	ng 1285 (Hazmart)	!						
base. During a visi floor drains. If a sp However, no leaks	t to the building, 39 bill occurs, it would b or spills are known	55-gallon drums of e cleaned up by a c to have occurred h	AFFF were store contractor (Wrigh ere (McKinley, 2)	ed he ht, 2 105,	ere. The building 1015, personal c , personal comn	g has a tempo ommunication nunication; Ap	prary berm but no n; Appendix C). ppendix C).	
		2. Owner/	Operator Inforr	nati	ion			
Owner: F.E. Warre	Operator: Same	e as	owner					
Street Address:			Street Address:					
City:			City:					
State: ND	Zip Code:	Telephone:	State:	State: Zip Code:				
Type of Ownership	D:	1	Type of Owners	ship	:			
Private Private Federal Agency Name: _DOD_ State Indian	County County Municip Not Spe Other_	al ccified	Private County Federal Agency Municip Name: Not Spi State Other_ Indian Other_		oal ecified 			
		3. Site Ev	aluator Informa	atio	on			
Name of Evaluator Kelly Teplitsky	r:	Agency/Organiza CH2M HILL	ation:			Date Prepare 09/11/15	ed:	
Street Address: 91	.91 South Jamaica St	reet	City: Englewood	d		State: CO		
Name of EPA or St	ate Agency Contact:		Street Address:	:				
City:		State:	1	٦	Telephone:			
		4. Site Dispos	sition <i>(for EPA u</i>	use	only)			
Emergency Respor Recommendation:	nse/Removal Assessr	nent	CERCLIS Recom	nmei ority	ndation: SI	Signature:		
	Yes No		Lower Pric	Lower Priority SI		Name (typed	Name (typed):	
Di	ate:		Date:					

	5. Genera	al Site Characteris	tics		
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):		_			
☐ Industrial ☐ Agricul ☐ Commercial ☐ Mining ☑ Residential ☑ DOD ☐ Forest/Fields ☐ DOE	☐ Urba ☑ Subu ☐ Rura	ın ırban I	Beginning Year _1995_ Ending Year present_		
	Other			Unknown	
Type of Site Operations (check	all that apply):			Waste Generated: NA	
Manufacturing (must check subcat Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Produ Paints, Varnishes Industrial Organic Chemical Agricultural Chemicals Miscellaneous Chemicals Primary Metals Primary Metals Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill ODD DOE DOI Other Federal Facili RCRA Treatment, Sto Large Quantity Small Quantity Subtitle D	ity prage, or Disposal generator Generator al al er"	✓ Unsite Offsite Offsite Onsite and Offsite Waste Deposition Authorized By: ✓ Present Owner Present & Former Owner Unauthorized Unauthorized Unknown Waste Accessible to the Public: Yes ✓ No Distance to Nearest Dwelling, School, or Workplace:		
		Other		NA feet	
	6. Waste Cha	aracteristics Inform	nation	<u>.</u>	
	(Refer to F	PA Table 1 for WC Sco	re)		
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste	
(check all that apply)	(include unit)		(check all that app	oly):	
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigment: Laboratory/Hos Radioactive Wa Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste s Mining Waste pital Waste Explosives ste Other_AFFF_ emolition Waste	
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all	
(unidentified source) Contaminated SW/Sediment (unidentified source) Contaminated Soil Other			that apply):	Solid Sludge Powder	
No Sources				Gas	
*C=Constituent, W=Wast	estream, V=Volume, A=Area				

	7. Ground Water Pathwa	ay							
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by							
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrawn From:							
☐ Yes	☐ Yes								
✓ No	✓ No								
		0 - 1/4 MileNA							
If Yes, Distance to nearest Drinking		>1/4 1/2 Mile NA							
Well:	Have Primary Target Drinking	~1/4 - 1/2 WileNA							
Feet	Water Wells Been Identified:	>1/2 - 1 Mile NA							
Type of Drinking Water Wells Within 4									
Miles	✓ No	>1 - 2 Mile NA							
(check all that apply):									
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile							
Private	Population:								
✓ None		>3 - 4 MileNA							
Depth to Shallowest Aquifer:	Nearest Designated Wellhead								
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴ _NA							
Karst Terrain / Aquifer Present:									
Karst Terrain/Aquiter Fresent.	>0-4 Miles	*ulas manufation de fan DA Table 2							
Yes	None Within 4 Miles	*Note population #S for PA Table 2							
√ No		Note hearest well for #5 on GW Pathway Scoresheet							
	8. Surface Water Pathway								
Type of Surface Water Draining Site and	Shortest Overland Distance From Any Source to								
that apply):	Surface Water:								
Stream River F	Feet								
Bay Ocean C	Dther	NA Miles							
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:							
		Annual - 10 yr Floodplain							
Yes		>10yr - 100yr Floodplain							
		> 500yr Floodplain > 500yr Floodplain							
Drinking Water Intake Located Along the	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:							
☐ Yes									
✓ No		Name: Water Body: Flow (cfs): Population Served:							
Have Primary Target Drinking Water Int	akes Been Identified:								
Yes If Ves Distan	ce to Nearest Drinking								
✓ No Water Intake	e: Miles ⁶								
If Yes, Enter Population Served by Targe	t Intake:								
		Total within 15 Miles ⁴							
NA People⁴									
Fisheries Located Along the Surface Wat	ter Migration Path:	List All Secondary Target Fisheries ¹⁰ :							
If Yes. Distance	e to Nearest Fisherv:	Water Body/ Fisherv Name : Flow (cfs)							
	Miles								
Have Primary Target Fisheries Been Ider	ntified:	T							
Yes Vo									

	ontinued)					
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water				
Path:		Migration Path:				
✓ Yes □ No		□ Yes If Yes, Distance to Nearest Sensitive ☑ No Environment: _ Miles				
Have Primary Target Wetlands Been Id	entified:	Have Primary Target Sensitive Environments Been Identified:				
☐ Yes ✓ No		☐ Yes ✓ No				
List All Wetlands:		List All Sensitiv	e Environment	ts ¹¹ :		
Water Body : Flow (cfs): Frontage miles:		Water Body :	Flow (cfs):	Sensitive Environment Type:		
	9. Soil E	xposure Pathw	av			
Are People Occupying Residence or	Number of Worke	ers Onsite ⁴ :	Have Terres	strial Sensitive Environments Been		
Attending School or Daycare on or			Identified o	on or Within 200 Feet of Areas of		
Within 200 Feet of Area of Known or Suspected Contamination:	0 1,000	Known or S	uspected Contamination:			
	> 1,00	00		Yes		
Yes				✓ No		
✓ No	Population Withir	n 1 Mile:	If Yes, List Environm	If Yes, List Each Terrestrial Sensitive Environment ⁵ :		
If Yes, Enter Total Residential						
Population:	_NA Pe	ople ⁷				
NA People ²			- *Refer to PA	Table 7 for environment types		
	10	Air Pathway				
Is there a Suspected Release to Air ¹ .	10.		ed Within 4 M	iles of the Site ⁶ .		
Yes No		Yes No	If Yes, Hov	v Many Acres: Acres		
Enter Total Population on or Within:						
Onsite		Other Sensitive	Environments	Located Within 4 Miles of the Site:		
0-1/4 Mile			✓ Yes No			
>1/4-1/2 Mile		List All Sensitive	Environment	s Within 1/2 Mile of the Site ⁶ :		
>1/2-1 Mile		Distance: Se	nsitive Environi	nent Type/Wetlands Area (acres):		
>1-2 Miles		Onsite Co 0-1/4 Mile	olorado Butte	rfly Plant Research Natural Area		
>2-3 Miles						
>3-4 Miles		>1/4-1/2 Mile				
Total Within 4 Miles ³⁻⁵ _NA						

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

APPENDIX B.2

OTHER

This page was intentionally left blank.

Yellow-ADD			List of AF Hangars	for Evaluation on A	ctive Duty Bases		
Red-DELETE			High Expansion	AFFF	Deluge	мајсом	STATE/ COUNTRY
Green-UPDATE	Base/Site	Hangar Bldg #	Foam				,
1	Altus AFB	509		х		AETC	ОК
	Altus AFB	514		Х		AETC	ОК
	Altus AFB	518	Х			AETC	ОК
	Altus AFB	517		Х		AETC	ОК
	Altus AFB	435			X	AETC	OK
	Altus AFB	285	х			AETC	ОК
2	Columbus	246	X			AETC	MS
	Columbus	406	X	v		AETC	MS
	Columbus	440	x	^		AETC	MS
	Columbus	460	x			AETC	MS
	Columbus	995		Х		AETC	MS
3	JBSA Lackland	826	Х			AETC	TX
	JBSA Lackland	829		Х		AETC	TX
	JBSA Lackland	933	X			AETC	TX
	JBSA Lackland	935	X	×		AETC	
4	IBSA Bandolph	40		x		AFTC	ТХ
	JBSA Randolph	44		X		AETC	TX
	JBSA Randolph	82		х		AETC	ТХ
	JBSA Randolph	83		Х		AETC	TX
5	Keesler AFB	4247	X			AETC	MS
	Keesler AFB	4278	× ×	v		AETC	MS MS
	Keesler AFB	4204	v	X			MS MS
6	Laughlin AFB	4254	<u>^</u>	x	1	AETC	TX
	Laughlin AFB	50	x	~		AETC	тх
	Laughlin AFB	414	x			AETC	ТХ
	Laughlin AFB	502	х			AETC	TX
	Laughlin AFB	508	Х			AETC	TX
7	Luke AFB	408		Х		AETC	AZ
	Luke AFB	431		Х		AETC	AZ
	Luke AFB	485		Х		AETC	AZ
	Luke AFB	840		Х		AETC	AZ
	Luke AFB	913	Х			AETC	AZ
	Luke AFB	914	Х			AETC	AZ
	Luke AFB	915	X			AETC	AZ
	Luke AFB	922		X		AETC	AZ
	Luke AFB	968	×	X		AEIC	AZ
		904 Dock #1	× ×			AETC	AZ
		Dock #1	× ×			AETC	AZ
		Dock #2	X			ALTC	Δ7
	Luke AFB	Dock #4	x			AETC	AZ
	Luke AFB	995	X			AETC	AZ
	Luke AFB	999		Х		AETC	AZ
	Luke AFB	1019		Х		AETC	AZ
	Luke AFB	1022		X		AETC	AZ
8	Maxwell AFB	1454	Х			AETC	AL
	Maxwell AFB	1455	X			AETC	AL
9	Sheppard	2414		Х		AETC	TX
10	Vance AFB	195			x	AETC	ОК
	Vance AFB	198	Х			AETC	ОК
	Vance AFB	141			X	AETC	ОК
	Vance AFB	199	X			AETC	ОК
11	Andrews AFB	1914	X			AFDW	MD
	Andrews AFB	1794	X			IAFDW	MD
	Andrews AFB	1754					MD MD
	Andrews AFB	1/34					MD
	Andrews AFB	1/14	X				MD
		12/9	× ×				
	Andrews AFB	1280	x x	Y		AFDW	MD
	Andrews AFB	1225	x	X		AFDW	MD
	Andrews AFB	5032	X			AFDW	MD
	Andrews AFB	5016	x			AFDW	MD
	Andrews AFB	3640	x	Х		AFDW	MD
	Andrews AFB	3635	х	Х		AFDW	MD
	Andrews AFB	3188			X	AFDW	MD
	Andrews AFB	3158	Х			AFDW	MD
	Andrews AFB	3148			X	AFDW	MD
	Andrews AFB	3119	х			AFDW	MD
	Andrews AFB	3002	х	x		AFDW	MD
	Andrews AFB	2409	Х			AFDW	MD

Yellow-ADD			List of AF Hangars	for Evaluation on Act	tive Duty Bases		
Red-DELETE			High Expansion	AFFF	Deluge	мозсам	STATE/ COUNTRY
Green-UPDATE	Base/Site	Hangar Bidg #	Foam		- ciugo		
	Andrews AFB	1915	х			AFDW	MD
	Andrews AFB	1288	Х	x		AFDW	MD
	Andrews AFB	3629	Х			AFDW	MD
12	Barksdale	6200	х			AFGSC	LA
	Barksdale	6050	X			AFGSC	LA
	Barksdale	6214		X		AFGSC	LA
	Barksdale	6215	v	X		AFGSC	LA
	Barksdale	6626	^	x		AFGSC	
	Barksdale	6628		X		AFGSC	LA
	Barksdale	6824		X		AFGSC	LA
	Barksdale	6825	Х			AFGSC	LA
	Barksdale	6850	Х			AFGSC	LA
13	F.E. Warren	1250	<u>x</u>			AFGSC	WY
	F.E. Warren	7600-Delete	<u>X</u>			AFGSC	WY
14	Malmstrom AFB	1440/ Bay 5		Х		AFGSC	МТ
15	Minot AFB	836	<u>x</u>			AFGSC	ND
	Minot AFB	837	Х			AFGSC	ND
	Minot AFB	863	X			AFGSC	ND
	Minot AFB	867	X	v		AFGSC	ND ND
	Minot AFB	899		X		AFGSC	
16	Whiteman AFB	970		X (Cappons)		AFGSC	MO
1	Whiteman AFB	T-9		X (Cannons)		AFGSC	MO
	Whiteman AFB	52	Х		Х	AFGSC	MO
	Whiteman AFB	27		Х		AFGSC	MO
	Whiteman AFB	1125		Х		AFGSC	MO
	Whiteman AFB	91			х	AFGSC	MO
	Whiteman AFB	1117			X	AFGSC	MO
	Whiteman AFB	1118		v	X	AFGSC	MO
	Whiteman AFB	5050		X	<u> </u>	AFGSC	MO
	Whiteman AFB	5051		X		AFGSC	MO
	Whiteman AFB	5053		X		AFGSC	MO
	Whiteman AFB	5054		Х		AFGSC	MO
	Whiteman AFB	5055		Х		AFGSC	MO
	Whiteman AFB	5058		Х		AFGSC	MO
	Whiteman AFB	5059		Х		AFGSC	MO
	Whiteman AFB	5060		X		AFGSC	MO
	Whiteman AFB	5061		X		AFGSC	MO
	Whiteman AFB	5062		× ×		AFGSC	MO
	Whiteman AFB	5064		X		AFGSC	MO
	Whiteman AFB	5065		Х		AFGSC	MO
	Whiteman AFB	5205		Х		AFGSC	MO
	Whiteman AFB	5206		Х		AFGSC	MO
17	Eglin AFB	71	X			AFMC	FL
	Eglin AFB	72		Х		AFMC	FL
	Eglin AFB	130	Х	v			FL FL
		138		X			
	Eglin AFB	440 441		X		AFMC	FI
	Eglin AFB	985	x	~ ~		AFMC	FL
	Eglin AFB	1318	x			AFMC	FL
	Eglin AFB	1332	Х			AFMC	FL
	Eglin AFB	1344	х			AFMC	FL
	Eglin AFB	1386		X		AFMC	FL FL
	Eglin AFB	1412		Х			FL FL
	Eglin AFB	1417	X				
	Eglin AFB	3020	x			AFMC	FI
	Eglin AFB	3057	~	х		AFMC	FL
	Eglin AFB	3087		X		AFMC	FL
	Eglin AFB	3150		Х		AFMC	FL
	Eglin AFB	110			X	AFMC	FL
18	Hill AFB	25		Х		AFMC	UT
	Hill AFB	37		X		AFMC	UT
	Hill AFB	40		X		AFMC	UT
		42		X			
	Hill AFB	43		X V			
I		43		^	I		

Yellow-ADD			List of AF Hangars	for Evaluation on A	ctive Duty Bases		
Red-DELETE			High Expansion	AFFF	Deluge	мојсом	STATE/ COUNTRY
Green-UPDATE	Base/Site	Hangar Bidg #	Foam				
	Hill AFB	48		х		AFMC	UT
	Hill AFB	204	х			AFMC	UT
	Hill AFB	206	Х			AFMC	UT
	Hill AFB	220		Х		AFMC	UT
	Hill AFB	222	Х			AFMC	UT
	Hill AFB	227		Х		AFMC	UT
	Hill AFB	228		Х		AFMC	UT
	Hill AFB	236		Х		AFMC	UT
	HIII AFB	237	X			AFMC	
		269	X	×		AFMC	
		270		X	v		
	Hill AFB	5187	x		^	AFMC	
	Hill AFB	5196	~		x	AFMC	UT
	Hill AFB	674	х			AFMC	UT
19	Hanscom	1715	x		х	AFMC	MA
20	Kirtland AFB	481	х			AFMC	NM
	Kirtland AFB	985	х			AFMC	NM
	Kirtland AFB	986	Х			AFMC	NM
	Kirtland AFB	1037		Х		AFMC	NM
	Kirtland AFB	1069		Х		AFMC	NM
	Kirtland AFB	1000			X	AFMC	NM
	Kirtland AFB	1001			X	AFMC	NM
	Kirtland AFB	1002			<u> </u>	AFMC	NM NM
	KIRTIAND AFB	760			+ ×	AFMC	NM CA
21					v	AFMC	GA GA
		47			X	AFIVIC	GA
		40			× ×		GA
	Robins AFB	50		x	X		GA
	Robins AFB	54		x		AFMC	GA
	Robins AFB	59			x	AFMC	GA
	Robins AFB	89		х		AFMC	GA
	Robins AFB	110				AFMC	GA
	Robins AFB	125				AFMC	GA
	Robins AFB	131		х		AFMC	GA
	Robins AFB	137			X	AFMC	GA
	Robins AFB	2026		X		AFMC	GA
	Robins AFB	2030		X		AFMC	GA
	RODINS AFB	2036		X		AFIVIC	GA
		2071		X		AFIVIC	GA
	Robins AFB	2310		X		AFMC	GA
22	Tinker AFB	230 Dock 1		x		AFMC	ОК
	Tinker AFB	230 Dock 2	x			AFMC	ОК
	Tinker AFB	230 Dock 3		х		AFMC	ОК
	Tinker AFB	230 Dock 4	X			AFMC	ОК
	Tinker AFB	289		Х		AFMC	ОК
	Tinker AFB	820		x	<u>_</u>	AFMC	ОК
	Tinker AFB	976		Х		AFMC	ОК
	Tinker AFB	1053	× ×		+	AFMC	ОК
	Tinker AFB	1082		X		AFMC	
		2136		X		AFMC	
		3102 Center Dock		× ×	+		
	Tinker AFB	3102 Center DUCK		x		AFMC	<u>ОК</u>
	Tinker AFB	3105		x	1	AFMC	ОК
23	Edwards AFB	151		x		AFMC	CA
	Edwards AFB	160		х х		AFMC	CA
	Edwards AFB	1030			x	AFMC	СА
	Edwards AFB	1207	X			AFMC	CA
	Edwards AFB	1210	х			AFMC	CA
	Edwards AFB	1414			x	AFMC	СА
	Edwards AFB	1600a-delete		Х			
	Edwards AFB	1600		Х		AFMC	CA
	Edwards AFB	1608		X		AFMC	CA
	Euwards AFB	1623		v	× ×	AFMC	
	Euwarus AFB	1624		X	+	AFIVIC	
	Edwards AFB	1624	^		x		
	Edwards AFB	1635			x	AFMC	CA
	Edwards AFB	1810	x			AFMC	CA
•							•

Yellow-ADD			List of AF Hangars for Evaluation on Active Duty Bases				
Red-DELETE			High Expansion	AEEE	Dolugo	MAICOM	STATE / COUNTRY
Green-UPDATE	D (6)		Foom	AFFF	Deluge		STATE/ COUNTRY
	Base/Site	Hangar Bidg #	- V			45846	<u> </u>
	Edwards AFB	1820	^		×	AFIVIC	CA
	Edwards AFB	1850			x	AFMC	
	Edwards AFB	1870		x	X	AFMC	СА
	Edwards AFB	1874		x		AFMC	CA
	Edwards AFB	1881		х		AFMC	CA
	Edwards AFB	4305	х			AFMC	CA
	Edwards AFB	4505			Х	AFMC	CA
	Edwards (NASA)	4801-Delete		Х		AFMC	CA
	Edwards (NASA)	4802-Delete		×		AFMC	CA.
		4820 Doloto		~		Armic	СА
	Edwards (NASA)	4820-Delete		X		AFMC	СА
	Edwards (NASA)	4840-Delete		Х		AFMC	СА
	Edwards (NASA)	4826-Delete		Х		AFMC	СА
	Edwards (NASA)	4833-Delete			Х	AFMC	CA
24	Wright-Pat	34007	Х			AFMC	ОН
	Wright-Pat	34015	Х			AFMC	ОН
	Wright-Pat	34016	Х			AFMC	ОН
	Wright-Pat	34020		Х		AFMC	ОН
	Wright-Pat	302065	Х			AFMC	ОН
	Wright-Pat	30206N	Х			AFMC	ОН
	Wright-Pat	30268		X		AFMC	ОН
<u> </u>	Wright-Pat	30148		X		AFMC	ОН
25	Cannon	109		X		AFSOC	NM
1	Cannon	119				AFSOC	NM NA
	Cannon	125		X		AFSOC	NIVI
	Cannon	120		×		AFSOC	NIM
	Cannon	133	x	^		AFSOC	NM
	Cannon	173	x			AFSOC	NM
	Cannon	194	X			AFSOC	NM
	Cannon	195	X			AFSOC	NM
	Cannon	196	х			AFSOC	NM
	Cannon	197		х		AFSOC	NM
	Cannon	199	Х			AFSOC	NM
	Cannon	204		Х		AFSOC	NM
	Cannon	208	Х			AFSOC	NM
	Cannon	4605	Х			AFSOC	NM
	Cannon	4606	Х			AFSOC	NM
	Cannon	4607	X			AFSOC	NM
	Cannon	4609	X			AFSOC	NM
26	Hurlburt Field	90029		X		AFSOC	FL
	Huriburt Field	90032	X	v		AFSOC	FL FL
	Hurlburt Field	90225	v	^		AFSOC	
	Hurlburt Field	90800	X			AFSOC	FI
	Hurlburt Field	90810	A	x		AFSOC	FL
	Hurlburt Field	90815	x			AFSOC	FL
	Hurlburt Field	90816		x		AFSOC	FL
1	Hurlburt Field	90825	Х			AFSOC	FL
1	Hurlburt Field	91262	X			AFSOC	FL
	Hurlburt Field	91266	x			AFSOC	FL
ļ	Hurlburt Field	90580		x		AFSOC	FL
27	Patrick	630		X		AFSPC	FL
	Patrick	647		X		AFSPC	FL FL
1	Patrick	750	× ×			AFSPC	FL FL
	Patrick	751			+	AFSPC	
1	Patrick	985			+	AFSPC	
20	Peterson	980		<u> </u>	+	AFSPC	
20	Peterson	133		x x			
	Peterson	1/0	Y	^			
	Peterson	140	^	x		AFSPC	 CO
	Peterson	214		x		AFSPC	со
	Peterson	210		x	1	AFSPC	со
29	Thule AB	HG.7/Bldg 623		x	1	AFSPC	Greenland
	Thule AB	HG.8/Bldg 624		x		AFSPC	Greenland
30	JB Charleston	519		x		AMC	SC
	JB Charleston	578		х		AMC	SC
1	JB Charleston	700	Х			AMC	SC
	JB Charleston	63		х		AMC	SC
	JB Charleston	532	x			AMC	SC

Yellow-ADD			List of AF Hangars for Evaluation on Active Duty Bases				
Red-DELETE			High Expansion	AFFF	Deluge	MAICOM	STATE/ COUNTRY
Green-UPDATE	Base/Site	Hangar Bidg #	Foam				
	JB Charleston	570	x			AMC	SC
	JB Charleston	515	X			AMC	SC
31	Dover AFB	706	Х			AMC	DE
	Dover AFB	711			Х	AMC	DE
	Dover AFB	714		Х		AMC	DE
	Dover AFB	715		х		AMC	DE
	Dover AFB	945	Х			AMC	DE
32	Fairchild AFB	1019	X			AMC	WA
	Fairchild AFB	1029	X			AMC	WA
	Fairchild AFB	1037	X			AMC	WA
		1033	X			ANIC	WA WA
33		1012	^	v		AMC	ND
33		601		×		1110	ND
		603		<u>XX</u>		AMC	ND
	Grand Forks AFB	605		X		Alvic	ND
	Grand Forks AFB	649 Bay 1		х		AMC	ND
	Grand Forks AFB	649 Bay 2		х		AMC	ND
	Grand Forks AFB	649 Bay 3		х		AMC	ND
34	Little Rock AFB	207	x		1	AMC	AR
.	Little Rock AFB	233	x		1	AMC	AR
	Little Rock AFB	222 North		x		AMC	AR
	Little Rock AFB	222 South		х		AMC	AR
	Little Rock AFB	228	х			AMC	AR
	Little Rock AFB	245	Х			AMC	AR
	Little Rock AFB	250	Х			AMC	AR
	Little Rock AFB	255 North		X		AMC	AR
	LITTIE ROCK AFB	255 South	v	X		AMC	AR
	Little Rock AFB	270	^	x		ANC	AR
	Little Rock AFB	280	x	A		AMC	AR
35	MacDill AFB	1071	X			AMC	FL
36	McConnell AFB	10		х		AMC	КА
	McConnell AFB	1106	х			AMC	КА
	McConnell AFB	1107		х		AMC	КА
	McConnell AFB	1166		Х		AMC	КА
	McConnell AFB	1176		х		AMC	КА
37	JB-MDL	4401 DIX		Х		AMC	NJ
	JB-MDL	3333		X		AMC	NJ
	JB-MDI	3370		X	×	AMC	NJ
	IB-MDI	307 I KH			X	ANIC	NI
	IB-MDI	3336		x	X	AMC	NI
	JB-MDL	3330	х	X		AMC	NJ
	JB-MDL	2201	х			AMC	NJ
	JB-MDL	1823	Х			AMC	NJ
	JB-MDL	1837	Х			AMC	NJ
38	Scott AFB	433	Х			AMC	IL
	Scott AFB	506	Х			AMC	IL
	Scott AFB	742	X			AMC	IL
	Scott AFB	5024		X	v	AMC	
20		5026		v	*		
39	Travis AFB	14 809	x	^			
	Travis AFB	808	x		1	AMC	CA
	Travis AFB	810			x	AMC	CA
	Travis AFB	811		Х		AMC	CA
	Travis AFB	818	X			AMC	CA
	Travis AFB	837	Х			AMC	CA
40	Eielson AFB	1335		х		PACAF	AK
	Eielson AFB	1338		Х		PACAF	AK
	Eielson AFB	1340		X		PACAF	AK
	LIEISON AFB	1344		X		PACAF	AK
	Eleison AFB	1240-Delete		v	X		AK
	Fielson AFB	1348 1232-Delete		X			
	Eielson AFB	1227		X		PACAF	AK
	Eielson AFB	1176	x			PACAF	AK
	Eielson AFB	1171		X		PACAF	AK
	Eielson AFB	1140		x		PACAF	AK
	Eielson AFB	1300	Х			PACAF	AK

Yellow-ADD			List of AF Hangars	for Evaluation on Ac	tive Duty Bases		
Red-DELETE			High Expansion	AFFF	Deluge	маком	STATE/ COUNTRY
Green-UPDATE	Base/Site	Hangar Bidg #	Foam				
41	JBER - Elmendorf	1 - 11551	х			PACAF	АК
	IBER - Elmendorf	6 - 9311		x		PACAF	АК
	IBER - Elmendorf	8 - 1//10		x		PACAE	
	IBER - Elmendorf	10 - 15455		x		PACAE	AK
	IBER Elmondorf	10 15455	v	~		PACAE	AK
		11-10430	^			РАСАЕ	AK
	JBER - Elmendorf	12 - 16456	X			FACAI	AK
	JBER - Elmendorf	15 -16716	Х			PACAF	AK
	JBER - Elmendorf	16 - 15668		Х		PACAF	AK
	JBER - Elmendorf	17 - 16670		х		PACAF	AK
	JBER - Elmendorf	18 - 17470		х		PACAF	АК
	JBER - Elmendorf	19 - 8681	х			PACAF	AK
	JBER - Elmendorf	20 - 17534	х			PACAF	AK
	JBER - Elmendorf	21 - 17508	х			PACAF	AK
	JBER - Elmendorf	23 - 17660	х			PACAF	АК
	JBER - Elmendorf	24 - 9684	х			PACAF	АК
	JBER - Elmendorf	25 - 9694	х			PACAF	АК
	JBER - Elmendorf	869	х			PACAF	АК
	JBER - Elmendorf	26 - 10682	x			PACAF	АК
	JBER - Elmendorf	9696	х			PACAF	АК
	JBER - Elmendorf	6263		х		PACAF	АК
	JBER - Elmendorf	47433			x	PACAF	АК
	JBER - Elmendorf	47431			x	PACAF	АК
	JBER - Elmendorf	47427			x	PACAF	АК
42	Kadena AB	3559	Х			PACAF	Japan
	Kadena AB	3667			X	PACAF	Japan
	Kadena AB	3672			X	PACAF	Japan
	Kadena AB	1-781		× – – – – – – – – – – – – – – – – – – –		PACAF	Japan
	Kadena AB	3 -762		^	x	PACAF	Japan
	Kadena AB	3448	Х			PACAF	Japan
	Kadena AB	3534		Х		PACAF	Japan
	Kadena AB	3542			Х	PACAF	Japan
	Kadena AB	3560	X	v		PACAF	Japan
	Kadena AB	3671		^	x	PACAF	Japan
	Kadena AB	3339		х		PACAF	Japan
	Kadena AB	3541			X	PACAF	Japan
	Kadena AB	3548		X		PACAF	Japan
70	Kunsan AB	2257		X		PACAF	Korea
	Kunsan AB	2820		X		PACAF	Korea
43	Misawa AB	909		X		PACAF	Japan
	Misawa AB	911		X		PACAF	Japan
	Misawa AB	949			x	PACAF	Japan
	Misawa AB	963	x	X		PACAF	Japan
	Misawa AB	970		× ×		PACAF	Japan
	Misawa AB	1208	x	x		PACAF	Japan
	Misawa AB	3005		Х		PACAF	Japan
	Misawa AB	3008		X		PACAF	Japan
	Misawa AB	3012		X		PACAF	Japan
	IVIISAWA AB Misawa AB	3015		X	+	PACAF	Japan
	Misawa AB	3020		x		PACAF	Japan
	Misawa AB	3025		X		PACAF	Japan
	Misawa AB	3102		х		PACAF	Japan
	Misawa AB	3130		~	X	PACAF	Japan
	IVIISAWA AB Misawa AB	3140		X	+	PACAF	Japan
	Misawa AB	3216		x	1	PACAF	Japan
	Misawa AB	3217		Х		PACAF	Japan
	Misawa AB	3220		x		PACAF	Japan
	Misawa AB	3226		X		PACAF	Japan
	IVIISAWA AB Misawa AB	3280	X	X	+	PACAF	Japan Japan
I		I 5294		^	1		l Jahan

Yellow-ADD			List of AF Hangars	for Evaluation on Ac	tive Duty Bases		
Red-DELETE			High Expansion	AFFF	Deluge	мајсом	STATE/ COUNTRY
Green-OF DATE	Base/Site	Hangar Bldg #	Foam				,
	Misawa AB	3295		Х		PACAF	Japan
	Misawa AB	3307		Х		PACAF	Japan
	Misawa AB	3313		х		PACAF	Japan
44	Osan AB	849		X		PACAF	Korea
	Osan AB	851		x		PACAF	Korea
	Osan AB	1104		X		PACAF	Korea
	Osan AB	1215		X	x	PACAF	Korea
	Osan AB	1731		х		PACAF	Korea
	Osan AB	1732		х		PACAF	Korea
	Osan AB	1782		X		PACAF	Korea
	Osan AB Osan AB	1783		X		PACAF	Korea
	Osan AB	1785		x		PACAF	Korea
	Osan AB	1786		X		PACAF	Korea
	Osan AB	1787		Х		PACAF	Korea
45	Yokota AB	1	Х			PACAF	Japan
	Yokota AB	702		X		PACAF	Japan
	Yokota AB	906		X		PACAF	Japan
	Yokota AB	1503	x	^		PACAF	Japan
46	Aviano AB	933	x		1	USAFE	Italy
_	Aviano AB	<u>9</u> 25	X			USAFE	Italy
	Aviano AB	921	Х			USAFE	Italy
47	Incirlik AB	345		х		USAFE	Turkey
	Incirlik AB	116	X			USAFE	Turkey
49	Incirlik AB	2115	X	×		USAFE	lurkey
40	RAF Fairford	1203		x			
49	RAE Lakaphaath	1217		×		USAFE	United Kingdom
		1219		^			
	RAF Lakenheath	1220		x		USAFE	United Kingdom
	RAF Lakenheath	1229		x		USAFE	United Kingdom
	RAF Lakenheath	1212	х			USAFE	United Kingdom
	RAF Lakenheath	1304	x			USAFE	United Kingdom
		1504	~				
	RAF Lakenheath	1473	X			USAFE	United Kingdom
	RAF Lakenheath	1470	х			USAFE	United Kingdom
	RAF Lakenheath	1260	х			USAFE	United Kingdom
50	RAF Mildenhall	539		x		USAFE	United Kingdom
	RAF Mildenhall	711		x		USAFE	United Kingdom
	PAE Mildenhall	715		v		USAFE	United Kingdom
		/15		^			
	RAF Mildenhall	769		X		USAFE	United Kingdom
	RAF Mildenhall	772		х		USAFE	United Kingdom
	RAF Mildenhall	775	х			USAFE	United Kingdom
	RAF Mildenhall	803		х		USAFE	United Kingdom
	RAF Mildenhall	814	x		1	USAFE	United Kingdom
51	Ramstein AB	2018	x			USAFE	Germany
	Ramstein AB	2210	X			USAFE	Germany
	Ramstein AB	2331		X		USAFE	Germany
	Ramstein AB	2512		Х		USAFE	Germany
	Kamstein AB	2291E	X			USAFE	Germany
	Ramstein AB	2291F 2310A	x			USAFE	Germany
	Ramstein AB	2311A	x			USAFE	Germany
	Ramstein AB	2311C	X			USAFE	Germany
	Ramstein AB	2509A		х		USAFE	Germany
	Ramstein AB	2509B	v	X		USAFE	Germany
E2	Kamstein AB	3330E	X				Germany
52		15/		×			Germany
	Spangdahlem AB	364		X		USAFE	Germany
53	Beale AFB	1042		X		ACC	CA
	Beale AFB	1043	x	^		ACC	CA
	Beale AFB	1045	X			ACC	CA
	Beale AFB	1067	Х			ACC	CA

Yellow-ADD			List of AF Hangars for Evaluation on Active Duty Bases					
Red-DELETE			High Expansion	AFFF	Deluge	мајсом	STATE/ COUNTRY	
Green-UPDATE	Base/Site	Hangar Bidg #	Foam					
	Beale AFB	1068	x			ACC	CA	
	Beale AFB	1069	x			ACC	CA	
	Beale AFB	1074	X			ACC	CA	
	Beale AFB	1075	X			ACC	CA	
	Beale AFB	1077	Х			ACC	CA	
	Beale AFB	11200	X			ACC	CA	
54	Davis-Mothan	128		Х		ACC	AZ	
	Davis-Mothan	129	X			ACC	AZ	
	Davis-Mothan	136	X			ACC	AZ	
	Davis-Mothan	269	X			ACC	AZ	
	Davis-Mothan	1440	X		X	ACC	AZ	
	Davis-Mothan	1447	v		^	ACC	AZ AZ	
	Davis-Mothan	1330	X			ACC	Δ7	
	Davis-Mothan	4844	x			ACC	AZ	
	Davis-Mothan	5255 Bay 1	x			ACC	AZ	
	Davis-Mothan	5255 Bay 2		х		ACC	AZ	
	Davis-Mothan	5256	x			ACC	AZ	
	Davis-Mothan	5430	Х			ACC	AZ	
	Davis-Mothan	7506		Х		ACC	AZ	
55	Dyess AFB	5112		х		ACC	ТХ	
	Dyess AFB	5110		х		ACC	ТХ	
	Dyess AFB	5105		X		ACC	ТХ	
	Dyess AFB	5020		× ×		ACC	TX	
	Dyess AFB	4314	× ×			ACC		
	Dyess AFB	4315		X		ACC		
	Dyess AFB	4312 4217 Doloto		X		ACC		
	Dyess AFB	4317-Delete		X		ACC	ТХ	
	Dyess AFB	4230	x	~		ACC	ТХ	
56	Ellsworth AFB	7230	x			ACC	SD	
	Ellsworth AFB	7232	x			ACC	SD	
	Ellsworth AFB	7234	X			ACC	SD	
	Ellsworth AFB	7236	Х			ACC	SD	
	Ellsworth AFB	7242	X			ACC	SD	
	Ellsworth AFB	7246	Х			ACC	SD	
	Ellsworth AFB	7248	Х			ACC	SD	
	Ellsworth AFB	7250	X			ACC	SD	
	Ellsworth AFB	/252	X			ACC	SD	
	Ellsworth AFB	/254	X			ACC	SD SD	
E7	Holloman AFR	010	^	v		ACC	SU	
57	Holloman AFB	203		x x		ACC	NIM	
	Holloman AFB	301	x	X		ACC	NM	
	Holloman AFB	500	x			ACC	NM	
	Holloman AFB	564	x			ACC	NM	
	Holloman AFB	578	X			ACC	NM	
	Holloman AFB	868		х		ACC	NM	
	Holloman AFB	898	x			ACC	NM	
	Holloman AFB	1020		X		ACC	NM	
	Holloman AFB	11285		X		ACC	NM	
	Holloman AFB	21295		X		ACC	NM NM	
	Holloman AFB	21296		X		ACC	NIVI	
		21297				ALL		
	Holloman AFB	21808		x			NM	
	Holloman AFB	21010		x	1	ACC	NM	
	Holloman AFB	21812		x		ACC	NM	
	Holloman AFB	21813		x		ACC	NM	
	Holloman AFB	21814		Х		ACC	NM	
	Holloman AFB	21815		х		ACC	NM	
	Holloman AFB	21816		х		ACC	NM	
	Holloman AFB	21817		х		ACC	NM	
	Holloman AFB	21818		x		ACC	NM	
	Holloman AFB	21819		X		ACC	NM	
58	JBLE - Ft Eustis	2402			X	ACC	VA VA	
	JBLE - Ft Eustis	2406			X X	ACC	VA VA	
	JDLE - FT EUSTIS	2413			× ×	ACC		
E0		2448			+	ALL	VA VA	
60	IBLE - Langley	338		× ×				
	JBLE - Langley	361	x		1	ACC	VA	
	U - 1							

Yellow-ADD			List of AF Hangars for Evaluation on Active Duty Bases				
Red-DELETE			High Expansion	AFFF	Deluge	MAICOM	STATE/ COUNTRY
Green-UPDATE	Dana (Cita	Userse Dida #	Foam	Arr	Deluge	INAJCONI	
	Base/Site	Hangar Bidg #	v			100	>/A
		309	^			ACC	VA
		3/1		×	^	ACC	VA
		3/3		×		ACC	VA
		3/4	v	^		ACC	VA
		730	× ×			ACC	VA
		751	^		v	ACC	VA
	JBLE - Langley	752		v	^	ACC	VA
		733	v	^		ACC	VA
		789	×			ACC	VA
		790	× ×			ACC	VA
		1262	^	v			VA VA
60	Moody AEP	1302	v	^		ACC	CA CA
00	Moody AFB	642	×			ACC	GA
	Moody AFB	042	^	v		ACC	GA
	Moody AFB	644	×	^		ACC	GA
	Moody AFB	640	^	v		ACC	GA
	Moody AFB	701		×		ACC	GA
	Moody AFB	701	v	^		ACC	GA
	Moody AFP	710	× ×			ACC	GA
	Moody AFB	730	r v				GA
	Moody AFB	744	^	×			GA
	Moody AFB	7/4		v v			64
	Moody AFB	7/5		v v			GA
61	Mtn Homo AEP	108		×		ACC	
01	Mtn Home AFB	198		x x			
	Mtn Home AFR	200	v	^		ACC	
	Mtn Home AFR	203	× ×			ACC	
	Mtn Home AFB	1330	^	x		ACC	
	Mtn Home AFB	1330		x		ACC	ID
62	Nellic/Crooch	1332	v	^		ACC	10
02	Nellis/Creech	190	^	v		ACC	AZ
	Nellis/Creech	199	v	^		ACC	AZ
	Nellis/Creech	220	x			ACC	Δ7
	Nellis/Creech	232	x				Δ7
	Nellis/Creech	252	x			ACC	A7
	Nellis/Creech	252	x	x			Δ7
	Nellis/Creech	230	x	~			Δ7
	Nellis/Creech	285	~	x		ACC	A7
	Nellis/Creech	297	x			ACC	AZ
	Nellis/Creech	2211		x		ACC	AZ
	Nellis/Creech	61664		x		ACC	AZ
	Nellis/Creech	259	x			ACC	A7
	Nellis/Creech	CREECH 120	x			ACC	A7
	Nellis/Creech	CREECH 707		x		ACC	AZ
	Nellis/Creech	CRRECH 719	x			ACC	AZ
	Nellis/Creech	CREECH 718		x		ACC	AZ
	Nellis/Creech	CREECH 791	x			ACC	AZ
	Nellis/Creech	CREECH 792	х			ACC	AZ
	Nellis/Creech	CREECH 1000	Х			ACC	AZ
	Nellis/Creech	CREECH 1003	Х			ACC	AZ
	Nellis/Creech	CREECH 1009	Х			ACC	AZ
	Nellis/Creech	CREECH 1130	X			ACC	AZ
63	Offutt AFB	306-1			X	ACC	NE
	Offutt AFB	306-2			Х	ACC	NE
	Offutt AFB	306-3			Х	ACC	NE
	Offutt AFB	307-3			Х	ACC	NE
	Offutt AFB	491		Х		ACC	NE
	Offutt AFB	492		х		ACC	NE
	Offutt AFB	493		Х		ACC	NE
	Offutt AFB	457		х		ACC	NE
	Offutt AFB	565	Х			ACC	NE
64	Seymour- Johnson AFB	4909	x			ACC	NC
	Soumour Johnson AED					ACC	
	Seymour-Jonnson AFB	4822	X			ALL	NC
	Seymour- Johnson AFB	4828		x		ACC	NC
	Seymour- Johnson AFR	4725		v	1	ACC	NC
	Courses 1 1 1 1 20	4/35		^			
	Seymour-Johnson AFB	4538		X		ACC	NC
	Seymour- Johnson AFB	4537		x		ACC	NC
	Sevmour- Johnson AFB	AE3E		v .	1	ACC	NC
1	,	4030		^		1	

Yellow-ADD			List of AF Hangars for Evaluation on Active Duty Bases					
Green-UPDATE	D (c)		High Expansion	AFFF	Deluge	MAJCOM	STATE/ COUNTRY	
	Base/Site	Hangar Bidg #	ruani					
	Seymour- Johnson AFB	4522	х	х		ACC	NC	
65	Shaw AFB	1511	Х			ACC	SC	
	Shaw AFB	712	Х			ACC	SC	
	Shaw AFB	1200	Х			ACC	SC	
	Shaw AFB	1614	Х			ACC	SC	
66	Tyndall AFB	295		Х		ACC	FL	
	Tyndall AFB	280		Х		ACC	FL	
	Tyndall AFB	290		Х		ACC	FL	
	Tyndall AFB	316		Х		ACC	FL	
	Tyndall AFB	335	Х			ACC	FL	
	Tyndall AFB	180	Х			ACC	FL	
	Tyndall AFB	182	Х			ACC	FL	
	Tyndall AFB	156			Х	ACC	FL	
	Tyndall AFB	227			Х	ACC	FL	
	Tyndall AFB	315			x	ACC	FL	
67	Eareckson AFB	754		Х	Х	PACAF	АК	
	Eareckson AFB	755		Х	Х	PACAF	AK	
68	King Salmon AFB	160		Х		PACAF	AK	
69	Curacao	900		х		ACC	Curacao Netherlands Antilles	

APPENDIX C

RECORDS OF COMMUNICATION

This page was intentionally left blank.

	1	1	1	1	1	1
Meeting Attendee	Organization	Job Title	How Long in Current Position?	How Long at this Base in Current and Previous Positions?	Have you held similar positions at other bases? Which Bases?	How Long?
Name Floy Clean 14, -ble	QO CEY CEF	AC Special Ops	bmi-is	2yrurs	YIS IAJIS AFS	24000
Name SITTINA WRIGHT PI EI	9p/c55/4516	WATER MER	6montos	4/2.4R5	UN	NÓ
Name Tom Watson	90 MXG/NIYQ	UEC		8 YE5	No	No
Name Andy McKinley	90CES/LEFE	Environment	4 Yours	7 Years	No	-
Name Adan Salicia	GONVELAINT	(PCI	941	284RS	NO	-
Name Chris Shafer	90 LRS TSL	Fuel Tech	Tyrs	Types	No	~
Name LOU LATENCIPSSE	90CES/ CEF	Fire Inspecta	10	38 YIS		

FE Warren AFB AFFF Preliminary Assessment Meeting August 26, 2105 10am to noon Sign In Sheet

Meeting Attendee	Organization	Job Title	How Long in Current Position?	How Long at this Base in Current and Previous Positions?	Have you held similar positions at other bases? Which Bases?	How Long
Name ROADIE RIEDEN	90 CES/ CEF	H+S OFFICE	13 2003-	1988	N	
Email			present			
Name						
Phone						
Email						-
Name						
Phone						
Email						
Name						
Phone						
Email						
Name						
Phone						
Email						

FE Warren AFB AFFF Preliminary Assessment Meeting August 26, 2105 10am to noon Sign In Sheet

Subject: Meeting Minutes for Preliminary Assessment Kickoff Meeting at F.E. Warren Air Force Base

Date: August 26, 2015

Time: 10:00 a.m. to 11:00 a.m.

Attendees: See attached sign in sheet

Fire Station 1 – Building 324, Built in 1909

Serves as current station. Was a fire station in 1979 (Watson). All trucks refilled using 5-gallon buckets. No AFFF tanks. Trucks washed at the Base car wash (Kimble). No refilling done here and no foam tanks in this building because refilling is done at Building 1250. AFFF is not currently used for testing (Kimble). No time/distance required b/c no crash trucks (Kimble).

Engine 8 and 4 are kept here. Each hold 20 gallons of AFFF.

Trucks are pump tested but not foam tested (Kimble).

Drains to OWS and then sanitary sewer (Wright).

Fire Station 2 – Building 1250, Built in 1941

Likely started operations in the 1960s when helicopters were used (Wright). Served as overflow because Station 1 is too small.

Drains in this building flow to OWS and then to sanitary sewer (Watson).

Store 5-gallon buckets here for truck refilling (Kimble).

Engine 5, RIV 1 and RIV 2 located here. Engine 5 and RIV 1 carries 60 gallons; RIV 2 carries 71 gallons. Trucks are pump tested but not foam tested (Kimble).

Former Fire Station – Building 1501, Built in 1987

This station was built to support the peacekeeper missile operations and was a small two-bay station (Riedel). Limited knowledge about this station, but Watson thinks it may have been in use until 1998. No storage of AFFF at the station. Two trucks were used here, and foam was never shot from vehicles (Riedel).

Former FPTA 3

Opened in 1990 and was operated until approximately 2000. Used JP-8 fuel. Aircraft carcass present. Retention pond was present and lined. Shut down because one of the poly-liners beneath the pit was found to be leaking. Not known to have caused contamination because leak did not extend beyond second liner (Riedel). The actual training area was decommissioned in 2007 (Riedel). Training pit most often used for structural training (Kimble). In last several years, used more for structural training with no foam used (Kimble).

Drainage would have gone to Diamond Creek (Wright).

New FTA is being built at this location and will be propane (Kimble).

Former FPTA 1

IRP site. No one was aware of operational history or location of this FPTA.

Former FPTA 2

IRP site. Used until 1989. A depression served as a training pit but not sure if a liner existed (Latendresse). AFFF may have been used here per Mr. Latendresse. No retention pond was present (Riedel).

Building 930 - Hazardous Waste

Some AFFF was disposed of here. On January 13, 2005, records show that four 55-gallon drums were disposed of by the fire department. No leaks or spills have occurred (Joe Travinio [haz waste technician]).

Building 1285 – Hazmart, built in 1995

Observed thirty-nine 55-gallon drums stored here during on site visit. No leaks/spills known to have occurred (McKinley). Temporary berm but no drains. Cleaned up by contractor if spilled (Wright).

Building 1240 – Truck Maintenance, built in 1995

Formerly had an AFFF system that was replaced with water only in 2012. No known leaks or spills (Watson). Served by a poly-lined containment pit located b/n Buildings 1240 and 1247 (McKinley). Liner was replaced approximately 2 years ago. When pit fills with water, it is pumped out to grass but this has only been done when pond is full of rainwater (Watson).

Building 1250 -

Only has an HEF system that was installed in 2008 or 2009, never had AFFF (McKinley, Watson). Had roll-around fire extinguisher systems prior to HEF system (Watson). Drains go to OWS to sanitary sewer (Wright).

Building 1247 – Base Fuel Building, built in 1995

Has an active AFFF system with overhead lines. Size of AFFF tank is unknown, but staff estimate it to be 200 to 300 gallons. A diversion value is located inside the building that can divert floor drains from OWS to the retention pond (Wright). Bypass to go to storm (Wright).

There was a leak in the bay when a pipe froze/broke. All discharge was contained inside the hangar (Shafer). Drains flow to OWS then sanitary sewer (Wright). Served by a poly-lined containment pit located b/n Buildings 1240 and 1247. Liner was replaced approximately 2 years ago. Pit never known to be used to contain AFFF. When pit fills with water, it is pumped out to grass, but this has only been done when pond is full of rainwater (McKinley).

AFFF tank estimated at 200 to 300 gallons (Shafer)

Building 7600 -

Has HEF system but is not under Air Force control b/c it is on Army property.

Drinking water – comes from Cheyenne Public Utilities, and all sources are located well upgradient of F.E. Warren watershed.

Used to be a residential well in Nob Hill, but it was connected to the city in the 1990s.

No on Base emergency response events.

Jet crash during frontier days in ~1978 but was off Base. Not likely to have used foam (Watson).

Crow Creek diminishes on its way to Pine Bluffs and goes away. Doesn't make it out of state. Recharges groundwater (Wright).

Fax To: AECOM Contact: Brittany Kirchmann Fax : 000-000-0000 Date: 01/08/2019

EDR PUR-IQ[®] Report

"the intelligent way to conduct historical research"

for Cheyenne AASF Cheyenne AASF Fe Warren AFB, WY 82005 Lat./Long. 41.196149 / 104.870486 EDR Inquiry # 5528367.2s

The EDR PUR-IQ report facilitates historical research planning required to complete the Phase I ESA process. The report identifies the *likelihood* of prior use coverage by searching proprietary EDR-Prior Use Reports[®] comprising nationwide information on: city directories, fire insurance maps, aerial photographs, historical topographic maps, flood maps and National Wetland Inventory maps.

Potential for EDR Historical (Prior Use) Coverage - Coverage in the following historical information sources may be used as a guide to develop your historical research strategy:

1. City Directory:	Coverage may exist for	Coverage may exist for portions of Laramie County, WY.				
2. Fire Insurance Ma	p: When you order online EDR Sanborn Map Sea Map coverage informat	When you order online any EDR Package or the EDR Radius Map with EDR Sanborn Map Search/Print, you receive site specific Sanborn Map coverage information at no charge.				
3. Aerial Photograph	 Aerial photography cov County. Please contact about USGS photos av 	Aerial photography coverage may exist for portions of Laramie County. Please contact your EDR Account Executive for information about USGS photos available through EDR.				
4. Topographic Map	The USGS 7.5 min. qua	The USGS 7.5 min. quad topo sheet(s) associated with this site:				
Historical: C	overage exists for LARAMIE	County				
Current: T	arget Property:	TP 2012 5645427 Cheyenne North, WY				
Additional re	equired for 1 Mile radius:	W 2012 5649463 Round Top Lake, WY				

EDR's network of professional researchers, located throughout the United States, accesses the most extensive national collections of city directory, fire insurance maps, aerial photographs and historical topographic map resources available for Fe Warren AFB, WY. These collections may be located in multiple libraries throughout the country. To ensure maximum coverage, EDR will often assign researchers at these multiple locations on your behalf. Please call or fax your EDR representative to authorize a search.

EDR - HISTORICAL SOURCE(S) ORDER FORM

AECOM **Brittany Kirchmann** Account # 1861179

Cheyenne AASF Cheyenne AASF Fe Warren AFB, WY 82005 LARAMIE County Lat./Long. 41.196149 / 104.870486 EDR Inquiry # 5528367.2s

Should you wish to change or add to your order, fax this form to your EDR account executive:

Sean McLaughlin Ph: 1-800-352-0050 Fax: 1-800-231-6802

Reports

- ____ EDR Sanborn Map[®] Search/Print
- EDR Fire Insurance Map Abstract
- ____ EDR Multi-Tenant Retail Facility[®] Report
- ____ EDR City Directory Abstract
- EDR Aerial Photo Decade Package
- USGS Aerial 5 Package
- ____ USGS Aerial 3 Package
- ____ EDR Historical Topographic Maps
- ____ Paper Current USGS Topo (7.5 min.)
- Environmental Lien Search
- Chain of Title Search
- _ NJ MacRaes Industrial Directory Report
- ____ EDR Telephone Interview

Shipping:

- Email
- Express, Next Day Delivery
- Express, Second Day Delivery Express, Next day Delivery Express, Second Day Delivery U.S. Mail

Customer Account Customer Account

RUSH SERVICE IS AVAILABLE

Acct #	 	
Acct #		

Thank you

Cheyenne AASF Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.3 January 08, 2019

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

O1/08/19 Site Name: Client Name: Cheyenne AASF AECOM Cheyenne AASF 12120 Shamrock Plaza Fe Warren AFB, WY 82005 Omaha, NE 68154 EDR Inquiry # 5528367.3 Contact: Brittany Kirchmann

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by AECOM were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # C981-46C9-974A

PO# NA

Project Cheyenne AASF

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results Certification #: C981-46C9-974A

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

	Library of	Congress
--	------------	----------

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

AECOM (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provide in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Cheyenne AASF

Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.5 January 08, 2019

The EDR Aerial Photo Decade Package

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

EDR Aerial Photo Decade Package

Site Name:

Client Name:

01/08/19

Cheyenne AASF Cheyenne AASF Fe Warren AFB, WY 82005 EDR Inquiry # 5528367.5 AECOM 12120 Shamrock Plaza Omaha, NE 68154 Contact: Brittany Kirchmann

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:						
<u>Year</u>	Scale	Details	Source			
2017	1"=500'	Flight Year: 2017	USDA/NAIP			
2012	1"=500'	Flight Year: 2012	USDA/NAIP			
2009	1"=500'	Flight Year: 2009	USDA/NAIP			
2006	1"=500'	Flight Year: 2006	USDA/NAIP			
2002	1"=750'	Flight Date: June 24, 2002	USGS			
1994	1"=500'	Acquisition Date: June 23, 1994	USGS/DOQQ			
1990	1"=1000'	Flight Date: June 17, 1990	USGS			
1980	1"=500'	Flight Date: August 21, 1980	USDA			
1978	1"=1000'	Flight Date: September 07, 1978	USGS			
1947	1"=750'	Flight Date: June 15, 1947	USGS			

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes revision or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Ste Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provide in this Report as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

200	1	0	2	
INQUIRY #: 5528367.5 YEAR: 1978			Subject bour	ndary not shown because it

Cheyenne AASF

Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.2s January 08, 2019

The EDR Radius Map[™] Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

FORM-LBD-SPM

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	8
Orphan Summary	9
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map	A-5
Physical Setting Source Map	A-8
Physical Setting Source Map Findings	A-10
Physical Setting Source Records Searched	PSGR-1

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental St Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

CHEYENNE AASF FE WARREN AFB, WY 82005

COORDINATES

Latitude (North):	41.1961490 - 41° 11' 46.13''
Longitude (West):	104.8704860 - 104° 52' 13.74"
Universal Tranverse Mercator:	Zone 13
UTM X (Meters):	510860.2
UTM Y (Meters):	4560327.5
Elevation:	6290 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map:	
Version Date:	

5645427 CHEYENNE NORTH, WY 2012

5649463 ROUND TOP LAKE, WY 2012

AERIAL PHOTOGRAPHY IN THIS REPORT

West Map: Version Date:

Portions of Photo from:	20150620
Source:	USDA

Target Property Address: CHEYENNE AASF FE WARREN AFB, WY 82005

Click on Map ID to see full detail.

MAP				RELATIVE	DIST (ft. & mi.)
ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	ELEVATION	DIRECTION
Reg	FRANCIS E. WARREN AI		DOD	Same	1 ft.
1	HUNNICUTT OFF-BASE P		UXO	Higher	1529, 0.290, West

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
NPL LIENS	Federal Superfund Liens

Federal Delisted NPL site list

Delisted NPL_____ National Priority List Deletions

Federal CERCLIS list

FEDERAL FACILITY______ Federal Facility Site Information listing SEMS______ Superfund Enterprise Management System

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE...... Superfund Enterprise Management System Archive

Federal RCRA CORRACTS facilities list

CORRACTS..... Corrective Action Report

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF..... RCRA - Treatment, Storage and Disposal

Federal RCRA generators list

RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generator

Federal institutional controls / engineering controls registries

LUCIS	Land Use Control Information System
US ENG CONTROLS	Engineering Controls Sites List

US INST CONTROL..... Sites with Institutional Controls

Federal ERNS list

ERNS..... Emergency Response Notification System

State- and tribal - equivalent CERCLIS

SHWS______ This state does not maintain a SHWS list. See the Federal CERCLIS list and Federal NPL list.

State and tribal landfill and/or solid waste disposal site lists

SWF/LF	Solid Waste Facility	/ Database
SHWF	Solid & Hazardous	Waste Facility Database

State and tribal leaking storage tank lists

INDIAN LUST...... Leaking Underground Storage Tanks on Indian Land LTANKS...... Known Contaminated Sites

State and tribal registered storage tank lists

FEMA UST	Underground Storage Tank Listing
UST	Underground Storage Tanks
AST	Wyoming Aboveground Storage Tanks
INDIAN UST	Underground Storage Tanks on Indian Land
TANKS	Storage Tank Listing

State and tribal institutional control / engineering control registries

ENG CONTROLS_____ Engineering Controls Site Listing INST CONTROL_____ Sites with Institutional Controls

State and tribal voluntary cleanup sites

INDIAN VCP...... Voluntary Cleanup Priority Listing VCP...... List of Voluntary Remediation Program Sites

State and tribal Brownfields sites

BROWNFIELDS_____ Brownfields Sites Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS_____ A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY	Recycling Facilities
INDIAN ODI	Report on the Status of Open Dumps on Indian Lands
DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations

ODI	Open Dump Inventory	
IHS OPEN DUMPS	Open Dumps on Indian Land	

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL	Delisted National Clandestine Laboratory Register
CDL	Clandestine Drug Lab Site Locations
US CDL	National Clandestine Laboratory Register

Local Land Records

LIENS 2	CERCLA Lien	Information
---------	-------------	-------------

Records of Emergency Release Reports

HMIRS	Hazardous Materials Information Reporting System
SPILLS	SPILL Database

Other Ascertainable Records

Formerly Used Defense Sites
. State Coalition for Remediation of Drycleaners Listing
. Financial Assurance Information
EPA WATCH LIST
. 2020 Corrective Action Program List
_ Toxic Substances Control Act
Toxic Chemical Release Inventory System
_ Section 7 Tracking Systems
Records Of Decision
Risk Management Plans
RCRA Administrative Action Tracking System
Potentially Responsible Parties
PCB Activity Database System
Integrated Compliance Information System
FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide
Act)/TSCA (Toxic Substances Control Act)
Material Licensing Tracking System
Steam-Electric Plant Operation Data
Coal Combustion Residues Surface Impoundments List
PCB Transformer Registration Database
Radiation Information Database
FIFRA/TSCA Tracking System Administrative Case Listing
 Incident and Accident Data
_ Superfund (CERCLA) Consent Decrees
Indian Reservations
Formerly Utilized Sites Remedial Action Program
Uranium Mill Tailings Sites
Lead Smelter Sites
Aerometric Information Retrieval System Facility Subsystem
_ Mines Master Index File
Abandoned Mines
Facility Index System/Facility Registry System
Enforcement & Compliance History Information
- Hazardous Waste Compliance Docket Listing

FUELS PROGRAM	EPA Fuels Program Registered Listing Air Quality Permit Listing
ASBESTOS	ASBESTOS
DRYCLEANERS	DRYCLEANERS
Financial Assurance	Financial Assurance Information listing
MINES	Mine Locations Listing
UIC	UIC Well Locations List
NPDES	Wastewater Permit Listing

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
EDR Hist Auto	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA LF	Recovered Government Archive Solid Waste Facilities List
RGA LUST	Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in *bold italics* are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

DOD: Consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

A review of the DOD list, as provided by EDR, and dated 12/31/2005 has revealed that there is 1 DOD site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
FRANCIS E. WARREN AI		0 - 1/8 (0.000 mi.)	0	8

UXO: A listing of unexploded ordnance site locations

A review of the UXO list, as provided by EDR, and dated 09/30/2017 has revealed that there is 1 UXO site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
HUNNICUTT OFF-BASE P		W 1/4 - 1/2 (0.290 mi.)	1	8

Due to poor or inadequate address information, the following sites were not mapped. Count: 2 records.

Site Name

NIELSEN TRUST PROPERTY CHEYENNE ATCT Database(s)

VCP RGA LUST

⊏.	January	08, 201	9 9.1	8 am
	Convright © 2019 EDB	Inc. @ 2015	TomTom	Bel 2015

January 08, 2019 9:19 am DATE:

LAT/LONG:

Copyright © 2019 EDR, Inc. © 2015 TomTom Rel. 2015.

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Federal Delisted NPL si	te list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Federal CERCLIS NFRA	P site list							
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Federal RCRA CORRAC	CTS facilities li	ist						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COF	RRACTS TSD f	acilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generato	ors list							
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional col engineering controls re	ntrols / gistries							
LUCIS US ENG CONTROLS US INST CONTROL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
State- and tribal - equive	alent CERCLIS	S						
SHWS	N/A		N/A	N/A	N/A	N/A	N/A	N/A
State and tribal landfill a solid waste disposal sit	and/or te lists							
SWF/LF SHWF	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal leaking	storage tank l	lists						
INDIAN LUST LTANKS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal register	ed storage tar	nk lists						
FEMA UST	0.250		0	0	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST AST INDIAN UST TANKS	0.250 0.250 0.250 0.250		0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal institution control / engineering con	nal trol registries							
ENG CONTROLS INST CONTROL	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal voluntary	cleanup sites	5						
INDIAN VCP VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal Brownfiel	lds sites							
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	TAL RECORDS							
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / So Waste Disposal Sites	olid							
SWRCY INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500		0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0
Local Lists of Hazardous Contaminated Sites	waste /							
US HIST CDL CDL US CDL	TP TP TP		NR NR NR	NR NR NR	NR NR NR	NR NR NR	NR NR NR	0 0 0
Local Land Records								
LIENS 2	TP		NR	NR	NR	NR	NR	0
Records of Emergency Release Reports								
HMIRS SPILLS	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Other Ascertainable Reco	ords							
RCRA NonGen / NLR FUDS DOD SCRD DRYCLEANERS US FIN ASSUR EPA WATCH LIST	0.250 1.000 1.000 0.500 TP TP		0 0 1 0 NR NR	0 0 0 NR NR	NR 0 0 NR NR	NR 0 NR NR NR	NR NR NR NR NR NR	0 0 1 0 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	TP		NR	NR	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	0
SSTS	TP		NR	NR	NR	NR	NR	Õ
ROD	1 000		0	0	0	0	NR	õ
RMP	TP		NR	NR	NR	NR	NR	Õ
RAATS	TP		NR	NR	NR	NR	NR	Õ
PRP	TP		NR	NR	NR	NR	NR	õ
PADS	TP		NR	NR	NR	NR	NR	Ő
ICIS	TP		NR	NR	NR	NR	NR	Ő
FTTS	TP		NR	NR	NR	NR	NR	õ
MLTS	TP		NR	NR	NR	NR	NR	Õ
COAL ASH DOE	TP		NR	NR	NR	NR	NR	Ō
COAL ASH EPA	0.500		0	0	0	NR	NR	Ō
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	Ō
HIST FTTS	TP		NR	NR	NR	NR	NR	0
DOT OPS	TP		NR	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	0
US AIRS	TP		NR	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.250		0	0	NR	NR	NR	0
FINDS	TP		NR	NR	NR	NR	NR	0
ECHO	TP		NR	NR	NR	NR	NR	0
UXO	1.000		0	0	1	0	NR	1
DOCKET HWC	TP		NR	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
EMI	TP		NR	NR	NR	NR	NR	0
ASBESTOS	TP		NR	NR	NR	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
Financial Assurance	TP		NR	NR	NR	NR	NR	0
MINES	0.250		0	0	NR	NR	NR	0
UIC	TP		NR	NR	NR	NR	NR	0
NPDES	IP		NR	NR	NR	NR	NR	0
EDR HIGH RISK HISTORIC	AL RECORDS							
EDR Exclusive Records	5							
	1 000		Ο	Ο	Ο	Ο	NR	Ο
EDR Hist Auto	0 125		0	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125		Ő	NR	NR	NR	NR	Ő
EDR RECOVERED GOVER		VES						
Exclusive Recovered G	ovt. Archives							
RGA LF	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
RGA LUST	TP		NR	NR	NR	NR	NR	0
- Totals		0	1	0	1	0	0	2

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

N/A = This State does not maintain a SHWS list. See the Federal CERCLIS list.

Map ID Direction	MAP FINDINGS			
Distance Elevation	Site	Da	atabase(s)	EDR ID Number EPA ID Number
DOD Region	FRANCIS E. WARREN AIR FORCE BASE		DOD	CUSA122479 N/A

FRANCIS E. WARREN AIR FOR (County), WY

< 1/8 1 ft.

DOD:	
Feature 1:	Air Force DOD
Feature 2:	Not reported
Feature 3:	Not reported
URL:	Not reported
Name 1:	Francis E. Warren Air Force Base
Name 2:	Not reported
Name 3:	Not reported
State:	WY
DOD Site:	Yes
Tile name:	WYLARAMIE

Г

HUNNICUTT OFF-BASE PROPERTY

1 West 1/4-1/2

0.290 mi. 1529 ft.

Relative: Higher

DoD Component: Installation Name: Actual: Facility Address 2: 6295 ft. Site ID: Site Type: Latitude:

UXO:

Longitude:

F. E. WARREN AFB, WY

Air Force FRANCIS E WARREN AIR FORCE BASE Not reported TG300A Target Area 41.196886 -104.881210

UXO 1018153746 N/A

Count: 2 records.

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
CHEYENNE	S106862002	NIELSEN TRUST PROPERTY	ADJACENT TO SW CORNER OF CHEYE		VCP
CHEYENNE	S116439392	CHEYENNE ATCT	ON CHEYENNE AIRPORT		RGA LUST

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/27/2018 Date Made Active in Reports: 12/07/2018 Number of Days to Update: 10 Source: EPA Telephone: N/A Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

EPA Region 5 Telephone 312-886-6686

EPA Region 10 Telephone 206-553-8665 EPA Region 6 Telephone: 214-655-6659

EPA Region 7 Telephone: 913-551-7247

EPA Region 8 Telephone: 303-312-6774

EPA Region 9 Telephone: 415-947-4246

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/27/2018 Date Made Active in Reports: 12/07/2018 Number of Days to Update: 10 Source: EPA Telephone: N/A Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994 Number of Days to Update: 56 Source: EPA Telephone: 202-564-4267 Last EDR Contact: 08/15/2011 Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Federal Delisted NPL site list

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/27/2018 Date Made Active in Reports: 12/07/2018 Number of Days to Update: 10 Source: EPA Telephone: N/A Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

Federal CERCLIS list

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 11/07/2016 Date Data Arrived at EDR: 01/05/2017 Date Made Active in Reports: 04/07/2017 Number of Days to Update: 92 Source: Environmental Protection Agency Telephone: 703-603-8704 Last EDR Contact: 01/04/2019 Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/27/2018 Date Made Active in Reports: 12/07/2018 Number of Days to Update: 10 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Quarterly

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that. based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/28/2018 Date Made Active in Reports: 12/07/2018 Number of Days to Update: 9 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Quarterly

Federal RCRA CORRACTS facilities list

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/01/2018	Source: EPA
Date Data Arrived at EDR: 03/28/2018	Telephone: 800-424-9346
Date Made Active in Reports: 06/22/2018	Last EDR Contact: 12/03/2018
Number of Days to Update: 86	Next Scheduled EDR Contact: 04/08/2019
	Data Release Frequency: Quarterly

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018 Number of Days to Update: 86 Source: Environmental Protection Agency Telephone: 303-312-6149 Last EDR Contact: 12/03/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

Federal RCRA generators list

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018 Number of Days to Update: 86 Source: Environmental Protection Agency Telephone: 303-312-6149 Last EDR Contact: 12/03/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018 Number of Days to Update: 86 Source: Environmental Protection Agency Telephone: 303-312-6149 Last EDR Contact: 12/03/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

RCRA-CESQG: RCRA - Conditionally Exempt Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018Source: Environmental Protection AgencyDate Data Arrived at EDR: 03/28/2018Telephone: 303-312-6149Date Made Active in Reports: 06/22/2018Last EDR Contact: 12/03/2018Number of Days to Update: 86Next Scheduled EDR Contact: 04/08/2019Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 10/17/2018	Source: Department of the Navy
Date Data Arrived at EDR: 10/25/2018	Telephone: 843-820-7326
Date Made Active in Reports: 12/07/2018	Last EDR Contact: 10/15/2018
Number of Days to Update: 43	Next Scheduled EDR Contact: 02/25/201
	Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 07/31/2018	Source: Environmental Protection Agency
Date Data Arrived at EDR: 08/28/2018	Telephone: 703-603-0695
Date Made Active in Reports: 09/14/2018	Last EDR Contact: 11/28/2018
Number of Days to Update: 17	Next Scheduled EDR Contact: 03/11/2019
	Data Release Frequency: Varies

US INST CONTROL: Sites with Institutional Controls

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 07/31/2018 Date Data Arrived at EDR: 08/28/2018 Date Made Active in Reports: 09/14/2018 Number of Days to Update: 17 Source: Environmental Protection Agency Telephone: 703-603-0695 Last EDR Contact: 11/28/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

9

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 09/24/2018 Date Data Arrived at EDR: 09/25/2018 Date Made Active in Reports: 11/09/2018 Number of Days to Update: 45 Source: National Response Center, United States Coast Guard Telephone: 202-267-2180 Last EDR Contact: 12/21/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

State- and tribal - equivalent CERCLIS

SHWS: This state does not maintain a SHWS list. See the Federal CERCLIS list and Federal NPL list. State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: Department of Environmental Quality Telephone: 307-777-7752 Last EDR Contact: 11/16/2018 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: N/A

State and tribal landfill and/or solid waste disposal site lists

SWF/LF: Solid Waste Facility Database

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 01/26/2017 Date Data Arrived at EDR: 03/01/2017 Date Made Active in Reports: 08/29/2017 Number of Days to Update: 181 Source: Department of Environmental Quality Telephone: 307-777-7752 Last EDR Contact: 11/30/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

SHWF: Solid & Hazardous Waste Facility Database

A listing of Solid and Hazardous waste facility locations in the state.

Date of Government Version: 01/26/2017	Source: Department of Environmental Quality
Date Data Arrived at EDR: 03/01/2017	Telephone: 307-777-7752
Date Made Active in Reports: 08/29/2017	Last EDR Contact: 11/30/2018
Number of Days to Update: 181	Next Scheduled EDR Contact: 03/11/2019
	Data Release Frequency: Annually

State and tribal leaking storage tank lists

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 04/12/2018	Source: EPA Region 10
Date Data Arrived at EDR: 05/18/2018	Telephone: 206-553-2857
Date Made Active in Reports: 07/20/2018	Last EDR Contact: 10/26/2018
Number of Days to Update: 63	Next Scheduled EDR Contact: 02/04/2019
	Data Release Frequency: Varies

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.		
Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	
INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land A listing of leaking underground storage tank locations on Indian Land.		
Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	
INDIAN LUST R9: Leaking Underground Storage T LUSTs on Indian land in Arizona, California, N	anks on Indian Land ew Mexico and Nevada	
Date of Government Version: 04/10/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: Environmental Protection Agency Telephone: 415-972-3372 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	
INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.		
Date of Government Version: 04/25/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	
INDIAN LUST R7: Leaking Underground Storage T LUSTs on Indian land in Iowa, Kansas, and Ne	anks on Indian Land ebraska	
Date of Government Version: 04/24/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	
INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.		
Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	
INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.		
Date of Government Version: 05/08/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	

LTAN	VKS: Known Contaminated Sites Leaking storage tank sites.		
	Date of Government Version: 07/09/2018 Date Data Arrived at EDR: 07/13/2018 Date Made Active in Reports: 08/28/2018 Number of Days to Update: 46	Source: Department of Environmental Quality Telephone: 307-777-7781 Last EDR Contact: 10/12/2018 Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Annually	
State	e and tribal registered storage tank lists		
FEM	A UST: Underground Storage Tank Listing A listing of all FEMA owned underground storag	ge tanks.	
	Date of Government Version: 05/15/2017 Date Data Arrived at EDR: 05/30/2017 Date Made Active in Reports: 10/13/2017 Number of Days to Update: 136	Source: FEMA Telephone: 202-646-5797 Last EDR Contact: 12/20/2018 Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Varies	
UST	JST: Underground Storage Tanks Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.		
	Date of Government Version: 05/23/2008 Date Data Arrived at EDR: 07/24/2008 Date Made Active in Reports: 08/12/2008 Number of Days to Update: 19	Source: Department of Environmental Quality Telephone: 307-777-7781 Last EDR Contact: 12/20/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Annually	
AST:	Wyoming Aboveground Storage Tanks Registered Aboveground Storage Tanks.		
	Date of Government Version: 05/23/2008 Date Data Arrived at EDR: 07/24/2008 Date Made Active in Reports: 08/13/2008 Number of Days to Update: 20	Source: Department of Environmental Quality Telephone: 307-777-7781 Last EDR Contact: 12/20/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Annually	
INDI	INDIAN UST R6: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian Iand in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).		
	Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63	Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies	

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 04/24/2018	Source: EPA Region 7
Date Data Arrived at EDR: 05/18/2018	Telephone: 913-551-7003
Date Made Active in Reports: 07/20/2018	Last EDR Contact: 10/26/2018
Number of Days to Update: 63	Next Scheduled EDR Contact: 02/04/2019
	Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 04/25/2018
Date Data Arrived at EDR: 05/18/2018
Date Made Active in Reports: 07/20/2018
Number of Days to Update: 63

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 04/10/2018	Source: EPA Region 9
Date Data Arrived at EDR: 05/18/2018	Telephone: 415-972-3368
Date Made Active in Reports: 07/20/2018	Last EDR Contact: 10/26/2018
Number of Days to Update: 63	Next Scheduled EDR Contact: 02/04/2019
	Data Release Frequency: Varies

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63 Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 63 Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 05/08/2018Source: EPA RegionDate Data Arrived at EDR: 05/18/2018Telephone: 404-56Date Made Active in Reports: 07/20/2018Last EDR Contact:Number of Days to Update: 63Next Scheduled ED

Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 10/26/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/12/2018	Source: EPA Region 5
Date Data Arrived at EDR: 05/18/2018	Telephone: 312-886-6136
Date Made Active in Reports: 07/20/2018	Last EDR Contact: 10/26/2018
Number of Days to Update: 63	Next Scheduled EDR Contact: 02/04/2019
	Data Release Frequency: Varies

TANKS: Storage Tank Listing A listing of aboveground and underground storage tank locations. Date of Government Version: 07/09/2018 Source: Department of Environmetnal Quality Date Data Arrived at EDR: 07/13/2018 Telephone: 307-777-7752 Date Made Active in Reports: 08/28/2018 Last EDR Contact: 10/12/2018 Number of Days to Update: 46 Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Varies State and tribal institutional control / engineering control registries ENG CONTROLS: Engineering Controls Site Listing A listing of sites with engineering controls in place. Date of Government Version: 11/19/2018 Source: Department of Environmental Quality Date Data Arrived at EDR: 11/19/2018 Telephone: 307-777-5547 Last EDR Contact: 11/16/2018 Date Made Active in Reports: 01/04/2019 Next Scheduled EDR Contact: 03/04/2019 Number of Days to Update: 46 Data Release Frequency: Quarterly INST CONTROL: Sites with Institutional Controls Voluntary Remediation Program sites with institutional Controls in place. Date of Government Version: 11/19/2018 Source: Department of Environmental Quality Date Data Arrived at EDR: 11/19/2018 Telephone: 307-777-7752 Date Made Active in Reports: 01/04/2019 Last EDR Contact: 11/16/2018 Number of Days to Update: 46 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Varies State and tribal voluntary cleanup sites VCP: List of Voluntary Remediation Program Sites A listing of sites participating in the Voluntary Remediation Program. Date of Government Version: 11/19/2018 Source: Department of Environmental Quality Date Data Arrived at EDR: 11/19/2018 Telephone: 307-777-5447 Last EDR Contact: 11/16/2018 Date Made Active in Reports: 01/04/2019 Number of Days to Update: 46 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Varies INDIAN VCP R1: Voluntary Cleanup Priority Listing A listing of voluntary cleanup priority sites located on Indian Land located in Region 1. Date of Government Version: 07/27/2015 Source: EPA, Region 1 Date Data Arrived at EDR: 09/29/2015 Telephone: 617-918-1102 Date Made Active in Reports: 02/18/2016 Last EDR Contact: 12/19/2018 Next Scheduled EDR Contact: 04/08/2019 Number of Days to Update: 142 Data Release Frequency: Varies INDIAN VCP R7: Voluntary Cleanup Priority Lisitng A listing of voluntary cleanup priority sites located on Indian Land located in Region 7. Date of Government Version: 03/20/2008 Source: EPA, Region 7 Date Data Arrived at EDR: 04/22/2008 Telephone: 913-551-7365 Last EDR Contact: 04/20/2009 Date Made Active in Reports: 05/19/2008 Number of Days to Update: 27 Next Scheduled EDR Contact: 07/20/2009 Data Release Frequency: Varies

State and tribal Brownfields sites

BROWNFIELDS: Brownfields Sites Listing

A listing of Brownfields sites locations. Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment.

Date of Government Version: 11/19/2018 Date Data Arrived at EDR: 11/19/2018 Date Made Active in Reports: 01/04/2019 Number of Days to Update: 46 Source: Department of Environmental Quality Telephone: 307-777-7752 Last EDR Contact: 11/16/2018 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Varies

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 09/18/2018 Date Data Arrived at EDR: 09/18/2018 Date Made Active in Reports: 11/09/2018 Number of Days to Update: 52 Source: Environmental Protection Agency Telephone: 202-566-2777 Last EDR Contact: 12/18/2018 Next Scheduled EDR Contact: 04/01/2019 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY: Recycling Facilities

A listing of recycling facility locations.

Date of Government Version: 09/30/2009 Date Data Arrived at EDR: 11/02/2009 Date Made Active in Reports: 11/25/2009 Number of Days to Update: 23 Source: Department of Environmental Quality Telephone: 307-777-7752 Last EDR Contact: 11/27/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Annually

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands Location of open dumps on Indian land.

Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008 Number of Days to Update: 52

Source: Environmental Protection Agency Telephone: 703-308-8245 Last EDR Contact: 10/25/2018 Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009	Source: EPA, Region 9
Date Data Arrived at EDR: 05/07/2009	Telephone: 415-947-4219
Date Made Active in Reports: 09/21/2009	Last EDR Contact: 10/22/2018
Number of Days to Update: 137	Next Scheduled EDR Contact: 02/04/2019
	Data Release Frequency: No Update Planned

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004 Number of Days to Update: 39 Source: Environmental Protection Agency Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014Source: Department of Health & Human Serivces, Indian Health ServiceDate Data Arrived at EDR: 08/06/2014Telephone: 301-443-1452Date Made Active in Reports: 01/29/2015Last EDR Contact: 11/02/2018Number of Days to Update: 176Next Scheduled EDR Contact: 02/11/2019Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 09/21/2018	Source: Drug Enforcement Administration
Date Data Arrived at EDR: 09/21/2018	Telephone: 202-307-1000
Date Made Active in Reports: 11/09/2018	Last EDR Contact: 11/26/2018
Number of Days to Update: 49	Next Scheduled EDR Contact: 03/11/2019
· ·	Data Release Frequency: No Update Planned

CDL: Clandestine Drug Lab Site Locations

Information collected by the Wyoming Department of Health concerning Drug Lab Sites.

Date of Government Version: 05/01/2018	Source: Department of Health
Date Data Arrived at EDR: 06/08/2018	Telephone: 307-777-8736
Date Made Active in Reports: 07/27/2018	Last EDR Contact: 12/14/2018
Number of Days to Update: 49	Next Scheduled EDR Contact: 03/18/2019
	Data Release Frequency: Varies

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 09/21/2018	Source: Drug Enforcement Administration
Date Data Arrived at EDR: 09/21/2018	Telephone: 202-307-1000
Date Made Active in Reports: 11/09/2018	Last EDR Contact: 11/26/2018
Number of Days to Update: 49	Next Scheduled EDR Contact: 03/11/2019
	Data Release Frequency: Quarterly

Local Land Records

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 08/13/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/16/2018 Number of Days to Update: 43 Source: Environmental Protection Agency Telephone: 202-564-6023 Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 03/26/2018	Source: U.S. Department of Transportation
Date Data Arrived at EDR: 03/27/2018	Telephone: 202-366-4555
Date Made Active in Reports: 06/08/2018	Last EDR Contact: 12/21/2018
Number of Days to Update: 73	Next Scheduled EDR Contact: 04/08/2019
	Data Release Frequency: Quarterly

SPILLS: SPILL Database

Spills reported to the Department of Environmental Quality

Date of Government Version: 07/03/2018	Source: Department of Environmental Quality
Date Data Arrived at EDR: 08/10/2018	Telephone: 307-777-7783
Date Made Active in Reports: 09/06/2018	Last EDR Contact: 11/16/2018
Number of Days to Update: 27	Next Scheduled EDR Contact: 02/25/2019
	Data Release Frequency: Varies

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018 Number of Days to Update: 86 Source: Environmental Protection Agency Telephone: 303-312-6149 Last EDR Contact: 12/03/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 01/31/2015 Date Data Arrived at EDR: 07/08/2015 Date Made Active in Reports: 10/13/2015 Number of Days to Update: 97 Source: U.S. Army Corps of Engineers Telephone: 202-528-4285 Last EDR Contact: 11/19/2018 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 12/31/2005Source: USGSDate Data Arrived at EDR: 11/10/2006Telephone: 888-275Date Made Active in Reports: 01/11/2007Last EDR Contact: 1Number of Days to Update: 62Next Scheduled EDR

Source: USGS Telephone: 888-275-8747 Last EDR Contact: 10/12/2018 Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Semi-Annually

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Source: U.S. Geological Survey
Telephone: 888-275-8747
Last EDR Contact: 10/12/2018
Next Scheduled EDR Contact: 01/21/2019
Data Release Frequency: N/A
ediation of Drycleaners Listing eaners was established in 1998, with support from

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 01/01/2017 Date Data Arrived at EDR: 02/03/2017 Date Made Active in Reports: 04/07/2017 Number of Days to Update: 63 Source: Environmental Protection Agency Telephone: 615-532-8599 Last EDR Contact: 11/16/2018 Next Scheduled EDR Contact: 02/25/2019 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 08/31/2018 Date Data Arrived at EDR: 09/25/2018 Date Made Active in Reports: 11/09/2018 Number of Days to Update: 45 Source: Environmental Protection Agency Telephone: 202-566-1917 Last EDR Contact: 12/21/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013 Date Data Arrived at EDR: 03/21/2014 Date Made Active in Reports: 06/17/2014 Number of Days to Update: 88 Source: Environmental Protection Agency Telephone: 617-520-3000 Last EDR Contact: 11/05/2018 Next Scheduled EDR Contact: 02/18/2019 Data Release Frequency: Quarterly

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 73 Source: Environmental Protection Agency Telephone: 703-308-4044 Last EDR Contact: 11/09/2018 Next Scheduled EDR Contact: 02/18/2019 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 06/21/2017 Date Made Active in Reports: 01/05/2018 Number of Days to Update: 198 Source: EPA Telephone: 202-260-5521 Last EDR Contact: 12/21/2018 Next Scheduled EDR Contact: 04/01/2019 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 01/10/2018 Date Made Active in Reports: 01/12/2018 Number of Days to Update: 2 Source: EPA Telephone: 202-566-0250 Last EDR Contact: 11/16/2018 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 12/10/2010 Date Made Active in Reports: 02/25/2011 Number of Days to Update: 77 Source: EPA Telephone: 202-564-4203 Last EDR Contact: 10/24/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 08/13/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/16/2018 Number of Days to Update: 43 Source: EPA Telephone: 703-416-0223 Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Annually

RMP: Risk Management Plans
When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/22/2018 Date Made Active in Reports: 10/05/2018 Number of Days to Update: 44 Source: Environmental Protection Agency Telephone: 202-564-8600 Last EDR Contact: 10/23/2018 Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995 Number of Days to Update: 35 Source: EPA Telephone: 202-564-4104 Last EDR Contact: 06/02/2008 Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 08/13/2018	Source: EPA
Date Data Arrived at EDR: 10/04/2018	Telephone: 202-564-6023
Date Made Active in Reports: 11/09/2018	Last EDR Contact: 12/28/2018
Number of Days to Update: 36	Next Scheduled EDR Contact: 02/18/2019
	Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 09/14/2018	Source: EPA
Date Data Arrived at EDR: 10/11/2018	Telephone: 202-566-0500
Date Made Active in Reports: 12/07/2018	Last EDR Contact: 10/11/2018
Number of Days to Update: 57	Next Scheduled EDR Contact: 01/21/2019
	Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017 Number of Days to Update: 79 Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 01/07/2019 Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009	Source: EPA/Office of Prevention, Pesticides and Toxic Substances
Date Data Arrived at EDR: 04/16/2009	Telephone: 202-566-1667
Date Made Active in Reports: 05/11/2009	Last EDR Contact: 08/18/2017
Number of Days to Update: 25	Next Scheduled EDR Contact: 12/04/2017
	Data Release Frequency: Quarterly

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009	Source: EPA
Date Data Arrived at EDR: 04/16/2009	Telephone: 202-566-1667
Date Made Active in Reports: 05/11/2009	Last EDR Contact: 08/18/2017
Number of Days to Update: 25	Next Scheduled EDR Contact: 12/04/2017
· ·	Data Release Frequency: Quarterly

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 08/30/2016	Source: Nuclear Regulatory Commission
Date Data Arrived at EDR: 09/08/2016	Telephone: 301-415-7169
Date Made Active in Reports: 10/21/2016	Last EDR Contact: 10/11/2018
Number of Days to Update: 43	Next Scheduled EDR Contact: 02/04/2019
	Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2005	Source: Department of Energy
Date Data Arrived at EDR: 08/07/2009	Telephone: 202-586-8719
Date Made Active in Reports: 10/22/2009	Last EDR Contact: 12/05/2018
Number of Days to Update: 76	Next Scheduled EDR Contact: 03/18/2019
	Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 07/01/2014	
Date Data Arrived at EDR: 09/10/2014	
Date Made Active in Reports: 10/20/2014	
Number of Days to Update: 40	

Source: Environmental Protection Agency Telephone: N/A Last EDR Contact: 12/03/2018 Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 05/24/2017	Source: Environmental Protection Agency
Date Data Arrived at EDR: 11/30/2017	Telephone: 202-566-0517
Date Made Active in Reports: 12/15/2017	Last EDR Contact: 10/26/2018
Number of Days to Update: 15	Next Scheduled EDR Contact: 02/04/2019
	Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 10/02/2018 Date Data Arrived at EDR: 10/03/2018 Date Made Active in Reports: 11/09/2018 Number of Days to Update: 37 Source: Environmental Protection Agency Telephone: 202-343-9775 Last EDR Contact: 01/03/2019 Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006SDate Data Arrived at EDR: 03/01/2007TDate Made Active in Reports: 04/10/2007LNumber of Days to Update: 40N

Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2007 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 40 Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2008 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 07/31/2012	Source: Department of Transporation, Office of Pipeline Safety
Date Data Arrived at EDR: 08/07/2012	Telephone: 202-366-4595
Date Made Active in Reports: 09/18/2012	Last EDR Contact: 10/30/2018
Number of Days to Update: 42	Next Scheduled EDR Contact: 02/11/2019
• •	Data Release Frequency: Varies

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 09/30/2018
Date Data Arrived at EDR: 10/12/2018
Date Made Active in Reports: 12/07/2018
Number of Days to Update: 56

Source: Department of Justice, Consent Decree Library Telephone: Varies Last EDR Contact: 01/07/2019 Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2015 Date Data Arrived at EDR: 02/22/2017 Date Made Active in Reports: 09/28/2017 Number of Days to Update: 218 Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 11/21/2018 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.

Date of Government Version: 12/31/2014	Source: USGS
Date Data Arrived at EDR: 07/14/2015	Telephone: 202-208-3710
Date Made Active in Reports: 01/10/2017	Last EDR Contact: 01/07/2019
Number of Days to Update: 546	Next Scheduled EDR Contact: 04/22/2019
	Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 08/08/2017
Date Data Arrived at EDR: 09/11/2018
Date Made Active in Reports: 09/14/2018
Number of Days to Update: 3

Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 11/01/2018 Next Scheduled EDR Contact: 02/18/2019 Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 06/23/2017 Date Data Arrived at EDR: 10/11/2017 Date Made Active in Reports: 11/03/2017 Number of Days to Update: 23 Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 12/14/2018 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 08/13/2018Source:Date Data Arrived at EDR: 10/04/2018TelephoDate Made Active in Reports: 11/16/2018Last EDNumber of Days to Update: 43Next Source:

Source: Environmental Protection Agency Telephone: 703-603-8787 Last EDR Contact: 12/28/2018 Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010 Number of Days to Update: 36 Source: American Journal of Public Health Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

	Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017 Number of Days to Update: 100	Source: EPA Telephone: 202-564-2496 Last EDR Contact: 09/26/2017 Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually	
US A	AIRS MINOR: Air Facility System Data A listing of minor source facilities.		
	Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017 Number of Days to Update: 100	Source: EPA Telephone: 202-564-2496 Last EDR Contact: 09/26/2017 Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually	
USN	US MINES: Mines Master Index File Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.		
	Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/29/2018 Date Made Active in Reports: 10/05/2018 Number of Days to Update: 37	Source: Department of Labor, Mine Safety and Health Administration Telephone: 303-231-5959 Last EDR Contact: 11/30/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Semi-Annually	
USN	JS MINES 2: Ferrous and Nonferrous Metal Mines Database Listing This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.		
	Date of Government Version: 12/05/2005 Date Data Arrived at EDR: 02/29/2008 Date Made Active in Reports: 04/18/2008 Number of Days to Update: 49	Source: USGS Telephone: 703-648-7709 Last EDR Contact: 11/30/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies	
USN	US MINES 3: Active Mines & Mineral Plants Database Listing Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.		
	Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011 Number of Days to Update: 97	Source: USGS Telephone: 703-648-7709 Last EDR Contact: 11/30/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies	
ABA	NDONED MINES: Abandoned Mines An inventory of land and water impacted by part information needed to implement the Surface M contains information on the location, type, and with the reclamation of those problems. The inv program officials. It is dynamic to the extent that problems are reclaimed.	st mining (primarily coal mining) is maintained by OSMRE to provide Mining Control and Reclamation Act of 1977 (SMCRA). The inventory extent of AML impacts, as well as, information on the cost associated ventory is based upon field surveys by State, Tribal, and OSMRE at it is modified as new problems are identified and existing	
	Date of Government Version: 09/10/2018 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018 Number of Days to Update: 3	Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 12/19/2018 Next Scheduled EDR Contact: 03/25/2019	

Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 08/07/2018	Source: EPA
Date Data Arrived at EDR: 09/05/2018	Telephone: (303) 312-6312
Date Made Active in Reports: 10/05/2018	Last EDR Contact: 12/05/2018
Number of Days to Update: 30	Next Scheduled EDR Contact: 03/18/2019
	Data Release Frequency: Quarterly
ECHO: Enforcement & Compliance History Inform	nation
ECHO provides integrated compliance and	enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 09/02/2018	Source: Environmental Protection Agency
Date Data Arrived at EDR: 09/05/2018	Telephone: 202-564-2280
Date Made Active in Reports: 09/14/2018	Last EDR Contact: 01/07/2019
Number of Days to Update: 9	Next Scheduled EDR Contact: 03/18/2019
	Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/31/2018	Source: Environmental Protection Agency
Date Data Arrived at EDR: 07/26/2018	Telephone: 202-564-0527
Date Made Active in Reports: 10/05/2018	Last EDR Contact: 11/30/2018
Number of Days to Update: 71	Next Scheduled EDR Contact: 03/11/2019
	Data Release Frequency: Varies

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 09/30/2017	Source: Department of Defense
Date Data Arrived at EDR: 06/19/2018	Telephone: 703-704-1564
Date Made Active in Reports: 09/14/2018	Last EDR Contact: 10/15/2018
Number of Days to Update: 87	Next Scheduled EDR Contact: 01/28/2019
	Data Release Frequency: Varies

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 08/22/2018 Date Data Arrived at EDR: 08/22/2018 Date Made Active in Reports: 10/05/2018 Number of Days to Update: 44 Source: EPA Telephone: 800-385-6164 Last EDR Contact: 11/19/2018 Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Quarterly

AIRS: Air Quality Permit Listing

A listing of Air Quality permits included in the DEQa??s current database and their legacy system AQDS.

Source
Teleph
Last E
Next S

Source: Department of Environmental Quality Telephone: 307-777-7872 Last EDR Contact: 11/26/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

ASBESTOS: Asbestos Notification Listing Asbestos site notifications	
Date of Government Version: 06/13/2018 Date Data Arrived at EDR: 06/15/2018 Date Made Active in Reports: 07/27/2018 Number of Days to Update: 42	Source: Department of Environmental Quality Telephone: 307-777-7394 Last EDR Contact: 12/07/2018 Next Scheduled EDR Contact: 03/25/2019 Data Release Frequency: Varies
DRYCLEANERS: Drycleaner Facility Listing Drycleaner sites	
Date of Government Version: 02/02/2017 Date Data Arrived at EDR: 06/01/2017 Date Made Active in Reports: 05/11/2018 Number of Days to Update: 344	Source: Department of Environmental Quality Telephone: 307-777-6105 Last EDR Contact: 11/30/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies
Financial Assurance: Financial Assurance Informati Information for underground storage tanks. Fin to pay for the cost of closure, post-closure care facility is unable or unwilling to pay.	on listing nancial assurance is intended to ensure that resources are available e, and corrective measures if the owner or operator of a regulated
Date of Government Version: 05/23/2008 Date Data Arrived at EDR: 06/17/2008 Date Made Active in Reports: 07/24/2008 Number of Days to Update: 37	Source: Department of Environmental Quality Telephone: 307-777-7095 Last EDR Contact: 12/20/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Annually
MINES: Mine Locations Listing Coal mine locations and production; commodit Mine permit boundaries for the BLM Rawlins F	y mine locations; mining lease boundaries for the Powder River Basin; ïeld Office.
Date of Government Version: 04/09/2018 Date Data Arrived at EDR: 06/28/2018 Date Made Active in Reports: 07/27/2018 Number of Days to Update: 29	Source: Wyoming Geographic Information Science Center Telephone: 307-766-2532 Last EDR Contact: 12/26/2018 Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Varies
UIC: UIC Well Locations List A listing of Class I and Class V UIC wells.	
Date of Government Version: 08/28/2018 Date Data Arrived at EDR: 08/30/2018 Date Made Active in Reports: 10/09/2018 Number of Days to Update: 40	Source: Department of Environmental Quality Telephone: 307-777-5623 Last EDR Contact: 11/29/2018 Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies
NPDES: Wastewater Permit Listing A listing of facilities with wastewater permits.	
Date of Government Version: 06/04/2018 Date Data Arrived at EDR: 06/08/2018 Date Made Active in Reports: 07/27/2018 Number of Days to Update: 49	Source: Department of Environmental Quality Telephone: 307-777-7570 Last EDR Contact: 12/03/2018 Next Scheduled EDR Contact: 03/18/2019
EDR HIGH RISK HISTORICAL RECORDS	Dala Release Flequency. Valles
EDR Exclusive Records	

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA LF: Recovered Government Archive Solid Waste Facilities List

The EDR Recovered Government Archive Landfill database provides a list of landfills derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Quality in Wyoming.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 01/17/2014 Number of Days to Update: 200 Source: Department of Environmental Quality Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Quality in Wyoming.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 01/04/2014 Number of Days to Update: 187 Source: Department of Environmental Quality Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

Date of Government Version: 10/01/2018 Date Data Arrived at EDR: 10/31/2018 Date Made Active in Reports: 12/20/2018 Number of Days to Update: 50 Source: Department of Environmental Conservation Telephone: 518-402-8651 Last EDR Contact: 10/31/2018 Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Quarterly

Oil/Gas Pipelines

Source: PennWell Corporation

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Electric Power Transmission Line Data

Source: PennWell Corporation

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools Source: National Center for Education Statistics Telephone: 202-502-7300 The National Center for Education Statistics' primary database on elementary and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states. Private Schools Source: National Center for Education Statistics Telephone: 202-502-7300 The National Center for Education Statistics' primary database on private school locations in the United States. Daycare Centers: Day Care Provider List Source: Department of Family Services Telephone: 307-777-6595

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: National Wetlands Inventory Source: Wyoming Geospatial Hub Telephone: 307-777-4600

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

CHEYENNE AASF CHEYENNE AASF FE WARREN AFB, WY 82005

TARGET PROPERTY COORDINATES

Latitude (North):	41.196149 - 41° 11' 46.14"
Longitude (West):	104.870486 - 104° 52' 13.75"
Universal Tranverse Mercator:	Zone 13
UTM X (Meters):	510860.2
UTM Y (Meters):	4560327.5
Elevation:	6290 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: Version Date:	5645427 CHEYENNE NORTH, WY 2012
West Map:	5649463 ROUND TOP LAKE, WY
Version Date:	2012

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General South

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property	FEMA Source Type
56021C1078F	FEMA FIRM Flood data
Additional Panels in search area:	FEMA Source Type
56021C1059F 56021C1067F 56021C1086F	FEMA FIRM Flood data FEMA FIRM Flood data FEMA FIRM Flood data
NATIONAL WETLAND INVENTORY	
	NWI Electronic
NWI Quad at Target Property	Data Coverage
CHEYENNE NORTH	YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID Not Reported LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:	Cenozoic	Category:	Continental Deposits
System:	Tertiary		
Series:	Pliocene		
Code:	Tpc (decoded above as Era, System &	Series)	

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SITE NAME:	Cheyenne AASF
ADDRESS:	Cheyenne AASF
	Fe Warren AFB WY 82005
LAT/LONG:	41.196149 / 104.870486

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1	
Soil Component Name:	Evanston
Soil Surface Texture:	loam
Hydrologic Group:	Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.
Soil Drainage Class:	Well drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	High
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

	Soil Layer Information						
Boundary Classification					Saturated hvdraulic		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	3 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
2	3 inches	14 inches	clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
3	14 inches	59 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4

Soil Map ID: 2	
Soil Component Name:	Poposhia
Soil Surface Texture:	silt loam
Hydrologic Group:	Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.
Soil Drainage Class:	Well drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	High
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

	Soil Layer Information						
Boundary Classification					Saturated hydraulic		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
2	7 inches	25 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
3	25 inches	59 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH DISTANCE (miles)
Federal USGS Federal FRDS PWS	1.000 Nearest PWS within 1 mile
State Database	1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
A5	USGS40001334813	1/2 - 1 Mile WSW
15	USGS40001334980	1/2 - 1 Mile NW
A17	USGS40001334811	1/2 - 1 Mile WSW

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
1	WY5600011	1/2 - 1 Mile West

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
2	WYSE50000143153	1/2 - 1 Mile SSW
3	WYSE50000033225	1/2 - 1 Mile WSW
4	WYSE50000042868	1/2 - 1 Mile WNW
B6	WYSE50000016904	1/2 - 1 Mile SSW
B7	WYSE50000018665	1/2 - 1 Mile SSW
B8	WYSE50000015028	1/2 - 1 Mile SSW
B9	WYSE50000016571	1/2 - 1 Mile SSW
B10	WYSE50000018867	1/2 - 1 Mile SSW
B11	WYSE50000117396	1/2 - 1 Mile SSW
B12	WYSE50000123706	1/2 - 1 Mile SSW
B13	WYSE50000116892	1/2 - 1 Mile SSW
B14	WYSE50000117326	1/2 - 1 Mile SSW
16	WYSE50000040108	1/2 - 1 Mile NE
C18	WYSE50000117119	1/2 - 1 Mile SW
C19	WYSE50000127045	1/2 - 1 Mile SW
D20	WYSE50000142449	1/2 - 1 Mile SSW
D21	WYSE50000113296	1/2 - 1 Mile SSW
D22	WYSE50000117337	1/2 - 1 Mile SSW

PHYSICAL SETTING SOURCE MAP - 5528367.2s

Map ID Direction Distance Elevation

West 1/2 - 1 Mile Higher

Epa region: Pwsid: Cityserved: Zipserved: Status: Pwssvcconn: Pwstype: Contact: Contactphone: Contactaddress2: Contactstate: Pwsactivitycode:

Pwsid: Facname: Facactivitycode: Trtprocess:

Pwsid: Facname: Facactivitycode: Trtprocess: Factypecode:

PWS ID:

08 WY5600011 Not Reported Not Reported Active 21800 CWS KAILEY, RON 307-635-7693 Not Reported WY А WY5600011 SHERARD WTP A chlorine dioxide WY5600011 SHERARD WTP A ozonation, pre WY5600011 SHERARD WTP A coagulation WY5600011 SHERARD WTP А filtration, rapid sand WY5600011 SHERARD WTP А flocculation WY5600011 SHERARD WTP Α sedimentation WY5600011 SHERARD WTP А

fluoridation WY5600011

SHERARD WTP A gaseous chlorination, post TP

WY5600011

State: Pwsname: Stateserved: Fipscounty: Retpopsrvd: Psource longname: Owner: Contactorgname: Contactorgname: Contactaddress1: Contactcity: Contactzip: Database

Facid: Factype: Trtobjective: Factypecode:

Facid: Factype: Trtobjective:

PWS name:

FRDS PWS WY5600011 WY CHEYENNE BOARD PUB UTILITIES WY 56021 58182 Surface_water Local_Govt KAILEY, RON P.O. Box 1469 CHEYENNE 82003 15662 Treatment_plant disinfection TP 15662 Treatment_plant disinfection TP 15662 Treatment_plant particulate removal TP 15662 Treatment_plant particulate removal TΡ 15662 Treatment_plant particulate removal TΡ 15662 Treatment_plant particulate removal TΡ

EDR ID Number

15662 Treatment_plant other TP

15662 Treatment_plant disinfection

CHEYENNE BOARD PUB UTILITIES

Address: City: Zip: Source code:	P.O. BOX 1469 CHEYENNE 82003 Surface water	Care of: State: Owner: Population:	Not Reported WY CHEYENNE BOARD PUB UTILITIES 54500
PWS ID: PWS name: PWS city: PWS zip: Activity status: Date system deactivated: System name:	WY5600011 Not Reported Not Reported Active Not Reported CHEYENNE BOARD PUB. UTILITIES	PWS type: PWS address: PWS state: PWS ID: Date system activated: Retail population:	Not Reported Not Reported WY5600011 Not Reported 00064000
System city: System zip:	CHEYENNE 82003	System state:	WY
Population served:	50,001 - 75,000 Persons	Treatment:	Not Reported
Latitude:	410759	Longitude:	1044900
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 105 1.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 51.0000 0
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 9 104 11.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 4.0000 58
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 9 104 58.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 9.0000 58
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 9 104 25.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 14.0000 57
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 9 105 10.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 32.0000 10
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 9 104 56.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 55.0000 56
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 9 104 20.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 56.0000 55
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 10 105 39.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 15.0000 14
State: Latitude minutes:	WY 10	Latitude degrees: Latitude seconds:	41 26.0000

Longitude degrees: Longitude seconds:	104 3.0000	Longitude minutes:	56
State:	WY	Latitude degrees:	41
Latitude minutes:	10	Latitude seconds:	28.0000
Longitude degrees:	104	Longitude minutes:	48
Longitude seconds:	57.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	10	Latitude seconds:	46.0000
Longitude degrees:	104	Longitude minutes:	35
Longitude seconds:	14.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	11	Latitude seconds:	2.0000
Longitude degrees:	104	Longitude minutes:	57
Longitude seconds:	32.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	11	Latitude seconds:	3.0000
Longitude degrees:	104	Longitude minutes:	55
Longitude seconds:	45.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	11	Latitude seconds:	11.0000
Longitude degrees:	104	Longitude minutes:	54
Longitude seconds:	29.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	11	Latitude seconds:	14.0000
Longitude degrees:	104	Longitude minutes:	56
Longitude seconds:	5.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	11	Latitude seconds:	25.0000
Longitude degrees:	104	Longitude minutes:	58
Longitude seconds:	18.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	11	Latitude seconds:	26.0000
Longitude degrees:	104	Longitude minutes:	55
Longitude seconds:	56.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	11	Latitude seconds:	52.0000
Longitude degrees:	104	Longitude minutes:	52
Longitude seconds:	53.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	12	Latitude seconds:	11.0000
Longitude degrees:	104	Longitude minutes:	52
Longitude seconds:	46.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	12	Latitude seconds:	29.0000
Longitude degrees:	106	Longitude minutes:	17
Longitude seconds:	2.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	12	Latitude seconds:	40.0000
Longitude degrees:	104	Longitude minutes:	50
Longitude seconds:	58.0000		

State: Latitude minutes: Longitude degrees:	WY 12 105 57,0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 57.0000 12
Longitude seconds.	57.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	12	Latitude seconds:	58.0000
Longitude degrees:	105	Longitude minutes:	12
Longitude seconds.	40.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	14	Latitude seconds:	14.0000
Longitude degrees:	105	Longitude minutes:	5
	22.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	14	Latitude seconds:	25.0000
Longitude degrees:	105	Longitude minutes:	5
Longitude seconds:	16.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	14	Latitude seconds:	35.0000
Longitude degrees:	105	Longitude minutes:	4
Longitude seconds:	27.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	14	Latitude seconds:	49.0000
Longitude degrees:	105	Longitude minutes:	6
Longitude seconds:	22.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	15	Latitude seconds:	17.0000
Longitude degrees:	105	Longitude minutes:	5
Longitude seconds:	56.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	15	Latitude seconds:	34.0000
Longitude degrees:	105	Longitude minutes:	1
Longitude seconds:	35.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	17	Latitude seconds:	29.0000
Longitude degrees:	105	Longitude minutes:	1
Longitude seconds:	50.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	19	Latitude seconds:	16.0000
Longitude degrees:	105	Longitude minutes:	3
Longitude seconds:	53.0000		
State:	WY	Latitude degrees:	31
Latitude minutes:	8	Latitude seconds:	45.0000
Longitude degrees:	106	Longitude minutes:	16
Longitude seconds:	15.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	4	Latitude seconds:	12.0000
Longitude degrees:	104	Longitude minutes:	58
Longitude seconds:	37.0000		
State:	WY	Latitude degrees:	41
Latitude minutes:	5	Latitude seconds:	25.0000

Longitude degrees: Longitude seconds:	104 29.0000	Longitude minutes:	55
State: Latitude minutes:	WY 5	Latitude degrees: Latitude seconds:	41 26.0000
Longitude degrees: Longitude seconds:	104 50.0000	Longitude minutes:	55
State: Latitude minutes:	WY 5	Latitude degrees: Latitude seconds:	41 46.0000
Longitude degrees: Longitude seconds:	104 37.0000	Longitude minutes:	57
State: Latitude minutes:	WY 5	Latitude degrees: Latitude seconds:	41 47.0000
Longitude degrees: Longitude seconds:	104 57.0000	Longitude minutes:	59
State: Latitude minutes:	WY 6	Latitude degrees: Latitude seconds:	41 21.0000
Longitude degrees: Longitude seconds:	104 57.0000	Longitude minutes:	57
State: Latitude minutes: Longitude degrees:	WY 7 104	Latitude degrees: Latitude seconds: Longitude minutes:	41 55.0000 57
Longitude seconds:	59.0000		
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 104 16.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 2.0000 58
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 105 7.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 16.0000 0
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 104 35.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 22.0000 57
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 104 52.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 24.0000 56
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 104 7.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 25.0000 58
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 105 13.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 35.0000 0

PWS currently has or had major violation(s) or enforcement:Yes

Violation ID:9300006Violation source ID:Not ReportedPWS telephone:Not ReportedContaminant:Turbidity

Violation type: Violation end date: Violation awareness date: Maximum contaminant level: Number of samples taken: Analysis result:	Monitoring, Regular 022893 Not Reported Not Reported 025 Not Reported	Violation start date: Violation period (months): Major violator: Number of required samples: Analysis method:	020193 001 No 028 Not Reported
PWS currently has or had major v	violation(s) or enforcement:Yes		
Violation ID: PWS telephone: Violation type: Violation start date: Violation period (months): Major violator: Number of required samples: Analysis method:	9400008 Not Reported Monitoring, Routine Minor (TCR) 100193 001 No Not Reported Not Reported	Violation source ID: Contaminant: Violation end date: Violation awareness date: Maximum contaminant level: Number of samples taken: Analysis result:	Not Reported COLIFORM (TCR) 103193 Not Reported Not Reported Not Reported Not Reported Not Reported
PWS currently has or had major v	riolation(s) or enforcement.Yes		
Violation ID: PWS telephone: Violation type: Violation start date: Violation period (months): Major violator: Number of required samples: Analysis method:	9400001 Not Reported Initial Tap Sampling for Pb and Cu 010194 006 Not Reported Not Reported Not Reported	Violation source ID: Contaminant: Violation end date: Violation awareness date: Maximum contaminant level: Number of samples taken: Analysis result:	Not Reported LEAD & COPPER RULE 063094 Not Reported Not Reported Not Reported Not Reported Not Reported
PWS currently has or had major v	violation(s) or enforcement:Yes		
Violation ID: PWS telephone: Violation type: Violation start date: Violation period (months): Major violator: Number of required samples: Analysis method:	9400009 Not Reported Monitoring, Routine Minor (TCR) 030194 001 No Not Reported Not Reported	Violation source ID: Contaminant: Violation end date: Violation awareness date: Maximum contaminant level: Number of samples taken: Analysis result:	Not Reported COLIFORM (TCR) 033194 Not Reported Not Reported Not Reported Not Reported
System Name: Violation Type: Compliance Begin: Violation ID: Enforcement Action:	CHEYENNE BOARD PUB UTILITI 51 1994-01-01 9400001 EOX	Contaminant: Compliance End: Enforcement Date:	5000 2015-12-31 1999-04-13
System Name: Violation Type: Compliance Begin: Violation ID: Enforcement Action:	CHEYENNE BOARD PUB UTILITI 51 1994-01-01 9400001 Not Reported	Contaminant: Compliance End: Enforcement Date:	5000 1994-06-30 Not Reported
System Name: Violation Type: Compliance Begin: Violation ID: Enforcement Action:	CHEYENNE BOARD PUB UTILITIE 51 1994-01-01 9400001 Not Reported	Contaminant: Compliance End: Enforcement Date:	5000 2015-12-31 Not Reported
System Name: Violation Type: Compliance Begin: Violation ID:	CHEYENNE BOARD PUB UTILITI 24 1994-03-01 9400009	Contaminant: Compliance End: Enforcement Date:	3100 1994-03-31 Not Reported

Enforcement Action: Not	Reported		
System Name:CHIViolation Type:24Compliance Begin:199Violation ID:950Enforcement Action:Not	EYENNE BOARD PUB UTILITI 5-07-01 0001 Reported	Contaminant: Compliance End: Enforcement Date:	3100 1995-07-31 Not Reported
2 SSW 1/2 - 1 Mile Lower		WY WEL	LS WYSE50000143153
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P81716.0W Complete P 33 0 20 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	29-JAN-90 USDI, GEOLOGICAL SURVEY Monitoring 10 -1 NULL
3 WSW 1/2 - 1 Mile Lower		WY WEL	LS WYSE50000033225
Permit #: Status: Well Applicant: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P13246.0P Complete WICKHAM ORRIS L. & ALICE WICKHAM #13 24.5 72 -1 Yes	Permit Issue Date: B. Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	31-DEC-29 Domestic_GW; Stock 24 -1 NULL
4 WNW 1/2 - 1 Mile Higher		WY WEL	LS WYSE50000042868
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P10116.0P Complete HUNNICUTT #2 4 200 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	08-OCT-91 HUNNICUTT DELL C. Stock 180 -1 NULL
A5 WSW 1/2 - 1 Mile Lower		FED USG	S USGS40001334813
Organization ID: US0 Monitor Location: 14-0	GS-WY 067-10ccc02	Organization Name: U Type: N	JSGS Wyoming Water Science Center Nell

Description:	Not Reported		HUC:	10190009
Drainage Area:	Not Reported		Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported		Contrib Drainage Area Unts:	Not Reported
Aquifer:	High Plains aquifer		Formation Type:	Ogallala Formation
Aquifer Type:	Not Reported		Construction Date:	Not Reported
Well Depth:	77		Well Depth Units:	ft
Well Hole Depth:	Not Reported		Well Hole Depth Units:	Not Reported
Ground water levels,Number of M Feet below surface: Note:	leasurements: 19.80 Not Reported	51	Level reading date: Feet to sea level:	1951-12-31 Not Reported
Level reading date:	1950-02-27		Feet below surface:	14.19
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1945-08-29		Feet below surface:	13.45
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1945-02-14		Feet below surface:	14.76
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1944-05-10		Feet below surface:	14.09
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1944-01-29		Feet below surface:	15.42
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-12-27		Feet below surface:	14.67
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-11-16		Feet below surface:	15.07
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-10-04		Feet below surface:	15.64
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-09-09		Feet below surface:	15.33
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-08-12		Feet below surface:	14.42
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-07-12		Feet below surface:	13.70
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-06-08		Feet below surface:	13.60
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-05-27		Feet below surface:	16.79
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-05-10		Feet below surface:	13.97
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-04-14		Feet below surface:	14.44
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-03-08		Feet below surface:	14.83
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1943-02-04		Feet below surface:	14.61

Feet to sea level:	Not Reported	Note:
Level reading date:	1942-12-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-11-27	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-10-25	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-09-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-08-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-08-12	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-08-05	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-07-29	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-07-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-07-15	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-07-08	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-07-01	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-06-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-06-17	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-06-10	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-06-03	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-05-27	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-05-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1942-05-13	Feet below surface:
Feet to sea level:	Not Reported	Note:

1942-04-29

Not Reported

Level reading date: Feet to sea level:

Not Reported

14.83

14.60

15.47

15.86

15.64

15.75

16.20

16.13

16.23

15.90

15.84

16.26

16.19

16.61

16.76

17.02

16.79

17.19

17.33

18.28

Feet below surface:

Note:

Level reading date:	1942-04-15	Feet below surface:	19.12
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-04-08	Feet below surface:	19.28
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-04-01	Feet below surface:	19.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-03-25	Feet below surface:	19.63
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-03-04	Feet below surface:	20.30
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-02-18	Feet below surface:	20.09
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-02-11	Feet below surface:	19.89
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-01-21	Feet below surface:	20.34
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1941-12-31	Feet below surface:	19.80
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1941-12-18	Feet below surface:	19.89
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1941-12-11	Feet below surface:	19.71
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1941-11-13	Feet below surface:	20.17
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1941-10-30	Feet below surface:	20.27
Feet to sea level:	Not Reported	Note:	Not Reported

B6 SSW 1/2 - 1 Mile Lower

Permit #:	P82221.0W
Status:	Complete
Facility Name:	155
Yield (Gal/Min):	0
Well Depth:	33.5
Depth to bottom of Main Water Zone:	-1
Chemical Analysis on File:	No

B7 SSW 1/2 - 1 Mile Lower

Permit #: Status: P82219.0W Complete Permit Issue Date: Well Applicant:

Permit Issue Date:

Well Applicant: Uses:

Static Depth (ft):

Well Log:

Depth to top of Main Water Zone:

16-APR-90 U. S. GEOLOGICAL SURVEY

WYSE50000018665

WYSE50000016904

U. S. GEOLOGICAL SURVEY

16-APR-90

Monitoring

20

-1 NULL

WY WELLS

WY WELLS

Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	153 0 40 -1 No	Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	Monitoring 28 -1 NULL
B8 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000015028
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P81714.0W Complete P 31 0 40 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	29-JAN-90 USDI, GEOLOGICAL SURVEY Monitoring 26 -1 NULL
B9 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000016571
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P82218.0W Complete 152 0 39 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	16-APR-90 U. S. GEOLOGICAL SURVEY Monitoring 23 -1 NULL
B10 SSW		WY WELLS	WYSE50000018867

1/2 - 1 Mile Lower

Permit #:	P82220.0W
Status:	Complete
Facility Name:	154
Yield (Gal/Min):	0
Well Depth:	43
Depth to bottom of Main Water Zone:	-1
Chemical Analysis on File:	No

B11 SSW 1/2 - 1 Mile Lower

Permit #: Status: Facility Name: Yield (Gal/Min): P97126.0W Complete 601R 0 Static Depth (ft): Depth to top of Main Water Zone: Well Log: 16-APR-90 U. S. GEOLOGICAL SURVEY Monitoring 25 -1 NULL

WY WELLS WYSE50000117396

Permit Issue Date: Well Applicant: Uses: Static Depth (ft):

Permit Issue Date:

Well Applicant:

Uses:

09-SEP-94 U.S. Geological Survey Monitoring 30

Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	39 -1 No	Depth to top of Main Water Zone: Well Log:	-1 NULL
B12 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000123706
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P97123.0W Complete 604 0 46 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	09-SEP-94 U.S. Geological Survey Monitoring 34 -1 NULL
B13 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000116892
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P97124.0W Complete 603 0 44 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	09-SEP-94 U.S. Geological Survey Monitoring 37 -1 NULL
B14 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000117326
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P97120.0W Complete 607R 0 40 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	09-SEP-94 U.S. Geological Survey Monitoring 31 -1 NULL

15 NW 1/2 - 1 Mile Higher

Organization ID: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: USGS-WY 14-067-10bbb01 Not Reported Not Reported High Plains aquifer

FED USGS

USGS40001334980

Organization Name: Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: USGS Wyoming Water Science Center Well 10190009 Not Reported Not Reported Ogallala Formation

Aquifer Type:	
Well Depth:	
Well Hole Depth:	

Not Reported Not Reported Not Reported

Construction Date: Well Depth Units: Well Hole Depth Units: Not Reported Not Reported Not Reported

16 NE 1/2 - 1 Mile Lower		WY WELL	S WYSE50000040108
Permit #:	P39960.0W	Permit Issue Date:	19-SEP-77
Status:	Complete		
Well Applicant:	LARAMIE COUNTY SCHOO	L DISTRICT #1	
Facility Name:	LARAMIE COUNTY SCHOO	L DISTRICT #1	
Uses:	Domestic_GW; Stock		
Yield (Gal/Min):	8	Static Depth (ft):	135
Well Depth:	315	Depth to top of Main Water Zone:	255
Depth to bottom of Main Water Zone:	315	Well Log:	NULL
Chemical Analysis on File:	No	-	

A17 WSW 1/2 - 1 Mile Lower			FED	USGS	USGS40001334811
Organization ID:	USGS-WY		Organization Name:	USG	S Wyoming Water Science Center
Monitor Location:	14-067-10ccc01		Туре:	Well	
Description:	Not Reported		HUC:	1019	0009
Drainage Area:	Not Reported		Drainage Area Units:	Not F	Reported
Contrib Drainage Area:	Not Reported		Contrib Drainage Area Unts:	Not F	Reported
Aquifer:	High Plains aquifer		Formation Type:	Ogal	lala Formation
Aquifer Type:	Not Reported		Construction Date:	Not F	Reported
Well Depth:	77		Well Depth Units:	ft	
Well Hole Depth:	Not Reported		Well Hole Depth Units:	Not F	Reported
Ground water levels,Number	of Measurements:	1	Level reading date:	1941	-10-01
Feet below surface:	20.00		Feet to sea level:	Not F	Reported
Note:	Not Reported				

C18 SW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000117119
Permit #:	P97128.0W	Permit Issue Date:	09-SEP-94
Status:	Complete	Well Applicant:	U.S. Geological Survey
Facility Name:	310	Uses:	Monitoring
Yield (Gal/Min):	0	Static Depth (ft):	11
Well Depth:	21	Depth to top of Main Water Zone:	-1
Depth to bottom of Main Water Zone:	-1	Well Log:	NULL
Chemical Analysis on File:	No	-	

Map ID Direction			
Elevation		Database	EDR ID Number
C19 SW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000127045
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P97125.0W Complete 602 0 46 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	09-SEP-94 U.S. Geological Survey Monitoring 37 -1 NULL
D20 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000142449
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P81717.0W Complete P 34 0 20 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	29-JAN-90 USDI, GEOLOGICAL SURVEY Monitoring 7 -1 NULL
D21 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000113296
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P97127.0W Complete 600R 0 36.5 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	09-SEP-94 U.S. Geological Survey Monitoring 27 -1 NULL
D22 SSW 1/2 - 1 Mile Lower		WY WELLS	WYSE50000117337
Permit #: Status: Facility Name: Yield (Gal/Min): Well Depth: Depth to bottom of Main Water Zone: Chemical Analysis on File:	P97122.0W Complete 605R 0 29.5 -1 No	Permit Issue Date: Well Applicant: Uses: Static Depth (ft): Depth to top of Main Water Zone: Well Log:	09-SEP-94 U.S. Geological Survey Monitoring 27 -1 NULL

AREA RADON INFORMATION

State Database: WY Radon

Radon Test Results

% Elev.	Total kits	# tests 4-10 pCi/L	# tests 10-20 pCi/L	# Tests>20 pCi/L
22%	2358	396	89	42

Federal EPA Radon Zone for LARAMIE County: 1

Note: Zone 1 indoor average level > 4 pCi/L. : Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L. : Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for LARAMIE COUNTY, WY

Number of sites tested: 55

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	1.750 pCi/L	100%	0%	0%
Living Area - 2nd Floor	Not Reported	Not Reported	Not Reported	Not Reported
Basement	3.020 pCi/L	75%	24%	2%

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: National Wetlands Inventory Source: Wyoming Geospatial Hub Telephone: 307-777-4600

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS) This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Wyoming Well Permits Source: Wyoming State Engineer's Office Telephone: 307-777-6148 Wyoming well permit locations on file with the Wyoming State Engineer's Office.

OTHER STATE DATABASE INFORMATION

Oil and Gas Well Location Information Source: Oil and Gas Conservation Commission Telephone: 307-234-7147

RADON

State Database: WY Radon Source: Department of Health Telephone: 307-777-6015 Wyoming Radon Project

Area Radon Information

Source: USGS Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared in 1975 by the United State Geological Survey
STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Cheyenne AASF

Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.2s January 08, 2019

EDR Summary Radius Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

FORM-NULL-PVC

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	8
Orphan Summary	9
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map	A-5
Physical Setting Source Map	A-8
Physical Setting Source Map Findings	A-10
Physical Setting Source Records Searched	PSGR-1

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental St Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

CHEYENNE AASF FE WARREN AFB, WY 82005

COORDINATES

Latitude (North):	41.1961490 - 41° 11' 46.13''
Longitude (West):	104.8704860 - 104° 52' 13.74"
Universal Tranverse Mercator:	Zone 13
UTM X (Meters):	510860.2
UTM Y (Meters):	4560327.5
Elevation:	6290 ft. above sea level

TΡ

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property: Source:

Target Property:

Source:

U.S. Geological Survey W U.S. Geological Survey

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from:	20150620
Source:	USDA

Target Property Address: CHEYENNE AASF FE WARREN AFB, WY 82005

Click on Map ID to see full detail.

MAP				RELATIVE	DIST (ft. & mi.)
ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	ELEVATION	DIRECTION
Reg	FRANCIS E. WARREN AI		DOD	Same	1 ft.
1	HUNNICUTT OFF-BASE P		UXO	Higher	1529, 0.290, West

EXECUTIVE SUMMARY

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property. Page numbers and map identification numbers refer to the EDR Radius Map report where detailed

data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis. DOD: A review of the DOD list, as provided by EDR, and dated 12/31/2005 has revealed that there is 1 DOD site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
FRANCIS E. WARREN AI		0 - 1/8 (0.000 mi.)	0	8

UXO: A review of the UXO list, as provided by EDR, and dated 09/30/2017 has revealed that there is 1 UXO site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
HUNNICUTT OFF-BASE P		W 1/4 - 1/2 (0.290 mi.)	1	8

TC5528367.2s Page 9

⊏.	January	08, 201	9 9.1	8 am
	Convright © 2019 EDB	Inc @ 2015	TomTom	Bel 2015

January 08, 2019 9:19 am DATE:

LAT/LONG:

Copyright © 2019 EDR, Inc. © 2015 TomTom Rel. 2015.

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Federal Delisted NPL si	te list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Federal CERCLIS NFRA	P site list							
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Federal RCRA CORRAC	CTS facilities li	ist						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COF	RRACTS TSD f	acilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generato	ors list							
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional col engineering controls re	ntrols / gistries							
LUCIS US ENG CONTROLS US INST CONTROL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
State- and tribal - equive	alent CERCLIS	S						
SHWS	N/A		N/A	N/A	N/A	N/A	N/A	N/A
State and tribal landfill a solid waste disposal sit	and/or te lists							
SWF/LF SHWF	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal leaking	storage tank l	lists						
INDIAN LUST LTANKS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal register	ed storage tar	nk lists						
FEMA UST	0.250		0	0	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST AST INDIAN UST TANKS	0.250 0.250 0.250 0.250		0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal institution control / engineering con	nal trol registries							
ENG CONTROLS INST CONTROL	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal voluntary	cleanup sites	5						
INDIAN VCP VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal Brownfiel	lds sites							
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	TAL RECORDS							
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / So Waste Disposal Sites	olid							
SWRCY INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500		0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0
Local Lists of Hazardous Contaminated Sites	waste /							
US HIST CDL CDL US CDL	TP TP TP		NR NR NR	NR NR NR	NR NR NR	NR NR NR	NR NR NR	0 0 0
Local Land Records								
LIENS 2	TP		NR	NR	NR	NR	NR	0
Records of Emergency R	elease Report	ts						
HMIRS SPILLS	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Other Ascertainable Reco	ords							
RCRA NonGen / NLR FUDS DOD SCRD DRYCLEANERS US FIN ASSUR EPA WATCH LIST	0.250 1.000 1.000 0.500 TP TP		0 0 1 0 NR NR	0 0 0 NR NR	NR 0 0 NR NR	NR 0 NR NR NR	NR NR NR NR NR NR	0 0 1 0 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	TP		NR	NR	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	0
SSTS	TP		NR	NR	NR	NR	NR	Õ
ROD	1 000		0	0	0	0	NR	õ
RMP	TP		NR	NR	NR	NR	NR	Õ
RAATS	TP		NR	NR	NR	NR	NR	Õ
PRP	TP		NR	NR	NR	NR	NR	õ
PADS	TP		NR	NR	NR	NR	NR	Ő
ICIS	TP		NR	NR	NR	NR	NR	Ő
FTTS	TP		NR	NR	NR	NR	NR	õ
MLTS	TP		NR	NR	NR	NR	NR	Ő
COAL ASH DOE	TP		NR	NR	NR	NR	NR	Ō
COAL ASH EPA	0.500		0	0	0	NR	NR	Ō
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	Ō
HIST FTTS	TP		NR	NR	NR	NR	NR	0
DOT OPS	TP		NR	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	0
US AIRS	TP		NR	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.250		0	0	NR	NR	NR	0
FINDS	TP		NR	NR	NR	NR	NR	0
ECHO	TP		NR	NR	NR	NR	NR	0
UXO	1.000		0	0	1	0	NR	1
DOCKET HWC	TP		NR	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
EMI	TP		NR	NR	NR	NR	NR	0
ASBESTOS	TP		NR	NR	NR	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
Financial Assurance	TP		NR	NR	NR	NR	NR	0
MINES	0.250		0	0	NR	NR	NR	0
UIC	TP		NR	NR	NR	NR	NR	0
NPDES	IP		NR	NR	NR	NR	NR	0
EDR HIGH RISK HISTORIC	AL RECORDS							
EDR Exclusive Records	5							
	1 000		Ο	Ο	Ο	Ο	NR	Ο
EDR Hist Auto	0 125		0	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125		Ő	NR	NR	NR	NR	Ő
EDR RECOVERED GOVER		VES						
Exclusive Recovered G	ovt. Archives							
RGA LF	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
RGA LUST	TP		NR	NR	NR	NR	NR	0
- Totals		0	1	0	1	0	0	2

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

N/A = This State does not maintain a SHWS list. See the Federal CERCLIS list.

Map ID Direction Distance Elevation	MAP FINDINGS Site	Database(s)	EDR ID Number EPA ID Number
DOD Region < 1/8 1 ft.	FRANCIS E. WARREN AIR FORCE BASE FRANCIS E. WARREN AIR FOR (County), WY	DOD	CUSA122479 N/A
	Click here for full text details		
1 West	HUNNICUTT OFF-BASE PROPERTY	UXO	1018153746 N/A
1/4-1/2 0.290 mi. 1529 ft.	F. E. WARREN AFB, WY		
	Click here for full text details		

Relative: Higher

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
WY	AIRS	Air Quality Permit Listing	Department of Environmental Quality	08/27/2018	08/29/2018	11/01/2018
WY	ASBESTOS	Asbestos Notification Listing	Department of Environmental Quality	06/13/2018	06/15/2018	07/27/2018
WY	AST	Wyoming Aboveground Storage Tanks	Department of Environmental Quality	05/23/2008	07/24/2008	08/13/2008
WY	BROWNFIELDS	Brownfields Sites Listing	Department of Environmental Quality	11/19/2018	11/19/2018	01/04/2019
WY	CDL	Clandestine Drug Lab Site Locations	Department of Health	05/01/2018	06/08/2018	07/27/2018
WY	DRYCLEANERS	Drycleaner Facility Listing	Department of Environmental Quality	02/02/2017	06/01/2017	05/11/2018
WY	ENG CONTROLS	Engineering Controls Site Listing	Department of Environmental Quality	11/19/2018	11/19/2018	01/04/2019
WY	Financial Assurance	Financial Assurance Information listing	Department of Environmental Quality	05/23/2008	06/17/2008	07/24/2008
WY	INST CONTROL	Sites with Institutional Controls	Department of Environmental Quality	11/19/2018	11/19/2018	01/04/2019
WY	LTANKS	Known Contaminated Sites	Department of Environmental Quality	07/09/2018	07/13/2018	08/28/2018
WY	MINES	Mine Locations Listing	Wyoming Geographic Information Science Center	04/09/2018	06/28/2018	07/27/2018
WY	NPDES	Wastewater Permit Listing	Department of Environmental Quality	06/04/2018	06/08/2018	07/27/2018
WY	RGA LF	Recovered Government Archive Solid Waste Facilities List	Department of Environmental Quality		07/01/2013	01/17/2014
WY	RGA LUST	Recovered Government Archive Leaking Underground Storage Tan	Department of Environmental Quality		07/01/2013	01/04/2014
WY	SHWF	Solid & Hazardous Waste Facility Database	Department of Environmental Quality	01/26/2017	03/01/2017	08/29/2017
WY	SHWS	This state does not maintain a SHWS list. See the Federal CE	Department of Environmental Quality			
WY	SPILLS	SPILL Database	Department of Environmental Quality	07/03/2018	08/10/2018	09/06/2018
WY	SWF/LF	Solid Waste Facility Database	Department of Environmental Quality	01/26/2017	03/01/2017	08/29/2017
WY	SWRCY	Recycling Facilities	Department of Environmental Quality	09/30/2009	11/02/2009	11/25/2009
WY	TANKS	Storage Tank Listing	Department of Environmetnal Quality	07/09/2018	07/13/2018	08/28/2018
WY	UIC	UIC Well Locations List	Department of Environmental Quality	08/28/2018	08/30/2018	10/09/2018
WY	UST	Underground Storage Tanks	Department of Environmental Quality	05/23/2008	07/24/2008	08/12/2008
WY	VCP	List of Voluntary Remediation Program Sites	Department of Environmental Quality	11/19/2018	11/19/2018	01/04/2019
US	2020 COR ACTION	2020 Corrective Action Program List	Environmental Protection Agency	09/30/2017	05/08/2018	07/20/2018
US	ABANDONED MINES	Abandoned Mines	Department of Interior	09/10/2018	09/11/2018	09/14/2018
US	BRS	Biennial Reporting System	EPA/NTIS	12/31/2015	02/22/2017	09/28/2017
US	COAL ASH DOE	Steam-Electric Plant Operation Data	Department of Energy	12/31/2005	08/07/2009	10/22/2009
US	COAL ASH EPA	Coal Combustion Residues Surface Impoundments List	Environmental Protection Agency	07/01/2014	09/10/2014	10/20/2014
US	CONSENT	Superfund (CERCLA) Consent Decrees	Department of Justice, Consent Decree Library	09/30/2018	10/12/2018	12/07/2018
US	CORRACTS	Corrective Action Report	EPA	03/01/2018	03/28/2018	06/22/2018
US	DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations	EPA, Region 9	01/12/2009	05/07/2009	09/21/2009
US	DOCKET HWC	Hazardous Waste Compliance Docket Listing	Environmental Protection Agency	05/31/2018	07/26/2018	10/05/2018
US	DOD	Department of Defense Sites	USGS	12/31/2005	11/10/2006	01/11/2007
US	DOT OPS	Incident and Accident Data	Department of Transporation, Office of Pipeli	07/31/2012	08/07/2012	09/18/2012
US	Delisted NPL	National Priority List Deletions	EPA	11/14/2018	11/27/2018	12/07/2018
US	ECHO	Enforcement & Compliance History Information	Environmental Protection Agency	09/02/2018	09/05/2018	09/14/2018
US	EDR Hist Auto	EDR Exclusive Historical Auto Stations	EDR, Inc.			
US	EDR Hist Cleaner	EDR Exclusive Historical Cleaners	EDR, Inc.			
US	EDR MGP	EDR Proprietary Manufactured Gas Plants	EDR, Inc.			
US	EPA WATCH LIST	EPA WATCH LIST	Environmental Protection Agency	08/30/2013	03/21/2014	06/17/2014
US	ERNS	Emergency Response Notification System	National Response Center, United States Coast	09/24/2018	09/25/2018	11/09/2018
US	FEDERAL FACILITY	Federal Facility Site Information listing	Environmental Protection Agency	11/07/2016	01/05/2017	04/07/2017
US	FEDLAND	Federal and Indian Lands	U.S. Geological Survey	12/31/2005	02/06/2006	01/11/2007
US	FEMA UST	Underground Storage Tank Listing	FEMA	05/15/2017	05/30/2017	10/13/2017
US	FINDS	Facility Index System/Facility Registry System	EPA	08/07/2018	09/05/2018	10/05/2018
US	FTTS	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu	EPA/Office of Prevention, Pesticides and Toxi	04/09/2009	04/16/2009	05/11/2009
US	FTTS INSP	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu	EPA	04/09/2009	04/16/2009	05/11/2009

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
US	FUDS	Formerly Used Defense Sites	U.S. Army Corps of Engineers	01/31/2015	07/08/2015	10/13/2015
US	FUELS PROGRAM	EPA Fuels Program Registered Listing	EPA	08/22/2018	08/22/2018	10/05/2018
US	FUSRAP	Formerly Utilized Sites Remedial Action Program	Department of Energy	08/08/2017	09/11/2018	09/14/2018
US	HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HIST FTTS INSP	FIFRA/TSCA Tracking System Inspection & Enforcement Case Lis	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HMIRS	Hazardous Materials Information Reporting System	U.S. Department of Transportation	03/26/2018	03/27/2018	06/08/2018
US	ICIS	Integrated Compliance Information System	Environmental Protection Agency	11/18/2016	11/23/2016	02/10/2017
US	IHS OPEN DUMPS	Open Dumps on Indian Land	Department of Health & Human Serivces, Indian	04/01/2014	08/06/2014	01/29/2015
US	INDIAN LUST R1	Leaking Underground Storage Tanks on Indian Land	EPA Region 1	04/13/2018	05/18/2018	07/20/2018
US	INDIAN LUST R10	Leaking Underground Storage Tanks on Indian Land	EPA Region 10	04/12/2018	05/18/2018	07/20/2018
US	INDIAN LUST R4	Leaking Underground Storage Tanks on Indian Land	EPA Region 4	05/08/2018	05/18/2018	07/20/2018
US	INDIAN LUST R5	Leaking Underground Storage Tanks on Indian Land	EPA, Region 5	04/12/2018	05/18/2018	07/20/2018
US	INDIAN LUST R6	Leaking Underground Storage Tanks on Indian Land	EPA Region 6	04/01/2018	05/18/2018	07/20/2018
US	INDIAN LUST R7	Leaking Underground Storage Tanks on Indian Land	EPA Region 7	04/24/2018	05/18/2018	07/20/2018
US	INDIAN LUST R8	Leaking Underground Storage Tanks on Indian Land	EPA Region 8	04/25/2018	05/18/2018	07/20/2018
US	INDIAN LUST R9	Leaking Underground Storage Tanks on Indian Land	Environmental Protection Agency	04/10/2018	05/18/2018	07/20/2018
US	INDIAN ODI	Report on the Status of Open Dumps on Indian Lands	Environmental Protection Agency	12/31/1998	12/03/2007	01/24/2008
US	INDIAN RESERV	Indian Reservations	USGS	12/31/2014	07/14/2015	01/10/2017
US	INDIAN UST R1	Underground Storage Tanks on Indian Land	EPA, Region 1	04/13/2018	05/18/2018	07/20/2018
US	INDIAN UST R10	Underground Storage Tanks on Indian Land	EPA Region 10	04/12/2018	05/18/2018	07/20/2018
US	INDIAN UST R4	Underground Storage Tanks on Indian Land	EPA Region 4	05/08/2018	05/18/2018	07/20/2018
US	INDIAN UST R5	Underground Storage Tanks on Indian Land	EPA Region 5	04/12/2018	05/18/2018	07/20/2018
US	INDIAN UST R6	Underground Storage Tanks on Indian Land	EPA Region 6	04/01/2018	05/18/2018	07/20/2018
US	INDIAN UST R7	Underground Storage Tanks on Indian Land	EPA Region 7	04/24/2018	05/18/2018	07/20/2018
US	INDIAN UST R8	Underground Storage Tanks on Indian Land	EPA Region 8	04/25/2018	05/18/2018	07/20/2018
US	INDIAN UST R9	Underground Storage Tanks on Indian Land	EPA Region 9	04/10/2018	05/18/2018	07/20/2018
US	INDIAN VCP R1	Voluntary Cleanup Priority Listing	EPA, Region 1	07/27/2015	09/29/2015	02/18/2016
US	INDIAN VCP R7	Voluntary Cleanup Priority Lisitng	EPA, Region 7	03/20/2008	04/22/2008	05/19/2008
US	LEAD SMELTER 1	Lead Smelter Sites	Environmental Protection Agency	08/13/2018	10/04/2018	11/16/2018
US	LEAD SMELTER 2	Lead Smelter Sites	American Journal of Public Health	04/05/2001	10/27/2010	12/02/2010
US	LIENS 2	CERCLA Lien Information	Environmental Protection Agency	08/13/2018	10/04/2018	11/16/2018
US	LUCIS	Land Use Control Information System	Department of the Navy	10/17/2018	10/25/2018	12/07/2018
US	MLTS	Material Licensing Tracking System	Nuclear Regulatory Commission	08/30/2016	09/08/2016	10/21/2016
US	NPL	National Priority List	EPA	11/14/2018	11/27/2018	12/07/2018
US	NPL LIENS	Federal Superfund Liens	EPA	10/15/1991	02/02/1994	03/30/1994
US	ODI	Open Dump Inventory	Environmental Protection Agency	06/30/1985	08/09/2004	09/17/2004
US	PADS	PCB Activity Database System	EPA	09/14/2018	10/11/2018	12/07/2018
US	PCB TRANSFORMER	PCB Transformer Registration Database	Environmental Protection Agency	05/24/2017	11/30/2017	12/15/2017
US	PRP	Potentially Responsible Parties	EPA	08/13/2018	10/04/2018	11/09/2018
US	Proposed NPL	Proposed National Priority List Sites	EPA	11/14/2018	11/27/2018	12/07/2018
US	RAATS	RCRA Administrative Action Tracking System	EPA	04/17/1995	07/03/1995	08/07/1995
US	RADINFO	Radiation Information Database	Environmental Protection Agency	10/02/2018	10/03/2018	11/09/2018
US	RCRA NonGen / NLR	RCRA - Non Generators / No Longer Regulated	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generators	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-LQG	RCRA - Large Quantity Generators	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-SQG	RCRA - Small Quantity Generators	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-TSDF	RCRA - Treatment, Storage and Disposal	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018

US RNP Risk Management Plans Environmental Protection Agency 08/12/018 08/22/018 01/02/01 US ROD Rocords O Decision EPA 08/13/2018 004/2018 004/2018 004/2018 004/2018 004/2018 004/2018 004/2017 02/03/2017 04/07/201 US SEMS Superfund Enterprise Management System Archive EPA 11/14/2018 11/28/2018 12/07/201 US SSTS Section 7 Tracking System S EPA 1/21/2016 01/10/2018 01/12/2017 01/02/2018 01/12/2017 01/02/2018 01/12/2017 01/02/2018 01/12/2017 01/02/2018 01/12/2016 01/12/2017 01/02/2016 01/12/2017 01/02/2016 01/12/2017 01/02/2016 01/12/2017 01/02/2016 01/12/2017 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 01/02/2016 <th>St</th> <th>Acronym</th> <th>Full Name</th> <th>Government Agency</th> <th>Gov Date</th> <th>Arvl. Date</th> <th>Active Date</th>	St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
US ROD Records Of Decision EPA 08/13/2018 10/16/2018 10/16/2017 10/16/2017 US SCRD DRVCLEANERS Staperfund Enterprise Management System EPA 11/14/2018 11/17/2018 12/07/201 US SEMS Superfund Enterprise Management System EPA 11/14/2018 11/14/2018 12/07/201 US SEMS-ARCHIVE Superfund Enterprise Management System EPA 12/01/2010 02/02/201 US STS Section 7 Tracking System Stementory System EPA 12/01/2016 02/02/10 01/02/2016 02/02/201 01/02/2016 02/02/201 01/02/2016 02/02/201 01/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2017 01/02/2018 02/02/2017 01/02/2018 02/02/2017 01/02/2018 02/02/2018 02/02/2018 02/02/2018 02/02/2018 02/02/2018 02/02/2018 02/02/2018<	US	RMP	Risk Management Plans	Environmental Protection Agency	08/01/2018	08/22/2018	10/05/2018
US State Coalition for Remediation of Dyplaners Listing Environmental Protection Agency 01/01/2017 02/03/2017 04/07/2018 12/07/2018 01/07/2016 02/07/2018 01/07/2016 02/07/2018 01/07/2016 02/07/2018 01/07/2016 02/07/2018 01/07/2016 02/07/2018 01/07/2016 02/07/20	US	ROD	Records Of Decision	EPA	08/13/2018	10/04/2018	11/16/2018
US SEMS Superfund Enterprise Management System EPA 11/14/2018 11/27/2018 12/07/2018 US SEMS_ACHIVE Superfund Enterprise Management System EPA 12/14/2018 12/07/2018 <td< td=""><td>US</td><td>SCRD DRYCLEANERS</td><td>State Coalition for Remediation of Drycleaners Listing</td><td>Environmental Protection Agency</td><td>01/01/2017</td><td>02/03/2017</td><td>04/07/2017</td></td<>	US	SCRD DRYCLEANERS	State Coalition for Remediation of Drycleaners Listing	Environmental Protection Agency	01/01/2017	02/03/2017	04/07/2017
US SEMS-ARCHIVE Superfund Enterprise Management System Archive EPA 11/14/2018 11/28/2018 12/28/2018 12/28/2018 12/28/2018 12/28/2018 12/28/2018 12/28/2018 02/25/2018 US TRIS Toxic Chemical Release Inventory System EPA 12/31/2016 06/21/2017 01/10/2018 02/25/2018 US TRIS Toxic Chemical Release Inventory System EPA 12/31/2016 06/221/2017 01/01/2018 01/22/2017 10/22/2017 10/22/2018 02/21/2018 02/21/2018 02/21/2018 02/21/2018 02/21/2018 02/21/2018 02/21/2018 02/21/2018 02/21/2018 02/21/2018 10/02/2018 02/21/2018 10/02/2018 02/21/2018 10/02/2018 02/21/2018 10/02/2018 02/21/2018 10/02/2018 02/21/2018 10/02/2018 02/21/2018 11/02/2018 02/21/2018 11/02/2018 02/21/2018 11/02/2018 02/21/2018 11/02/2018 02/21/2018 11/02/2018 02/21/2018 11/02/2018 02/21/2018 11/02/2018 02/21/2018 11/02/2018 02/21/2018 02/21/2018 <td>US</td> <td>SEMS</td> <td>Superfund Enterprise Management System</td> <td>EPA</td> <td>11/14/2018</td> <td>11/27/2018</td> <td>12/07/2018</td>	US	SEMS	Superfund Enterprise Management System	EPA	11/14/2018	11/27/2018	12/07/2018
US SSTS Section 7 Tracking Systems EPA 12/31/2016 11/01/2016 02/25/2017 US TRIS Toxic Chemical Release Inventory System EPA 12/31/2016 0/11/2017 0/11/2017 US TSCA Toxic Substances Control Act EPA 12/31/2016 0/11/2017 1/10/32016 US UMTRA Uranim MilT Talings Sites Department of Energy 0/62/21/211 0/11/2016 0/02/2016 0/01/22/016 0/02/2016 0/01/22/016 0/02/2016 0/01/22/016 0/02/2016 0/01/22/016	US	SEMS-ARCHIVE	Superfund Enterprise Management System Archive	EPA	11/14/2018	11/28/2018	12/07/2018
USTRISToxic Chemical Release Inventory SystemEPA12/31/201601/12/201601/12/201601/05/201USTSCAToxis Cubstances Control ActEPA12/31/201601/05/20101/05/20101/05/201USUS AIRS (AFS)Auronum Mill Taltings SitesDepartment of Energy06/23/201710/11/201711/03/201602/03/201USUS AIRS (AFS)Auronum Kill Taltings SitesDepartment of Energy06/13/201602/03/20102/03/201USUS AIRS (AFS)Allisting of Brownfields SitesDrug Enforcement Administration09/12/201602/201602/03/201USUS SIN ASSURFinancial Assurance InformationEnvironmental Protection Agency07/31/201809/12/201809/14/201USUS FIN ASSURFinancial Assurance InformationEnvironmental Protection Agency07/31/201809/12/201809/14/201USUS FIN ASSURFinancial Assurance InformationEnvironmental Protection Agency07/31/201809/12/201809/14/201USUS NINESMines Master Index FileDrug Enforcement Administration09/21/201809/14/20109/14/201USUS NINES 2Forrous and Nonferrous Metal Mines Database ListingUSGS04/14/20106/01/201809/14/201USUSNUNES 3Active Mines & Mineral Plants Database ListingUSGS04/14/20106/01/201809/14/201USVMMainfest DataDepartment of Defense09/30/201706/19/201809/14/201USAlta Ke	US	SSTS	Section 7 Tracking Systems	EPA	12/31/2009	12/10/2010	02/25/2011
US Toxic Substances Control Act EPA 12/31/2016 06/21/2017 01/05/2017 US UMTRA Uranium Mill Tallings Sites Department of Energy 06/23/2017 01/01/22016 10/22/2016 02/03/201 US US AIRS MINOR Air Facility System Data EPA 10/12/2016 10/22/016 02/03/201 US US BROWNFIELDS A Listing of Brownfields Sites Environmental Protection Agency 09/18/2018 00/18/2018 00/18/2018 00/18/2018 00/18/2018 00/18/	US	TRIS	Toxic Chemical Release Inventory System	EPA	12/31/2016	01/10/2018	01/12/2018
US UMTRA Uranium Mill Tailings Sites Department of Energy 06/23/2017 10/11/2016 10/26/2016 10/26/2016 10/26/2016 10/26/2016 20/20/2016 US US AIRS MINOR Air Facility System Data EPA 10/12/2016 10/26/2016 20/20/2016 10/20/2018 11/09/201 20/21/2018 20/21/2	US	TSCA	Toxic Substances Control Act	EPA	12/31/2016	06/21/2017	01/05/2018
US US Aerometric Information Retrieval System Facility Subsystem (EPA 10/12/2016 10/26/2016 02/03/201 US US NESAIRS MINOR Ar Facility System Data EPA 10/12/2016 02/02/2018 02/03/201 US US CDL Clandestime Drug Labs Drug Enforcement Administration 09/21/2018	US	UMTRA	Uranium Mill Tailings Sites	Department of Energy	06/23/2017	10/11/2017	11/03/2017
USUSVISAir Facility System DataEPA10/12/201610/26/201602/06/201602/07/2018 <td>US</td> <td>US AIRS (AFS)</td> <td>Aerometric Information Retrieval System Facility Subsystem (</td> <td>EPA</td> <td>10/12/2016</td> <td>10/26/2016</td> <td>02/03/2017</td>	US	US AIRS (AFS)	Aerometric Information Retrieval System Facility Subsystem (EPA	10/12/2016	10/26/2016	02/03/2017
US BROWNFIELDS A Listing of Brownfields Sites Environmental Protection Agency 09/18/2018 09/18/2018 11/09/2018 US US CDL Clandestine Drug Labs Drug Enforcement Administration 09/21/2018 09/18/2018 09/18/2018 09/14/201 US US FIN ASSUR Financial Assurance Information Environmental Protection Agency 09/31/2018 09/21/2018 09/12/2018 09/14/201 US US FIN TCDL National Candestine Laboratory Register Drug Enforcement Administration 09/21/2018 09/21/2018 09/14/201 US US NINES Mines Master Index File Department of Labor, Mine Safety and Health A 08/01/2018 09/14/201 09/14/201 US US MINES 2 Ferrous and Nonferrous Metal Mines Database Listing USGS 04/14/2011 06/08/2011 09/14/201 US US MINES 3 Active Mineral Plants Database Listing USGS 04/14/2011 06/08/2011 09/14/201 US US MINES 4 Active Mines & Mineral Plants Database Listing USGS 04/14/2011 06/08/2011 09/14/201 US US MINES 5 Sensitive Receptor: Al-A Hospitals American Hospital Association, Inc.	US	US AIRS MINOR	Air Facility System Data	EPA	10/12/2016	10/26/2016	02/03/2017
US VS Clandestine Drug Labs Drug Enforcement Administration 09/21/2018 09/2017 06/08/2011 09/3/2017 06/08/2011 09/3/2017 06/18/2018 09/3/2017 06/18/2018 09/3/2017 06/18/2018 09/3/2017 06/18/2018 09/3/2017 06/19/2018 09/3/2	US	US BROWNFIELDS	A Listing of Brownfields Sites	Environmental Protection Agency	09/18/2018	09/18/2018	11/09/2018
US Engineering Controls Sites List Environmental Protection Agency 07/31/2018 08/28/2018 09/14/201 US US Financial Assurance Information Environmental Protection Agency 08/31/2018 09/21/2018 11/09/201 US US FIN ASSUR Financial Assurance Information 09/21/2018 09/21/2018 10/02/2018 09/14/201 US US INST CONTROL Sites with Institutional Controls Environmental Protection Agency 07/31/2018 08/28/2018 09/14/201 US US INST CONTROL Sites with Institutional Controls Environmental Protection Agency 07/31/2018 08/28/2018 09/14/201 US US MINES Mines Master Index File Department of Labor, Mine Safety and Health A 08/01/2018 08/28/2018 09/14/201 US US MINES 2 Ferrous and Nonferrous Metal Mines Database Listing USGS 04/14/2011 06/08/2011 09/14/201 US VS US MINES 3 Active Mines & Mineral Plants Database Listing USGS 04/14/2011 06/08/2011 09/14/201 US VINCO Unexploided Ordnance Sites Department of Environmental Conservation 10/01/2018 12/20/201 US	US	US CDL	Clandestine Drug Labs	Drug Enforcement Administration	09/21/2018	09/21/2018	11/09/2018
US VS Financial Assurance Information Environmental Protection Agency 08/31/2018 09/25/2018 11/09/201 US US HIST CDL National Clandestine Laboratory Register Drug Enforcement Administration 09/21/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 08/01/2018 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 09/13/201 0/01/2018 12/05/200 02/21/2018 0/01/2018	US	US ENG CONTROLS	Engineering Controls Sites List	Environmental Protection Agency	07/31/2018	08/28/2018	09/14/2018
US US HIST CDL National Clandestine Laboratory Register Drug Enforcement Administration 09/21/2018 10/09/2018 10/09/2018 10/09/2018 10/09/2018 10/09/2018 10/09/2018 10/09/2018 10/09/2018 09/21/2018 01/05/201 09/21/2018 01/05/201 00/05/201 00/05/201 00/05/201 00/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2018<	US	US FIN ASSUR	Financial Assurance Information	Environmental Protection Agency	08/31/2018	09/25/2018	11/09/2018
US US INST CONTROL Sites with Institutional Controls Environmental Protection Agency 07/31/2018 08/29/2018 09/14/201 US US Mines Master Index File Department of Labor, Mine Safety and Health A 08/01/2018 08/29/2018 01/05/201 US US MINES 2 Ferrous and Nonferrous Metal Mines Database Listing USGS 04/14/201 06/08/2011 09/13/2018 04/1	US	US HIST CDL	National Clandestine Laboratory Register	Drug Enforcement Administration	09/21/2018	09/21/2018	11/09/2018
US MINES Mines Master Index File Department of Labor, Mine Safety and Health A 08/01/2018 08/20/2018 10/05/201 US US MINES 2 Ferrous and Nonferrous Metal Mines Database Listing USGS 12/05/2005 02/29/2008 04/18/200 US US MINES 3 Active Mines & Mineral Plants Database Listing USGS 09/30/2017 06/19/2018 09/13/2011 01/12/2018 09/13/2011 09/13/2011 01/2018 01/21/2018 01/21/2018 01/21/2018 01/21/2011 01/21/2018 01/21/2018 01/21/2011	US	US INST CONTROL	Sites with Institutional Controls	Environmental Protection Agency	07/31/2018	08/28/2018	09/14/2018
US MINES 2 Ferrous and Nonferrous Metal Mines Database Listing USGS 12/05/2005 02/29/2008 04/18/200 US US MINES 3 Active Mines & Mineral Plants Database Listing USGS 04/14/2011 06/08/2011 09/13/2018 US USO Unexploded Ordnance Sites Department of Defense 09/30/2017 06/19/2018 09/14/2011 NY NY MANIFEST Facility and Manifest Data Department of Environmental Conservation 10/01/2018 10/31/2018 12/20/2017 US AHA Hospitals Sensitive Receptor: AHA Hospitals American Hospital Association, Inc. 10/01/2018 10/31/2018 12/20/201 US NY MANIFEST Facility and Manifest Data Department of Environmental Conservation 10/01/2018 10/31/2018 12/20/201 US AHA Hospitals Sensitive Receptor: Nursing Homes American Hospital Association, Inc. Enters for Medicare & Medicaid Services V V V V V National Institutes of Health V	US	US MINES	Mines Master Index File	Department of Labor, Mine Safety and Health A	08/01/2018	08/29/2018	10/05/2018
US US MINES 3 UXO Active Mines & Mineral Plants Database Listing Unexploded Ordnance Sites USGS 04/14/2011 06/08/2011 09/13/201 NY NY MANIFEST Facility and Manifest Data Department of Environmental Conservation 10/01/2018 10/31/2018 12/20/201 NY NY MANIFEST Facility and Manifest Data Department of Environmental Conservation 10/01/2018 10/31/2018 12/20/201 US AHA Hospitals Sensitive Receptor: AHA Hospitals American Hospital Association, Inc. 10/01/2018 10/31/2018 12/20/201 US AHA Hospitals Sensitive Receptor: Medical Centers Centers for Medicare & Medicaid Services Nursing Homes National Institutes of Health 10/01/2018 10/31/2018 12/20/201 US Nursing Homes Sensitive Receptor: Public Schools National Institutes of Health Nursing Homes National Center for Education Statistics Nursing Homes Nursing Homes <t< td=""><td>US</td><td>US MINES 2</td><td>Ferrous and Nonferrous Metal Mines Database Listing</td><td>USGS</td><td>12/05/2005</td><td>02/29/2008</td><td>04/18/2008</td></t<>	US	US MINES 2	Ferrous and Nonferrous Metal Mines Database Listing	USGS	12/05/2005	02/29/2008	04/18/2008
US UxO Unexploded Ordnance Sites Department of Defense 09/30/2017 06/19/2018 09/14/201 NY NY MANIFEST Facility and Manifest Data Department of Environmental Conservation 10/01/2018 10/31/2018 12/20/201 US AHA Hospitals Sensitive Receptor: AHA Hospitals American Hospital Association, Inc. 10/01/2018 10/31/2018 12/20/201 US Medical Centers Sensitive Receptor: Nedical Centers Centers for Medicare & Medicaid Services 10/01/2018 10/31/2018 12/20/201 VS Nursing Homes Sensitive Receptor: Nursing Homes National Institutes of Health 10/01/2018 10/31/2018 12/20/201 VS Public Schools Sensitive Receptor: Puivate Schools National Center for Education Statistics 10/01/2018 10/31/2018 12/20/201 VS Pivate Schools Sensitive Receptor: Private Schools National Center for Education Statistics 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018 10/01/2018<	US	US MINES 3	Active Mines & Mineral Plants Database Listing	USGS	04/14/2011	06/08/2011	09/13/2011
NY MY MANIFEST Facility and Manifest Data Department of Environmental Conservation 10/01/2018 10/31/2018 12/20/201 US AHA Hospitals Sensitive Receptor: AHA Hospitals American Hospital Association, Inc. Image: Centers Sensitive Receptor: Nursing Homes Centers for Medicare & Medicaid Services Image: Centers Sensitive Receptor: Nursing Homes National Institutes of Health Image: Centers Sensitive Receptor: Public Schools Image: Centers Sensitive Receptor: Public Schools National Center for Education Statistics Image: Centers Sensitive Receptor: Public Schools Image: Centers Sensitive Receptor: Day Care Provider List Image: Centers Sensitive Receptor: Day Care Provider List Image: Centers Sensitive Receptor: Public Schools Image: Centers Sensitive Receptor: Centers Sensitive Receptor: Public Schools Image: Centers Sensitive Receptor: Public Schools Image: Center ens Image: Center Sensitive Receptor: Ce	US	UXO	Unexploded Ordnance Sites	Department of Defense	09/30/2017	06/19/2018	09/14/2018
US AHA Hospitals Sensitive Receptor: AHA Hospitals American Hospital Association, Inc. US Medical Centers Sensitive Receptor: Medical Centers Centers for Medicare & Medicaid Services US Nursing Homes Sensitive Receptor: Nursing Homes National Institutes of Health US Public Schools Sensitive Receptor: Public Schools National Center for Education Statistics US Private Schools Sensitive Receptor: Day Care Provider List Department of Family Services US Flood Zones 100-year and 500-year flood zones Emergency Management Agency (FEMA) US NVI National Wetlands Inventory U.S. Fish and Wildlife Service WY State Wetlands National Wetlands Inventory U.S. Geological Survey US Oil/Gas Pipelines Vojoraphic Map U.S. Geological Survey US Electric Power Transmission Line Data PennWell Corporation	NY	NY MANIFEST	Facility and Manifest Data	Department of Environmental Conservation	10/01/2018	10/31/2018	12/20/2018
US Medical Centers Sensitive Receptor: Medical Centers Centers for Medicare & Medicaid Services US Nursing Homes Sensitive Receptor: Nursing Homes National Institutes of Health US Public Schools Sensitive Receptor: Public Schools National Center for Education Statistics US Private Schools Sensitive Receptor: Private Schools National Center for Education Statistics US Private Schools Sensitive Receptor: Day Care Provider List Department of Family Services US Flood Zones 100-year and 500-year flood zones Emergency Management Agency (FEMA) US NWI National Wetlands Inventory U.S. Fish and Wildlife Service WY State Wetlands National Wetlands Inventory Wy Sendegatial Hub US Topographic Map U.S. Geological Survey PennWell Corporation US Di/Gas Pipelines PennWell Corporation PennWell Corporation	US	AHA Hospitals	Sensitive Receptor: AHA Hospitals	American Hospital Association, Inc.			
W1 Nursing Homes Sensitive Receptor: Nursing Homes National Institutes of Health US Public Schools Sensitive Receptor: Public Schools National Center for Education Statistics US Private Schools Sensitive Receptor: Private Schools National Center for Education Statistics WY Daycare Centers Sensitive Receptor: Day Care Provider List Department of Family Services US Flood Zones 100-year and 500-year flood zones Emergency Management Agency (FEMA) US NWI National Wetlands Inventory U.S. Fish and Wildlife Service WY State Wetlands National Wetlands Inventory U.S. Geological Survey US Topographic Map U.S. Geological Survey PennWell Corporation US Oil/Gas Pipelines PennWell Corporation PennWell Corporation	US	Medical Centers	Sensitive Receptor: Medical Centers	Centers for Medicare & Medicaid Services			
US Public Schools Sensitive Receptor: Public Schools National Center for Education Statistics US Private Schools Sensitive Receptor: Private Schools National Center for Education Statistics WY Daycare Centers Sensitive Receptor: Day Care Provider List Department of Family Services US Flood Zones 100-year and 500-year flood zones Emergency Management Agency (FEMA) US NWI National Wetlands Inventory U.S. Fish and Wildlife Service WY State Wetlands National Wetlands Inventory Wyoming Geospatial Hub US Topographic Map U.S. Geological Survey US Oil/Gas Pipelines PennWell Corporation US Electric Power Transmission Line Data PennWell Corporation	US	Nursing Homes	Sensitive Receptor: Nursing Homes	National Institutes of Health			
US Private Schools Sensitive Receptor: Private Schools National Center for Education Statistics WY Daycare Centers Sensitive Receptor: Day Care Provider List Department of Family Services US Flood Zones 100-year and 500-year flood zones Emergency Management Agency (FEMA) US NWI National Wetlands Inventory U.S. Fish and Wildlife Service WY State Wetlands National Wetlands Inventory Wyoming Geospatial Hub US Topographic Map U.S. Geological Survey VS Oil/Gas Pipelines PennWell Corporation US Electric Power Transmission Line Data PennWell Corporation	US	Public Schools	Sensitive Receptor: Public Schools	National Center for Education Statistics			
WY Daycare Centers Sensitive Receptor: Day Care Provider List Department of Family Services US Flood Zones 100-year and 500-year flood zones Emergency Management Agency (FEMA) US NWI National Wetlands Inventory U.S. Fish and Wildlife Service WY State Wetlands National Wetlands Inventory Wyoming Geospatial Hub US Topographic Map U.S. Geological Survey US Oil/Gas Pipelines PennWell Corporation US Electric Power Transmission Line Data PennWell Corporation	US	Private Schools	Sensitive Receptor: Private Schools	National Center for Education Statistics			
USFlood Zones100-year and 500-year flood zonesEmergency Management Agency (FEMA)USNWINational Wetlands InventoryU.S. Fish and Wildlife ServiceWYState WetlandsNational Wetlands InventoryWyoming Geospatial HubUSTopographic MapU.S. Geological SurveyUSOil/Gas PipelinesPennWell CorporationUSElectric Power Transmission Line DataPennWell Corporation	WY	Daycare Centers	Sensitive Receptor: Day Care Provider List	Department of Family Services			
US NWI National Wetlands Inventory U.S. Fish and Wildlife Service WY State Wetlands National Wetlands Inventory Wyoming Geospatial Hub US Topographic Map U.S. Geological Survey US Oil/Gas Pipelines PennWell Corporation US Electric Power Transmission Line Data PennWell Corporation	US	Flood Zones	100-year and 500-year flood zones	Emergency Management Agency (FEMA)			
WY State Wetlands National Wetlands Inventory Wyoming Geospatial Hub US Topographic Map U.S. Geological Survey US Oil/Gas Pipelines PennWell Corporation US Electric Power Transmission Line Data PennWell Corporation	US	NWI	National Wetlands Inventory	U.S. Fish and Wildlife Service			
US Topographic Map U.S. Geological Survey US Oil/Gas Pipelines PennWell Corporation US Electric Power Transmission Line Data PennWell Corporation	WY	State Wetlands	National Wetlands Inventory	Wyoming Geospatial Hub			
US Oil/Gas Pipelines PennWell Corporation US Electric Power Transmission Line Data PennWell Corporation	US	Topographic Map	-	U.S. Geological Survey			
US Electric Power Transmission Line Data PennWell Corporation	US	Oil/Gas Pipelines		PennWell Corporation			
	US	Electric Power Transmission Line D	ata	PennWell Corporation			

St Acronym

Full Name

Government Agency

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

CHEYENNE AASF CHEYENNE AASF FE WARREN AFB, WY 82005

TARGET PROPERTY COORDINATES

Latitude (North):	41.196149 - 41° 11' 46.14"
Longitude (West):	104.870486 - 104° 52' 13.75"
Universal Tranverse Mercator:	Zone 13
UTM X (Meters):	510860.2
UTM Y (Meters):	4560327.5
Elevation:	6290 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: Version Date:	5645427 CHEYENNE NORTH, WY 2012
West Map:	5649463 ROUND TOP LAKE, WY
Version Date:	2012

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General South

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property	FEMA Source Type
56021C1078F	FEMA FIRM Flood data
Additional Panels in search area:	FEMA Source Type
56021C1059F 56021C1067F 56021C1086F	FEMA FIRM Flood data FEMA FIRM Flood data FEMA FIRM Flood data
NATIONAL WETLAND INVENTORY	
	NWI Electronic
NWI Quad at Target Property	Data Coverage
CHEYENNE NORTH	YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID Not Reported LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:	Cenozoic	Category:	Continental Deposits
System:	Tertiary		
Series:	Pliocene		
Code:	Tpc (decoded above as Era, System &	Series)	

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SITE NAME:	Cheyenne AASF
ADDRESS:	Cheyenne AASF
	Fe Warren AFB WY 82005
LAT/LONG:	41.196149 / 104.870486

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1	
Soil Component Name:	Evanston
Soil Surface Texture:	loam
Hydrologic Group:	Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.
Soil Drainage Class:	Well drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	High
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

	Soil Layer Information						
Boundary			Classification		Saturated hydraulic		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	3 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
2	3 inches	14 inches	clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
3	14 inches	59 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4

Soil Map ID: 2	
Soil Component Name:	Poposhia
Soil Surface Texture:	silt loam
Hydrologic Group:	Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.
Soil Drainage Class:	Well drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	High
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

Soil Layer Information							
Boundary		Classification		Saturated hydraulic			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
2	7 inches	25 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
3	25 inches	59 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH DISTANCE (miles)
Federal USGS Federal FRDS PWS	1.000 Nearest PWS within 1 mile
State Database	1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
A5	USGS40001334813	1/2 - 1 Mile WSW
15	USGS40001334980	1/2 - 1 Mile NW
A17	USGS40001334811	1/2 - 1 Mile WSW

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
1	WY5600011	1/2 - 1 Mile West

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
2	WYSE50000143153	1/2 - 1 Mile SSW
3	WYSE50000033225	1/2 - 1 Mile WSW
4	WYSE50000042868	1/2 - 1 Mile WNW
B6	WYSE50000016904	1/2 - 1 Mile SSW
B7	WYSE50000018665	1/2 - 1 Mile SSW
B8	WYSE50000015028	1/2 - 1 Mile SSW
B9	WYSE50000016571	1/2 - 1 Mile SSW
B10	WYSE50000018867	1/2 - 1 Mile SSW
B11	WYSE50000117396	1/2 - 1 Mile SSW
B12	WYSE50000123706	1/2 - 1 Mile SSW
B13	WYSE50000116892	1/2 - 1 Mile SSW
B14	WYSE50000117326	1/2 - 1 Mile SSW
16	WYSE50000040108	1/2 - 1 Mile NE
C18	WYSE50000117119	1/2 - 1 Mile SW
C19	WYSE50000127045	1/2 - 1 Mile SW
D20	WYSE50000142449	1/2 - 1 Mile SSW
D21	WYSE50000113296	1/2 - 1 Mile SSW
D22	WYSE50000117337	1/2 - 1 Mile SSW

PHYSICAL SETTING SOURCE MAP - 5528367.2s

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
1 West 1/2 - 1 Mile Higher	Click here for full text details	FRDS PWS	WY5600011
2 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000143153
3 WSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000033225
4 WNW 1/2 - 1 Mile Higher	Click here for full text details	WY WELLS	WYSE50000042868
A5 WSW 1/2 - 1 Mile Lower	Click here for full text details	FED USGS	USGS40001334813
B6 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000016904
B7 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000018665
B8 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000015028
B9 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000016571 Page: 1

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
B10 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000018867
B11 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117396
B12 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000123706
B13 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000116892
B14 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117326
15 NW 1/2 - 1 Mile Higher	Click here for full text details	FED USGS	USGS40001334980
16 NE 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000040108
A17 WSW 1/2 - 1 Mile Lower	Click here for full text details	FED USGS	USGS40001334811
C18 SW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117119 Page: 2

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
C19 SW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000127045
D20 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000142449
D21 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000113296
D22 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117337

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

State Database: WY Radon

Radon Test Results

% Elev.	Total kits	# tests 4-10 pCi/L	# tests 10-20 pCi/L	# Tests>20 pCi/L
22%	2358	396	89	42

Federal EPA Radon Zone for LARAMIE County: 1

Note: Zone 1 indoor average level > 4 pCi/L. : Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L. : Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for LARAMIE COUNTY, WY

Number of sites tested: 55

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	1.750 pCi/L	100%	0%	0%
Living Area - 2nd Floor	Not Reported	Not Reported	Not Reported	Not Reported
Basement	3.020 pCi/L	75%	24%	2%

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: National Wetlands Inventory Source: Wyoming Geospatial Hub Telephone: 307-777-4600

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS) This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Wyoming Well Permits Source: Wyoming State Engineer's Office Telephone: 307-777-6148 Wyoming well permit locations on file with the Wyoming State Engineer's Office.

OTHER STATE DATABASE INFORMATION

Oil and Gas Well Location Information Source: Oil and Gas Conservation Commission Telephone: 307-234-7147

RADON

State Database: WY Radon Source: Department of Health Telephone: 307-777-6015 Wyoming Radon Project

Area Radon Information

Source: USGS Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared in 1975 by the United State Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Appendix B Preliminary Assessment Documentation

Appendix B.1 Interview Record
HEF Activation

11 June 2011

On 11 June 2011 at 1448, the fire alarm went off in the AASF. I left my office to check the fire alarm panel and it indicated the HEF system. I proceeded to the HEF room and as I approached the east hangar I observed the HEF dumping in the east hangar which had no aircraft. After a quick confirmation of no fire I proceeded to the HEF room to block in the foam and water. I blocked in the foam discharge first, water supply to the foam tank second and then blocked in the risers. I then called Warren Fire Department to notify them of the false alarm and notified **Constitution** of the event. There was approximately 5' of foam in the east hangar. Bay 5 and 8 doors were opened by **Constitution** during the event because he realized there was no fire and was trying to minimize the effects of the foam.

The Warren Fire Department responded and investigated why the HEF activated. The HEF fire panel indicated that L1M07 Hangar 2 North Pull was activated.

Upon investigation, it was found that L1M07 pull (located by egress door SE corner of hangar 2) was not activated, nor were any other pulls. Of note, the L1M04 glass pull indicator was missing but suspect that it was never replaced after commissioning test(s). L1M07 indication on the fire panel disappeared approximately 1 hour after the event. Witnesses **Sector** being one of them) who were in bay 8 near the fire pull said the fire alarm just went off and foam started dispensing.

Clean up of the hangar was started with the supervision of the fire department. This involved individuals of C. Co. 5-159 and subordinates who were conducting AT. After a review of the MSDS, a roster of those exposed to the foam and potential damages to equipment was started. 1SG indicated that when the alarm went off, there was an organized evacuation with good accountability.

Base environmental (**Construction**) responded and coordinated with Wyoming Guard environmental (**Construction**). They notified the city utility office of the release into the oil water separator which would eventually migrate to the public sewer system. No foam was observed in the ramp storm water system. notified Westfire of the event and coordinated for them to come out on the following morning. arrived at the AASF at approximately 0830 and was notified that the L1M07 alarm had cleared itself. Here is what the found:

I went ahead and had Westfire come out on Sunday at 8:00 to repair and investigate the pull that was shown as the reason for the foam going off. Otherwise we had the panel showing as alarm and the fire dept would not have known if a real situation came about. West fire could not identify a problem with the pull and its components so he will get us new parts. Temporarily we are without a pull but have put a notice with it. We will show just a trouble alarm because the pull is missing but everything else will work if needed. The only thing he thought is that the components got wet. The inside of the box was wet today but not sure if that was due to the foam. I have Western States coming tomorrow to refill the foam bladder. Until then we would only get water not foam in the hangar if something would happen, but again the fire dept will now know to respond for emergency action.

So for now this is all the info I have but will let you know more as I get more feedback.

 Facility: Cheyenne AASF

 &
 &

 Date/Time:
 8 May 2018/0830

Interviewee:	Can your name/role be used in the	PA Report? Y or N
	Can you recommend anyone we ca	n interview?
Title: <u>AASF WYARG</u>	Y or N	
Findle Number: (507) 772-5981		
Roles or activities with the Facility/Years work	ing at the Facility:	
AASF maintenance and facility personnel		
	1	
storage container size (maintenance, fire training, builts), fueling stations, crash sites, pest managem waterproofing). How are materials ordered/purcha	firefighting, buildings with suppressi ent, recreational, dining facilities, m sed/disposed/shared with others?	ion systems (as etals plating, or
AFFF used in AASF fire suppression system.		Known Uses
Material ordered as part of facility construction. N 2010.	o additional material ordered since	Use
3 releases: 2 April 2010 (facility commissioning);	11 June and 8 Aug 2011	Procurement
		Disposition
		Storage (Mixed)
		Storage (Solution)
		Inventory, Off-Spec
		Containment
		SOP on Filling
		Leaking Vehicles
		Nozzle and Suppression System Testing
		Dining Facilities
		Vehicle Washing
		Ramp Washing
		Fuel Spill Washing and Fueling Stations
		Chrome Plating or Waterproofing

Appendix B.2 Visual Site Inspection Checklists

Visual Site Inspection Checklist

Names(s) of people pe	erforming VSI:
	Recorded by:
A	RNG Contact:
I	Date and Time: 8 May 2010/0830
Method of visit (walking, driv	ving, adjacent): Walking
Source/Release Information	
<u>Site Name / Area Name / Unique ID:</u>	WYARNG AASF
<u>Site / Area Acreage:</u>	44 acres
Historic Site Use (Brief Description):	N/A
Current Site Use (Brief Description):	AASF
Physical barriers or access restrictions:	On active AFB (F.E. Warren)
1. Was PFAS used (or spilled) at the site/area <u>1a. If yes, document h</u>	a? Y now PFAS was used and usage time (e.g., fire fighting training 2001 to 2014):
2. Has usage been documented? 2a. If yes, keep a reco	on system. NA rd (place electronic files on a disk):
Yes 3. What types of businesses are located near 3a. Indicate what businesses	the site? None nesses are located near the site
4. Is this site located at an airport/flightline? 4a. If yes, provide a d	escription of the airport/flightline tenants:

Visual Survey Inspection Log

Other Significant Site	e Features:
1. Does the facility have	ve a fire suppression system? Y
	1a. If yes, indicate which type of AFFF has been used: Jet-X (23/4% concentrate)
	1b. If yes, describe maintenance schedule/leaks:
	1c. If yes, how often is the AFFF replaced:
	After each release
	1d. If yes, does the facility have floor drains and where do they lead? Can we obtain an as built drawing?
	Te. If yes, does the factory have from thans and where do they foud. Can we obtain an as built drawing.
	Yes
Transport / Pathw	ay Information
Migration Potential:	
1. Does site/area drain	age flow off installation? Y
	1a. If so, note observation and location:
2. Is there channelized	flow within the site/area? N
	2a. If so, please note observation and location:
3. Are monitoring or d	rinking water wells located near the site? N
	3a. If so, please note the location:
4. Are surface water in	ntakes located near the site? N
	4a. If so, please note the location:
5. Can wind dispersion	n information be obtained? N
	5a. If so, please note and observe the location.
6. Does an adjacent no	on-ARNG PFAS source exist? N
	6a. If so, please note the source and location.
	6b. Will off-site reconnaissance be conducted? Y / N

Visual Survey Inspection Log

Significant Topograp	ohical Features:		
1. Has the infrastructu	re changed at the site/area? N		
	1a. If so, please describe change (ex. Structures no longer exist):		
2. Is the site/area vege	tated? Y		
	2a. If not vegetated, briefly describe the site/area composition:		
3. Does the site or area	a exhibit evidence of erosion? N		
	3a. If yes, describe the location and extent of the erosion:		
	`		
4. Does the site/area e	xhibit any areas of ponding or standing water?	Ν	
	4a. If yes, describe the location and extent of the ponding:	11	1
Receptor Informa	tion		
1. Is access to the site	restricted? Y		
	1a. If so, please note to what extent: Facility located on F.E. W	arren AFB	
2 W/h	-it-9 Site Western / Constanting Western		
2. who can access the	Site workers / Construction workers		
	za. Chere an that appry, note any not covered above.		
		N	
3. Are residential areas	s located near the site?	Ν]
	sa. It so, please note the location/distance:		
		1	
4. Are any schools/day	y care centers located near the site?	N]
	4a. If so, please note the location/distance/type:		
		1	T
5. Are any wetlands lo	ocated near the site?	Ν	J
	5a. If so, please note the location/distance/type:		

Visual Survey Inspection Log

Additional Notes

Photographic Log

Photo ID/Name	Date & Location	Photograph Description

Appendix B.3 Conceptual Site Model Information

Preliminary Assessment – Conceptual Site Model Information

Site Name: WYARNG AASF

Why has this location been identified as a site? Use/storage of AFFF

Are there any other activities nearby that could also impact this location? Located on F.E. Warren

AFB, which also has AOIs.

Training Events

Have any training events with AFFF occurred at this site? No

If so, how often?

How much material was used? Is it documented?

Identify Potential Pathways: Do we have enough information to fully understand over land surface water flow, groundwater flow, and geological formations on and around the facility? Any direct pathways to larger water bodies?

Surface Water:

Surface water flow direction? Northeast

Average rainfall? 13.62"

Any flooding during rainy season? UNK

Direct or indirect pathway to ditches? Yes

Direct or indirect pathway to larger bodies of water? No

Does surface water pond any place on site? No

Any impoundment areas or retention ponds? Yes

Any NPDES location points near the site? UNK

How does surface water drain on and around the flight line?

Preliminary Assessment – Conceptual Site Model Information

Groundwater:

Groundwater flow direction? Northeast

Depth to groundwater? variable

Uses (agricultural, drinking water, irrigation)? UNK

Any groundwater treatment systems? No

Any groundwater monitoring well locations near the site? No

Is groundwater used for drinking water? No

Are there drinking water supply wells on installation? No

Do they serve off-post populations? No

Are there off-post drinking water wells downgradient No

Waste Water Treatment Plant:

Has the installation ever had a WWTP, past or present? UNK

If so, do we understand the process and which water is/was treated at the plant?

Do we understand the fate of sludge waste?

Is surface water from potential contaminated sites treated?

Equipment Rinse Water

1. Is firefighting equipment washed? Where does the rinse water go?

2. Are nozzles tested? How often are nozzles tested? Where are nozzles tested? Are nozzles cleaned after use? Where does the rinse water flow after cleaning nozzles?

3. Other?

Preliminary Assessment – Conceptual Site Model Information

Identify Potential Receptors:

Site Worker Yes

Construction Worker Yes

Recreational User No

Residential No

Child No

Ecological No

Note what is located near by the site (e.g. daycare, schools, hospitals, churches, agricultural, livestock)?

Documentation

Ask for Engineering drawings (if applicable).

Has there been a reconstruction or changes to the drainage system? When did that occur?

Appendix C Photographic Log

APPENDIX C – Photograph	ic Log	
Army National Guard, Preliminary Assessment for PFAS	WYARNG Army Aviation Support Facility	Cheyenne, WY
Photograph No. 9		
Description:		
Pump system		
Photograph No. 10		
Description:		

Only shutoff valve (is not located in bay)

Army National Guard, Preliminary Assessment for PFAS	WYARNG Army Aviation Support Facility	Cheyenne, WY
Photograph No. 11		
Description:		
Pre-filter unit		
Photograph No. 12		

r notograph nor 12
Description:
Runoff

Photograph No. 13

Description:

Spill prevention corrective action taken: palletized

