FINAL Preliminary Assessment Report Wyoming Army National Guard Army Aviation Support Facility Cheyenne, Wyoming

Perfluorooctane-Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide

January 2021

Prepared for:

Army National Guard Bureau 111 S. George Mason Drive Arlington, VA 22204

UNCLASSIFIED

Table of Contents

Exec	utive 🕄	Summary	1	
1.	Intro	duction	3	
	1.1 Authority and Purpose			
	1.2	Preliminary Assessment Methods	3	
	1.3	Report Organization	4	
	1.4	Facility Location and Description	4	
	1.5	Facility Environmental Setting	4	
		1.5.1 Geology	5	
		1.5.2 Hydrogeology	5	
		1.5.3 Hydrology	5	
		1.5.4 Climate	6	
		1.5.5 Current and Future Land Use	6	
2.	Fire ⁻	Fraining Areas	10	
3.	Non-	Fire Training Areas	11	
	3.1	WYARNG Army Aviation Support Facility Hangar	11	
4.	Eme	gency Response Areas	13	
5.	Adjad	cent Sources	14	
6.	Prelir	minary Conceptual Site Model	16	
7.	Conclusions			
	7.1	Findings	17	
	7.2	Uncertainties	17	
	7.3	Potential Future Actions	17	
8.		rences	_	
		\ Data Resources		
		3 Preliminary Assessment Documentation		
		3.1 Interview Record		
		3.2 Visual Site Inspection Checklists		
		3.3 Conceptual Site Model Information		
Appe	ndix (C Photographic Log	25	

i

Tables

Table 7-1: Uncertainties

Figures

Figure ES-1 Summary of Findings Figure 1-1 **Facility Location** Figure 1-2 **Groundwater Features** Figure 1-3 Surface Water Features Non-Fire Training Areas Figure 3-1 Figure 5-1 **Adjacent Sources** Figure 7-1 Summary of Findings

Appendices

Appendix A **Data Resources Preliminary Assessment Documentation** Appendix B

Interview Records B.1

B.2 Visual Site Inspection Checklists

B.3 Conceptual Site Model Information

Appendix C Photographic Log

Acronyms and Abbreviations

AASF Army Aviation Support Facility
AECOM Technical Services, Inc.

AFB Air Force Base

AFFF aqueous film forming foam

AOI area of interest

ARNG Army National Guard bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

EDR™ Environmental Data Resources, Inc.™

FTA Fire Training Area
HA Health Advisories

PA Preliminary Assessment

PFAS per- and poly-fluoroalkyl substances

PFBS Perflourobutane sulfonate
PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid

RI Remedial Investigation

SI Site inspection

UCMR3 Unregulated Contaminant Rule 3

U.S. United States

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

WYARNG Wyoming Army National Guard

Executive Summary

The Army National Guard (ARNG) is performing *Preliminary Assessments (PAs) and Site Inspections (SIs) for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) Impacted Sites at ARNG Facilities Nationwide*. A PA for per- and polyfluoroalkyl substances (PFAS)-containing materials was completed for Wyoming Army National Guard (WYARNG) Army Aviation Support Facility (AASF). The AASF is which is located on F.E. Warren Air Force Base (AFB), Cheyenne, Wyoming. The AASF is owned by the WYARNG and used to provide full-time maintenance support to the Wyoming aviation units. The WYARNG AASF encompasses approximately 44 acres of F.E. Warren AFB and was constructed in 2010. The performance of this PA included the following tasks:

- Reviewed available administrative record documents and Environmental Data Resources, Inc. (EDR)™ report packages to obtain information relevant to potential PFAS releases, such as: drinking water well locations, historical aerial photographs, Sanborn maps, and environmental compliance actions in the area surrounding the facility;
- Conducted a site visit on 8 May 2018 and completed visual site inspections at locations where PFAS-containing materials were suspected of being stored, used, or disposed; and
- Interviewed current WYARNG AASF personnel during the site visit.

No Areas of Interest related to potential PFAS releases was identified at WYARNG AASF during the PA. The summary of PA findings is shown on **Figure ES-1**.

Based on the United States Environmental Protection Agency Unregulated Contaminant Monitoring Rule 3 (UCMR 3) data, it was indicated that no PFAS were detected in a public water system above the United States Environmental Protection Agency (USEPA) Health Advisory level within 20 miles of the facility (USEPA, 2015). PFAS analyses performed in 2016 had method detection limits that were higher than currently achievable. Thus, it is possible that low concentrations of PFAS were not detected during the UCMR3 but might be detected if analyzed today.

Based on the documented absence of the use/release of PFAS-containing materials at the AASF, evidence does not support current or former WYARNG activities having contributed to PFAS contamination in soil, groundwater, surface water or sediment at the AASF or adjacent areas. Therefore, the AASF will not move forward in the Comprehensive Environmental, Response, Compensation, and Liability Act process.

1

1. Introduction

1.1 Authority and Purpose

The Army National Guard (ARNG) G9 is the lead agency in performing *Preliminary Assessments* (*PAs*) and Site Inspections (SIs) for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) at Impacted Sites at ARNG Facilities Nationwide. This work is supported by the United States (US) Army Corps of Engineers (USACE) Baltimore District and their contractor AECOM Technical Services, Inc. (AECOM) under Contract Number W912DR-12-D-0014, Task Order W912DR17F0192, issued 11 August 2017.

The ARNG is assessing potential effects on human health related to processes at their facilities that used per-and poly-fluoroalkyl substances (PFAS) (a suite of related chemicals), primarily releases of aqueous film forming foam released during firefighting activities or training, although other sources of PFAS are possible. In addition, the ARNG is assessing businesses or operations adjacent to the ARNG facility (not under the control of ARNG) that could potentially be responsible for a PFAS release.

PFAS are classified as emerging environmental contaminants that are garnering increasing regulator interest due to their potential risks to human health and the environment. PFAS formulations contain highly diverse mixtures of compounds. Thus, the fate of PFAS compounds in the environment varies. The regulatory framework at both federal and state levels continues to evolve. The U.S. Environmental Protection Agency (USEPA) issued Drinking Water Health Advisories (HAs) for PFOA and PFOS in May 2016, but there are currently no promulgated national standards regulating PFAS in drinking water.

This report presents findings of a PA for PFAS-containing materials at the Wyoming Army National Guard (WYARNG) Army Aviation Support Facility (AASF) in Cheyenne, Wyoming, in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, the National Oil and Hazardous Substances Pollution Contingency Plan (40 Code of Federal Regulations Part 300), and Department of the Army requirements and guidance.

This PA Report documents where PFAS may have been released into the environment. The term PFAS will be used throughout this report to encompass all PFAS chemicals being evaluated, including PFOS and PFOA, which are key aqueous film forming foam (AFFF) components.

1.2 Preliminary Assessment Methods

The performance of this PA included the following tasks:

- Reviewed available administrative record documents and Environmental Data Resources, Inc. (EDR)™ report packages to obtain information relevant to potential PFAS releases, such as: drinking water well locations, historical aerial photographs, Sanborn maps, and environmental compliance actions in the area surrounding the facility;
- Conducted a site visit on 8 May 2018 and completed visual site inspections at locations where PFAS-containing materials were suspected of being stored, used, or disposed; and
- Interviewed current WYARNG AASF personnel during the site visit.

1.3 Report Organization

This report has been prepared in accordance with the USEPA *Guidance for Performing Preliminary Assessments under CERCLA* (USEPA, 1991). The report sections and descriptions of each are:

- **Section 1 Introduction:** identifies the project purpose and authority and describes the facility location, environmental setting, and methods used to complete the PA.
- Section 2 Fire Training Areas (FTAs): describes the FTAs at the facility.
- Section 3 Non-FTAs: describes the airfield facility visited during the site visit.
- **Section 4 Emergency Response Areas:** describes areas of potential PFAS release at the facility, specifically in response to emergency situations.
- **Section 5 Adjacent Sources:** describes sources of potential PFAS release adjacent to the facility that are not under the control of ARNG.
- Section 6 Preliminary Conceptual Site Model: describes the pathways of PFAS transport and receptors at each AOI.
- Section 7 Conclusions: summarizes the data findings and presents the conclusions of the PA.
- Section 8 References: provides the references used to develop this document.
- Appendix A Data Resources
- **Appendix B** Preliminary Assessment Documentation
- Appendix C Photographic Log

1.4 Facility Location and Description

The WYARNG AASF covers approximately 44 acres within the boundaries of the F.E. Warren Air Force Base (AFB). F.E. Warren AFB, originally Fort D.A. Russell, was established in 1867 on the branch of the South Platte River. Originally named in honor of Civil War Brigadier General David A. Russell, F.E. Warren AFB is the oldest continuously active military installation in the Air Force. It's home to the 90th Missile Wing and Headquarters, 20th Air Force, of Air Force Global Strike Command (Aerostar, 2018).

The WYARNG AASF encompasses approximately 41 acres of F.E. Warren AFB and was constructed in 2010. The AASF is owned by the WYARNG and used to provide full-time maintenance support to the Wyoming aviation units. The WYARNG AASF is in southeastern Wyoming approximately 7 miles west of Cheyenne, Wyoming. (**Figure 1-1**). Land use surrounding F.E. Warren AFB ranges from agricultural to residential housing with Cheyenne to the east, and primarily agricultural areas to the north and west (Aerostar, 2018).

1.5 Facility Environmental Setting

Environmental information found in Section 1.5 for this PA was adapted in part from the Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base Wyoming (CH2M Hill, 2015).

1.5.1 Geology

As indicated in the 2019 EDRTM report (**Appendix A**), most of the region is underlain by tertiary units that are of sedimentary origin and consist of sand, gravel, clay, siltstone, and limestone. These units are overlain by Quaternary sediments that include alluvial terrane and floodplain deposits. These sediments are generally unconsolidated and consist of lenticular beds of clay, silt, sand, gravel, and boulders.

Beneath the installation, the late Miocene-aged Ogallala unit can be described as a heterogeneous mixture of sand and gravel beds, silt, clay, and thin limestone units. The beds are sometimes cemented by calcium carbonate, Lenses of sand and gravel are generally sporadic, but consistently occur from the surface to a depth of about 10 feet below ground surface (bgs) in the southwestern part of F.E. Warren AFB. Below this depth, the predominant sediments are fine-grained, but sand and gravel still occur. The Ogallala is about 300 feet thick in the northern part of the installation, thinning to the south to approximately 30 feet in the valley where it has been deeply eroded (CH2M Hill, 2015).

1.5.2 Hydrogeology

The unconfined High Plains aquifer is the principal source for water supply wells in the area surrounding F.E. Warren AFB. Numerous wells near the AFB are used for domestic and livestock water supply. Depth to the water table in this area is variable, being at the land surface near streams that act as discharge areas and increasing in depth with distance from discharge areas. In the southern portion of the installation, the depth to the water table generally ranges from about 10 to 40 feet bgs. The direction of groundwater flow in the shallow aquifer zone is generally toward the discharge areas of Crow Creek, Diamond Creek, and the unnamed tributary to Crow Creek (Figure 1-2). Groundwater beneath the AFB is recharged locally by some areal infiltration of precipitation despite the relatively dry climate. Groundwater is discharged via evapotranspiration in the riparian areas, flow into streams, and springs and seeps near the streams.

Drinking water at F.E. Warren AFB is obtained from the Cheyenne Public Utilities, which uses both groundwater and surface water sources. The City owns and operates about 35 groundwater wells located west and northwest of Cheyenne. The wells pump from the Ogallala and White River Aquifers. Surface water is collected from the Douglas Creek Drainage, located in the Snowy Range Mountains, about 75 miles west of Cheyenne. Surface water is also collected from the Crow Creek Drainage, located in the Pole Mountain/Vedauwoo area, about 30 miles west of Cheyenne (Board of Public Utilities, 2014). All drinking water sources used by the City of Cheyenne are located upstream or upgradient of the F.E. Warren watershed. No active or contingent drinking water wells are located on the installation (CH2M Hill, 2015). Based on the United States Environmental Protection Agency (USEPA) Unregulated Contaminant Monitoring Rule 3 (UCMR3) data, it was indicated that no PFAS were detected in a public water system above the USEPA Lifetime Health Advisory level within 20 miles of the facility (USEPA, 2015). PFAS analyses performed in 2016 had method detection limits that were higher than currently achievable. Thus, it is possible that low concentrations of PFAS were not detected during the UCMR3 but might be detected if analyzed today.

1.5.3 Hydrology

Surface water at F.E. Warren AFB occurs as stream flow, seeps, and lakes. Stream flow results from groundwater discharge and from rainfall and snowmelt runoff. Crow Creek is the major perennial stream that drains southern areas of the AFB and a gaining stream (that is, receives groundwater discharge). Two tributaries to Crow Creek also drain the southern part of the AFB: an unnamed tributary and Diamond Creek (**Figure 1-3**). The unnamed tributary is an interrupted stream, with alternating reaches that are perennial, intermittent, or ephemeral. Diamond Creek,

the second largest stream on F.E. Warren AFB, is perennial along most of its length, with low flows maintained by groundwater discharge. The upper reach of Diamond Creek, covering the first 300 yards, is intermittent. Diamond Creek is also a gaining creek across the AFB except in periods of loss during the warmer months of July through September. These stream discharge losses are likely due to evaporation. Seeps contribute to stream flows in Crow Creek and its unnamed tributary throughout the year (CH2M Hill, 2015).

1.5.4 Climate

F.E. Warren AFB is near the Front Range of the Rocky Mountains and on the high plains. Located in a fairly dry region of the country, the AFB receives about 14 inches of moisture per year in the form of rain or snowmelt and has an average winter snowfall of 52 inches. Snowfall is common nine months out of the year due to the high plains environment (more than 6,000 feet above sea level.) The first snowfall of the season typically occurs in late September and the last snowfall occurs in May.

Winter months are usually dry and windy with wind gusts commonly more than 50 mph. Blowing and drifting snow create particularly hazardous conditions for winter travel. All of the major highways leading through Cheyenne occasionally close due to severe winter weather. Average winter temperatures range from the 30s during the day to teens overnight. Cold snaps that can plunge temperatures and wind chills below zero are typically short lived.

Spring and summer seasons are the wettest times of the year with more than two inches of moisture per month from April to July. Severe thunderstorms occur in the late spring to summer months and can result in flash flooding conditions, large hail and even occasional tornadoes. The peak of the tornado season along the Front Range is June, while the greatest flash flooding potential exists in July and August. Average summer temperatures are pleasant, due in part to the low humidity, with most days in the low 80s for highs and 50s for overnight lows. (F.E. Warren, 2017).

1.5.5 Current and Future Land Use

The WYARNG AASF serves as a year-round maintenance facility to support WYARNG aviation units. The facility is developed with several buildings and related infrastructure including paved roadways and parking areas. Access to the facility is controlled, and land use surrounding the facility is owned and operated by the U.S. Air Force. Reasonably anticipated future land use is not expected to change from the current land use, which ranges from agricultural to residential housing with Cheyenne to the east, and primarily agricultural areas to the north and west (Aerostar, 2018) .

2. Fire Training Areas

No FTAs were identified at the WYARNG AASF during this PA.

3. Non-Fire Training Areas

In addition to FTAs, the PA evaluated areas where PFAS-containing materials may have been broadly used, stored, or disposed. This may include buildings with fire suppression systems, paint booths, AFFF storage areas, and areas of compliance demonstrations. Information on these features obtained during the PA are included in **Appendices A** and **B**. One non-FTA where Jet-X was potentially released at the AASF was identified during this PA. A description of the non-FTA is presented below and shown on **Figure 3-1**.

3.1 WYARNG Army Aviation Support Facility Hangar

Construction of the AASF was completed in 2010. The geographic coordinates are 41°11'45.5"N and 104°52'14.0"W. The Hangar is equipped with a fire suppression system that includes a 55-gallon tank containing Jet-X 2.75%. A full system release during facility commissioning on 2 April 2010. The Jet-X released within the hangar was allowed to dissipate through the floor drains and surrounding drains outside the hangar doors onto the tarmac and surrounding area.

A second release occurred on 11 June 2011, at the east hangar and was a full system release leaving approximately 5-feet of foam. Personnel opened the hangar doors and the foam was moved outside the hangar and allowed to dissipate on the ramp. surrounding area. The internal floor drains were blocked, but the drains by the hangar doors were open.

A third release occurred on 8 August 2011 when a contractor crushed a thermal wire. A minimal amount of foam was released from the fire suppression system and discharged to the floor drain.

Release areas that were allowed to dissipate, along with stormwater within the perimeter of the AASF, flow via catch basins to the oil water separator, then on to the local septic system, and finally to the Cheyenne Municipal Wastewater Treatment Facility.

According to the manufacturer's technical specifications, Jet-X 2.75% is a hydrocarbon surfactant, and therefore does not contain PFAS. Additionally, it is unclear if any AFFF containing PFAS was ever stored, used, or released at WYARNG AASF. However, in the absence of known PFAS-containing materials, the Hangar is not considered a suspected PFAS release area.

4. Emergency Response Areas

No instances of emergency response areas were identified at or adjacent to the WYARNG AASF during the PA through interviews or EDR™ Reports. All emergency services are provided by F.E. Warren AFB. The F. E. Warren AFB emergency service records were not reviewed during the PA to determine if there were any emergencies responses adjacent to the WYARNG AASF.

5. Adjacent Sources

The Air Force conducted both a PFAS PA (CH2M Hill, 2015) and a SI (Aerostar. 2018) at F.E. Warren AFB (**Appendix A**). During the PA, 10 potential release areas were identified; however, only three locations were recommended for an SI. The locations included the Former Fire Protection Training Area 2 (AFFF Area 1), Former Fire Protection Training Area 3 (AFFF Area 2) and Building 1247 (AFFF Area 3) (**Figure 5-1**). Based on the findings of the SI, PFOA and PFOS groundwater concentrations were reported above the USEPA HAs (70 parts per trillion) at all three locations. In addition, surface soil concentrations at the Protection Training Area 2 (AFFF Area 1) and Building 1247 (AFFF Area 3) exceeded the USEPA regional screening levels for soil.

All three sites were recommended for an expanded SI as well as a Remedial Investigation for further investigation under the CERCLA process. Based on groundwater flow, these sites are located downgradient of the WYARNG AASF and the documented PFAS releases should not have an impact on the WYARNG AASF.

\\WY\WYARNG_AASF_PA_Figures\Fig_5-1_WYARNG_AASF_Adjacent_Sources.mxd

6. Preliminary Conceptual Site Model

Based on the PA findings, no AOIs were identified at the AASF. A conceptual site model identifies the three components necessary for a potentially complete exposure pathway: (1) source, (2) pathway, and (3) receptor. If any of these elements are missing, the pathway is considered incomplete.

Based on the findings of this PA, no PFAS sources originated at the AASF or from activities associated with the AASF; therefore, there is no complete exposure pathway to potential receptors.

7. Conclusions

This report presents a summary of available information gathered during the PA on the use and storage of AFFF at the AASF. The PA findings are based on the information presented in **Appendix A** and **Appendix B**.

7.1 Findings

Based on information obtained during interviews conducted with facility personnel who have been familiar with the facility since 2010 and reviewed documentation, no AOIs related to PFAS releases were identified at the AASF. While adjacent sources were identified, evidence obtained during the PA does not support that current or former ARNG facility activities have contributed to PFAS contamination in soil, groundwater, surface water, or sediment. Therefore, the pathways to all human receptors are incomplete. A summary of the PA findings are presented on **Figure 7-1**.

7.2 Uncertainties

A number of information sources were investigated during this PA to determine the potential for PFAS-containing materials to have been present, used, or released at the facility. Historically, documentation of PFAS use was not required because PFAS were considered benign. Therefore, records were not typically kept by the facility or available during the PA on the use of PFAS in training, firefighting, or on its disposition.

The conclusions of this PA are based on all available information, including: previous environmental reports, EDRs™, observations made during the VSI, and interviews. Interviews of personnel with direct knowledge of a facility generally provided the most useful insights regarding a facility's historical and current PFAS-containing materials. Sometimes, the provided information was vague or conflicted with site observations. Gathered information has a degree of uncertainty due to the absence of written documentation, the limited number of personnel with direct knowledge due to staffing changes, the time passed since PFAS was first used (1969 – present), and a reliance on personal recollection. Inaccuracies may arise in potential PFAS release locations, dates of release, volume of releases, and the concentration of AFFF used. There is also a possibility the PA has missed a source of PFAS, as the science of how PFAS may enter the environment continually evolves.

In order to minimize the level of uncertainty, readily available data regarding the use and storage of PFAS were reviewed, current personnel were interviewed, multiple personnel were interviewed for the same potential source area, and potential source areas were visually inspected. The uncertainties associated with the PA are summarized in **Table 7-1**.

Table 7-1: Uncertainties

Area of Interest	Source of Uncertainty
AOI 1 WYARNG AASF	It is unclear if any AFFF containing PFAS was ever stored, used, or released at WYARNG AASF.

7.3 Potential Future Actions

Based on the documented absence (2010 to present) of the storage, use or release of PFAS-containing materials at the AASF, no AOIs were identified during the PA. Evidence does not support that current or former ARNG activities have contributed to PFAS contamination to soil, groundwater, surface water, or sediment at the facility or adjacent areas. Therefore, the facility will not move forward in the CERCLA process.

8. References

Aerostar SES LLC. 2018. Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming. August 2018.

Board of Public Utilities. 2014. "Water – The Clear Choice" Consumer Confidence Report – January 1 to December 31, 2013. City of Cheyenne, Wyoming. April 2014.

CH2M HILL. 2015. Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base Wyoming. December 2015

National Ground Water Association. 2018. *Groundwater and PFAS: State of Knowledge and Practice*. January 2018.

F.E. Warren AFB. 2017. Where in the world is F.E. Warren? https://www.warren.af.mil/About-Us/Fact-Sheets/Display/Article/635369/where-in-the-world-is-fe-warren/ (Accessed April 2019). August.

USEPA. 2015. 2013-2015 Environmental Occurrence Data for the Unregulated Contaminant Monitoring Rule (UCMR) https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule#3.

USEPA. 1991. Guidance for Performing Preliminary Assessments under CERCLA. EPA/540/G-91/013. September 1991.

Appendix A Data Resources

Data Resources will be provided separately on CD. Data Resources for WYARNG AASF include:

Previous Investigations Completed at F.E. Warren Air Force Base

- Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base Wyoming. December 2015
- Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming. August 2018.

WYARNG AASF EDR Report

• 2019 WYARNG AASF EDR Report

Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming

August 2018

Submitted to:

Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by:

U.S. Army Corps of Engineers Omaha District 1616 Capitol Avenue Omaha, Nebraska 68102-4901

Prepared by:

Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830-8022 under Contract No. W9128F-15-D-0051 Delivery Order No. 0003

Final Site Inspection Report of Aqueous Film Forming Foam Areas at F.E. Warren Air Force Base Laramie County, Wyoming

August 2018

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by: U.S. Army Corps of Engineers Omaha District 1616 Capitol Avenue Omaha, Nebraska 68102-4901

Prepared by:
Aerostar SES LLC
1006 Floyd Culler Court
Oak Ridge, Tennessee 37830
under
Contract No. W9128F-15-D-0051
Delivery Order No. 0003

Table of Contents

Acronyms and Abbreviations	Page
•	
1.0 INTRODUCTION	1
2.0 AFFF AREA DESCRIPTIONS	
2.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AF.	
2.2 FIRE PROTECTION TRAINING AREA 3 (AFFF AREA	
2.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)	5
3.0 FIELD ACTIVITIES AND FINDINGS	5
3.1 FIELD ACTIVITIES AND SAMPLING PROCEDURES	
3.2 PFAS CROSS-CONTAMINATION AVOIDANCE PROC	EDURES7
3.2.1 Field Equipment	
3.2.2 Field Clothing and Personal Protective Equipment	nent (PPE)7
3.2.3 Sample Containers	
3.2.4 Wet Weather	
3.2.5 Equipment Decontamination	
3.2.6 Personnel Hygiene	
3.2.7 Food Considerations	
3.2.8 Visitors	
3.3 FORMER FIRE PROTECTION TRAINING AREA 2 (AF 3.3.1 Sample Locations	
3.3.2 Lithology and Soil Description	
3.3.3 Groundwater Flow	
3.3.4 Analytical Results	
3.3.5 Conclusions	
3.4 FIRE PROTECTION TRAINING AREA 3 (AFFF AREA	
3.4.1 Sample Locations	*
3.4.2 Lithology and Soil Description	
3.4.3 Groundwater Flow	
3.4.4 Analytical Results	
3.4.5 Conclusions	
3.5 BUILDING 1247–BASE FUELS (AFFF AREA 3)	
3.5.1 Sample Locations	
3.5.2 Lithology and Soil Description	
3.5.3 Groundwater Flow	
3.5.4 Analytical Results	
3.5.5 Conclusions	
4.0 GROUNDWATER PATHWAY	
4.1 F.E. WARREN AIR FORCE BASE HYDROGEOLOGY	
4.2 FORMER FIRE PROTECTION TRAINING AREA 2 (AF	
4.3 FORMER FIRE PROTECTION TRAINING AREA 3 (AF	
4.4 BUILDING 1247–BASE FUELS (AFFF AREA 3)	
5.0 SURFACE WATER PATHWAY	
5.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AF	
5.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AF	
5.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)	

7.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	6.0 SOIL, SEDIMENT, AND AIR PATHWAYS	23
6.3 BUILDING 1247-BASE FUELS (AFFF AREA 3)		
7.0 UPDATES TO CONCEPTUAL SITE MODELS		
7.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	6.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)	23
7.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	7.0 UPDATES TO CONCEPTUAL SITE MODELS	24
7.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)	7.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	24
7.3 BUILDING 1247–BASE FUELS (AFFF AREA 3)		
8.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)		
8.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)	8.0 SUMMARY AND CONCLUSIONS	25
8.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)		
8.3 BUILDING 1247—BASE FUELS (AFFF AREA 3)		
List of Tables Table 1 Regulatory Screening Values	· · · · · · · · · · · · · · · · · · ·	
List of Tables Table 1 Regulatory Screening Values	9.0 REFERENCES	31
Table 1 Regulatory Screening Values		
Table 1 Regulatory Screening Values		
Table 2 AFFF Area and Selection Rationale for Site Inspections at F.E. Warren AFB	<u>List of Tables</u>	
Table 2 AFFF Area and Selection Rationale for Site Inspections at F.E. Warren AFB	Table 1 Regulatory Screening Values	2
Table 3 AFFF Area 1 – Former Fire Protection Training Area 2, Groundwater Analytical Results		
Table 5 AFFF Area 1 – Former Fire Protection Training Area 2, Surface Soil Analytical Results		
Table 6 AFFF Area 1 – Former Fire Protection Training Area 2, Subsurface Soil Analytical Results	Table 4 AFFF Area 1 – Former Fire Protection Training Area 2, Surface Water Analytical Results.	10
Table 7 AFFF Area 1 – Former Fire Protection Training Area 2, Sediment Analytical Results	Table 5 AFFF Area 1 – Former Fire Protection Training Area 2, Surface Soil Analytical Results	11
Table 8 AFFF Area 2 – Former Fire Protection Training Area 3, Groundwater Analytical Results	Table 6 AFFF Area 1 – Former Fire Protection Training Area 2, Subsurface Soil Analytical Results	12
Table 9 AFFF Area 2 – Former Fire Protection Training Area 3, Surface Water Analytical Results	Table 7 AFFF Area 1 – Former Fire Protection Training Area 2, Sediment Analytical Results	13
Table 10 AFFF Area 2 – Former Fire Protection Training Area 3, Surface Soil Analytical Results		
Table 11 AFFF Area 2 – Former Fire Protection Training Area 3, Subsurface Soil Analytical Results		
Table 12 AFFF Area 2 – Former Fire Protection Training Area 3, Sediment Analytical Results		
Table 13 AFFF Area 3 – Building 1247–Base Fuels, Groundwater Analytical Results	·	
Table 14 AFFF Area 3 – Building 1247–Base Fuels, Surface Soil Analytical Results		
Table 15 AFFF Area 3 – Building 1247–Base Fuels, Subsurface Soil Analytical Results	•	
List of Figures Figure 1 Location of F.E. Warren Air Force Base, Laramie County, Wyoming		
List of Figures Figure 1 Location of F.E. Warren Air Force Base, Laramie County, Wyoming	· · · · · · · · · · · · · · · · · · ·	
Figure 1 Location of F.E. Warren Air Force Base, Laramie County, Wyoming	Table 16 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances	27
Figure 1 Location of F.E. Warren Air Force Base, Laramie County, Wyoming		
Figure 2 F.E. Warren Air Force Base AFFF Area Locations	<u>List of Figures</u>	
Figure 2 F.E. Warren Air Force Base AFFF Area Locations	Figure 1 Location of F.E. Warren Air Force Base, Laramie County, Wyoming	A-1
Contours		
Figure 4 Former Fire Protection Training Area 3 (AFFF Area 2) Sample Locations and Potentiometric Contours	Figure 3 Former Fire Protection Training Area 2 (AFFF Area 1) Sample Locations and Potentiomer	tric
Contours		
Figure 5 Building 1247–Base Fuels (AFFF Area 3) Sample Locations and Potentiometic ContoursA-5 Figure 6 Former Fire Protection Training Area 2 (AFFF Area 1) PFBS, PFOA, and PFOS in Groundwater and Surface Water	Figure 4 Former Fire Protection Training Area 3 (AFFF Area 2) Sample Locations and Potentiomer	tric
Figure 6 Former Fire Protection Training Area 2 (AFFF Area 1) PFBS, PFOA, and PFOS in Groundwater and Surface Water		
and Surface Water		
Figure 7 Former Fire Protection Training Area 2 (AFFF Area 1) PFBS, PFOA, and PFOS in Soil and Sediment		
Sediment	and Surface Water	A-6
Figure 8 Former Fire Protection Training Area 3 (AFFF Area 2) PFBS, PFOA, and PFOS in Groundwater		
	and Surface Water	awater A-8

M2027.0003 8/8/18

_	ire Protection Training Area 3 (AFFF Area 2) PFBS, PFOA, and PFOS in Soil and
Sediment	A-
Figure 10 Building	g 1247–Base Fuels (AFFF Area 3) PFBS, PFOA, and PFOS in GroundwaterA-1
Figure 11 Building	g 1247–Base Fuels (AFFF Area 3) PFBS, PFOA, and PFOS in Soil
Figure 12 Geologie	c Map of F.E. Warren Air Force BaseA-1:
List of Appendice	e <u>s</u>
Appendix A Fi	gures
Appendix B Re	egional Screening Level Calculations for Soil and Sediment
Appendix C Da	ata Validation Reports and Laboratory Data Sheets
Appendix D Ph	ysiochemical Analytical Results
Appendix E Bo	oring Logs and Field Forms
Appendix F No	ew Monitoring Wells Construction Details
Appendix G G	roundwater Elevation Data

Acronyms and Abbreviations

number % percent

μg/kg micrograms per kilogram μg/L micrograms per liter AFB Air Force Base

AFCEC Air Force Engineering Center
AFFF aqueous film forming foam
amsl above mean sea level
ASL Aerostar SES LLC
bgs below ground surface
btoc below top of casing
CSM conceptual site model

DW drinking water

EPA Environmental Protection Agency

EZ exclusion zone ft foot/feet

FPTA fire protection training area GPS global positioning system

GW groundwater HA health advisory

HDPE high-density polyethylene

HQ hazard quotient ID identification

IRP Installation Restoration Program

J Reported concentration is an estimated value.

JP-4 jet propellant fuel number 4
MDL method detection limit
mg/kg milligrams per kilogram

ML silt

N/A not applicable
ND not detected
NL not listed
OU operable unit
OWS oil/water separator
PA preliminary assessment

PFAS per- and polyfluorinated alkyl substances

PFBS perfluorobutane sulfonate
PFOA perfluorooctanoic acid
PFOS perfluorooctane sulfonate
pH potential of hydrogen
PID photoionization detector
PPE personal protective equipment
QAPP quality assurance project plan

QC quality control

RI remedial investigation RSL Regional Screening Level

SD sediment
SI site inspection
SM silty sand

SO subsurface soil
SS surface soil
SW surface water
TCE trichloroethylene

TCLP toxicity characteristic leaching procedure

TOC total organic carbon

U Analyte was not detected above the reported value.

U.S. United States

USACE U.S. Army Corps of Engineers

USAF U.S. Air Force

USCS Unified Soil Classification System WSEO Wyoming State Engineer's Office

1.0 INTRODUCTION

Aerostar SES LLC (ASL), under contract to the United States (U.S.) Army Corps of Engineers (USACE) Omaha District (Contract No. W9128F-15-D-0051, Deliver Order No. 0003), conducted screening-level site inspections (SIs) at three suspected aqueous film forming foam (AFFF) release areas at F.E. Warren Air Force Base (AFB), Laramie County, Wyoming (Figure 1, Appendix A). The purpose of the inspections is to determine the presence or absence of perfluorooctanoic acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorooctane sulfonate (PFOS) in the environment at these areas. The SIs were conducted in accordance with contract requirements (USACE, July 2015), the quality assurance project plan (QAPP) (ASL, March 2016), and the F.E. Warren AFB site-specific addendum to the QAPP (ASL, August 2017). The QAPP and the QAPP addendum were prepared in accordance with U.S. Environmental Protection Agency (EPA) guidance (EPA, March 2012) and Air Force Civil Engineer Center (AFCEC) requirements.

PFOA and PFOS are in a class of synthetic fluorinated chemicals used in industrial and consumer products, including defense-related applications. This class of compounds is also referred to as per- and polyfluorinated alkyl substances (PFAS). In 1970, the U.S. Air Force (USAF) began using AFFF (firefighting agents containing PFOA and PFOS) to extinguish petroleum fires. Releases of AFFF to the environment routinely occured during fire training, equipment maintenance, storage, and use. Although manufacturers have reformulated AFFF to eliminate PFOS, the EPA continues to permit the use of PFOS-based AFFF, and the USAF maintains a significant inventory of PFOS-based AFFF. As of this report, the USAF is actively removing PFOS-based AFFF from its inventory and replacing it with formulations based on shorter carbon chains, which may be less persistent and bioaccumulative in the environment.

The objectives of the SI were to

- determine if a confirmed release of PFOS, PFOA, and PFBS has occurred at the area selected for inspection;
- determine if PFOS and/or PFOA are present in groundwater or surface water at the inspection area at concentrations exceeding the EPA lifetime health advisory (HA) for drinking water (EPA, May 2016a; EPA, May 2016b);
- determine if PFBS, PFOA, and/or PFOS are present in soil or sediment at the inspection area at concentrations exceeding calculated screening levels; and
- identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS or PFOA above the EPA HAs or PFBS above the regional screening level [RSL]) (EPA, May 2018).

The objectives of the SI were to identify any releases of AFFF that resulted in PFOS, PFOA, and/or PFBS contamination in the environment above the project screening levels and identify any possible human exposure to drinking water above the HA levels. This report does not include assessment of ecological exposure pathways, receptors, or risk from PFAS impacts to the environment. Confirmed releases may require further investigation to fully delineate the extent of contamination and perform a complete risk assessment that includes ecological receptors.

After publication of the site-specific QAPP addendum (ASL, August 2017), the USAF determined that more conservative screening levels were appropriate. Therefore, screening levels for PFOS and PFOA in soil and sediment were calculated using the EPA RSL calculator with a target hazard quotient (HQ) of 0.1. Appendix F presents the RSL calculations for soil and sediment based on a Tier 3 toxicity value reference dose of 0.00002 milligrams per kilogram per day derived by EPA in its drinking water HAs for

M2027.0003 8/8/18

PFOA (EPA, May 2016a) and PFOS (EPA, May 2016b). Screening levels for PFOS and PFOA in groundwater and surface water are based on EPA lifetime drinking water HAs for PFOA (EPA, May 2016a) and PFOS (EPA, May 2016b). A release was considered confirmed when exceedances of the following concentrations were identified.

PFOS:

- 0.07 micrograms per liter (μg/L) in groundwater (combined with PFOA value).
- 0.07 µg/L in surface water (combined with PFOA value).
- 126 micrograms per kilogram (µg/kg) in soil (calculated RSL values).
- 126 µg/kg in sediment (calculated RSL values).

PFOA:

- 0.07 μg/L in groundwater (combined with PFOS value).
- 0.07 μg/L in surface water (combined with PFOS value).
- 126 μg/kg in soil (calculated RSL).
- 126 µg/kg in sediment (calculated RSL).

Although PFOS and PFOA are the focus of the HA and provide specific targets for the USAF to address in this SI, the EPA has also derived RSLs for PFBS for which there is a Tier 2 toxicity value (Provisional Peer Reviewed Toxicity Value). The USAF also considers a release to be confirmed when exceedances of the following RSL concentrations (HQ = 0.1) are identified:

PFBS:

- 40 μg/L in groundwater/surface water.
- 130,000 µg/kg in residential soil/sediment.
- 13 μg/kg in soil leaching to groundwater.

PFOA, PFOS, and PFBS are herein referred to collectively as PFAS compounds.

Table 1 presents the screening values used for comparing the analytical results for each of the PFAS compounds.

Table 1 Regulatory Screening Values

		EPA Regional Screening Level Table (May 2018 HQ=0.1) ^a			Calculated Regional	EPA Health
Parameter	Chemical Abstracts Number	Residential Soil (µg/kg)	Soil Leaching to Ground- water (µg/kg)	Tap Water (µg/L)	Screening Levels for Soil and Sediment ^b (µg/kg)	Advisory for Drinking Water (Surface Water or Groundwater) (µg/L) ^c
Perfluorobutane sulfonate (PFBS)	29420-43-3	130,000	13	40	NL	NL
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	NL	126	0.07 ^d
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	NL	126	0.07

^aEPA Regional Screening Levels (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

μg/kg = micrograms per kilogram

 μ g/L = micrograms per liter

EPA = Environmental Protection Agency

HQ = hazard quotient

NL = not listed

^bScreening levels were calculated using the EPA Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgi-

bin/chemicals/csl_search). ^cEPA, May 2016a. *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* and EPA, May 2016b. *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)*. ^dWhen both PFOA and PFOS are present and the combined concentration of PFOA and PFOS are compared with the 0.07 µg/L health advisory level.

A preliminary assessment (PA) conducted in August 2015 identified two locations at F.E. Warren AFB where releases of AFFF may have occurred and further investigation was needed, as summarized on Table 2 (CH2M Hill, December 2015). An additional area that was identified in the PA but not recommended for inspection was also included in the SI at the request of AFCEC personnel. AFFF areas are discussed in Section 2.0 and are shown on Figure 2 in Appendix A. Media evaluated from the AFFF areas included surface soil, subsurface soil (collected in the vadose zone immediately above the water saturated-unsaturated soil interface), groundwater, surface water, and sediment.

Unless otherwise noted, this SI was conducted in accordance with the QAPP (ASL, March 2016) and the F.E. Warren AFB site-specific addendum to the QAPP (ASL, August 2017).

Table 2 AFFF Area and Selection Rationale for Site Inspections at F.E. Warren AFB

AFFF Area Number	AFFF Inspection Area	Associated Existing IRP Site ID	Rationale
1	Former FPTA 2	FT009	 Two bermed training pits where AFFF was used to extinguish training fires. Training pits were unlined. No retention ponds present.
2	Former FPTA 3	N/A	 One lined pit connected to an OWS and lined retention pond. AFFF was used to extinguish training fires in the lined pit. Liner beneath the training pit leaked.
3	Building 1247–Base Fuels	N/A	 Building has an active AFFF system with overhead lines. Floor drains in the building flow via underground pipes to an OWS then to the sanitary sewer and can be diverted from the OWS to a lined containment pond northeast of the building. A known release of AFFF occurred inside the building bay, but it is unclear if the AFFF went to the OWS or the lined containment pond. In the past, when the containment pond has filled with stormwater, water is pumped from the pond onto the grassy and gravel-covered areas surrounding the pond.

AFB = Air Force Base ID = identification OWS = oil/water separator AFFF = aqueous film forming foam IRP = Installation Restoration Program

FPTA = fire protection training area N/A = not applicable

2.0 AFFF AREA DESCRIPTIONS

The following installation information, geologic information, and site descriptions are taken from the QAPP addendum (ASL, August 2017). F.E. Warren AFB is west of Cheyenne in Laramie County, Wyoming. Cheyenne is the capital of Wyoming and has an estimated population of 60,000 residents, making it the largest city in the state. Topography in the area is characterized by rolling hills that are typical of the transition area between the eastern slope of the Rocky Mountains on the west and the high plains on the east. Land use surrounding the base ranges from agricultural to residential housing with Cheyenne to the east, and primarily agricultural areas to the north and west. The High Plains Aquifer is the principal source of water in the area. The base the Ogallala Formation comprises the upper part of the High Plains Aquifer.

F.E. Warren AFB, originally Fort D.A. Russell, was established in 1867 on the branch of the South Platte River, 3 miles west of what is today Cheyenne. Originally named in honor of Civil War Brigadier General David A. Russell, F.E. Warren AFB is the oldest continuously active military installation in the Air Force. It's home to the 90th Missile Wing and Headquarters, 20th Air Force, of Air Force Global Strike Command (ASL, August 2017).

Today, the Mighty Ninety operates 150 Minuteman III Intercontinental Ballistic Missiles on full alert 24 hours a day, 365 days a year. The 90th Missile Wing employs approximately 3,361 military members and 964 civilian employees. Family members of assigned military members add another approximately 5,445 to the local population. Also, approximately 5,000 military retirees reside in the area (ASL, August 2017).

Regional Geology

The majority of the region is underlain by Tertiary units of sedimentary origin that generally consist of sand, gravel, clay, siltstone, and limestone. These units are overlain by Quaternary sediments that include alluvial terrace and floodplain deposits. These sediments are generally unconsolidated and consist of lenticular beds of clay, silt, sand, gravel, and boulders (CH2M Hill, December 2015).

Beneath the base, the Tertiary-age (late Miocene) Ogallala unit is a heterogeneous mixture of sand and gravel beds, silt, clay, and thin limestone units. The beds are sometimes cemented by calcium carbonate. Lenses of sand and gravel are generally sporadic but consistently occur from the surface to a depth of about 10 feet below ground surface (bgs) in the southwestern part of the base. Below this depth, the predominant sediments are fine-grained, but sand and gravel still occur. The Ogallala is about 300 feet thick in the northern part of the base, thinning to the south to approximately 30 feet in valleys where it has been deeply eroded (CH2M Hill, December 2015).

2.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

Former Fire Protection Training Area (FPTA) 2 (also known as Installation Restoration Program [IRP] Site FT009 and Operable Unit [OU]-5) is in the central portion of the base, southeast of the intersection of Old Glory Road and Missile Drive. It is approximately 0.25 miles south of Crow Creek. A trichloroethylene (TCE) plume associated with OU-5 is beneath the area. FPTA 2 consisted of two unlined, bermed training pits that were used from 1965 to 1989. No retention ponds were present. Waste oils, solvents, hydraulic fluid, and other combustible liquids were used in training exercises until 1974. After that year, only jet propellant fuel number 4 (JP-4) was used in the training exercises. No fuel storage facilities were located at the area. Fire training exercises occurred twice per month and 300 to 400 gallons of JP-4 were used during each exercise. AFFF and water were used to extinguish fires from 1972 until the FPTA was closed in 1989. This site was considered to need no remedial action, as presented in *Final Record of Decision for Operable Unit 5* (USAF, September 1994). The location of Former FPTA 2 (AFFF Area 1) is included as Figure 3, Appendix A.

2.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

Former FPTA 3 is in the southwestern portion of the base and was active from 1990 to 2000. Former FPTA 3 consisted of an aircraft carcass in a polyethylene-lined training pit and a lined retention pond. The training pit was connected to an oil/water separator (OWS) and water was piped from the OWS to the lined retention pond. Former FPTA 3 was shut down in 2000 because one of the liners beneath the training pit developed a leak. AFFF was used in a limited capacity at Former FPTA 3. The liners for the pit and retention pond have been removed and the retention pond was filled in (CH2M Hill, December 2015). The location of the Former FPTA 3 is included as Figure 4 in Appendix A.

M2027.0003 8/8/18

2.3 BUILDING 1247-BASE FUELS (AFFF AREA 3)

Building 1247 is in the southwestern corner of the base on Post Road and Wyoming Avenue. Building 1247–Base Fuels was built in 1995 and has an active AFFF system with overhead lines. The AFFF tank size is unknown, but it is estimated it to be 200 to 300 gallons. A former TCE plume associated with OU-2 and OU-9 is beneath the area, as shown on Figure 5. Building 1247 is connected to a polyethylene-lined containment pond between Buildings 1240 and 1242 and spills can be diverted to this pond, as necessary. The pond liner was replaced with a new polyethylene liner in approximately 2013. When rainwater filled the pond, it was pumped out on to the grassy areas nearby (CH2M Hill, December 2015).

An AFFF leak occurred in the bay of Building 1247 when a pipe in the fire suppression system froze and broke; however, the year of the leak is not known. All AFFF was contained inside the hangar. Floor drains in this building discharge to an OWS and then to the sanitary sewer (which flows to a publicly owned treatment works) unless manually diverted to the containment pond. It is not clear if the valve to the containment pond was opened during the spill; however, the AFFF entered either the OWS and the sanitary sewer or the containment pond, where it would have been left to evaporate. The location of Building 1247–Base Fuels (AFFF Area 3) is shown on Figure 5, Appendix A.

3.0 FIELD ACTIVITIES AND FINDINGS

A readiness review (Appendix E) was conducted for all field personnel prior to mobilizing to the site. The readiness review covered anticipated hazards, types and proper use of equipment needed for the field activities, sampling procedures, and procedures to be used to prevent cross-contamination of samples with PFAS-containing compounds.

3.1 FIELD ACTIVITIES AND SAMPLING PROCEDURES

ASL completed soil sampling and groundwater monitoring well installation at former FE Warren between August 28, 2017, and September 6, 2017.

Soil borings were advanced with a track-mounted, compact sonic drill rig. Soil cores were collected by advancing a 4-inch, inner core barrel to the desired sample depth and overdrilling with a 6-inch outer casing. The core barrel and soil core were-retrieved, leaving the 6-inch outer casing to maintain the integrity of the borehole. Soil cores were then vibrated from the core barrel into plastic sleeves for logging, field screening, and sample collection. Prior to logging, slits were cut in the sample sleeve and the soil cores screened with a photoionization detector (PID). After recording the PID readings on the boring log, the soil core was measured and the recovered length recorded in the boring log. The sample sleeve was then opened and the core visually logged. All borings were logged by a trained geologist (with a degree from an accredited university) experienced in describing soil cores and overseen by a senior geologist. The soil descriptions were assigned in accordance with the *Geology Supplement to the Scope of Services* (USACE, June 2013) and followed this general format:

- Color (using Munsell soil color charts);
- Soil type (fat clay, lean clay, sand, silty gravel, etc.);
- Grading, grain size, consistency/density, moisture content, cementing;
- Other notable features (staining, organics, fossils, odors, etc.); and
- Unified Soil Classification System symbol (CH, CL, SP, GM, etc.).

Surface soil samples were collected from 0 to 6 inches bgs with stainless steel hand augers and stainless steel spoons. Surface soil samples were only analyzed for physiochemical parameters because the surface

soil is fill material related to the construction of the paved driveway leading to the tractor-trailer parking lot. Subsurface soil samples were collected from the soil core generated during sonic drilling, immediately above the water saturated/unsaturated soil interface. Composite surface and subsurface soil samples were submitted to CT Laboratories of Baraboo, Wisconsin, for physiochemical analyses. The physiochemical analyses included soil potential of hydrogen (pH) (EPA Method 9045D), particle size analysis (American Society for Testing and Materials D422), percent solids, and total organic carbon (TOC) content in soil (EPA Lloyd Kahn Method).

Nine groundwater monitoring wells were installed for this SI. The wells were constructed with 2-inch diameter, 10-foot-long Schedule 40 polyvinyl chloride (PVC) screens (continuous wrap 0.010-inch slot) and risers with flush-threaded joints. Sand filter packs were installed by tremieing sand through the outer sonic casing and vibrating it in place. Boring logs and well construction diagrams are included in Appendix E. Bentonite seals were allowed to hydrate for at least 24 hours (and typically up to 48 hours) before development. Each monitoring well was developed until the column of water in the well was free of visible sediment, and/or pH, temperature, turbidity, and specific conductivity stabilized. Well development was completed after bentonite seal hydration and before grouting. Well development logs are in Appendix E. Construction details for the new and existing wells are summarized in Table F-1 in Appendix F. Groundwater sampling was completed at least 24 hours after development.

Groundwater samples were collected with a peristaltic pump and disposable polyvinyl tubing using low-flow sampling methodology from two existing wells and the nine newly installed wells. Sediment samples were collected using a combination of dip samplers and stainless steel spoons. Surface water samples were collected directly from surface water bodies into the sample containers. Well development logs, groundwater sampling logs, and sample collection forms are included in Appendix E.

Surface water samples were collected directly from surface water bodies into the sample containers. At AFFF Area 2, one of the planned surface water samples (sample location FEWRN02-005) could not be collected because of dry conditions; therefore, the co-located sediment sample (FEWRN02-005-SD-001) was collected as a surface soil sample (FEWRN02-005-SS-001). Sediment samples were collected using stainless steel spoons. Surface water and sediment sampling forms are including in Appendix E.

Environmental samples were submitted via overnight courier to Maxxam Analytics International Corporation of Mississauga, Ontario, Canada, under chain of custody procedures. The samples were analyzed by modified EPA Method 537, *Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)*. Eighteen PFAS compounds are included in this analysis. Analytical results and a full list of the 18 compounds are in Appendix C. However, only the three analytes listed below have health-based screening levels associated with them.

Analyte	CAS Number
Perfluorobutane sulfonate (PFBS)	29420-43-3
 Perfluorooctanoic acid (PFOA) 	335-67-1
 Perfluorooctane sulfonate (PFOS) 	1763-23-1

CAS = Chemical Abstracts Service

Field duplicate samples were collected at a frequency of one for every 10 samples for each sample media. Matrix spike/matrix spike duplicate samples were collected at a frequency of one per every 20 samples for each media. Third-party Stage 2B validation was completed on 100% of the analytical data, and Stage 4 validation was completed on 10% of the results. Data validation qualifiers were applied, as needed, to the data. All results were evaluated as usable, and no determinations for the AFFF area were changed as a

result of quality control (QC)-qualified data. The data validation report and laboratory data sheets (which include analytical results for all 18 PFAS compounds) are in Appendix C.

Land survey was used to record the coordinates and surface elevations of the soil borings and the surface elevations and top-of-casing elevations of the groundwater monitoring wells. Survey data from a licensed surveyor provides an accuracy of one-hundredth of a foot (horizontal and vertical) for the soil borings and monitoring wells. Northing and easting coordinates were recorded in U.S. survey feet using the Wyoming State Plane East Zone 83-2011 coordinate system. Elevations were recorded referenced to the North American Vertical Datum 1988. Surface water and sediment sample locations were recorded with a Trimble[®] Geo 7X handheld global positioning system (GPS) unit. Post-processed horizontal data collected with the Trimble[®] Geo 7X is accurate to sub-meter intervals. Survey data for the monitoring wells are included in Table F-1. Locations collected with the handheld GPS are included in Table F-2.

Sample locations, area-specific lithology, groundwater flow direction, analytical results, and conclusions for AFFF Area 1 are presented in Section 3.3.

3.2 PFAS CROSS-CONTAMINATION AVOIDANCE PROCEDURES

Field personnel complied with PFAS cross-contamination avoidance procedures and considerations, which are included in ASL Standard Operating Procedure 028, Field Sampling Protocols to Avoid Cross-Contamination at Perfluorinated Compounds (PFCs) Sites.

3.2.1 Field Equipment

- Teflon®-containing materials (Teflon® tubing, bailers, tape, plumbing paste, or other Teflon® materials) were not used because Teflon® contains fluorinated compounds.
- High-density polyethylene (HDPE) and silicon materials are acceptable.
- Peristaltic pumps were used to sample groundwater for all wells at FE Warren.
- Field notes were recorded in a bound logbook that did not have waterproof paper.
- All personnel changed gloves between recording and sampling activities to prevent crosscontamination.
- Post-It Notes® were not allowed on site.
- Only Sharpie[®] brand markers were used. Pens were used to document field activities in the logbooks and on field forms, to label sample containers, and to prepare the chains of custody.
- Chemical (blue) ice packs were not used to store samples, food, or drinks.

3.2.2 Field Clothing and Personal Protective Equipment (PPE)

- The sampling personnel wore field clothing made of synthetic and natural fibers (preferably cotton). The clothing had to have been laundered at least six times without using a fabric softener since it was purchased. New clothing was not allowed because it could contain PFAS-related treatments.
- Only rain gear made from polyurethane and wax-coated materials was allowed.
- Clothing or boots containing Gore-TexTM was not allowed because it consists of a PFAS membrane.
- Tyvek® clothing was not allowed on-site because it contains fluorinated compounds.
- Disposable nitrile gloves were worn at all times when field activities were being conducted, and a new pair was donned prior to the following activities at each sample location:
 - o Decontamination of reusable sampling equipment;

- o Contact with sample bottles or water containers;
- Insertion of anything into the well (HDPE tubing, HydraSleeve[®] bailer, etc.);
- Insertion of silicon tubing into the peristaltic pump;
- o Completion of monitor well purging;
- o Sample collection; and
- Handling of any quality assurance/QC samples, including field blanks and equipment blanks.
- A new pair of nitrile gloves were worn after handling any non-dedicated sampling equipment, after contact with surfaces that had not been decontaminated, or when field personnel thought it was necessary.

3.2.3 Sample Containers

- All samples were collected in polypropylene or HDPE bottles with screw caps made of the same materials. The liners of lined screw caps were not made of Teflon® and did not contain PFAS.
- Glass sample containers were not used.
- Container labels were completed using a Sharpie[®] pen after the caps had been placed on each bottle.

3.2.4 Wet Weather

- Field personnel who were sampling during wet weather (such as rainfall or snowfall) wore appropriate clothing that did not pose a risk of cross-contamination. Sampling personnel avoided synthetic gear treated with water-repellant finishes containing PFAS. Only rain gear made from polyurethane and wax-coated materials was allowed.
- Field personnel wore gloves when erecting or moving a gazebo tent overtop used for protection from rain at sampling locations because the canopy material may have been treated with a PFAS-based coating. Gloves were changed immediately after handling the tent, and any further contact with the tent was avoided until all sampling activities were finished and the team was ready to move on to the next sample location.

3.2.5 Equipment Decontamination

Field sampling equipment, including oil/water interface meters and water level indicators, were decontaminated using Alconox® or Liquinox® soap. Decon 90® was not used during decontamination activities. Laboratory-certified PFAS-free water was used for the final decontamination rinse of sampling equipment. Larger equipment, such as drill rigs, was decontaminated using potable water and a high-pressure washer and then rinsed with potable water.

3.2.6 Personnel Hygiene

- Field personnel did not use cosmetics, moisturizers, hand cream, or other related products as part of their personal hygiene routine before a sampling event because these products may contain surfactants and be a potential source of PFAS.
- Because many manufactured sunblock and insect repellants contain PFAS, only sunblock and insect repellants that contain 100% natural ingredients were allowed.
- For restroom breaks, field personnel left the exclusion zone (EZ) before removing PPE. Before returning to the EZ, field personnel washed as normal, allowing extra time to rinse with water after using soap. Field personnel used a mechanical dryer to avoid using paper towels if possible.

3.2.7 Food Considerations

Field personnel did not eat or drink inside the EZ.

3.2.8 Visitors

Site visitors remained outside the EZ during all sampling activities.

3.3 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

3.3.1 Sample Locations

Surface and subsurface soil samples were collected from three boring locations, two within the perimeter of the former unlined burn pit in the northeast portion of the AFFF area and the other within the perimeter of southwestern former unlined burn pit. Two groundwater monitoring wells (FEWRN01-MW001 and FEWRN01-MW002) were installed in borings FEWRN01-001 and FEWRN01-003, respectively. Groundwater samples were collected from the newly installed wells and two existing wells (MW-070 and MW-071) located north and west, respectively, of FPTA 2. Surface water and sediment samples were collected from two locations northeast of Former FPTA 2: one from the inlet to a drainage culvert that drains surface water from Former FPTA 2 northeast to Crow Creek, and one from the confluence of the drainage ditch and Crow Creek. Sampling locations for AFFF Area 1 are shown on Figure 3 (Appendix A).

3.3.2 Lithology and Soil Description

Borings FEWRN01-001, FEWRN01-002, and FEWRN01-003 were drilled to total depths of 20.0 feet bgs, 20.0 feet bgs, and 21.0 feet bgs, respectively. The overlying unconsolidated soils are primarily very pale brown, clayey, fine-to-medium sands (SC) with varying soil depths; sandy lean clay interbedded with sand (CL); and fine- to coarse-grained, clayey gravel (GC) overlying medium- to coarse-grained sandstone. During drilling bedrock was encountered at 13 feet bgs in FEWRN01-001 and at 20 feet bgs in FEWRN01-003. Bedrock was not encountered in FEWRN01-002. Detailed boring logs for AFFF Area 1 are included in Appendix E.

3.3.3 Groundwater Flow

Groundwater depths were measured at AFFF Area 1 on September 5, 2017, as summarized on Table G-1 in Appendix G. Based on depth-to-groundwater measurements in monitoring wells FEWRN01-MW001, FEWRN01-MW002, MW-070, and MW-071, the groundwater elevations were calculated at 6117.48 feet above mean sea level (amsl), 6121.44 feet amsl, 6120.92 feet amsl, and 6114.21 feet amsl, respectively. Depth to groundwater ranges between 9.63 and 13.99 feet below top of casing (btoc). Groundwater flow is to the north-northeast, as shown on Figure 3 in Appendix A.

3.3.4 Analytical Results

Groundwater

PFBS, PFOA, and PFOS were detected in the four primary groundwater samples and one field duplicate groundwater sample collected from four monitoring wells (FEWRN01-MW001, FEWRN01-MW003, MW-070, and MW-071). PFBS concentrations in all five samples were below the screening level. PFOA, PFOS, and the combined PFOA and PFOS concentrations exceeded the screening levels in all five

samples. Groundwater analytical results are summarized in Table 3 and are shown on Figure 6 in Appendix A.

Table 3 AFFF Area 1 – Former Fire Protection Training Area 2, Groundwater Analytical Results

Analyte	Sample ID	FEWRN01- 001-GW- 015	FEWRN01- 003-GW- 015	FEWRN01- 003-GW- 915 (duplicate)	FEWRN01- MW-070- GW-020	FEWRN01- MW071- GW-020
·	Screening Level (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)
Perfluorobutane sulfonate (PFBS)	40ª	11	0.97	1.1	1.7	0.39
Perfluorooctanoic acid (PFOA)	0.07 ^b	72	0.43	0.48	5.4	0.24
Perfluorooctane sulfonate (PFOS)	0.07 ^b	64	2.5	3.2	6.0	0.35
PFOS + PFOA ^c	0.07^{b}	136	2.93	3.68	11.4	0.59

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte detected above screening level.

 μ g/L = micrograms per liter

GW = groundwater

ID = identification

Surface Water

Two primary and one duplicate surface water samples were collected from downgradient drainage locations. PFBS, PFOA, and PFOS were detected in all three samples, but the concentrations of PFBS did not exceed the screening levels in any of the samples. PFOA and PFOS concentrations exceeded the screening level in FEWRN01-005-SW-001 and its field duplicate. The combined PFOA and PFOS concentrations exceeded screening levels in all three samples. Surface water sample analytical results are summarized in Table 4 and are shown on Figure 6 in Appendix A.

Table 4 AFFF Area 1 – Former Fire Protection Training Area 2, Surface Water Analytical Results

	Sample ID	FEWRN01- 004-SW-001	FEWRN01- 005-SW-001	FEWRN01- 005-SW-901 (duplicate)
Analyte	Screening Level (µg/L)	Result (μg/L)	Result (μg/L)	Result (μg/L)
Perfluorobutane sulfonate (PFBS)	40 ^a	0.013 J	0.13	0.13
Perfluorooctanoic acid (PFOA)	$0.07^{\rm b}$	0.043	0.33	0.33
Perfluorooctane sulfonate (PFOS)	$0.07^{\rm b}$	0.045	1.2	1.2
PFOS + PFOA°	$0.07^{\rm b}$	0.088	1.53	1.53

Bold values indicate analyte detected at concentration indicated.

Shaded cells indicate analyte detected above screening level.

 $\mu g/L = micrograms per liter$

ft = foot

ID = identification

J = reported concentration is an estimated value

SW = surface water

^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

^eEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

^eEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

Surface Soil

Three primary and one field duplicate surface soil samples were collected from three boring locations. PFBS was detected in the three primary samples and exceeded the soil leaching to groundwater screening level at FEWRN01-001-SS-001. PFOA was detected in all three primary and one duplicate samples. The PFOA concentration in the primary sample FEWRN01-001-SS-001 was detected above the screening level. PFOS was also detected in all four samples and the concentrations in FEWRN01-001-SS-001 and FEWRN01-002-SS-001 were detected above the screening level. Surface soil analytical results are summarized in Table 5 and shown on Figure 7 in Appendix A.

Table 5 AFFF Area 1 – Former Fire Protection Training Area 2, Surface Soil Analytical Results

	Sample ID	FEWRN01- 001-SS-001	FEWRN01- 002-SS-001	FEWRN01- 003-SS-001	FEWRN01- 003-SS-901 (duplicate)
Analyte	Depth (ft)	0-0.5	0-0.5	0-0.5	0-0.5
	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000°	3,600	0.59 J	0.59 J	0.52 U
Perfluorooctanoic acid (PFOA)	126 ^b	50,000	2.2	2.2	2.0
Perfluorooctane sulfonate (PFOS)	126 ^b	3,400	140	62	71

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte detected above screening level.

μg/kg = micrograms per kilogram

ft = foot/feet

ID = identification SS = surface soil J = Reported concentration is an estimated value.

U = Analyte was not detected above the reported value.

Subsurface Soil

Three primary subsurface samples and one duplicate sample were collected from three soil borings. PFBS, PFOA, and PFOS were detected in the three primary samples at concentrations below the screening level. PFOS was detected in the duplicate sample below the screening level. Subsurface soil analytical results are summarized in Table 6 and shown on Figure 7 in Appendix A.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

Table 6 AFFF Area 1 - Former Fire Protection Training Area 2, Subsurface Soil Analytical Results

	Sample ID	FEWRN01- 001-SO-018	FEWRN01- 002-SO-018	FEWRN01- 003-SO-016	FEWRN01- 003-SO-916 (duplicate)
Analyte	Depth (ft)	18–19	18–19	16–17	16–17
	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (μg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000°	0.64 J	1.3	0.65 J	0.66 U
Perfluorooctanoic acid (PFOA)	1,26 ^b	2.8	6.0	0.94 J	0.66 U
Perfluorooctane sulfonate (PFOS)	1,26 ^b	4.0	20	0.80 J	0.51 J

Bold values indicate analyte detected at concentration indicated.

 μ g/kg = micrograms per kilogram ft = foot/feet

Foot/feet ID = identification J = Reported concentration is an estimated value.

SO =subsurface soil U =Analyte was not detected above the reported value.

Soil Physiochemical Analyses

One composite surface soil sample and one composite subsurface soil sample were collected from soil borings completed at AFFF Area 1 and analyzed for pH, TOC, percent solids, and grain size. The surface soil sample FEWRN01-006-SS-001 was composed of equal aliquots of soil collected from borings FEWRN01-001, FEWRN01-002, and FEWRN01-003 from the 0–6-inch interval. Similarly, the subsurface soil sample FEWRN01-006-SO-017 was composed of equal aliquots of soil collected from soil borings FEWRN01-001, FEWRN01-002, and FEWRN01-003 from 16 feet bgs to 19 feet bgs. Table D-1 (summarizing physiochemical data) and laboratory data sheets are included in Appendix D.

Sediment

Two primary and one duplicate sediment samples were collected from downgradient drainage locations. PFBS was not detected in the samples. PFOA was detected in the primary and field duplicate samples collected from FEWRN01-005 at concentrations below the screening level. PFOS was detected in all three samples at concentrations below the screening level. Sediment sample analytical results are summarized in Table 7 and shown on Figure 7 in Appendix A.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

Table 7 AFFF Area 1 – Former Fire Protection Training Area 2, Sediment Analytical Results

	Sample ID	FEWRN01-004- SD-001	FEWRN01-005- SD-001	FEWRN01-005- SD-901 (duplicate)
Analyte	Depth (ft)	0-0.5	0-0.5	0-0.5
	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (μg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000°	0.72 U	0.66 U	0.84 U
Perfluorooctanoic acid (PFOA)	126 ^b	0.72 U	0.63 J	0.56 J
Perfluorooctane sulfonate (PFOS)	126 ^b	1.1 J	5.2 J	1.9 J

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels for Resident Soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening levels calculated using the EPA Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). ^cEPA Regional Screening Levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

(mups://www.epa.gov/risk/regional-screening-levels-rsis-generic-table

 $\mu g/kg = micrograms$ per kilogram ft = feet ID = identification J = Reported concentration is an estimated value.

SD = sediment U = Analyte was not detected above the reported value.

3.3.5 Conclusions

Operations at the Former FPTA 2 have resulted in detections of PFAS in surface soil, subsurface soil, groundwater, surface water, and sediment. However, only PFAS concentrations in surface soil, groundwater, and surface water exceeded the screening levels.

3.4 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

3.4.1 Sample Locations

Surface soil samples were not collected from the soil boring locations at former FPTA 3 because the area had been filled with a soil-gravel mix after operations at the FPTA had been ceased. Subsurface soil samples were collected from soil borings at four locations at Former FPTA 3. One boring, FEWRN02-001, is on the western side of the FPTA 3. Location FEWRN02-002 is within the perimeter of the former training pit in the southern portion of the AFFF area. Boring FEWRN02-003 is located on eastern side of Former FPTA 3 and FEWRN02-004 is within the footprint of the retention pond. A monitoring well was installed in each boring and groundwater samples were collected from these newly installed wells (FEWRN02-MW001, FEWRN02-MW002, FEWRN02-MW003, and FEWRN02-MW004). Surface water and sediment samples (location FEWRN02-006) were collected from Crow Creek, northeast of Former FPTA 2. Surface water was not present at FEWRN02-005 at the inlet to a culvert that drains FPTA 3 northeast to Crow Creek; therefore, a surface soil sample was collected at this location in lieu of a sediment/surface water sample. Sampling locations for AFFF Area 2are shown on Figure 4 (Appendix A).

3.4.2 Lithology and Soil Description

Borings FEWRN02-001, FEWRN02-002, FEWRN02-003, and FEWRN02-004 were drilled to total depths of 30.0 feet bgs, 40.0 feet bgs, 35.0 feet bgs, and 30.0 feet bgs, respectively. The soils varied from sandy, lean clay (CL); clayey sand (SC); and fat clay (CH). Detailed boring logs for AFFF Area 2 are included in Appendix E.

3.4.3 Groundwater Flow

Groundwater depths were measured at AFFF Area 2 on September 5, 2017, as summarized on Table G-1 in Appendix G. Based on depth-to-groundwater measurements in monitoring wells FEWRN02-MW001, FEWRN02-MW002, FEWRN02-MW003, and FEWRN02-MW004, the groundwater elevations were calculated at 6136.13 feet amsl, 6136.64 feet amsl, 6132.90 feet amsl, and 6132.74 feet amsl, respectively. Depth to groundwater ranges between 13.78 and 15.84 feet btoc. Groundwater flow is to the southeast, as shown on Figure 4 in Appendix A.

3.4.4 Analytical Results

Groundwater

PFBS, PFOA, and PFOS were detected in the four primary groundwater samples collected from four monitoring wells (FEWRN02-MW001, FEWRN02-MW002, FEWRN02-MW003, and FEWRN02-MW004). PFBS concentrations in all four samples were below the screening level. PFOA concentrations in two samples (FEWRN02-003-GW-030 and FEWRN02-004-GW-024) exceeded the screening level. PFOS and the combined PFOA and PFOS concentrations exceeded the screening levels in all four samples. Groundwater analytical results are summarized in Table 8 and are shown on Figure 8 in Appendix A.

Table 8 AFFF Area 2 - Former Fire Protection Training Area 3, Groundwater Analytical Results

	Sample ID	FEWRN02- 001-GW-025	FEWRN02- 002-GW-033	FEWRN02- 003-GW-030	FEWRN02- 004-GW-024
Analyte	Screening Level (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)
Perfluorobutane sulfonate (PFBS)	40a	0.074	0.022	3.2	3.7
Perfluorooctanoic acid (PFOA)	$0.07^{\rm b}$	0.031	0.029	0.95	1.1
Perfluorooctane sulfonate (PFOS)	$0.07^{\rm b}$	0.72	0.91	17	19
PFOS + PFOA ^c	$0.07^{\rm b}$	0.751	0.939	17.95	20.1

Bold values indicate analyte detected at concentration indicated. Shaded values indicate analyte detected above screening level. aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

GW = groundwater

ID = identification

Surface Water

According to the QAPP, two surface water samples were planned to be collected from the AFFF area; however, one location (FEWRN-02-005) was dry. PFAS were not detected in the samples above the laboratory method detection limit (MDL). Surface water sample analytical results are summarized in Table 9 and shown on Figure 8 in Appendix A.

^bScreening Level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

^cEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

 $[\]mu$ g/L = micrograms per liter

Table 9 AFFF Area 2 – Former Fire Protection Training Area 3, Surface Water Analytical Results

	Sample ID	FEWRN02-006-SW-001
	Depth (ft)	0-0.5
Analyte	Screening Level (µg/L)	Result (µg/L)
Perfluorobutane sulfonate (PFBS)	40ª	0.010 U
Perfluorooctanoic acid (PFOA)	0.07 ^b	0.010 U
Perfluorooctane sulfonate (PFOS)	0.07 ^b	0.010 U
PFOS + PFOA°	0.07 ^b	ND

^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

 $\mu g/L = micrograms per liter$

ft = foot/feet

ID = identification

ND = not detected

SW = surface water

U = Analyte was not detected above the reported value.

Surface Soil

The QAPP called for the collection of both a surface water and sediment sample to be obtained at sample location FEWRN02-005; however, the surface water sample location was dry. Because of the field condition change, the sample matrix was re-categorized as a surface soil sample (FEWRN02-005-SS-001). PFBS, PFOA, and PFOS were detected in this sample at concentrations below the screening level. Surface soil analytical results are summarized in Table 10 and shown on Figure 9 in Appendix A.

Table 10 AFFF Area 2 – Former Fire Protection Training Area 3, Surface Soil Analytical Results

	Sample ID	FEWRN02-005-SS-001
	Depth (ft)	0-0.5
Analyte	Screening	Result
	Level	κesuit (μg/kg)
	(μg/kg)	(μg/kg)
	13°	2.9
Perfluorobutane sulfonate (PFBS)	130,000a	2.9
Perfluorooctanoic acid (PFOA)	126 ^b	2.0
Perfluorooctane sulfonate (PFOS)	126 ^b	38

Bold values indicate analyte detected at concentration indicated.

 $\mu g/kg = micrograms per kilogram$

ft = foot/feet

ID = identification

SS = surface soil

Subsurface Soil

Four primary subsurface samples were collected from four soil borings. PFBS was detected in two primary samples at concentrations below the screening level. PFOA was also detected in two primary samples at concentrations below the screening level. PFOS was detected in three primary samples below the screening level. Subsurface soil analytical results are summarized in Table 11 and shown on Figure 9 in Appendix A.

^cEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

^cEPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

Table 11 AFFF Area 2 – Former Fire Protection Training Area 3, Subsurface Soil Analytical Results

	Sample ID	FEWRN02- 001-SO-028	FEWRN02- 002-SO-031	FEWRN02- 003-SO-031	FEWRN02- 004-SO-013
Analyte	Depth (ft)	28–29	31–32	31–32	13–14
	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (μg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000°	0.66 U	0.66 U	0.76 J	1.1 J
Perfluorooctanoic acid (PFOA)	126 ^b	0.66 U	0.66 U	0.45 J	0.98 J
Perfluorooctane sulfonate (PFOS)	126 ^b	0.66 U	0.80 J	3.2	82

Bold values indicate analyte detected at concentration indicated.

 $\mu g/kg = micrograms per kilogram$

ID = identification

ft = foot/feet

ID = identification SO = subsurface soil J = Reported concentration is an estimated value.

U = Analyte was not detected above the reported value.

Soil Physiochemical Analyses

A composite subsurface soil sample was collected from soil borings completed at AFFF Area 2 and analyzed for pH, TOC, percent solids, and grain size. The soil sample FEWRN02-007-SS-031 was composed of equal aliquots of soil collected from borings FEWRN02-001, FEWRN02-002, FEWRN02-003, and FEWRN02-004 from 13 feet bgs to 32 feet bgs. A composite surface soil sample was not collected from AFFF Area 2 boring locations because when this FPTA was decommissioned in 2007, the retention pond and OWS were excavated and the area backfilled. Table D-1 (summarizing physiochemical data) and laboratory data sheets are included in Appendix D.

Sediment

One primary sediment sample was collected from a downgradient drainage location. PFAS were not detected in the samples above the laboratory MDL. Sediment sample analytical results are summarized in Table 12 and shown on Figure 9 in Appendix A.

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

^c EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

Table 12 AFFF Area 2 – Former Fire Protection Training Area 3, Sediment Analytical Results

	Sample ID	FEWRN02-006-SD-001
	Depth (ft)	0-0.5
Analyte	Screening Level (µg/kg)	Result (μg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000°	0.66 U
Perfluorooctanoic acid (PFOA)	126 ^b	0.66 U
Perfluorooctane sulfonate (PFOS)	126 ^b	0.66 U

^aEPA regional screening levels for resident soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables)

 μ g/kg = micrograms per kilogram

ft = foot/feet

ID = identification

SD = sediment

U = Analyte was not detected above the reported value.

3.4.5 Conclusions

Operations at Former FPTA 3 have resulted in detections of PFAS in surface soil, subsurface soil, and groundwater. However, only PFAS concentrations in groundwater exceeded the screening levels.

3.5 BUILDING 1247-BASE FUELS (AFFF AREA 3)

3.5.1 Sample Locations

Surface and subsurface soil samples were collected from soil borings at four locations around the retention pond that holds Building 1247 floor drainage. The retention pond is northeast of the building. The borings were located roughly at the corners of the retention pond starting at the southwest corner (FEWRN03-001) and continuing counterclockwise (FEWRN03-002, southeast corner; FEWRN03-003, northeast corner) to the northwest corner (FEWRN03-004). Monitoring wells FEWRN03-MW001, FEWRN03-MW002, and FEWRN03-MW003 were installed in three of the borings of corresponding boring holes, and groundwater samples were collected from the newly installed wells. Sampling locations for AFFF Area 3 are shown on Figure 5 (Appendix A).

3.5.2 Lithology and Soil Description

Borings FEWRN03-001, FEWRN03-002, FEWRN03-003, and FEWRN03-004 were drilled to total depths of 26.1 feet bgs, 26.0 feet bgs, 35.0 feet bgs, and 30.0 feet bgs, respectively. The soils varied from sandy, lean clay (CL) and clayey sand (SC). Detailed boring logs for AFFF Area 3 are included in Appendix E.

3.5.3 Groundwater Flow

Groundwater depths were measured at AFFF Area 3 on September 5, 2017, as summarized on Table G-1 in Appendix G. Based on depth-to-groundwater measurements in monitoring wells FEWRN03-MW001, FEWRN03-MW002, and FEWRN03-MW003, the groundwater elevations were calculated at 6146.04

⁶Screening levels calculated using the EPA Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

^c EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

feet amsl, 6145.15 feet amsl, and 6145.53 feet amsl, respectively. Depth to groundwater ranges between 8.42 and 9.44 feet btoc. Groundwater flow is to the east, as shown on Figure 5 in Appendix A.

3.5.4 Analytical Results

Groundwater

PFBS, PFOA, and PFOS were detected in the three primary and one field duplicate groundwater samples collected from three monitoring wells (FEWRN03-MW001, FEWRN03-MW002, and FEWRN03-MW003). PFBS concentrations in all four samples were below the screening level. PFOA, PFOS, and the combined PFOA and PFOS concentrations in all four samples exceeded the screening levels. Groundwater analytical results are summarized in Table 13 and are shown on Figure 10 in Appendix A.

Table 13 AFFF Area 3 - Building 1247-Base Fuels, Groundwater Analytical Results

	Sample ID	FEWRN03- 001-GW- 020	FEWRN03- 002-GW- 020	FEWRN03- 003-GW- 020	FEWRN03- 003-GW-920 (duplicate)
Analyte	Screening Level (µg/L)	Result (µg/L)	Result (µg/L)	Result (µg/L)	Result (μg/L)
Perfluorobutane sulfonate (PFBS)	40ª	0.16 J	0.38	0.31	0.36
Perfluorooctanoic acid (PFOA)	0.07 ^b	0.16 J	0.26	0.59	0.66
Perfluorooctane sulfonate (PFOS)	0.07 ^b	0.82	0.72	1.3	1.7
PFOS + PFOA ^c	0.07 ^b	0.98 J	0.98	1.89	2.36

Bold values indicate analyte detected at concentration indicated. Shaded values indicate analyte detected above screening level. ^aEPA regional screening level for tap water, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening level listed in *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* (EPA, May 2016a) and *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)* (EPA, May 2016b).

 $\mu g/L = micrograms \ per \ liter$

GW = groundwater

ID = identification

J = Reported concentration is an estimated value.

Surface Soil

Four primary surface soil samples were collected from four boring locations. PFBS was detected in three samples at concentrations below the screening level. PFOA was detected in all four primary samples at concentrations below the screening level. PFOS was also detected in the four samples, and the concentrations in FEWRN03-001-SS-001 and FEWRN03-004-SS-001 were detected above the screening level. Surface soil analytical results are summarized in Table 14 and shown on Figure 11 in Appendix A.

^b EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^eEPA recommends comparing the combined analytical results for PFOA and PFOS when both are present.

Table 14 AFFF Area 3 – Building 1247–Base Fuels, Surface Soil Analytical Results

	Sample ID	FEWRN03- 001-SS-001	FEWRN03- 002-SS-001	FEWRN03- 003-SS-001	FEWRN03- 004-SS-001	
Analyte	Depth (ft)	0-0.5	0-0.5	0-0.5	0-0.5	
Amaryte	Screening Level (µg/kg)	Result (μg/kg)	Result (μg/kg)	Result (μg/kg)	Result (μg/kg)	
Perfluorobutane sulfonate (PFBS)	13° 130,000°	0.35 J	0.53 U	0.41 J	7.6 J	
Perfluorooctanoic acid (PFOA)	126 ^b	0.64 J	0.38 J	1.5	8.7 J	
Perfluorooctane sulfonate (PFOS)	126 ^b	130	22	73	1,600	

Bold values indicate analyte detected at concentration indicated. Shaded values indicate analyte detected above screening level. aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

μg/kg = micrograms per kilogram

ft = foot/feet

ID = identification SS = surface soil J = Reported concentration is an estimated value.

Subsurface Soil

Four primary subsurface samples and one field duplicate sample were collected from four soil borings. PFBS was detected in three primary samples and the field duplicate at concentrations below the screening level. PFOA was detected in the two primary samples and the field duplicate sample at concentrations below the screening level. PFOS was detected in one primary sample below the screening level. Subsurface soil analytical results are summarized in Table 15 and shown on Figure 11 in Appendix A.

Table 15 AFFF Area 3 - Building 1247-Base Fuels, Subsurface Soil Analytical Results

	Sample ID	FEWRN03- 001-SO-008	FEWRN03- 002-SO-007	FEWRN03- 003-SO-008	FEWRN03- 003-SO-908 (duplicate)	FEWRN03- 004-SO-008
Analyte	Depth (ft)	8–9	7–8	8–9	8–9	8–9
	Screening Level (μg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	13° 130,000°	0.43 J	0.53 U	0.55 J	0.81 J	0.37 J
Perfluorooctanoic acid (PFOA)	126 ^b	0.66 U	0.34 J	0.53 J	0.50 J	0.53 U
Perfluorooctane sulfonate (PFOS)	126 ^b	0.66 U	11	0.78 U	0.72 U	0.53 U

Bold values indicate analyte detected at concentration indicated.

 $\mu g/kg = micrograms per kilogram$

ft = foot/feet ID = identification

J = Reported concentration is an estimated value.

SO = subsurface soil

U = Analyte was not detected above the reported value.

^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

^c EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

^aEPA regional screening levels for residential soil, May 2018 (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). ^bScreening levels were calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). ^c EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

Soil Physiochemical Analyses

A composite surface soil sample was collected from soil borings completed at AFFF Area 3 and analyzed for pH, TOC, percent solids, and grain size. The soil sample FEWRN03-005-SS-001 was composed of equal aliquots of soil collected from borings FEWRN03-001, FEWRN03-002, FEWRN03-003, and FEWRN03-004 from the 0–6-inch interval. Similarly, the subsurface soil sample FEWRN03-005-SO-008 was composed of equal aliquots of soil collected from soil borings FEWRN03-001, FEWRN03-002, FEWRN03-003, and FEWRN03-004 from 7 feet bgs to 9 feet bgs. Table D-1 (summarizing physiochemical data) and laboratory data sheets are included in Appendix D.

3.5.5 Conclusions

Operations at the Building 1247–Base Fuels have resulted in detections of PFAS in surface soil, subsurface soil, and groundwater. However, only PFAS concentrations in surface soil and groundwater exceeded the screening levels.

3.6 INVESTIGATION-DERIVED WASTE

The USAF has awarded a separate contract to others for the removal and proper disposal of soil and water investigation-derived waste generated during this SI. Waste soil and water generated during soil boring installation and monitoring well purging were placed in Department of Transportation-approved steel drums (twelve drums of soil and twelve drums of water) and stored at the base hazardous waste storage facility at Building 944 for waste sampling and proper disposal. A representative sample was collected from each media, submitted to CT Laboratories, and analyzed for PFAS, total petroleum hydrocarbons, toxicity (using the Toxicity Characteristic Leaching Procedure [TCLP] for the full TCLP list of analytes), flashpoint, pH, cyanide, and sulfide. These analytical results have been submitted to the USAF electronically

Construction Waste

Construction waste—such as paper, plastic, trash, and PPE—was placed in plastic garbage bags and placed in an on-site dumpster for disposal.

4.0 GROUNDWATER PATHWAY

4.1 F.E. WARREN AIR FORCE BASE HYDROGEOLOGY

The unconfined High Plains aquifer is the principal source for water supply wells in the area surrounding F.E. Warren AFB. Numerous wells near the base are used for domestic and livestock water supply. Depth to the water table in this area is variable, being at the land surface near streams that act as discharge areas and increasing in depth with distance from discharge areas (ASL, August 2017). In the southern portion of the base, the depth to the water table generally ranges from 10 to 40 feet bgs. The direction of groundwater flow in the shallow aquifer zone is generally toward Crow Creek, Diamond Creek, and the unnamed tributary to Crow Creek.

Groundwater beneath the base is recharged locally by some areal infiltration of precipitation despite the relatively dry climate. Groundwater is discharged into nearby streams via springs and seeps (CH2M Hill, December 2015).

Drinking water at the F.E. Warren AFB is obtained from the Cheyenne Public Utilities, which uses both groundwater and surface water sources. The city owns and operates about 35 groundwater wells west and northwest of Cheyenne. The wells pump from the Ogallala and White River Aquifers. Surface water is

collected from the Douglas Creek Drainage in the Snowy Range Mountains, about 75 miles west of Cheyenne. Surface water is also collected from the Crow Creek Drainage in the Pole Mountain/Vedauwoo area, about 30 miles west of Cheyenne. All drinking water sources used by the city of Cheyenne are upstream or upgradient of the F.E. Warren AFB watershed. There are 11 domestic water wells on-base and 733 wells within four miles downgradient of F.E. Warren—643 of which are designated for domestic use (Wyoming State Engineer's Office [WSEO], 2017a). Figure 12 (Appendix A) is a generalized geologic map of F.E. Warren AFB.

4.2 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

As presented in Table 5 (Section 3.3.4), analytical results for one or more groundwater samples had combined PFOA and PFOS concentrations exceeding the screening level. These results indicate that the shallow groundwater at AFFF Area 1 has been impacted by the release of AFFF.

The population within a 4-mile radius of the location is approximately 32,580 (CH2M Hill, December 2015). The shallow groundwater at AFFF Area 1 generally flows to the northeast towards Crow Creek. There are multiple downgradient domestic water wells within a 4-mile radius of the base. The nearest downgradient drinking water well (Richardson Well #P36060.0W) is 1.21 miles east-northeast (side-downgradient) from AFFF Area 1 and is 24 feet deep. There are also six domestic wells less than 0.75 miles from the Former FPTA 2 (Permit Numbers P22531.0P, P29389.0W, P35731.0W, P48322.0W, P49156.0W, and P85408.0W) but are cross-gradient of the AFFF area. These wells have screened intervals ranging from 60 to 165 ft bgs. The nearest downgradient domestic wells are screened at approximately 20 feet bgs within the unconfined aquifer; therefore, the groundwater exposure pathway may potentially be complete. Because of the proximity of nearby domestic-use water wells (less than 4 miles), PFAS concentrations in groundwater at AFFF Area 1 may pose an immediate risk to human health.

4.3 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

As presented in Table 10 (Section 3.4.4), analytical results for one or more groundwater samples had combined PFOA and PFOS concentrations exceeding the screening levels. These results indicate that the shallow groundwater at AFFF Area 2 has been impacted by the release of AFFF.

The population within a 4-mile radius of the location is approximately 32,580 (CH2M Hill, December 2015). The shallow groundwater at AFFF Area 2 generally flows to the southeast. There are six downgradient domestic wells approximately 1.7 miles from the Former FPTA 3 (Permit Numbers P22531.0P, P29389.0W, P35731.0W, P48322.0W, P49156.0W, and P85408.0W) and multiple downgradient domestic water wells within a 4-mile radius of the base. Although the downgradient domestic wells are screened between 60 and 165 feet bgs, deeper than the new monitoring wells at FPTA 3, the aquifer in which they are completed is unconfined; therefore, the groundwater exposure pathway may potentially be complete. Because of the proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 2 may pose an immediate risk to human health.

4.4 BUILDING 1247–BASE FUELS (AFFF AREA 3)

As presented in Table 13 (Section 3.5.4), analytical results for one or more groundwater samples had combined PFOA and PFOS concentrations exceeding the screening levels. These results indicate that the shallow groundwater at AFFF Area 3 has been impacted by the release of AFFF.

M2027.0003 8/8/18

The population within a 4-mile radius of the location is approximately 32,580 (CH2M Hill, December 2015). The shallow groundwater at AFFF Area 3 generally flows to the east. There are six downgradient domestic wells approximately 1.2 miles from Building 1247 (Permit Numbers P22531.0P, P29389.0W, P35731.0W, P48322.0W, P49156.0W, and P85408.0W) and multiple downgradient domestic water wells within a 4-mile radius of the base. Although the downgradient domestic wells are screened between 60 and 165 feet bgs, deeper than the new monitoring wells at AFFF Area 3, the aquifer in which they are completed is unconfined; therefore, the groundwater exposure pathway may potentially be complete. Because of the close proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 3 may pose an immediate risk to human health.

5.0 SURFACE WATER PATHWAY

Surface water at F.E. Warren AFB occurs as stream flow, seeps, and lakes. Stream flow results from groundwater discharge and from rainfall and snowmelt runoff. Crow Creek is the major perennial stream that drains southern areas of the base. Overall, Crow Creek is a gaining stream (that is, receives groundwater discharge) through the base area. Two tributaries to Crow Creek also drain the southern part of the base: an unnamed tributary and Diamond Creek. The unnamed tributary is an interrupted stream with alternating reaches that are perennial, intermittent, or ephemeral. Diamond Creek, the second largest stream on F.E. Warren AFB, is perennial along most of its length, with low flows maintained by groundwater discharge. The upper reach of Diamond Creek, approximately covering the first 300 yards on the base, is intermittent. Diamond Creek is also a gaining creek across the base except in periods of loss during the warmer months of July through September. These stream discharge losses are likely because of evaporation. Seeps contribute to stream flows in Crow Creek and its unnamed tributary throughout the year (ASL, August 2017).

The surface water at FPTA 2 and FPTA 3 either infiltrates the soil within these AFFF areas or via overland flow into the open ditches and stormwater control system surrounding the locations. Surface water collected in the open ditches and stormwater control systems flow into Crow Creek, approximately 1,100 feet northeast of FPTA 2 (AFFF Area 1) and less than 400 feet north of FPTA 3 (AFFF Area 2). Surface water is not a medium of concern at Building 1247 (AFFF Area 3).

There are 23 active surface water intake locations from Crow Creek within 15 miles downstream from the nearest AFFF area at F.E. Warren AFB. Of those 23 intakes, 10 are used for irrigation, seven for industrial purposes, four intakes for unknown purposes, one is temporary, and one is used for domestic purposes (WSEO, 2017b). The domestic-use intake, WSEO permit number P34840.0D, is located about 1,250 feet downstream from the base boundary.

5.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

As presented in Table 4 (Section 3.3.4) and shown on Figure 6, analytical results for one or more surface water samples had combined PFOA and PFOS concentrations exceeding the screening levels. These results indicate that the surface water at AFFF Area 1 has been impacted by the release of AFFF.

The surface water either infiltrates the soil of former FPTA 2 or migrates via overland flow into the open ditches and stormwater control system located to the northeast of the AFFF area. The ditch system empties into Crow Creek, which is approximately 1,100 feet away from the AFFF area. A domestic surface water intake is 1.6 miles downstream of the confluence of the ditch outfall and Crow Creek. Therefore, the human health exposure pathway for surface water may potentially be complete. Because of the close proximity of nearby domestic-use surface water intakes (less than 15 miles downstream), PFAS concentrations in surface water at AFFF Area 1 may pose an immediate risk to human health.

M2027.0003 8/8/18

5.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

As presented in Table 9 (Section 3.4.4) and shown on Figure 8, PFAS were not detected above the laboratory detection level in the surface water sample at AFFF Area 2; therefore, the surface water exposure pathway is incomplete.

5.3 BUILDING 1247-BASE FUELS (AFFF AREA 3)

Surface water was not a medium of concern at AFFF Area 3 because the release that occurred at Building 1247 was fully contained with the building and was either sent to the OWS and then through the sanitary sewer to a publicly owned sewer treatment plant or diverted to a lined retention pond and left to evaporate (ASL August, 2017). Additionally, there was no surface water body identified at or near AFFF Area 3.

6.0 SOIL, SEDIMENT, AND AIR PATHWAYS

The objective of SI soil and sediment sampling was to determine if these media in the individual areas had been impacted by the release of AFFF and whether PFAS concentrations remain in the soil or sediments at concentrations above the human health-based screening levels. Screening levels for soils are based on the residential exposure with an HQ of 0.1.

6.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

As presented in Tables 5, 6, and 7 (Section 3.3.4) and shown on Figure 7, analytical results for one or more surface soil samples for PFOA and PFOS concentrations exceeded the screening levels. PFBS also exceeded the soil leaching to groundwater limit; however, as described in Section 4.2, PFBS was not detected at levels above screening levels in groundwater. In subsurface soil and sediment samples at AFFF Area 1, PFAS was detected but at concentrations below the screening level. These results indicate that the surface soil, subsurface soil, and sediment at AFFF Area 1 have been impacted by the release of AFFF. The surface soil and air pathways at AFFF Area 1 are potentially complete. Site workers could be at risk for exposure from inhalation of surface soils.

6.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

Surface soil samples were not planned for collection at AFFF Area 2 because surface soil was determined not to be a medium of concern due to the placement of new soil and gravel throughout the area. However, at the time of the field sampling, surface water was not present in the storm sewer culvert—one of two surface water/sediment sampling locations. In accordance with the QAPP, a surface soil sample (FEWRN02-005-SS-001) was collected within the dry culvert in lieu of the surface water/sediment sample.

As presented in Tables 10, 11, and 12 (Section 3.4.4) and shown on Figure 9, PFAS concentrations were below the screening levels or below the laboratory detection levels in the soil and sediment samples. These results indicate that the surface soil, subsurface soil, and sediments at AFFF Area 2 have not been impacted above screening levels by the release of AFFF. In the absence of PFAS concentrations above the screening levels, the soil, sediment, and air exposure pathways at AFFF Area 2 are incomplete.

6.3 BUILDING 1247-BASE FUELS (AFFF AREA 3)

As presented in Tables 14 and 15 (Section 3.5.4) and shown in Figure 11, PFAS concentrations for one or more surface soil samples exceeded the screening level. This result indicates that the surface soil at AFFF

Area 3 has been impacted by the release of AFFF. These results indicate that the surface soil and subsurface soil AFFF Area 3 have been impacted by the release of AFFF. The surface soil and air pathways at AFFF Area 3 are potentially complete. Site workers could be at risk for exposure from inhalation of surface soils. Analytical results for subsurface soil was either below the screening level or below the laboratory detection limits. Sediments were not a medium of concern at AFFF Area 3.

7.0 UPDATES TO CONCEPTUAL SITE MODELS

The following sections summarize updated conceptual site models (CSMs) based on human health exposure pathways present in Sections 4, 5, and 6.

7.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

The CSM for Former FPTA 2 presented in the QAPP addendum (ASL, August 2017) identified surface soil, subsurface soil, groundwater, surface water, and sediment as media potentially impacted by previous releases of AFFF.

Based on the findings discussed in Sections 3.3.4 and 4.2, groundwater at the Former FPTA 2 has been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS impacted-groundwater represents a potentially complete human ingestion pathway due to the proximity of private domestic water wells.

In addition, based on findings discussed in Sections 3.3.4 and 5.1, surface water at the Former FPTA 2 has been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS-impacted surface water represents a potentially complete human ingestion pathway due to the presence of domestic surface water intakes downstream on Crow Creek.

Based on findings discussed in Sections 3.3.4 and 6.1, surface soil at the Former FPTA 2 has also been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS-impacted surface soil represents a potentially complete pathway. Because the area is vegetated and not heavily trafficked, the air pathway is incomplete at this area. Subsurface soil and sediment at the Former FPTA 2 were not impacted by PFAS above screening levels.

7.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

The CSM for the Former FPTA 3 presented in the QAPP addendum (ASL, August 2017) identified groundwater, subsurface soil, surface water, and sediment as media potentially impacted by previous releases of AFFF. Surface soil was sampled at one location in lieu of a surface water and sediment sample because the planned sampling location was dry.

Based on the findings discussed in Sections 3.4.4 and 4.3, groundwater at the Former FPTA 3 has been impacted by PFOA and PFOS at concentrations above the EPA HA. Therefore, PFAS-impacted groundwater represents a potentially complete human ingestion pathway due to the proximity of private domestic water wells.

In addition, based on findings discussed in Sections 3.4.4, 5.2, and 6.2, surface water, surface soil, subsurface soil, and sediment at the Former FPTA 3 have not been impacted by PFOA and PFOS at concentrations above screening levels and the pathways are incomplete.

M2027.0003 8/8/18

7.3 BUILDING 1247-BASE FUELS (AFFF AREA 3)

The CSM for Building 1247–Base Fuels presented in the QAPP addendum (ASL, August 2017) identified groundwater, surface soil, and subsurface soil as media potentially impacted by previous release of AFFF.

Based on the findings discussed in Sections 3.5.4 and 4.4, groundwater at Building 1247–Base Fuels has been impacted by PFOA and PFOS at concentrations above the screening level. Therefore, PFAS-impacted groundwater represents a potentially complete human ingestion pathway due to the proximity of private domestic water wells.

In addition, based on findings discussed in Sections 3.5.4 and 6.3, surface soil at Building 1247–Base Fuels has been impacted by PFOS at concentrations above the screening level. Therefore, surface soil represents a potentially complete pathway. Because the area is vegetated and not heavily trafficked, the air pathway is incomplete at this area. Subsurface soil at Building 1247–Base Fuels was not impacted by PFAS above screening levels.

8.0 SUMMARY AND CONCLUSIONS

The objectives of the SI were to

- determine if a confirmed release of PFOS, PFOA, and PFBS has occurred at the area selected for inspection;
- determine if PFOS and/or PFOA are present in groundwater or surface water at the inspection area at concentrations exceeding the EPA lifetime health advisory (HA) for drinking water (EPA, May 2016a; EPA, May 2016b);
- determine if PFBS, PFOA, and/or PFOS are present in soil or sediment at the inspection area at concentrations exceeding calculated screening levels; and
- identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS or PFOA above the EPA HAs or PFBS above the regional screening level [RSL]) (EPA, May 2018).

Selected sample media included surface soil, subsurface soil, groundwater, sediment, and surface water. Sampling locations focused on immediate release areas and were biased toward locations most likely to have been impacted by releases of AFFF.

The areas inspected included the following:

- AFFF Area 1 Former Fire Protection Training Area 2,
- AFFF Area 2 Former Fire Protection Training Area 3, and
- AFFF Area 3 Building 1247–Base Fuels.

Selected sample media varied across the three areas but included groundwater, surface water, surface soil, subsurface soil, and sediment. Sampling was primarily limited to the immediate areas of known or suspected AFFF releases and biased toward locations most likely to have been impacted by the releases.

All samples were analyzed for PFBS, PFOA, and PFOS using modified EPA Method 537. Analytical results for PFOA and PFOS in groundwater and surface water were compared to the screening level of 0.07 μ g/L. The combined concentrations of PFOA and PFOS was also compared to this screening level. Analytical results for PFBS in groundwater and surface water were compared to the published EPA RSL of 40 μ g/L. Analytical results for PFOA and PFOS in soil and sediment were compared to calculated

RSLs (126 μ g/kg for both PFOA and PFOS). Analytical results for PFBS in soil and sediment were compared to the published EPA RSLs (130,000 μ g/kg).

Table 16 summarizes detected concentrations of PFBS, PFOA, and PFOS for each media at the three AFFF areas. A brief summary of key findings and conclusions, as well as recommendations for follow-on activities, are provided in Sections 8.1, 8.2, and 8.3.

M2027.0003 8/8/18

Table 16 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances

AFFF Area	IRP ID	Parameter	Maximum Detected Concentration	Unit	Screening Level	Number of Samples/ Number of Exceedances ¹	Exceeds Screening Value	Potentially Complete DW Exposure Pathway	Recommendation
		Groundwater							Initiate Expanded SI, Advance Area to RI
		PFBS	11	μg/L	40	4/0	No		
		PFOA	72	μg/L	0.07	4/4	Yes		
		PFOS	64	μg/L	0.07	4/4	Yes		
		PFOA + PFOS ²	136	μg/L	0.07	4/4	Yes		
		Surface Water							
		PFBS	0.013 J	μg/L	40	2/0	No	Yes	
		PFOA	0.33	μg/L	0.07	2/1	Yes		
		PFOS	1.2	μg/L	0.07	2/1	Yes		
Former		PFOA + PFOS	1.53	μg/L	0.07	2/2	Yes		
Fire Protection		Surface Soil							
Training	FT009	PFBS	3,600	μg/kg	130,000 13 ³	3/1	Yes		
Area 2 (AFFF		PFOA	50,000	μg/kg	126	3/1	Yes		
Area 1)		PFOS	3,400	μg/kg	126	3/2	Yes		
		Subsurface Soil							
		PFBS	1.3	μg/kg	130,000 13 ³	3/0	No		
		PFOA	6.0	μg/kg	126	3/0	No		
		PFOS	20	μg/kg	126	3/0	No		
		Sediment							
		PFBS	ND	μg/kg	130,000 13 ³	2/0	No		
		PFOA	0.63 J	μg/kg	126	2/0	No		
		PFOS	5.2 J	μg/kg	126	2/0	No		

AFFF Area	IRP ID	Parameter	Maximum Detected Concentration	Unit	Screening Level	Number of Samples/ Number of Exceedances ¹	Exceeds Screening Value	Potentially Complete DW Exposure Pathway	Recommendation
		Groundwater							
		PFBS	3.7	μg/L	40	4/0	No		
		PFOA	1.1	μg/L	0.07	4/2	Yes		
		PFOS	19	μg/L	0.07	4/4	Yes		
		PFOA + PFOS	20.1	μg/L	0.07	4/4	Yes		
		Surface Water							
		PFBS	ND	μg/L	40	1/0	No		
		PFOA	ND	μg/L	0.07	1/0	No		
	PFOS PFOA + PFOS	ND	μg/L	0.07	1/0	No			
Former		ND	μg/L	0.07	1/0	No			
Fire		Surface Soil							
Protection Training		PFBS	2.9	μg/kg	130,000 13 ³	1/0	No	37	Initiate Expanded
Area 3		PFOA	2.0	μg/kg	126	1/0	No	Yes	SI, Advance Area to RI
(AFFF Area 2)		PFOS	38	μg/kg	126	1/0	No		
/Hea 2)		Subsurface Soil							
		PFBS	1.1 J	μg/kg	130,000 13 ³	4/0	No		
		PFOA	0.98 J	μg/kg	126	4/0	No		
		PFOS	82	μg/kg	126	4/0	No		
		Sediment							
		PFBS	ND	μg/kg	130,000 13 ³	1/0	No		
		PFOA	ND	μg/kg	126	1/0	No		
		PFOS	ND	μg/kg	126	1/0	No		

M2027.0003 8/8/18

	Groundwater							
	PFBS	0.38	μg/kg	40	3/0	No		Initiate Expanded SI, Advance Area to RI
	PFOA	0.66	μg/kg	0.07	3/3	Yes		
	PFOS	1.7	μg/kg	0.07	3/3	Yes	Yes	
	PFOA + PFOS	2.36	μg/L	0.07	3/3	Yes		
Building	Surface Soil							
1247 – Base	PFBS	7.6 J	μg/kg	130,000 13 ³	4/0	No		
Fuels (AFFF	PFOA	8.7 J	μg/kg	126	4/0	No		
Area 3)	PFOS	1,600	μg/kg	126	4/2	Yes		
	Subsurface Soil							
	PFBS	0.55 J	μg/kg	130,000 13 ³	4/0	No		
	PFOA	0.53 J	μg/kg	126	4/0	No		
	PFOS	11	μg/kg	126	4/0	No		

Bold values exceed screening levels.

 $\mu g/kg = microgram per kilogram$ AFFF = aqueous film forming foam

ID = identification

J = Reported concentration is an estimated value.

PFBS = perfluorobutane sulfonate PFOS = perfluorooctane sulfonate

SI = site inspection

 $\mu g/L = micrograms \ per \ liter$

DW = drinking water

IRP = Installation Restoration Program

ND = not detected

PFOA = perfluorooctanoic acid

RI = remedial inspection

M2027.0003 8/8/18

Only primary sample results are included unless an exceedance occurred only in a duplicate sample, in which case, only the duplicate sample was included.

Maximum PFOA + PFOS concentration shown is the highest combined PFOA and PFOS concentration detected in a specific groundwater sample and in this instance is not the sum of the individual maximum PFOA and PFOS concentrations listed as they occurred in two separate samples.

³EPA regional screening levels for soil protective of groundwater (May 2018) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables).

8.1 FORMER FIRE PROTECTION TRAINING AREA 2 (AFFF AREA 1)

Former FPTA 2 (IRP Site FT009) is located towards the central portion of the base southwest of the intersection of Old Glory Road and Missile Drive. The two unlined, bermed training pits at the area were used from 1965 to 1989. Fire training exercises from 1965 to 1974 used waste oils, solvents, hydraulic fluid, and other combustible liquids. From 1974 to 1989, only JP-4 was used. AFFF and water were used to extinguish fires from 1972 to 1989. A TCE plume associated with OU-5 is beneath the area.

As indicated on Table 16, PFOA, PFOS, and the combined concentrations PFOA and PFOS were detected at concentrations above screening levels in groundwater and surface water. PFBS, PFOA, and PFOS were detected at concentrations above screening levels in surface soil (PFBS exceeded the soil leaching to groundwater screening level). Analytical results confirm that a release of AFFF occurred at the Former FPTA 2 that has affected these media to an extent that could create complete exposure pathways.

Because of the close proximity of nearby domestic-use water wells (less than four miles) and domestic-use surface water intakes, PFAS concentrations in groundwater and surface water at AFFF Area 1 may pose an immediate risk to human health due to the potential ingestion scenario. PFAS concentrations in surface soil also pose a potential risk to on-site excavation workers through inhalation.

Based on the PFAS impacts to groundwater and surface water with a potentially complete pathway to water users, an expanded SI is recommended. In addition, a remedial investigation (RI) is recommended to further assess the extent of contamination and the impacts to groundwater, surface soil, and surface water at AFFF Area 1.

8.2 FORMER FIRE PROTECTION TRAINING AREA 3 (AFFF AREA 2)

Former FPTA 3 is located in the southern portion of the base. It was active from 1990 to 2000 and consisted of a polyethylene-lined training pit and a lined retention pond. The training pit was connected to an OWS and water was piped from the OWS to the lined retention pond. One of the liners beneath the training pit was found to be leaking. The liners for the pit and retention pond were removed and the retention pond filled in. AFFF was used in a limited capacity at Former FPTA 3.

As indicated on Table 16, PFOA, PFOS, and the combined concentrations PFOA and PFOS were detected at concentrations above screening levels in groundwater. Analytical results confirm that a release of AFFF occurred at the Former FPTA 3 that has affected this medium to an extent that could create a complete exposure pathway.

Because of the close proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 2 may pose an immediate risk to human health due to the potential ingestion scenario.

Based on the PFAS impacts to groundwater with a potentially complete pathway to water users, an expanded SI is recommended. In addition, an RI is recommended to further assess the extent of contamination and the impacts to groundwater at AFFF Area 2.

M2027.0003 8/8/18

8.3 BUILDING 1247-BASE FUELS (AFFF AREA 3)

Building 1247 is in the southwestern corner of the base on Post Road and Wyoming Avenue. This structure was built in 1995 and has an active AFFF system with overhead lines with an associated 200- to 300-gallon tank. The building is connected to a polyethylene-lined containment pond (added in 2013) and spills can be diverted to this pond. In the past, when the pond has filled with rainwater, it was pumped out to the nearby grassy area. A failure of the fire suppression system leaked an unknown quantity of AFFF inside the building, which either flowed through an OWS and a sanitary sewer system or to the containment pond. A former TCE plume associated with OU-2 and OU-9 is beneath the area.

As indicated on Table 16, PFOA, PFOS, and the combined concentrations PFOA and PFOS were detected at concentrations above screening levels in groundwater. PFOS was detected at concentrations above screening levels in surface soil. Analytical results confirm that a release of AFFF occurred at the Building 1247–Base Fuels that have affected these media to an extent that could create complete exposure pathways.

Because of the close proximity of nearby domestic-use water wells (less than four miles), PFAS concentrations in groundwater at AFFF Area 3 may pose an immediate risk to human health based on the ingestion scenario. PFOS concentrations in surface soil also pose a potential risk to on-site excavation workers through inhalation.

Based on the PFAS impacts to soil and groundwater and the potentially complete pathway to water users, an expanded SI is recommended. In addition, an RI is recommended to further assess the extent of contamination and the impacts to groundwater at AFFF Area 3.

9.0 REFERENCES

Aerostar SES LLC (ASL), March 2016. Final Quality Assurance Project Plan for Site Inspections of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations.

ASL, August 2017. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations, Addendum 11, Field Sampling Plan for F.E. Warren Air Force Base, Laramie County, Wyoming.

CH2M Hill, December 2015. Final Preliminary Assessment Report for Perfluorinated Compounds at F.E. Warren Air Force Base, Wyoming.

Environmental Protection Agency (EPA), March 2012. *Intergovernmental Data Quality Task Force Uniform Federal Policy for Quality Assurance Project Plans Optimized UFP-QAPP Worksheets.*

EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS).

EPA, May 2018. Regional Screening Levels (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables)

EPA, website accessed 2017. Regional Screening Level calculator (https://epa-prgs.ornl.gov/cgibin/chemicals/csl_search).

URS Group, June 2006. Final Record of Decision Zone D Groundwater, Operable Unit 2 and Operable Unit 9, F.E. Warren Air Force Base, Wyoming.

U.S. Air Force, September 1994. Final Record of Decision for Operable Unit 5.

U.S. Army Corps of Engineers (USACE), June 2013. Geology Supplement to the Scope of Services.

USACE, July 2015. Performance Work Statement for Site Inspection of Aqueous Film Forming Areas, Multiple Sites, United States Air Force Installations.

Wyoming State Engineers Office (WSEO), 2017a. Ground Water Division. https://sites.google.com/a/wyo.gov/seo/ground-water

WSEO, 2017b. Surface Water Division. https://sites.google.com/a/wyo.gov/seo/surface-water

M2027.0003

Appendix A Figures

M2027.0003 A4

M2027.0003

M2027.0003 A-6

M2027.0003 A-

M2027.0003 A-8

M2027.0003 A-9

M2027.0003 A-11

A-12

Appendix B Regional Screening Level Calculations for Soil and Sediment

Default Resident Equation Inputs for Soil

Variable	Value
THQ (target hazard quotient) unitless	0.1
TR (target risk) unitless	1E-06
LT (lifetime) years	70
ET _{rac} (exposure time) hours/day	24
ET _{rae.} (child exposure time) hours/day	24
ET _{ree.a} (adult exposure time) hours/day	24
ET _{a.2} (mutagenic exposure time) hours/day	24
ET _{2.6} (mutagenic exposure time) hours/day	24
ET _{6.16} (mutagenic exposure time) hours/day	24
ET _{16.26} (mutagenic exposure time) hours/day	24
ED (exposure duration) years	26
ED (exposure duration - child) years	6
ED (exposure duration - adult) years	20
ED _{n.2} (mutagenic exposure duration) years	2
ED _{2.6} (mutagenic exposure duration) years	4
ED _{6.16} (mutagenic exposure duration) years	10
ED _{16.76} (mutagenic exposure duration) years	10
BW _{mex} (body weight - child) kg	15
BW _{rec.a} (body weight - adult) kg	80
BW _{a.2} (mutagenic body weight) kg	15
BW _{2.6} (mutagenic body weight) kg	15
BW _{6.16} (mutagenic body weight) kg	80
BW _{16.26} (mutagenic body weight) kg	80
SA _{res-c} (skin surface area - child) cm ² /day	2373
SA _{res-a} (skin surface area - adult) cm ² /day	6032
SA ₀₋₂ (mutagenic skin surface area) cm ² /day	2373
SA ₂₋₆ (mutagenic skin surface area) cm ² /day	2373
SA ₆₋₁₆ (mutagenic skin surface area) cm ⁻² /day	6032
SA ₁₆₋₂₆ (mutagenic skin surface area) cm ⁻² /day	6032
EF (exposure frequency) days/year	350
EF (exposure frequency - child) days/year	350
EF _{res-a} (exposure frequency - adult) days/year	350

M2027.0003 B-1 4/24/2018
Output generated 15FEB2018:16:21:12

Default Resident Equation Inputs for Soil

Variable	Value
EF (mutagenic exposure frequency) days/year	350
EF _{2.6} (mutagenic exposure frequency) days/year	350
EF _{6.16} (mutagenic exposure frequency) days/year	350
EF _{16.26} (mutagenic exposure frequency) days/year	350
IFS _{rac.arf.} (age-adjusted soil ingestion factor) mg/kg	36750
IFSM _{recardi} (mutagenic age-adjusted soil ingestion factor) mg/kg	166833.3
IRS (soil intake rate - child) mg/day	200
IRS _{rac-a} (soil intake rate - adult) mg/day	100
IRS _{0.2} (mutagenic soil intake rate) mg/day	200
IRS _{2,6} (mutagenic soil intake rate) mg/day	200
IRS _{6.16} (mutagenic soil intake rate) mg/day	100
IRS _{16.26} (mutagenic soil intake rate) mg/day	100
AF _{res-a} (skin adherence factor - adult) mg/cm ²	0.07
AF _{res-c} (skin adherence factor - child) mg/cm ²	0.2
AF ₀₋₂ (mutagenic skin adherence factor) mg/cm ⁻²	0.2
AF ₂₋₆ (mutagenic skin adherence factor) mg/cm ²	0.2
AF ₆₋₁₆ (mutagenic skin adherence factor) mg/cm ²	0.07
AF ₁₆₋₂₆ (mutagenic skin adherence factor) mg/cm ⁻²	0.07
DFS _{rec-a-fi} (age-adjusted soil dermal factor) mg/kg	103390
DFSM _{rec.adi} (mutagenic age-adjusted soil dermal factor) mg/kg	428260
AT _{roc} (averaging time - resident carcinogenic)	365
City _{DEE} (Climate Zone) Selection	Default
A (PEF acres)	0.5
Q/C_{wind} (g/m ² -s per kg/m ³)	93.77
PEF (particulate emission factor) m ³ /kg	1359344438
A (PEF Dispersion Constant)	16.2302
B (PEF Dispersion Constant)	18.7762
C (PEF Dispersion Constant)	216.108
V (fraction of vegetative cover) unitless	0.5
U_ (mean annual wind speed) m/s	4.69
U, (equivalent threshold value)	11.32
$F(x)$ (function dependent on U_m/U_t) unitless	0.194
M0007 0000	

M2027.0003 B-2 4/24/2018
Output generated 15FEB2018:16:21:12

Default Resident Equation Inputs for Soil

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n (total soil porosity) L/L
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
T (exposure interval) s 819936000 A (VF Dispersion Constant) 11.911 B (VF Dispersion Constant) 18.4385 C (VF Dispersion Constant) 209.7845 City Climate Zone) Selection Default VF_{ml} (volitization factor - mass-limit) m 3 /kg . Q/C_{vol} (g/m²-s per kg/m³) 68.18 A, (VF mass-limit acres) 0.5
A (VF Dispersion Constant) 11.911 B (VF Dispersion Constant) 18.4385 C (VF Dispersion Constant) 209.7845 City Colimate Zone) Selection Default VF_{ml} (volitization factor - mass-limit) m 3 /kg . Q/C_{vol} (g/m²-s per kg/m³) 68.18 A (VF mass-limit acres) 0.5
B (VF Dispersion Constant) 18.4385 C (VF Dispersion Constant) 209.7845 City Climate Zone) Selection Default VF_{ml} (volitization factor - mass-limit) m 3 /kg O/C_{vol} (g/m²-s per kg/m³) 68.18 A (VF mass-limit acres) 0.5
C (VF Dispersion Constant) 209.7845 City C (Climate Zone) Selection Default VF (volitization factor - mass-limit) m 3 /kg . Q/C_{vol} (g/m²-s per kg/m³) 68.18 A (VF mass-limit acres) 0.5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{lll} VF_{ml} \ (volitization factor - mass-limit) \ m^{-3}/kg & . \\ Q/C_{vol} \ (g/m^2 - s \ per \ kg/m^3) & 68.18 \\ A_{_{2}} \ (VF \ mass-limit \ acres) & 0.5 \\ \end{array} $
Q/C_{vol} (g/m²-s per kg/m³) 68.18 A _c (VF mass-limit acres) 0.5
A _c (VF mass-limit acres) 0.5
T (exposure interval) yr 26
d¸ (depth of source) m .
p _b (dry soil bulk density) g/cm ³ 1.5
A (VF Dispersion Constant - Mass Limit) 11.911
B (VF Dispersion Constant - Mass Limit) 18.4385
C (VF Dispersion Constant - Mass Limit) 209.7845
T _w (groundwater temperature) Celsius 25

M2027.0003 B-3 4/24/2018 Output generated 15FEB2018:16:21:12

Default

Resident Risk-Based Screening Levels (RSL) for Soil

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user guide Section 2.3.5; W = see user guide Section 2.3.6; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed ceiling limit (See User Guide); U = User-provided

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR	RfD (mg/kg-day)	RfD Ref		RfC Ref		ABS	RBA	Soil Saturation Concentration (mg/kg)	S (mg/L)
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	No	No	-		-		2.00E-05	D	-		1	0.1	1	-	6.80E+02
Perfluorooctanoic acid (PFOA)	335-67-1	No	No	7.00E-02	D	-		2.00E-05	D	-		1	0.1	1	-	9.50E+03

K (cm3/g)	K _a (cm ³ /g)		Henry's Law Constant (unitless)	T _{boil}		Critical Temperature T _{crit} (K)	T _{crit} Ref	D _{ia} (cm²/s)	D _{iw} (cm²/s)	D _A (cm²/s)	Factor	Volatilization Factor (m³/kg)
3.72E+02	-	-	-	532.15	PHYSPROP	-		2.07E-02	5.25E-06	-	1.36E+09	-
1.15E+02	-	-	-	465.55	PHYSPROP	-		2.26E-02	5.79E-06	-	1.36E+09	-

Ingestion	Dermal		Carcinogenic		SL	SL	Noncarcinogenic SL	SL	SL	SL	Noncarcinogenic SL	
SL	SL	SL	SL	Child	Child	Child	Child	Adult	Adult	Adult	Adult	Screening
TR=1E-06	TR=1E-06	TR=1E-06	TR=1E-06	THQ=0.1	THQ=0.1	THQ=0.1	THI=0.1	THQ=0.1	THQ=0.1	THQ=0.1	THI=0.1	Level
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
-	-	-	=	1.56E-01	6.59E-01	-	1.26E-01	1.67E+00	3.95E+00	-	1.17E+00	1.26E-01
												nc
9.93E+00	3.53E+01	-	7.75E+00	1.56E-01	6.59E-01	-	1.26E-01	1.67E+00	3.95E+00	-	1.17E+00	1.26E-01
												nc

M2027.0003 Output generated 15FEB2018:16:21:12

4/24/2018

Chemical	CASNUM	Inhalation Unit Risk (µg/m³)-1	Toxicity	EPA Cancer Classification	Unit Risk Target Organ	Inhalation Unit Risk Species	Inhalation Unit Risk Method	Inhalation Unit Risk Route	Unit Risk Treatment	Unit Risk Study Reference	Inhalation Unit Risk Notes
Perfluorooctane sulfonic acid (PFOS)	1763-23-1										
Perfluorooctanoic acid (PFOA)	335-67-1										

B-5

Inhalation Inhalation

Inhalation Unit Risk Toxicity Metadata

M2027.0003 Output generated 15FEB2018:16:21:12

5

Inhalation Inhalation

4/24/2018

Oral Slope Factor Toxicity Metadata												
Chemical	CASNUM	Oral Slope Factor (mg/kg-day) ⁻¹		EPA Cancer Classification	Factor Tumor	Target			Factor			Oral Slope Factor Notes
Perfluorooctane sulfonic acid (PFOS) Perfluorooctanoic acid (PFOA)	1763-23-1 335-67-1	7.00E-02	DWSHA		NA	NA	NA	NA	NA	NA	NA	NA

6

Oral Chronic Toxicity Metadata

Chemical	CASNUM	Chronic Oral Reference Dose (mg/kg-day)	Toxicity	Oral Chronic Reference Dose Basis	Oral Chronic Reference Dose Confidence Level	Oral Chronic Reference Dose Critical Effect
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	2.00E-05	DWSHA	NA	NA	NA
Perfluorooctanoic acid (PFOA)	335-67-1	2.00E-05	DWSHA	NA	NA	NA

Oral Chronic Reference Dose Target Organ	Dose	Oral Chronic Reference Dose Uncertainty Factor	Oral Chronic Reference Dose Species		Oral Chronic Reference Dose Study Duration	Oral Chronic Reference Dose Study Reference	Oral Chronic Reference Dose Notes
NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA

	n emical sulfonic acid (PF•	CASNUM OS) 1763-23-1	Chronic Inhalation Reference Concentration (mg/m³)	Toxicity Source	Cl Ref Conc	alation hronic ference entration Basis	Cl Ref Conc Con	alation nronic erence entration fidence .evel	Ch Ref Conc	Inhalation Chronic Reference Concentration Target Organ
Perfluorooctanoi	c acid (PFOA)	335-67-1	-	-						
Inhalation Chronic Reference Concentration Modifying Factor		Inhalation Chronic Reference Concentration Species		Inhalat Chror Referer Concentr Stud Durati	nic nce ation y	Inhalat Chroi Refere Concenti Stud Refere	nic nce ration y	Inhalat Chror Referer Concentr Note	nic nce ration	

B-8

8

4/24/2018

Inhalation Chronic Toxicity Metadata

M2027.0003 Output generated 15FEB2018:16:21:12

Appendix C Data Validation Reports and Laboratory Data Sheets

DATA VALIDATION REPORT

M2032.0001 (Omaha) FE Warren

SAMPLE DELIVERY GROUPs: B7J1539, B7J3592

Prepared for

Aerostar SES LLC

October 24, 2017

MEC^x, Inc. 8864 Interchange Drive Houston, Texas 77054

www.mecx.net

TABLE OF CONTENTS

ACRO	ONYMS A	ND ABBREVIATIONS	iii
1.	INTRO	DDUCTION	1
II.	Samp	le Management	3
III.	Meth	od Analysis – Perfluorinated Compounds by Modified EPA Method 537	7
	III.1.	Holding Times	
	III.2.	Calibration	7
		III.2.1. Initial Calibration	7
		III.2.2. Continuing Calibration	7
	III.3.	Quality Control Samples	8
		III.3.1. Method Blanks	8
		III.3.2. Laboratory Control Samples	8
		III.3.3. Matrix Spike/Matrix Spike Duplicate	8
	III.4.	Field QC Samples	<u>9</u>
		III.4.1. Field Blanks and Equipment Blanks	<u>S</u>
		III.4.2. Field Duplicates	g
	III.5.	Internal Standards Performance	10
	III.6.	Compound Identification	10
	III.7.	Compound Quantification and Reported Detection Limits	10
	III.8.	System Performance	10
IV.	Summ	nary and Conclusions	11
	IV.1.	Precision	11
	IV.2.	Accuracy	11
	IV.3.	Representativeness	11
	IV.4.	Comparability	11
	IV.5.	Completeness	11

V.	References	1	2
v .	1/6/6/6/1663	_	1

TABLES

- 1 Sample Identification
- 2 Data Qualifier Reference
- 3 Reason Code Reference
- 4 Continuing Calibration
- 5 FB/EB Detects
- 6 FD RPDs
- 7 Internal Standards Percent Recovery

M2027.0003 C-3 4/26/18

ACRONYMS AND ABBREVIATIONS

°C Celsius % Percent

%D percent difference
B blank contamination
CB calibration blank
CCAL continuing calibration

CCB continuing calibration blank
CCV continuing calibration verification

COC chain of custody

CLP Contract Laboratory Program

EPA US Environmental Protection Agency

ER equipment rinsate

FB field blank
FD field duplicate
ICAL initial calibration
ICB initial calibration blank
ICL instrument calibration limit
ICV initial calibration verification

IS internal standard J estimated value

LCS laboratory control sample

LOD limit of detection
LOQ limit of quantification

MB method blank

MDL method detection limit

MS matrix spike

MSD matrix spike duplicate

ND nondetect

PARCC precision, accuracy, representativeness, comparability, completeness

PFC perfluorinated compound

QAPP Quality Assurance Program Plan

QC quality control

QSM Quality Systems Manual

R Rejected RL reporting limit

RPD relative percent difference
RRF relative response factor
RSD relative standard deviation
SDG sample delivery group

TB trip blank U not detected

UJ not detected; associated value is an estimate

I. INTRODUCTION

Task Order Title: M2032.0001 (Omaha) FE Warren

Contract: W9128F-15-D-0051 **MEC^x Project No.:** 1529.001H.01

Sample Delivery Group: B7J1539, B7J3592

Project Manager: Jenny Vance

Matrix: Soil/Water

QC Level: Stage 2B, Stage 4

No. of Samples: 54

Laboratory: Maxxam

TABLE 1 - SAMPLE IDENTIFICATION

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
FEWRN01-004-SD-001	FBF475	SE	2017-09-01 08:45	E537 m	Stage 2B
FEWRN01-004-SW-001	FBF476	WS	2017-09-01 08:45	E537 m	Stage 4
FEWRN01-005-SD-001	FBF453	SE	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-005-SD-901	FBF454	SE	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-005-SW-001	FBF455	WS	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-005-SW-901	FBF456	WS	2017-08-29 11:00	E537 m	Stage 2B
FEWRN01-MW-070-GW-020	FBF460	WG	2017-08-30 14:45	E537 m	Stage 2B
FEWRN01-MW071-GW-020	FBF459	WG	2017-08-30 11:45	E537 m	Stage 2B
FEWRN02-001-SO-028	FBF468	SO	2017-08-31 18:10	E537 m	Stage 2B
FEWRN02-002-SO-031	FBF466	SO	2017-08-31 14:23	E537 m	Stage 4
FEWRN02-003-SO-031	FBF464	SO	2017-08-31 10:10	E537 m	Stage 2B
FEWRN02-004-SO-013	FBF451	SO	2017-08-30 15:20	E537 m	Stage 2B
FEWRN02-005-SS-001	FBF473	SO	2017-09-01 08:25	E537 m	Stage 2B
FEWRN02-006-SD-001	FBF457	SE	2017-08-29 12:35	E537 m	Stage 2B
FEWRN02-006-SW-001	FBF458	WS	2017-08-29 12:35	E537 m	Stage 2B
FEWRN03-001-SO-008	FBF461	SO	2017-08-29 17:30	E537 m	Stage 2B
FEWRN03-001-SS-001	FBF448	SO	2017-08-29 10:06	E537 m	Stage 2B
FEWRN03-002-GW-020	FBF472	WG	2017-08-31 15:34	E537 m	Stage 2B

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
FEWRN03-002-SO-007	FBF450	SO	2017-08-29 12:55	E537 m	Stage 4
FEWRN03-002-SS-001	FBF444	SO	2017-08-28 16:05	E537 m	Stage 2B
FEWRN03-003-GW-020	FBF470	WG	2017-08-31 11:10	E537 m	Stage 2B
FEWRN03-003-GW-920	FBF471	WG	2017-08-31 11:10	E537 m	Stage 2B
FEWRN03-003-SO-008	FBF447	SO	2017-08-29 11:00	E537 m	Stage 2B
FEWRN03-003-SO-908	FBF449	SO	2017-08-29 11:00	E537 m	Stage 2B
FEWRN03-003-SS-001	FBF443	SO	2017-08-28 15:40	E537 m	Stage 2B
FEWRN03-004-SO-008	FBF445	SO	2017-08-29 07:10	E537 m	Stage 2B
FEWRN03-004-SS-001	FBF441	SO	2017-08-28 13:10	E537 m	Stage 2B
FEWRN-RS-001	FBF440	WQ	2017-08-28 12:05	E537 m	Stage 2B
FEWRN-RS-002	FBF446	WQ	2017-08-29 07:45	E537 m	Stage 2B
FEWRN-RS-003	FBF452	WQ	2017-08-30 15:15	E537 m	Stage 2B
FEWRN-RS-004	FBF463	WQ	2017-08-31 06:55	E537 m	Stage 2B
FEWRN-RS-005	FBF474	WQ	2017-09-01 08:20	E537 m	Stage 2B
FEWRN-SB-001	FBF442	WQ	2017-08-28 12:10	E537 m	Stage 2B
FEWRN-SB-002	FBF469	WQ	2017-08-31 09:25	E537 m	Stage 2B
FEWRN01-001-GW-015	FBP244	WG	2017-09-04 16:20	E537 m	Stage 4
FEWRN01-001-SO-018	FBP225	SO	2017-09-01 15:25	E537 m	Stage 4
FEWRN01-001-SS-001	FBP228	SO	2017-09-01 12:32	E537 m	Stage 2B
FEWRN01-002-SO-018	FBP227	SO	2017-09-01 17:15	E537 m	Stage 2B
FEWRN01-002-SS-001	FBP226	SO	2017-09-01 15:50	E537 m	Stage 2B
FEWRN01-003-GW-015	FBP242	WG	2017-09-04 13:45	E537 m	Stage 2B
FEWRN01-003-GW-915	FBP243	WG	2017-09-04 13:45	E537 m	Stage 2B
FEWRN01-003-SO-016	FBP232	SO	2017-09-02 10:10	E537 m	Stage 2B
FEWRN01-003-SO-916	FBP233	SO	2017-09-02 10:10	E537 m	Stage 2B
FEWRN01-003-SS-001	FBP230	SO	2017-09-02 07:59	E537 m	Stage 2B
FEWRN01-003-SS-901	FBP231	SO	2017-09-02 07:59	E537 m	Stage 2B
FEWRN02-001-GW-025	FBP240	WG	2017-09-04 10:35	E537 m	Stage 2B
FEWRN02-002-GW-033	FBP236	WG	2017-09-02 16:00	E537 m	Stage 2B

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
FEWRN02-003-GW-030	FBP235	WG	2017-09-02 14:15	E537 m	Stage 2B
FEWRN02-004-GW-024	FBP237	WG	2017-09-02 17:40	E537 m	Stage 2B
FEWRN03-001-GW-020	FBP229	WG	2017-09-01 17:35	E537 m	Stage 2B
FEWRN-IDW-WS	FBP238	SO	2017-09-03 08:50	E537 m	Stage 2B
FEWRN-IDW-WW	FBP239	WG	2017-09-03 09:00	E537 m	Stage 2B
FEWRN-RS-006	FBP234	WQ	2017-09-02 13:15	E537 m	Stage 2B
FEWRN-RS-007	FBP241	WQ	2017-09-04 12:05	E537 m	Stage 2B

II. SAMPLE MANAGEMENT

According to the case narratives and the chains-of-custody (COCs) provided by the laboratory for sample delivery groups (SDGs) B7J1539, B7J3592:

- Cooler temperatures recorded on the COCs were within the temperature limits of ≤6°C and ≥0°C.
- Field and laboratory personnel signed and dated the COCs.

M2027.0003 C-7 4/26/18

TABLE 2 - DATA QUALIFIER REFERENCE

Qualifier	Definition
R	The sample results are rejected because of serious deficiencies in the ability to analyze the sample and to meet quality control (QC) criteria. The presence or absence of the analyte cannot be verified.
U	The analyte was analyzed for but was nondetect (ND) above the reported sample quantification limit.
В	The reported concentration is less than 5 times the concentration reported in an associated field or lab blank.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J- denotes a low bias for the sample results and J+ for a high bias.
UJ	The material was analyzed for but was ND. The associated value is an estimate and may be inaccurate or imprecise.

TABLE 3 - REASON CODE REFERENCE

Reason Code	Definition
01	Sample received outside of 4+/-2 degrees Celsius (°C)
01A	Improper sample preservation
02	Holding time exceeded
02A	Extraction
02B	Analysis
03	Instrument performance – outside criteria
03A*	Bromofluorobenzene (BFB)
03B*	Decafluorotriphenylphosphine (DFTPP)
03C*	dichlorodiphenyltrichloroethane (DDT) and/or endrin % breakdown exceeds criteria
03D	Retention time windows
03E	Resolution
04	ICAL results outside specified criteria
04A	Compound mean RRF QC criteria not met
04B	Individual % RSD criteria not met
04C	$r < 0.995 \text{ or } r^2 < 0.99$
04D	ICAL % Recovery
05	Continuing calibration results outside specified criteria

M2027.0003 C-8 4/26/18

Reason Code	Definition
05A	Compound mean RRF QC criteria not met
05B	Compound % Difference QC criteria not met
06	Result qualified as a result of the 5x/10x blank correction
06A	Method or preparation blank
06B	ICB or CCB
06C	ER
06D	ТВ
06E	FB
07	Surrogate recoveries outside control limits
07A	Sample
07B	Associated MB or LCS
08	MS/MSD/Duplicate results outside criteria
08A	MS and/or MSD recovery not within control limits (accuracy)
08B	% RPD outside acceptance criteria (precision)
09*	Post digestion spike outside criteria graphite furnace atomic absorption (GFAA)
10	Internal standards outside specified control limits
10A	Recovery
10B	Retention time
11	LCS recoveries outside specified limits
11A	Recovery
11B	% RPD (if run in duplicate)
12*	Interference check standard
13*	Serial dilution
14*	Tentatively identified compounds
15	Quantification
16	Multiple results available; alternate analysis preferred
17	Field duplicate RPD criteria is exceeded
18*	Percent difference between original and second column exceeds QC criteria
19	Professional judgment was used to qualify the data
20*	Pesticide clean-up checks
21	Target compound identification

Reason Code	Definition	
22*	Radiological calibration	
23*	Radiological quantification	
24	Reported result and/or lab qualifier revised to reflect validation findings	

^{*}Indicates that this code is not expected to apply to the evaluation of PFAS analyses

III. METHOD ANALYSIS – PERFLUORINATED COMPOUNDS BY MODIFIED EPA METHOD 537

K. Zilis of MEC^X reviewed this SDG November 1-3, 2017.

III.1. HOLDING TIMES

SDGs B7J1539, B7J3592

Except as noted below, the holding times specified in the QAPP were met. Samples were extracted within 28 days of collection and analyzed within 45 days of extraction.

In SDG <u>B7J3592</u>, sample FEWRN03-001-GW-020 was analyzed for PFHxS and PFOS by the high level analysis method in batch 5155735 on 9/24. The sample was re-extracted by the low level method past the 28 day holding time. Data for the target compounds analyzed by the low level method were qualified as estimated (J/UJ)

In the original analysis of sample FEWRN01-001-GW-015, PFDS exceeded the control limits in the Instrument Sensitivity Check and the sample was reextracted for this compound on 10/01/2017, past the 28 day extraction holding time. Data for PFDS was qualified as estimated (UJ) as noted in Table 4 below.

Table 4-Extraction Holding Time

SDG B7J3592

Extraction Batch	Analyte	Affected Samples
5185352	All analytes with the exception of PFHxS and PFOS	FBP229
	PFDS	FBP244

III.2. CALIBRATION

Calibration criteria were met, with exceptions noted in the tables below.

III.2.1. INITIAL CALIBRATION

SDGs B7J1539, B7J3592

Initial calibration criteria were met. Recoveries were within 70-130% for the lowest level of each initial calibration and 75-125% for the remaining levels, and all correlation coefficient r^2 values were within the control limit of \geq 0.990 or r values \geq 0.995. Applicable %RSDs were within the control limit of \leq 20%. The calculated peak asymmetry factors were within the control range of 0.8-1.5. MEC^X noted the laboratory utilized as the calibration method a weighted (1/X) linear initial calibration standard curve not forced through zero.

III.2.2. CONTINUING CALIBRATION

The initial calibration verification (ICV) and continuing calibration verification (CCV) recoveries were within the control limits of 75-125%. Low-level check standard (ISC) recoveries were within the control limits of 70-130%, with the exception noted in the table below. ISC exceptions did not result in qualification to the sample data.

M2027.0003 C-11 4/26/18

Table 4-Continuing Calibration

SDGs B7J3592

ICV or CCV date / time / instrument	Analyte	Recovery	Affected Samples
ISC 09/24/2017 6:55P LCMS04	PFOS	131%	None. Sensitivity std applies only to a high level detection.
ISC 09/16/2017 4:13A LCMS04	PFDS	137%	None. Sample re-extracted and reanalyzed on 10/01
ISC 10/01/2017 4:33P LCMS04	PFUnA	137%	None. The initial 12:32 ISC is compliant. Sample run at 1:17P

III.3. QUALITY CONTROL SAMPLES

III.3.1. METHOD BLANKS

SDGs B7J1539, B7J3592

The method blanks associated with the analyses of the soil and water samples had no target analyte detects above the respective soil and water detection limits (DLs).

11.3.2. LABORATORY CONTROL SAMPLES

SDGs B7J1539, B7J3592

Recoveries affecting sample data were within the control limits of 70-130%, and RPDs for LCS/LCSD pairs were within the control limit of ≤30%.

111.3.3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed on the samples listed below. MS/MSD recoveries were not evaluated if the parent sample concentration exceeded 4× the spike amount. Qualifications were not assigned for a single recovery outlier not occurring in both the MS and MSD of a pair. Nondetects in the parent sample were not qualified for RPD outliers. Remaining recoveries and RPDs affecting sample data were within the control limits of 70-130% and ≤30%, respectively.

SDGs B7J1539

MS/MSD analyses were performed on surface water sample FEWRN02-006-SW-001 and soil sample FEWRN02-006-SD-001. Recoveries and RPDs were within the control limits of 70-130% and ≤30%, respectively.

SDGs B7J3592

MS/MSD analyses were performed on soil samples FEWRN01-001-SO-018 and FEWRN-001-SS-001. Results were not calculated for FEWRN-001-SS-001 due to the high levels of target analytes. MS/MSD analyses were requested on water sample FEWRN01-001-GW-015 but due to high concentrations of target analytes in the native sample, a laboratory control sample spike and spike duplicate were performed in batch 5159897 instead.

III.4. FIELD QC SAMPLES

MEC^x evaluated field QC samples, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. MEC^x used the remaining detects to evaluate the associated site samples. Findings associated with field QC samples are summarized below.

11.4.1. FIELD BLANKS AND EQUIPMENT BLANKS

The field and equipment blanks and detects, if any, are listed in the table below. No target compounds were reported in the equipment rinsate blanks. The reviewer noted the ambient field blank (AB), FEWRN-SB-001, contained detections for 6:2-FTS and PFOS, as listed below. The reviewer did not apply qualifications for the ambient field blank as this sample was designed to show potential contamination in the driller's source water used to decontaminate the drilling equipment. As such, this water would have little to no contact with site samples or sampling equipment.

Table 5-FB/EB Detects

SDG B7J1539

Ambient Blank	Detect	Concentration	LOQ
EE\M/DNI SD OO1 (AD)	6:2 Fluorotelomer sulfonate (6:2-FTS)	0.010 ug/L	0.020 ug/L
FEWRN-SB-001 (AB)	Perfluorooctane sulfonate (PFOS)	0.032 ug/L	0.020 ug/L

III.4.2. FIELD DUPLICATES

Field duplicate pairs are listed below. RPDs for detections \geq the LOQ were within the control limits of \leq 30% for soils and waters, and detected values below the LOQ, in one or both samples of a pair, were within control limit of \pm the LOQ, with exceptions noted in the tables below. In the case of samples analyzed at different dilutions, the greater of the two LOQs was used for comparison. Target analyte results for the outlier RPDs were qualified as estimated (J for detects and UJ for nondetects) in both samples of a pair.

Table 6-FD RPDs

SDG B7J1539

Parent Sample	Field Duplicate	Target Analyte	RPD Outliers
FEWRN01-005-SD-001	FEWRN01-005-SD-901	PFOS	93%

SDG B7J3592

Parent Sample	Field Duplicate	Target Analyte	RPD Outliers	
FEWRN01-003-SS-	FFW/DNI01 002 CC 001	8:2 FTS	154%	
001	FEWRN01-003-SS-901	PFDS	±LOQ	
FEWRN01-003-SO-	FEWRN01-003-SO-916		none	
016	LEANKINGT-002-20-310			
FEWRN01-003-GW-	FFW/BNI01 003 CW/ 01F		none	
015	FEWRN01-003-GW-915			

M2027.0003 C-13 4/26/18

III.5. INTERNAL STANDARDS PERFORMANCE

The applicable labeled internal standard recoveries were within the control limits of $\pm 50\%$ of the average peak areas of the initial calibration, except as noted in the tables below. The results for the associated target compounds were qualified as estimated (UJ for nondetects or J for detects) in the affected samples.

Table 7-IS Recovery Outliers

SDG B7J1539

Internal Standard	% Recovery	Affected Sample	Associated Target Analyte(s)
M2-PFTeA	39%	FEWRN01-004-SW-001	PFTeA
IVIZ-PFTEA	35/0	FEWKNO1-004-3W-001	PFTriA

III.6. COMPOUND IDENTIFICATION

Compound identification was verified for three soil samples and two water samples: soil samples FEWRN01-001-SO-018, FEWRN03-002-SO-007 and FEWRN02-002-SO-031, and water samples FEWRN01-001-GW-015 and FEWRN01-004-SW-001. The laboratory analyzed for 18 perfluorinated compounds by Modified EPA Method 537. Review of retention times and the ion chromatograms indicated no issues with compound identification.

III.7. COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Calculations were verified and sample results reported on the sample result summaries were verified against the raw data for the samples listed above (see Compound Identification section). Quantitation verification was limited based upon the significant figures presented in the raw data and were therefore estimations of the actual sample amounts. The reviewer considered the concentration verified within that limitation. The laboratory calculated and reported compound-specific detection limits. Detects below the LOQ were qualified as estimated (J). Nondetects are valid to the LOD.

Most samples were initially analyzed undiluted. However, water samples and soil extracts were prescreened to obtain estimated concentrations so that extracts could be appropriately diluted. Some samples with high concentrations of PFCs were not analyzed undiluted. Reporting limits have been adjusted accordingly. Analytes were reported from the least dilute analysis possible to report all target analytes within the linear calibration range.

The laboratory integrated isomeric forms for the PFCs with linear and branched isomers as required by Revision 1.1 of EPA Method 537.

III.8. SYSTEM PERFORMANCE

No issues were noted with system performance.

M2027.0003 C-14 4/26/18

IV. SUMMARY AND CONCLUSIONS

MEC^x evaluated a total of 810 data records from field samples during the validation and qualified 38 records (4.7 % of the data) as estimated values (J/UJ). The qualification was required for extraction holding time exceedance, potential field blank contamination, internal standard recovery outliers and field duplicate precision outliers. Nondetect compounds were flagged (U) to indicate that the compound was analyzed for but not detected above the limit of detection (LOD). Specific qualification were discussed in the text above.

Overall, the quality of the data was acceptable. The precision (99.3%) and accuracy results (96.0%) were acceptable. Other data quality indicators (DQI) (representativeness, comparability and completeness) met the project objectives. Each of these DQIs is discussed below.

IV.1. PRECISION

Precision is a measure of the agreement between duplicate sample measurements of the same quantity and is reflected in the relative percent difference (RPD) between spikes and the RPD for the field duplicate pair analysis. Precision was measured at 99.3%. The outliers in the precision measurements were due to samples flagged for field duplicate RPD outliers. Precision was considered acceptable for the project.

IV.2. ACCURACY

Accuracy is measured by the results from the recovery of known amounts of compounds or elements from calibration, method blanks, laboratory control samples (LCS), matrix spikes (MS), internal standard recoveries and surrogate recoveries. Holding time exceedances also impact accuracy. Accuracy outliers were primarily holding time exceedances and potential field blank contamination. The accuracy was 96.0%. Accuracy was considered acceptable for the project.

IV.3. REPRESENTATIVENESS

The measures of representativeness – sample handling, analytical blank analysis, were met. Designated analytical protocols were followed. The laboratory did utilize a weighted 1/X calibration curve which was not forced through zero. Although this is a deviation from Method 537, modified, it is acceptable on DoD projects and was considered acceptable by the reviewer. Analytical holding times were met for all analyses. Extraction holding times were exceeded for portions of two samples. No analytical problems were noted which would impact data representativeness.

IV.4. COMPARABILITY

The samples were analyzed using appropriate approved methods of analysis. All data were reported correctly using standard units.

IV.5. COMPLETENESS

Completeness is the amount of validated data compared to the planned amount of data and is expressed as a percentage of the usable data divided by the total number of data points. Although one data point was rejected by the reviewer, it was not a target compound and was not counted against the overall percent completeness. Of the 810 target data points, no data points were rejected, resulting in a completeness of 100%.

V. REFERENCES

Aerostar, 2016. Final Quality Assurance Project Plan for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites United States Air Force Installations, March 2016

Aerostar, 2016a. Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations, Addendum 11, Field Sampling Plan for F.E. Warren Air Force Base, Laramie County, Wyoming, July 2017.

Department of Defense (DOD), 2017. *DoD Quality Systems Manual for Environmental Laboratories*, Version 5.1. January 2017.

EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.

EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA/540-R-014-002.

EPA (U.S. Environmental Protection Agency), January 2009. OSWER 9200-1-85. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use.* EPA-540/R-08-005.

M2027.0003 C-16 4/26/18

Validated Sample Result Forms: B7J1539

72629-94-8

2058-94-8

< 0.48

< 0.72

0.14

0.22

0.48

0.72

1.2

1.2

PERFLUOROTRIDECANOIC ACID

PERFLUOROUNDECANOIC ACID

EPA 537 m Analysis Method: Sample Name FEWRN01-004-SD-001 Matrix Type: S Result Type: TRG Lab Sample Name: FBF475 Sample Date/Time: 2017-09-01 08:45 Validation Level: Stage 2B DL CAS No Result LOD LOQ Result Lab Analyte Validation Validation Qualifier Qualifier Value Units Reason Code 6:2 FLUOROTELOMER SULFONATE 0.34 0.28 27619-97-2 0.72 1.2 ug/kg 8:2 FLUOROTELOMER SULFONATE 39108-34-4 < 0.72 0.38 0.72 1.2 ug/kg U U PERFLUOROBUTANE SULFONATE 0.72 U U 29420-43-3 < 0.72 0.20 1.2 ug/kg PERFLUOROBUTANOIC ACID 0.28 U U 375-22-4 < 0.72 0.72 1.2 ug/kg PERFLUORODECANE SULFONATE 335-77-3 < 0.72 0.28 0.72 1.2 U U ug/kg PERFLUORODECANOIC ACID 335-76-2 0.51 0.16 0.48 1.2 ug/kg J J PERFLUORODODECANOIC ACID 0.30 0.26 0.72 307-55-1 1.2 ug/kg J J PERFLUOROHEPTANOIC ACID U 375-85-9 < 0.72 0.20 0.72 1.2 ug/kg PERFLUOROHEXANE SULFONATE 108427-53-8 0.46 0.28 0.72 1.2 ug/kg J J PERFLUOROHEXANOIC ACID 0.72 J 307-24-4 0.58 0.23 1.2 ug/kg J U PERFLUORONONANOIC ACID 375-95-1 < 0.72 0.20 0.72 1.2 U ug/kg PERFLUOROOCTANE SULFONAMIDE 754-91-6 < 0.72 0.31 0.72 1.2 U U ug/kg PERFLUOROOCTANE SULFONATE 0.25 0.72 1.2 1763-23-1 1.1 ug/kg J J PERFLUOROOCTANOIC ACID 335-67-1 < 0.72 0.31 0.72 1.2 U U ug/kg PERFLUOROPENTANOIC ACID 2706-90-3 0.76 0.22 0.72 1.2 J ug/kg PERFLUOROTETRADECANOIC ACID 376-06-7 < 0.48 0.13 0.48 1.2 U U ug/kg

U

U

ug/kg

ug/kg

U

U

Tuesday, January 9, 2018 Page 1 of 34

Sample Name FEWRN01-004	Matrix T	Type: W	R	Result Typ	e: TRG				
Lab Sample Name: FBF476	Sample Date/Time: 2017			-09-01	08:45		Validation Level: Stage 4		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	3.5	0.064	0.20	0.40	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.022	0.0036	0.010	0.020	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.013	0.0053	0.011	0.022	ug/L	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	9.0	0.086	0.20	0.40	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.011	0.0051	0.011	0.022	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.011	0.0044	0.011	0.022	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.011	0.0031	0.011	0.022	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.096	0.0036	0.011	0.022	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	0.036	0.0037	0.011	0.022	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.48	0.0032	0.011	0.022	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.014	0.0042	0.011	0.022	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.011	0.0040	0.011	0.022	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.045	0.0029	0.011	0.022	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.043	0.0051	0.011	0.022	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.011	0.0030	0.011	0.022	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	10A
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	UJ	10A
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.011	0.0047	0.011	0.022	ug/L	U	U	

Tuesday, January 9, 2018 Page 2 of 34

Sample Name FEWRN01-005-	Matrix [Гуре: Ѕ	R	Result Typ	e: TRG					
Lab Sample Name: FBF453	Sampl	e Date/Time	Fime: 2017-08-29		11:00		Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
5:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	0.25	0.24	0.66	1.1	ug/kg	J	J		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.25	0.66	1.1	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	< 0.66	0.21	0.66	1.1	ug/kg	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.77	0.29	0.66	1.1	ug/kg	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	5.2	0.23	0.66	1.1	ug/kg		J	17	
PERFLUOROOCTANOIC ACID	335-67-1	0.63	0.29	0.66	1.1	ug/kg	J	J		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U		

Tuesday, January 9, 2018 Page 3 of 34

Sample Name FEWRN01-005		Matrix '	Гуре: Ѕ	R	Result Typ	e: TRG			
Lab Sample Name: FBF454	Sampl	e: 2017-08-29		11:00		Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.84	0.32	0.84	1.4	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.84	0.45	0.84	1.4	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.84	0.24	0.84	1.4	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.84	0.32	0.84	1.4	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.84	0.32	0.84	1.4	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.56	0.18	0.56	1.4	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.84	0.31	0.84	1.4	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.84	0.24	0.84	1.4	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.94	0.32	0.84	1.4	ug/kg	J	J	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.84	0.27	0.84	1.4	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.84	0.24	0.84	1.4	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.84	0.36	0.84	1.4	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	1.9	0.29	0.84	1.4	ug/kg		J	17
PERFLUOROOCTANOIC ACID	335-67-1	0.56	0.36	0.84	1.4	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.84	0.25	0.84	1.4	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.56	0.15	0.56	1.4	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.56	0.17	0.56	1.4	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.84	0.25	0.84	1.4	ug/kg	U	U	

Tuesday, January 9, 2018 Page 4 of 34

Sample Name FEWRN01-005]	Matrix 1	Гуре: W	F	Result Typ	e: TRG				
Lab Sample Name: FBF455	Sample Date/Time: 2017-08-29						Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.17	0.0038	0.012	0.024	ug/L				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.012	0.0043	0.012	0.024	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	0.13	0.0058	0.012	0.024	ug/L				
PERFLUOROBUTANOIC ACID	375-22-4	0.055	0.0052	0.012	0.024	ug/L				
PERFLUORODECANE SULFONATE	335-77-3	< 0.012	0.0055	0.012	0.024	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.012	0.0048	0.012	0.024	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.012	0.0034	0.012	0.024	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.078	0.0040	0.012	0.024	ug/L				
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.034	0.10	0.20	ug/L				
PERFLUOROHEXANOIC ACID	307-24-4	0.35	0.0035	0.012	0.024	ug/L				
PERFLUORONONANOIC ACID	375-95-1	< 0.012	0.0046	0.012	0.024	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.014	0.0043	0.012	0.024	ug/L	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	1.2	0.0031	0.012	0.024	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	0.33	0.0055	0.012	0.024	ug/L				
PERFLUOROPENTANOIC ACID	2706-90-3	0.17	0.0032	0.012	0.024	ug/L				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.012	0.0046	0.012	0.024	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.012	0.0040	0.012	0.024	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.012	0.0052	0.012	0.024	ug/L	U	U		

Tuesday, January 9, 2018 Page 5 of 34

Sample Name FEWRN01-005	-SW-901		Matrix 7	ype: W	R	Result Type: TRG				
Lab Sample Name: FBF456	Sampl	e Date/Time	2017	08-29	11:00		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.18	0.0040	0.013	0.025	ug/L				
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.013	0.0045	0.013	0.025	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	0.13	0.0060	0.013	0.025	ug/L				
PERFLUOROBUTANOIC ACID	375-22-4	0.060	0.0054	0.013	0.025	ug/L				
PERFLUORODECANE SULFONATE	335-77-3	< 0.013	0.0058	0.013	0.025	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.013	0.0050	0.013	0.025	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.013	0.0035	0.013	0.025	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.076	0.0041	0.013	0.025	ug/L				
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.034	0.10	0.20	ug/L				
PERFLUOROHEXANOIC ACID	307-24-4	0.40	0.0036	0.013	0.025	ug/L				
PERFLUORONONANOIC ACID	375-95-1	< 0.013	0.0048	0.013	0.025	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.013	0.0045	0.013	0.025	ug/L	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	1.2	0.0033	0.013	0.025	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	0.33	0.0058	0.013	0.025	ug/L				
PERFLUOROPENTANOIC ACID	2706-90-3	0.18	0.0034	0.013	0.025	ug/L				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.013	0.0048	0.013	0.025	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.013	0.0041	0.013	0.025	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.013	0.0054	0.013	0.025	ug/L	U	U		

Tuesday, January 9, 2018 Page 6 of 34

Sample Name FEWRN01-MV	V-070-GW-020	·	Matrix '	Гуре: W	R	Result Typ	e: TRG	·	
Lab Sample Name: FBF460	Sample	e Date/Time	e: 2017	-08-30	14:45		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	15	0.16	0.50	1.0	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.069	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.7	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	1.3	0.043	0.10	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	3.2	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	26	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	6.3	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.10	0.038	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.12	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	6.0	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	5.4	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	4.7	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Tuesday, January 9, 2018 Page 7 of 34

Sample Name FEWRN01-MW	V071-GW-020		Matrix 1	Гуре: W	R	Result Typ	e: TRG	·	
Lab Sample Name: FBF459	Sample	e Date/Time	2017	-08-30	11:45		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.58	0.0035	0.011	0.022	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.0069	0.0040	0.011	0.022	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.39	0.0053	0.011	0.022	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.18	0.0047	0.011	0.022	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.011	0.0051	0.011	0.022	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.011	0.0044	0.011	0.022	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.011	0.0031	0.011	0.022	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.20	0.0036	0.011	0.022	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	1.8	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.93	0.0032	0.011	0.022	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.0090	0.0042	0.011	0.022	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.011	0.0040	0.011	0.022	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.35	0.0029	0.011	0.022	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.24	0.0051	0.011	0.022	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.66	0.0030	0.011	0.022	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.011	0.0042	0.011	0.022	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.011	0.0036	0.011	0.022	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.011	0.0047	0.011	0.022	ug/L	U	U	

Tuesday, January 9, 2018 Page 8 of 34

Sample Name FEWRN02-001-	-SO-028	Matrix Type: S Result Type: TRG								
Lab Sample Name: FBF468	Sampl	e Date/Time	e: 2017	-08-31	18:10		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.66	0.24	0.66	1.1	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.66	0.21	0.66	1.1	ug/kg	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.66	0.23	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	< 0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U		

Tuesday, January 9, 2018 Page 9 of 34

Sample Name FEWRN02-002	-SO-031		Matrix 7	Гуре: Ѕ	F	pe: TRG			
Lab Sample Name: FBF466	Sampl	e Date/Time	e: 2017	-08-31	14:23		Validati	on Level: St	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	0.26	0.24	0.66	1.1	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.66	0.21	0.66	1.1	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.80	0.23	0.66	1.1	ug/kg	J	J	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U	

Tuesday, January 9, 2018 Page 10 of 34

Sample Name FEWRN02-003	-SO-031		Matrix '	Гуре: Ѕ	R	Result Typ	e: TRG		
Lab Sample Name: FBF464	Sampl	e Date/Time	2017	-08-31	10:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.60	0.21	0.54	0.90	ug/kg	J	J	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.54	0.29	0.54	0.90	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.76	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.38	0.21	0.54	0.90	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.54	0.21	0.54	0.90	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.90	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.54	0.20	0.54	0.90	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.45	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	3.5	0.21	0.54	0.90	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	1.1	0.17	0.54	0.90	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	< 0.54	0.15	0.54	0.90	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.54	0.23	0.54	0.90	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	3.2	0.19	0.54	0.90	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.45	0.23	0.54	0.90	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.60	0.16	0.54	0.90	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.099	0.36	0.90	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.90	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.54	0.16	0.54	0.90	ug/kg	U	U	

Tuesday, January 9, 2018 Page 11 of 34

Sample Name FEWRN02-004	-SO-013								
Lab Sample Name: FBF451	Sampl	e Date/Time	2017	-08-30	15:20		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.2	0.25	0.66	1.1	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	4.9	0.35	0.66	1.1	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	1.1	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.84	0.25	0.66	1.1	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	0.24	0.24	0.66	1.1	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	0.65	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	7.3	0.25	0.66	1.1	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	3.1	0.21	0.66	1.1	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.60	0.29	0.66	1.1	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	82	2.3	6.6	11	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.98	0.29	0.66	1.1	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	1.6	0.20	0.66	1.1	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U	

Tuesday, January 9, 2018 Page 12 of 34

Sample Name FEWRN02-005	-SS-001		Matrix [Гуре: Ѕ	R	Result Typ	e: TRG			
Lab Sample Name: FBF473	Sampl	le Date/Time	2017	-09-01	08:25		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.7	0.28	0.72	1.2	ug/kg				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	4.1	0.38	0.72	1.2	ug/kg				
PERFLUOROBUTANE SULFONATE	29420-43-3	2.9	0.20	0.72	1.2	ug/kg				
PERFLUOROBUTANOIC ACID	375-22-4	0.98	0.28	0.72	1.2	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	< 0.72	0.28	0.72	1.2	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	0.68	0.16	0.48	1.2	ug/kg	J	J		
PERFLUORODODECANOIC ACID	307-55-1	0.48	0.26	0.72	1.2	ug/kg	J	J		
PERFLUOROHEPTANOIC ACID	375-85-9	1.4	0.20	0.72	1.2	ug/kg				
PERFLUOROHEXANE SULFONATE	108427-53-8	23	0.28	0.72	1.2	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	4.3	0.23	0.72	1.2	ug/kg				
PERFLUORONONANOIC ACID	375-95-1	1.1	0.20	0.72	1.2	ug/kg	J	J		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.72	0.31	0.72	1.2	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	38	0.25	0.72	1.2	ug/kg				
PERFLUOROOCTANOIC ACID	335-67-1	2.0	0.31	0.72	1.2	ug/kg				
PERFLUOROPENTANOIC ACID	2706-90-3	3.2	0.22	0.72	1.2	ug/kg				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.48	0.13	0.48	1.2	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.48	0.14	0.48	1.2	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	0.62	0.22	0.72	1.2	ug/kg	J	J		

Tuesday, January 9, 2018 Page 13 of 34

Sample Name FEWRN02-006	-SD-001		Matrix '	Гуре: Ѕ	R	e: TRG			
Lab Sample Name: FBF457	Sampl	e Date/Time	2017	-08-29	12:35		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.66	0.24	0.66	1.1	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.66	0.21	0.66	1.1	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.66	0.23	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U	

Tuesday, January 9, 2018 Page 14 of 34

Sample Name FEWRN02-006	-SW-001]	Matrix 7	Гуре: W	R	Result Typ	sult Type: TRG				
Lab Sample Name: FBF458	Sampl	e Date/Time	: 2017	08-29	12:35		Validati	on Level: St	age 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U			

Tuesday, January 9, 2018 Page 15 of 34

Sample Name FEWRN03-001-	-SO-008		Matrix 7	Гуре: Ѕ	F	Result Typ	pe: TRG			
Lab Sample Name: FBF461	Sampl	e Date/Time	e: 2017	-08-29	17:30		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	0.43	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.66	0.24	0.66	1.1	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	0.72	0.25	0.66	1.1	ug/kg	J	J		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.66	0.21	0.66	1.1	ug/kg	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.66	0.23	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	< 0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U		

Tuesday, January 9, 2018 Page 16 of 34

Sample Name FEWRN03-001-	-SS-001		Matrix [Гуре: Ѕ	R	e: TRG			
Lab Sample Name: FBF448	Sampl	e Date/Time	2017	-08-29	10:06		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.57	0.22	0.57	0.95	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.57	0.30	0.57	0.95	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.35	0.16	0.57	0.95	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.61	0.22	0.57	0.95	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.57	0.22	0.57	0.95	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.58	0.12	0.38	0.95	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.38	0.21	0.57	0.95	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.57	0.16	0.57	0.95	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	5.8	0.22	0.57	0.95	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.61	0.18	0.57	0.95	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.55	0.16	0.57	0.95	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.46	0.25	0.57	0.95	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	130	2.0	5.7	9.5	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.64	0.25	0.57	0.95	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.67	0.17	0.57	0.95	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.37	0.10	0.38	0.95	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.34	0.11	0.38	0.95	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.41	0.17	0.57	0.95	ug/kg	J	J	

Tuesday, January 9, 2018 Page 17 of 34

Sample Name FEWRN03-002	-GW-020	ľ	Matrix T	Type: W	R	Result Typ	e: TRG		
Lab Sample Name: FBF472	Sampl	e Date/Time	: 2017-	08-31	15:34		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.27	0.0032	0.010	0.020	ug/L			
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.38	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.18	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.12	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	2.0	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.64	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.72	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.26	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.40	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Tuesday, January 9, 2018 Page 18 of 34

Sample Name FEWRN03-002	-SO-007		Matrix '	Гуре: Ѕ	R	pe: TRG			
Lab Sample Name: FBF450	Sampl	e Date/Time	2017	-08-29	12:55		Validati	on Level: St	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.88	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.53	0.15	0.53	0.88	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.35	0.11	0.35	0.88	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	0.25	0.19	0.53	0.88	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.53	0.15	0.53	0.88	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.20	0.53	0.88	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.53	0.17	0.53	0.88	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.88	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.53	0.23	0.53	0.88	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	11	0.18	0.53	0.88	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.34	0.23	0.53	0.88	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.53	0.16	0.53	0.88	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.35	0.097	0.35	0.88	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629 - 94 - 8	< 0.35	0.11	0.35	0.88	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.26	0.16	0.53	0.88	ug/kg	J	J	

Tuesday, January 9, 2018 Page 19 of 34

Sample Name FEWRN03-002	-SS-001		Matrix '	Туре: Ѕ	R	Result Typ	pe: TRG				
Lab Sample Name: FBF444	Sampl	e Date/Time	2017	-08-28	16:05		Validati	on Level: St	age 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.89	ug/kg	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.89	ug/kg	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.53	0.15	0.53	0.89	ug/kg	U	U			
PERFLUOROBUTANOIC ACID	375-22-4	0.35	0.20	0.53	0.89	ug/kg	J	J			
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.89	ug/kg	U	U			
PERFLUORODECANOIC ACID	335-76-2	0.39	0.12	0.36	0.89	ug/kg	J	J			
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.20	0.53	0.89	ug/kg	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.53	0.15	0.53	0.89	ug/kg	U	U			
PERFLUOROHEXANE SULFONATE	108427-53-8	1.0	0.20	0.53	0.89	ug/kg					
PERFLUOROHEXANOIC ACID	307-24-4	0.39	0.17	0.53	0.89	ug/kg	J	J			
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.89	ug/kg	U	U			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.53	0.23	0.53	0.89	ug/kg	U	U			
PERFLUOROOCTANE SULFONATE	1763-23-1	22	0.19	0.53	0.89	ug/kg					
PERFLUOROOCTANOIC ACID	335-67-1	0.38	0.23	0.53	0.89	ug/kg	J	J			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.53	0.16	0.53	0.89	ug/kg	U	U			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.098	0.36	0.89	ug/kg	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.89	ug/kg	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	0.25	0.16	0.53	0.89	ug/kg	J	J			

Tuesday, January 9, 2018 Page 20 of 34

Sample Name FEWRN03-003	3-GW-020]	Matrix 7	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBF470	Sampl	e Date/Time	: 2017-	-08-31	11:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.62	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.31	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.16	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.18	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	2.4	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.85	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	1.3	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.59	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.46	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Tuesday, January 9, 2018 Page 21 of 34

Sample Name FEWRN03-003-	-GW-920	I	Matrix 1	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBF471	Sampl	e Date/Time	2017	-08-31	11:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.64	0.0037	0.012	0.023	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.012	0.0041	0.012	0.023	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.36	0.0055	0.012	0.023	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.20	0.0049	0.012	0.023	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.012	0.0053	0.012	0.023	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.012	0.0046	0.012	0.023	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.012	0.0032	0.012	0.023	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.19	0.0038	0.012	0.023	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	2.3	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.99	0.0033	0.012	0.023	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.010	0.0044	0.012	0.023	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.012	0.0041	0.012	0.023	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	1.7	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.66	0.0053	0.012	0.023	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.53	0.0031	0.012	0.023	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.012	0.0044	0.012	0.023	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.012	0.0038	0.012	0.023	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.012	0.0049	0.012	0.023	ug/L	U	U	

Tuesday, January 9, 2018 Page 22 of 34

Sample Name FEWRN03-003-	-SO-008		Matrix 7	Гуре: Ѕ	F	e: TRG			
Lab Sample Name: FBF447	Sampl	e Date/Time	e: 2017	-08-29	11:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.78	0.30	0.78	1.3	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.78	0.42	0.78	1.3	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.55	0.22	0.78	1.3	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.53	0.30	0.78	1.3	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.78	0.30	0.78	1.3	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.52	0.17	0.52	1.3	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<0.78	0.29	0.78	1.3	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.78	0.22	0.78	1.3	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	5.0	0.30	0.78	1.3	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.85	0.25	0.78	1.3	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.78	0.22	0.78	1.3	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.78	0.34	0.78	1.3	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.78	0.27	0.78	1.3	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	0.53	0.34	0.78	1.3	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.80	0.23	0.78	1.3	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.52	0.14	0.52	1.3	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629 - 94-8	< 0.52	0.16	0.52	1.3	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.78	0.23	0.78	1.3	ug/kg	U	U	

Tuesday, January 9, 2018 Page 23 of 34

Sample Name FEWRN03-003-	-SO-908		Matrix 7	Гуре: Ѕ	F	Result Typ	pe: TRG			
Lab Sample Name: FBF449	Sampl	e Date/Time	e: 2017	-08-29	11:00		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.72	0.28	0.72	1.2	ug/kg	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.72	0.38	0.72	1.2	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	0.81	0.20	0.72	1.2	ug/kg	J	J		
PERFLUOROBUTANOIC ACID	375-22-4	0.47	0.28	0.72	1.2	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	< 0.72	0.28	0.72	1.2	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.48	0.16	0.48	1.2	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	0.27	0.26	0.72	1.2	ug/kg	J	J		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.72	0.20	0.72	1.2	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	7.9	0.28	0.72	1.2	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	0.92	0.23	0.72	1.2	ug/kg	J	J		
PERFLUORONONANOIC ACID	375-95-1	< 0.72	0.20	0.72	1.2	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.72	0.31	0.72	1.2	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.72	0.25	0.72	1.2	ug/kg	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	0.50	0.31	0.72	1.2	ug/kg	J	J		
PERFLUOROPENTANOIC ACID	2706-90-3	0.80	0.22	0.72	1.2	ug/kg	J	J		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.48	0.13	0.48	1.2	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.48	0.14	0.48	1.2	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.72	0.22	0.72	1.2	ug/kg	U	U		

Tuesday, January 9, 2018 Page 24 of 34

Sample Name FEWRN03-003	-SS-001		Matrix [Гуре: Ѕ	R	e: TRG			
Lab Sample Name: FBF443	Sampl	e Date/Time	2017	-08-28	15:40		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.54	0.21	0.54	0.90	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.54	0.29	0.54	0.90	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.41	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.52	0.21	0.54	0.90	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.54	0.21	0.54	0.90	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.90	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.54	0.20	0.54	0.90	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.54	0.15	0.54	0.90	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	12	0.21	0.54	0.90	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.58	0.17	0.54	0.90	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.50	0.15	0.54	0.90	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.54	0.23	0.54	0.90	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	73	1.9	5.4	9.0	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	1.5	0.23	0.54	0.90	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.67	0.16	0.54	0.90	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.099	0.36	0.90	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.90	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.54	0.16	0.54	0.90	ug/kg	U	U	

Tuesday, January 9, 2018 Page 25 of 34

Sample Name FEWRN03-004	-SO-008		Matrix '	Туре: Ѕ	R	e: TRG			
Lab Sample Name: FBF445	Sampl	e Date/Time	2017	-08-29	07:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.89	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.37	0.15	0.53	0.89	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.35	0.20	0.53	0.89	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.89	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.20	0.53	0.89	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.1	0.20	0.53	0.89	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.53	0.17	0.53	0.89	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.53	0.23	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.53	0.19	0.53	0.89	ug/kg	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.53	0.23	0.53	0.89	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	0.57	0.16	0.53	0.89	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.098	0.36	0.89	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629 - 94 - 8	< 0.36	0.11	0.36	0.89	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.53	0.16	0.53	0.89	ug/kg	U	U	

Tuesday, January 9, 2018 Page 26 of 34

Sample Name FEWRN03-004	-SS-001		Matrix 1	Гуре: Ѕ	R	e: TRG			
Lab Sample Name: FBF441	Sampl	e Date/Time	e: 2017	-08-28	13:10		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	3.9	2.3	6.0	10	ug/kg	J	J	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<6.0	3.2	6.0	10	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	7.6	1.7	6.0	10	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	3.8	2.3	6.0	10	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	7.2	2.3	6.0	10	ug/kg	J	J	
PERFLUORODECANOIC ACID	335-76-2	4.4	1.3	4.0	10	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	<6.0	2.2	6.0	10	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	4.6	1.7	6.0	10	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	220	2.3	6.0	10	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	13	1.9	6.0	10	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	<6.0	1.7	6.0	10	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	6.8	2.6	6.0	10	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	1600	21	60	100	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	8.7	2.6	6.0	10	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	7.6	1.8	6.0	10	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	<4.0	1.1	4.0	10	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<4.0	1.2	4.0	10	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<6.0	1.8	6.0	10	ug/kg	U	U	

Tuesday, January 9, 2018 Page 27 of 34

Sample Name FEWRN-RS-00	1]	Matrix T	Type: W	R	esult Typ	e: TRG		
Lab Sample Name: FBF440	Sample	e Date/Time	2017-	08-28	12:05		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Tuesday, January 9, 2018 Page 28 of 34

Sample Name FEWRN-RS-00	2	Ī	Matrix 7	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBF446	Sampl	e Date/Time	: 2017	08-29	07:45		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Tuesday, January 9, 2018 Page 29 of 34

Sample Name FEWRN-RS-00	3	I	Matrix T	Гуре: W	pe: TRG					
Lab Sample Name: FBF452	Sampl	le Date/Time	1e: 2017 - 08 - 30		15:15		Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U		

Tuesday, January 9, 2018 Page 30 of 34

Sample Name FEWRN-RS-00	4	Ŋ	Matrix T	Г уре: W	Result Type: TRG						
Lab Sample Name: FBF463	Sampl	e Date/Time	e: 2017-08-31		06:55		Validation Level: Stage 2B				
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U			

Tuesday, January 9, 2018 Page 31 of 34

Sample Name FEWRN-RS-00)5	-	Matrix T	Гуре: W	Result Type: TRG						
Lab Sample Name: FBF474	Sampl	e Date/Time	2017-	-09-01	08:20		Validation Level: Stage 2B				
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U			

Tuesday, January 9, 2018 Page 32 of 34

Sample Name FEWRN-SB-00	1	Ī	Matrix T	Гуре: W	R	Result Typ	e: TRG			
Lab Sample Name: FBF442	Sampl	e Date/Time	ie: 2017-08-28		12:10		Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.010	0.0032	0.010	0.020	ug/L	J	J		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	0.032	0.0026	0.010	0.020	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U		

Tuesday, January 9, 2018 Page 33 of 34

Sample Name FEWRN-SB-00	2]	Matrix T	Type: W	R	Result Typ	e: TRG			
Lab Sample Name: FBF469	Sampl	e Date/Time	Γime: 2017-08-31				Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U		
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U		

Tuesday, January 9, 2018 Page 34 of 34

Validated Sample Result Forms: B7J3592

2058-94-8

< 0.20

0.086

0.20

0.40

PERFLUOROUNDECANOIC ACID

EPA 537 m Analysis Method: Sample Name FEWRN01-001-GW-015 Matrix Type: W Result Type: TRG FBP244 Sample Date/Time: 2017-09-04 Lab Sample Name: Validation Level: Stage 4 DL CAS No Result LOD LOQ Result Lab Analyte Validation Validation Qualifier Qualifier Value Units Reason Code 6:2 FLUOROTELOMER SULFONATE 49 27619-97-2 0.32 1.0 2.0 ug/L 8:2 FLUOROTELOMER SULFONATE 39108-34-4 0.76 0.072 0.20 0.40 ug/L PERFLUOROBUTANE SULFONATE 29420-43-3 11 0.096 0.20 0.40 ug/L PERFLUOROBUTANOIC ACID 7.9 0.086 0.40 375-22-4 0.20 ug/L PERFLUORODECANE SULFONATE 335-77-3 < 0.20 0.092 0.20 0.40 U UJ 02A ug/L U U PERFLUORODECANOIC ACID 335-76-2 < 0.20 0.080 0.20 0.40 ug/L PERFLUORODODECANOIC ACID < 0.20 0.056 0.20 0.40 U U 307-55-1 ug/L PERFLUOROHEPTANOIC ACID 375-85-9 6.1 0.066 0.20 0.40 ug/L PERFLUOROHEXANE SULFONATE 108427-53-8 140 2.4 5.0 8.0 ug/L PERFLUOROHEXANOIC ACID 53 307-24-4 0.29 1.0 2.0 ug/L PERFLUORONONANOIC ACID 375-95-1 0.33 0.076 0.20 0.40 ug/L PERFLUOROOCTANE SULFONAMIDE 754-91-6 3.0 0.072 0.20 0.40 ug/L PERFLUOROOCTANE SULFONATE 1.0 2.0 1763-23-1 64 0.26 ug/L PERFLUOROOCTANOIC ACID 335-67-1 72 0.46 1.0 2.0 ug/L PERFLUOROPENTANOIC ACID 2706-90-3 13 0.054 0.20 0.40 ug/L PERFLUOROTETRADECANOIC ACID 376-06-7 < 0.20 0.076 0.20 0.40 U U ug/L U PERFLUOROTRIDECANOIC ACID 72629-94-8 < 0.20 0.066 0.20 0.40 U ug/L

U

ug/L

U

Tuesday, January 9, 2018 Page 1 of 20

Sample Name FEWRN01-001	-SO-018		Matrix Type: S Result Type: TRG								
Lab Sample Name: FBP225	Sampl	le Date/Time	e: 2017	-09-01	15:25		Validation Level: Stage 4				
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.6	0.20	0.53	0.89	ug/kg					
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.89	ug/kg	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.64	0.15	0.53	0.89	ug/kg	J	J			
PERFLUOROBUTANOIC ACID	375-22-4	1.4	0.20	0.53	0.89	ug/kg					
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.89	ug/kg	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.89	ug/kg	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.20	0.53	0.89	ug/kg	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	0.50	0.15	0.53	0.89	ug/kg	J	J			
PERFLUOROHEXANE SULFONATE	108427-53-8	4.9	0.20	0.53	0.89	ug/kg					
PERFLUOROHEXANOIC ACID	307-24-4	4.0	0.17	0.53	0.89	ug/kg					
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.89	ug/kg	U	U			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.71	0.23	0.53	0.89	ug/kg	J	J			
PERFLUOROOCTANE SULFONATE	1763-23-1	4.0	0.19	0.53	0.89	ug/kg					
PERFLUOROOCTANOIC ACID	335-67-1	2.8	0.23	0.53	0.89	ug/kg					
PERFLUOROPENTANOIC ACID	2706-90-3	0.75	0.16	0.53	0.89	ug/kg	J	J			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.098	0.36	0.89	ug/kg	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.89	ug/kg	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.53	0.16	0.53	0.89	ug/kg	U	U			

Tuesday, January 9, 2018 Page 2 of 20

Sample Name FEWRN01-001	-SS-001		Matrix 1	Гуре: Ѕ	R	e: TRG				
Lab Sample Name: FBP228	Sampl	e Date/Time	ne: 2017-09-01		12:32		Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<59	23	59	99	ug/kg	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<59	32	59	99	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	3600	17	59	99	ug/kg				
PERFLUOROBUTANOIC ACID	375-22-4	820	23	59	99	ug/kg				
PERFLUORODECANE SULFONATE	335-77-3	<59	23	59	99	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	14	13	40	99	ug/kg	J	J		
PERFLUORODODECANOIC ACID	307-55-1	<59	22	59	99	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	860	17	59	99	ug/kg				
PERFLUOROHEXANE SULFONATE	108427-53-8	20000	23	59	990	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	6900	190	590	990	ug/kg				
PERFLUORONONANOIC ACID	375-95-1	48	17	59	99	ug/kg	J	J		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	5100	260	590	990	ug/kg				
PERFLUOROOCTANE SULFONATE	1763-23-1	3400	21	59	99	ug/kg				
PERFLUOROOCTANOIC ACID	335-67-1	50000	470	1100	1800	ug/kg				
PERFLUOROPENTANOIC ACID	2706-90-3	1200	18	59	99	ug/kg				
PERFLUOROTETRADECANOIC ACID	376-06-7	<40	11	40	99	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629 - 94 - 8	<40	12	40	99	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	<59	18	59	99	ug/kg	U	U		

Tuesday, January 9, 2018 Page 3 of 20

Sample Name FEWRN01-002-	-SO-018		Matrix '	Гуре: Ѕ	R	e: TRG				
Lab Sample Name: FBP227	Sampl	Sample Date/Time: 2017-09-01					Validati	Validation Level: Stage 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.6	0.23	0.60	1.0	ug/kg				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.60	0.32	0.60	1.0	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	1.3	0.17	0.60	1.0	ug/kg				
PERFLUOROBUTANOIC ACID	375-22-4	3.1	0.23	0.60	1.0	ug/kg				
PERFLUORODECANE SULFONATE	335-77-3	< 0.60	0.23	0.60	1.0	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.40	0.13	0.40	1.0	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.73	0.17	0.60	1.0	ug/kg	J	J		
PERFLUOROHEXANE SULFONATE	108427-53-8	17	0.23	0.60	1.0	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	7.4	0.19	0.60	1.0	ug/kg				
PERFLUORONONANOIC ACID	375-95-1	< 0.60	0.17	0.60	1.0	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.77	0.26	0.60	1.0	ug/kg	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	20	0.21	0.60	1.0	ug/kg				
PERFLUOROOCTANOIC ACID	335-67-1	6.0	0.26	0.60	1.0	ug/kg				
PERFLUOROPENTANOIC ACID	2706-90-3	2.2	0.18	0.60	1.0	ug/kg				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	U		

Tuesday, January 9, 2018 Page 4 of 20

Sample Name FEWRN01-002-	-SS-001		Matrix '	Гуре: Ѕ	R	Result Typ	pe: TRG				
Lab Sample Name: FBP226	Sampl	le Date/Time	2017	-09-01	15:50		Validati	Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.60	0.23	0.60	1.0	ug/kg	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.60	0.32	0.60	1.0	ug/kg	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.59	0.17	0.60	1.0	ug/kg	J	J			
PERFLUOROBUTANOIC ACID	375-22-4	0.48	0.23	0.60	1.0	ug/kg	J	J			
PERFLUORODECANE SULFONATE	335-77-3	1.6	0.23	0.60	1.0	ug/kg					
PERFLUORODECANOIC ACID	335-76-2	0.56	0.13	0.40	1.0	ug/kg	J	J			
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	0.45	0.17	0.60	1.0	ug/kg	J	J			
PERFLUOROHEXANE SULFONATE	108427-53-8	11	0.23	0.60	1.0	ug/kg					
PERFLUOROHEXANOIC ACID	307-24-4	1.1	0.19	0.60	1.0	ug/kg					
PERFLUORONONANOIC ACID	375-95-1	0.50	0.17	0.60	1.0	ug/kg	J	J			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	6.5	0.26	0.60	1.0	ug/kg					
PERFLUOROOCTANE SULFONATE	1763-23-1	140	2.1	6.0	10	ug/kg					
PERFLUOROOCTANOIC ACID	335-67-1	2.2	0.26	0.60	1.0	ug/kg					
PERFLUOROPENTANOIC ACID	2706-90-3	0.39	0.18	0.60	1.0	ug/kg	J	J			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	U			
PERFLUOROTRIDECANOIC ACID	72629 - 94 - 8	< 0.40	0.12	0.40	1.0	ug/kg	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	0.41	0.18	0.60	1.0	ug/kg	J	J			

Tuesday, January 9, 2018 Page 5 of 20

Sample Name FEWRN01-003	-GW-015	I	Matrix 7	Гуре: W	R	pe: TRG				
Lab Sample Name: FBP242	Sample	e Date/Time	Date/Time: 2017-09-04				Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.4	0.064	0.20	0.40	ug/L				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.11	0.0036	0.010	0.020	ug/L				
PERFLUOROBUTANE SULFONATE	29420-43-3	0.97	0.0048	0.010	0.020	ug/L				
PERFLUOROBUTANOIC ACID	375-22-4	0.32	0.0043	0.010	0.020	ug/L				
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.37	0.0033	0.010	0.020	ug/L				
PERFLUOROHEXANE SULFONATE	108427-53-8	4.2	0.068	0.20	0.40	ug/L				
PERFLUOROHEXANOIC ACID	307-24-4	2.5	0.058	0.20	0.40	ug/L				
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.017	0.0036	0.010	0.020	ug/L	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	2.5	0.052	0.20	0.40	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	0.43	0.0046	0.010	0.020	ug/L				
PERFLUOROPENTANOIC ACID	2706-90-3	1.2	0.054	0.20	0.40	ug/L				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U		

Tuesday, January 9, 2018 Page 6 of 20

Sample Name FEWRN01-003	-GW-915]	Matrix 7	Гуре: W	R	Result Type: TRG					
Lab Sample Name: FBP243	Sampl	e Date/Time	Date/Time: 2017-09-04				Validation Level: Stage 2B				
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.8	0.064	0.20	0.40	ug/L					
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.13	0.0036	0.010	0.020	ug/L					
PERFLUOROBUTANE SULFONATE	29420-43-3	1.1	0.096	0.20	0.40	ug/L					
PERFLUOROBUTANOIC ACID	375-22-4	0.36	0.0043	0.010	0.020	ug/L					
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	0.39	0.0033	0.010	0.020	ug/L					
PERFLUOROHEXANE SULFONATE	108427-53-8	4.7	0.068	0.20	0.40	ug/L					
PERFLUOROHEXANOIC ACID	307-24-4	2.7	0.058	0.20	0.40	ug/L					
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.017	0.0036	0.010	0.020	ug/L	J	J			
PERFLUOROOCTANE SULFONATE	1763-23-1	3.2	0.052	0.20	0.40	ug/L					
PERFLUOROOCTANOIC ACID	335-67-1	0.48	0.0046	0.010	0.020	ug/L					
PERFLUOROPENTANOIC ACID	2706-90-3	1.3	0.054	0.20	0.40	ug/L					
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U			

Tuesday, January 9, 2018 Page 7 of 20

Sample Name FEWRN01-003-	-SO-016	·	Matrix 7	Гуре: Ѕ	R	Result Typ	pe: TRG			
Lab Sample Name: FBP232	Sampl	e Date/Time	e: 2017	-09-02	10:10		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.1	0.25	0.66	1.1	ug/kg				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	0.65	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROBUTANOIC ACID	375-22-4	0.39	0.25	0.66	1.1	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.66	0.24	0.66	1.1	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.47	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROHEXANE SULFONATE	108427-53-8	1.4	0.25	0.66	1.1	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	0.90	0.21	0.66	1.1	ug/kg	J	J		
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	0.80	0.23	0.66	1.1	ug/kg	J	J		
PERFLUOROOCTANOIC ACID	335-67-1	0.94	0.29	0.66	1.1	ug/kg	J	J		
PERFLUOROPENTANOIC ACID	2706-90-3	0.46	0.20	0.66	1.1	ug/kg	J	J		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629 - 94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U		

Tuesday, January 9, 2018 Page 8 of 20

Sample Name FEWRN01-003-	-SO-916		Matrix 7	Гуре: Ѕ	F	Result Typ	pe: TRG			
Lab Sample Name: FBP233	Sampl	e Date/Time	e: 2017	-09-02	10:10		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.69	0.25	0.66	1.1	ug/kg	J	J		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	0.38	0.25	0.66	1.1	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.66	0.24	0.66	1.1	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	0.88	0.25	0.66	1.1	ug/kg	J	J		
PERFLUOROHEXANOIC ACID	307-24-4	0.68	0.21	0.66	1.1	ug/kg	J	J		
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	0.51	0.23	0.66	1.1	ug/kg	J	J		
PERFLUOROOCTANOIC ACID	335-67-1	< 0.66	0.29	0.66	1.1	ug/kg	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	0.45	0.20	0.66	1.1	ug/kg	J	J		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U		

Tuesday, January 9, 2018 Page 9 of 20

Sample Name FEWRN01-003	-SS-001		Matrix '	Гуре: Ѕ	R	pe: TRG				
Lab Sample Name: FBP230	Sampl	e Date/Time	2017	-09-02	07:59		Validati	on Level: St	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.9	0.25	0.66	1.1	ug/kg				
8:2 FLUOROTELOMER SULFONATE	39108-34-4	4.4	0.35	0.66	1.1	ug/kg		J	17	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.59	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROBUTANOIC ACID	375-22-4	0.78	0.25	0.66	1.1	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	2.7	0.25	0.66	1.1	ug/kg		J	17	
PERFLUORODECANOIC ACID	335-76-2	1.4	0.14	0.44	1.1	ug/kg				
PERFLUORODODECANOIC ACID	307-55-1	0.46	0.24	0.66	1.1	ug/kg	J	J		
PERFLUOROHEPTANOIC ACID	375-85-9	0.85	0.19	0.66	1.1	ug/kg	J	J		
PERFLUOROHEXANE SULFONATE	108427-53-8	3.8	0.25	0.66	1.1	ug/kg				
PERFLUOROHEXANOIC ACID	307-24-4	0.97	0.21	0.66	1.1	ug/kg	J	J		
PERFLUORONONANOIC ACID	375-95-1	1.3	0.19	0.66	1.1	ug/kg				
PERFLUOROOCTANE SULFONAMIDE	754-91-6	11	0.29	0.66	1.1	ug/kg				
PERFLUOROOCTANE SULFONATE	1763-23-1	62	2.3	6.6	11	ug/kg				
PERFLUOROOCTANOIC ACID	335-67-1	2.2	0.29	0.66	1.1	ug/kg				
PERFLUOROPENTANOIC ACID	2706-90-3	0.84	0.20	0.66	1.1	ug/kg	J	J		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.44	0.12	0.44	1.1	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.44	0.13	0.44	1.1	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	0.91	0.20	0.66	1.1	ug/kg	J	J		

Tuesday, January 9, 2018 Page 10 of 20

Sample Name FEWRN01-003	-SS-901		Matrix 1	Гуре: Ѕ	R	e: TRG			
Lab Sample Name: FBP231	Sampl	e Date/Time	2017	-09-02	07:59		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.9	0.20	0.52	0.87	ug/kg			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	34	0.28	0.52	0.87	ug/kg		J	17
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.52	0.15	0.52	0.87	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	0.44	0.20	0.52	0.87	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.52	0.20	0.52	0.87	ug/kg	U	UJ	17
PERFLUORODECANOIC ACID	335-76-2	0.81	0.11	0.35	0.87	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.52	0.19	0.52	0.87	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.94	0.15	0.52	0.87	ug/kg			
PERFLUOROHEXANE SULFONATE	108427-53-8	3.3	0.20	0.52	0.87	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.80	0.17	0.52	0.87	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.86	0.15	0.52	0.87	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	13	0.23	0.52	0.87	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	71	1.8	5.2	8.7	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.0	0.23	0.52	0.87	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.79	0.16	0.52	0.87	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.35	0.096	0.35	0.87	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.35	0.10	0.35	0.87	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.32	0.16	0.52	0.87	ug/kg	J	J	

Tuesday, January 9, 2018 Page 11 of 20

Sample Name FEWRN02-001	-GW-025	I	Matrix 7	Type: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP240	Sampl	e Date/Time	: 2017-	-09-04	10:35		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.0038	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.074	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.040	0.0043	0.010	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.022	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	0.29	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.16	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.72	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.031	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.14	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629 - 94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Tuesday, January 9, 2018 Page 12 of 20

Sample Name FEWRN02-002	2-GW-033]	Matrix 1	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP236	Sampl	e Date/Time	2017	-09-02	16:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.044	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.065	0.0036	0.010	0.020	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.022	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.020	0.0043	0.010	0.020	ug/L	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.0099	0.0033	0.010	0.020	ug/L	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.13	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.079	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0079	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.91	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.029	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.064	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Tuesday, January 9, 2018 Page 13 of 20

Sample Name FEWRN02-003	-GW-030		Matrix '	Type: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP235	Sampl	e Date/Time	2017	-09-02	14:15		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.6	0.032	0.10	0.20	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	3.2	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	1.2	0.043	0.10	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.79	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	17	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	8.0	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	17	0.13	0.50	1.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.95	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	2.4	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Tuesday, January 9, 2018 Page 14 of 20

Sample Name FEWRN02-004	-GW-024		Matrix '	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP237	Sampl	e Date/Time	2017	-09-02	17:40		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.3	0.032	0.10	0.20	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.14	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	3.7	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	1.4	0.043	0.10	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.94	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	22	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	7.5	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	19	0.13	0.50	1.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	1.1	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	3.6	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629 - 94 - 8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Tuesday, January 9, 2018 Page 15 of 20

Sample Name FEWRN03-001	-GW-020	I	Matrix 7	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP229	Sampl	e Date/Time	: 2017	-09-01	17:35		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.063	0.0032	0.010	0.020	ug/L		J	02A
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	UJ	02A
PERFLUOROBUTANE SULFONATE	29420-43-3	0.16	0.0048	0.010	0.020	ug/L		J	02A
PERFLUOROBUTANOIC ACID	375-22-4	0.088	0.0043	0.010	0.020	ug/L		J	02A
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	UJ	02A
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	UJ	02A
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	UJ	02A
PERFLUOROHEPTANOIC ACID	375-85-9	0.069	0.0033	0.010	0.020	ug/L		J	02A
PERFLUOROHEXANE SULFONATE	108427-53-8	1.3	0.24	0.50	0.80	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.34	0.0029	0.010	0.020	ug/L		J	02A
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	02A
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	UJ	02A
PERFLUOROOCTANE SULFONATE	1763-23-1	0.82	0.23	0.50	0.80	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.16	0.0046	0.010	0.020	ug/L		J	02A
PERFLUOROPENTANOIC ACID	2706-90-3	0.16	0.0027	0.010	0.020	ug/L		J	02A
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	02A
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	UJ	02A
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	UJ	02A

Sample Name FEWRN-IDW-	ws		Matrix 1	Гуре: Ѕ	R	Result Typ	e: TRG		
Lab Sample Name: FBP238	Sampl	le Date/Time	e: 2017	-09-03	08:50		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<64	25	64	110	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<64	34	64	110	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	350	18	64	110	ug/kg			
PERFLUOROBUTANOIC ACID	375-22-4	170	25	64	110	ug/kg			
PERFLUORODECANE SULFONATE	335-77-3	<64	25	64	110	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	<43	14	43	110	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	<64	24	64	110	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	160	18	64	110	ug/kg			
PERFLUOROHEXANE SULFONATE	108427-53-8	5600	250	640	1100	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	1300	20	64	110	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	53	18	64	110	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	2000	28	64	110	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	1300	23	64	110	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	12000	280	640	1100	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	190	19	64	110	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	<43	12	43	110	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629 - 94 - 8	<43	13	43	110	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	<64	19	64	110	ug/kg	U	U	

Tuesday, January 9, 2018 Page 17 of 20

Sample Name FEWRN-IDW-	ww		Matrix 1	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP239	Sample	e Date/Time	2017	-09-03	09:00		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	4.6	0.064	0.20	0.40	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	3.7	0.072	0.20	0.40	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	2.3	0.096	0.20	0.40	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.81	0.086	0.20	0.40	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.20	0.092	0.20	0.40	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.20	0.080	0.20	0.40	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.20	0.056	0.20	0.40	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.69	0.066	0.20	0.40	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	18	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	7.3	0.058	0.20	0.40	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.14	0.076	0.20	0.40	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	4.2	0.072	0.20	0.40	ug/L			
PERFLUOROOCTANE SULFONATE	1763-23-1	100	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	26	0.46	1.0	2.0	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.6	0.054	0.20	0.40	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.20	0.076	0.20	0.40	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.20	0.066	0.20	0.40	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.20	0.086	0.20	0.40	ug/L	U	U	

Tuesday, January 9, 2018 Page 18 of 20

Sample Name FEWRN-RS-00	06]	Matrix T	Гуре: W	R	Result Typ	e: TRG		
Lab Sample Name: FBP234	Sampl	e Date/Time	2017-	-09-02	13:15		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Tuesday, January 9, 2018 Page 19 of 20

Sample Name FEWRN-RS-00	7	Ŋ	Matrix T	Гуре: W	Result Typ	Type: TRG					
Lab Sample Name: FBP241	Sampl	e Date/Time	: 2017-	-09-04	12:05		Validation Level: Stage 2B				
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code		
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U			
PERFLUOROBUTANOIC ACID	375-22-4	< 0.010	0.0043	0.010	0.020	ug/L	U	U			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U			
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U			
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U			
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U			
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U			
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U			

Tuesday, January 9, 2018 Page 20 of 20

Prepared for: Aerostar SES LLC

<u>Project</u>: M2027.0003 (OMAHA) FE Warren

Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B7J3592

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- > This report has been generated in .pdf format.

Review Performed By:

Stephanie Pollen 2017.10.18 17:16:31 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

Glossary of Terms

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- ➤ **Accuracy** is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or ¹³C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

1.0 Project Narrative

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

Maxxam Job: B7J3592 - Soil Analysis

Sample Analysis

Samples were initially analyzed on QC batches 5158547 (2017/09/22) and 5158618 (2017/09/22). Due to failure of QC acceptance criteria on QC batch 5158547 (2017/09/22), samples were re-extracted and re-analyzed on QC batch 5186997 (2017/10/03-04). QC acceptance criterion was also not met for Perfluorooctanoic acid (PFOA) in the Blank sample on QC batch 5158618. The sample was re-extracted and re-analyzed on QC batch 5187001 (2017/10/02) for this analyte.

Soil extracts were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for analysis. Dilutions were required for selected analytes in the following samples:

FBP226	FEWRN01-002-SS-001	Perfluorooctanesulfonate (PFOS)
FBP228	FEWRN01-001-SS-001	All analytes
FBP230	FEWRN01-003-SS-001	Perfluorooctanesulfonate (PFOS)
FBP231	FEWRN01-003-SS-901	Perfluorooctanesulfonate (PFOS)
FBP238	FEWRN-IDW-WS	All analytes

Detection limits were adjusted accordingly.

A high concentration of Perfluorooctanesulfonate (PFOS) was detected in the following sample during pre-screening:

FBP230 FEWRN01-003-SS-001

The sample was diluted 10x and 100x for analysis. Due to discrepancies between the dilution and screening results, the sample was re-diluted and re-analyzed. Consistent results were obtained between the re-diluted and undiluted samples. These results indicate a possible error during the initial dilution procedure. There is no impact on data quality as results were reported from the re-diluted sample.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

QC Samples

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was performed on sample FBP228 (FEWRN01-001-SS-001) on QC batches 5158618 (2017/09/22) and 5187001 (2017/10/02) but not analyzed due to high concentrations of target analytes in the native sample.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

Maxxam Job: B7J3592 - Water Analysis

Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batches 5159252 (2017/09/25) and 5159897 (2017/09/16) and 5185352 (2017/10/01). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

FBP229	FEWRN03-001-GW-020	All analytes
FBP235	FEWRN02-003-GW-030	All analytes
FBP236	FEWRN02-002-GW-033	Perfluorooctanesulfonate (PFOS)
FBP237	FEWRN02-004-GW-024	All analytes
FBP239	FEWRN-IDW-WW	All analytes
FBP242	FEWRN01-003-GW-015	Perfluoropentanoic acid (PFPeA), Perfluorohexanoic acid (PFHxA), Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS)
FBP243	FEWRN01-003-GW-915	Perfluorobutanesulfonate (PFBS), Perfluoropentanoic acid (PFPeA), Perfluorohexanoic acid (PFHxA), Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS)
FBP244	FEWRN01-001-GW-015	All analytes

Detection limits were adjusted accordingly for these samples.

The following samples were also analyzed for selected parameters by serial dilution (high level analysis) on QC batch 5155735 (2017/09/24):

FBP229 FEWRN03-001-GW-020 Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)
FBP244 FEWRN01-001-GW-015 Perfluorohexanesulfonate (PFHxS)

Detection limits were adjusted accordingly for these analytes.

The following sample was initially analyzed on QC batch 5159897 (2017/09/16):

FBP244 FEWRN01-001-GW-015

Due to failure of the Instrument Sensitivity Check (ISC) for Perfluorodecanesulfonate (PFDS), the sample was re-extracted and re-analyzed for this analyte on QC batch 5185352 (2017/10/01) past the method defined hold time.

The following sample was initially analyzed for Perfluorohexanesulfonate (PFHxS) and Perfluorooctanesulfonate (PFOS) by serial dilution (high level analysis) on QC batch 5155735 (2017/09/24):

FBP229 FEWRN03-001-GW-020

The sample was subsequently extracted and analyzed on QC batch 5185352 (2017/10/01) past the method defined hold time for all other analytes. Because of their chemical structures, per- and polyfluorinated alkyl substances (PFAS) are chemically and biologically stable in the environment and resist typical environmental degradation processes. This would suggest the hold time exceedance would not have a significant impact on the data quality.

QC Samples

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was required for sample FBP244 (FEWRN01-001-GW-015) on QC batch 5159897 (2017/09/16) but not performed due to high concentrations of target analytes in the native sample. A Spike and Spike Duplicate (LCS/LCS Dup) was analyzed instead. There is no impact on data quality as % RPD between the LCS/LCS Dup met acceptance criteria.

 Maxxam Analytics
 9 of 2218

 M2027.0003
 C-77
 4/26/18

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

PROJECT NARRATIVE

Maxxam Analytics

Client Project #: M2027.0003 (OMAHA)

Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

I. SAMPLE RECEIPT/ANALYSIS

a) Sample Listing

Maxxam	Client	Date	Date	Date	Date	Initial
ID	Sample ID	Sampled	Received	Prepped	Run	Calibration
	DA in soil by SPE/LCMS					
FBP225	FEWRN01-001-SO-018	2017/09/01	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP226	FEWRN01-002-SS-001	2017/09/01	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP227	FEWRN01-002-SO-018	2017/09/01	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP228	FEWRN01-001-SS-001	2017/09/01	2017/09/06	2017/09/11	2017/09/22	2017/09/22 & 2017/10/02
FBP230	FEWRN01-003-SS-001	2017/09/02	2017/09/06	2017/09/28	2017/10/05	2017/10/03-04
FBP231	FEWRN01-003-SS-901	2017/09/02	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP232	FEWRN01-003-SO-016	2017/09/02	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP233	FEWRN01-003-SO-916	2017/09/02	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
FBP238	FEWRN-IDW-WS	2017/09/03	2017/09/06	2017/09/28	2017/10/03	2017/10/03-04
PFOS and PFO	OA in water by SPE/LCMS					
FBP229	FEWRN03-001-GW-020	2017/09/01	2017/09/06	2017/09/27	2017/10/01	2017/09/24 & 2017/10/01
FBP229 Dup	FEWRN03-001-GW-020	2017/09/01	2017/09/06	2017/09/08	2017/09/24	2017/09/24 & 2017/10/01
FBP234	FEWRN-RS-006	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP235	FEWRN02-003-GW-030	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP236	FEWRN02-002-GW-033	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP237	FEWRN02-004-GW-024	2017/09/02	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP239	FEWRN-IDW-WW	2017/09/03	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP240	FEWRN02-001-GW-025	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP241	FEWRN-RS-007	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP242	FEWRN01-003-GW-015	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP243	FEWRN01-003-GW-915	2017/09/04	2017/09/06	2017/09/12	2017/09/25	2017/09/25
FBP244	FEWRN01-001-GW-015	2017/09/04	2017/09/06	2017/09/12	2017/09/16	2017/09/16 & 2017/09/24 & 2017/10/01
FBP244 Dup	FEWRN01-001-GW-015	2017/09/04	2017/09/06	2017/09/08	2017/09/24	2017/09/24

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with cooler temperature less than 10 degrees Celsius. Cooler custody seal was present and intact

c) Documentation Problems: none encountered

II. SAMPLE PREP:

No problems encountered

III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: all within recommended hold times
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager-Site Assessment and Remediation/Ultra Trace

2017/10/18 Date

Project Name: Site Inspect Multiple Sites, United State	ion of Aqueous Film Forming Foem Áreas es Air Force Installations	865-481	7837.		(Omeha)	MAF	B7J.	3592 ENV-				e 1 of Z			
Aeroster Project Managori Send Data to: p =	Brian Odom BOdom@ej.wcprovnv.com Jenny Vance, jvance@acrestar.net	(478) 397-4906 (665) 463-7904				1	1			1	1	Jample Types: N Normal FD Field Duplicate			
Sampler(s): Laboratory Name Address:	Kateb Brunbaugh, Ti	ravis Cusse	Un Ash	Willi.	١		1			*		AB = Ambient Blank or Field Hoagent Blank EB = Equipment Rinsate			
Maxam Analytics, Inc. 9749 Campobello Rd. Mississauga, Ontario LENGLE	Amoratory simpong And Maxzam Analytics on Feder Depor Z99 Gayuga Pd, Ghernismanja HY 14Z Phase uniticale "MOLD FOR.)	25	Phone (90 email MD	\$1.847.5700	mrt 5784	4) 21.5 mm/cm (cm.)					1	Matrix: W0 = Cloudritwiles 50 = Bod WP = Potable: Wales SE = Sectiment W6 = Surface Water			
MAXXAM use enty	Sample ID	Date Collected	Time Callicted	Sample Type	Matrix	F MS, 1946 Ju						WO = Freid QC (AB EB)			
	Color	L	No.	1.2		-						NOTES			
	FCWRNO1-001-50-018		1525	N	50	2	-	-	1		-	faicht ms/msD			
	FEWANOI-002-35-001	9/1117	1550	N	50	1	-		1			120			
	FEURNOL-002-50-014 FEURNOL-002-56-00)	9/1/12	1715	N	5-	1		6	P	-		*			
100	FENENO3-601-64-020	9/1/17	1735	N	50	2			1			Prent Drag			
IEE.	FEURNO 1-003-55-001			-	WB	1			1						
	FGWRNU-003-55-901	9/2/17	0759	N	50	1			\vdash						
	FEW 12NO 1-003-50-016	1	0759 a1010	FD	50	1				1	-	No.		14	
8 = E	FEW ENO1-003-50-916	9/2/17	106	FD	50	1				1.					
Heat to	FEWKN - RS-000	4/2/17	1315	EG	WQ	2				- 1		paster & wit FEHRMEZ-603-00-030			
8 Y E	FEWKN 2- 403 - GW - DSO	9/2/17	1415	N	W6	2			4.	1		taken Through PE taking			
	FEWRN02-002 GW-033	9/2/17	1600	2	WG	Z					1			×	
175	FEWEN02-004-6W-024	9/2/17	1740	N	WG	2					1	To	16. *		
2 2	FEWEN - I DW - WS	4/2/17	0850	N	50	i					1	-			
	FEWEN-IDW - WW	9/5/17	090a	N	Wi	2					1				
		1			f Cuntainer								5		
HELINGWEHED BY	9-5-17 1900	ABCENTED BY			3.43	3 6	List		MALSTE		ERPEUS FUR CURR	YAM Continued PARCAGE BAD			
An willis	- ASL	PARAMOEER		Fatt	13.3/3	4				end .	-7011 + 5 + 4025 e	91 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			100
Spirate Marie	Dm .	Prost form		ody J	eas p	resen	t				THE STATE OF THE S	1 1 1 1 1 1 1 1 1 1			

Page 1 of 2

M2027.0003 C-81 4/26/18

Aerosta	rSES. AIR	1005 Floyd Ci Oak Ridge, T 865-461-	N 37830		n of Cust sis Requ					518	P	136 age 2 of _	200	3552	My
Project Name: Site Inspectio Multiple Sites, United States	n of Aqueous Film Forming Foam Areas, Air Force Installations		Job No.: Mi						ANAL VSH	11		iż			
Nerostar Project Manager: Send Data to:	To see that the se			1					Sample Types: N = Normal FD = Field Duplie	cate					
Sampler(s): ASA Lin					1				AB = Ambieht Blank or Field Reagent Blank EB = Equipment Rinsate						
aboratory Name/Address:	Laboratory Shipping Addre	981	Contact: Me	ilissa DiGra	rzia	(Walled						Matrix:			
Asxxam Analytics, Inc 1749 Campobelle Rd. Alssissauga, Ontario 5N2L8	Maxxam Arialytics c/o FedEx Depot 299 Cayuga Rd, Cheektowaga, NY 14225 Please Indicate "HOLD FOR PI	Phone: (905) 817-5700, ext. 5784 email: MDiGrazia@maxxam.ca			int of 16 analytes b				1	*	WG,= Groundwater SD = Soil WP = Potable Water SE = Sędiment WS = Surface Water WQ = Frield QC (AB. EB)				
MAXXAM use only	Sample ID	Date Collected	Time Collected	Sample Type	Matrix	PFAS (898 (AG- Ling GC II	100	3-	
1 .	FEWRN02-601-6W-025	9-4-17	1035	2	W6	2			+				NOTES		
	FEWRN - KS-007	9-4-17	1205	EB	wa	2				Q.					
,	FEWEN 01-003-6W-015	9-4-17	1345	N	W6	2								1	
	FEWRNO1 - 003 - 6W-915	9-4-17	1345	N	W6	Z									
	FEWENO1-001-6W-015	9-4-17	1620	N	WG	6						M3/MSE)		
					-										
												1 12	17	-	
					2	1					1				
			-												
					-	1			_			7			
		,		-											
							- 4						54		
											-		- /	-	
				Total # c	of Containers	14						4	13.1	4	
ELINQUISHED BY:	P-5-17 /900	RECEIVED BY:	- a		13/09/0		Analyte List:	Parking.	ANALYTE	r port	ERFESTS COME	101-701 Bedam	make and and	PRINTS PAR CORE	F (H)
Ash Willis	ASL	PARAMSEET		3.4	13.3/3.	1		Pitthuese	Park and Print Pri			trivial bullion		TELLING SELLING SERVER	200 m t 200 m t 200 m t
yatre	Data/fere	Dordad Name		Fem					Section 44	r jegi	TYPEA PRIM		terme salver forme int desperation and	FFRA. MUL TONA	100

Page 2 of 2

Prepared for: Aerostar SES LLC

<u>Project</u>: M2027.0003 (OMAHA) FE WARREN

Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B7J1539

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- Is accurate, legible and error free.
- > Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

Review Performed By:

Project Manager Assistant Date: Maxxam 2017.11.02

Digitally signed by Karolina Pankowska

09:16:52 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

Glossary of Terms

- ▶ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- ➤ **Accuracy** is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or ¹³C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

1.0 Project Narrative

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

Maxxam Job: B7J1539 – Soil Analysis

Sample Analysis

Soil extracts were initially pre-screened and estimated concentrations were obtained so that extracts could be appropriately diluted for analysis on QC batch 5157643 (2017/09/19). Due to high concentrations, dilutions were required for selected analytes in the following samples:

FBF441	FEWRN03-004-SS-001	All analytes
FBF443	FEWRN03-003-SS-001	Perfluorooctanesulfonate (PFOS)
FBF448	FEWRN03-001-SS-001	Perfluorooctanesulfonate (PFOS)
FBF451	FEWRN02-004-SO-013	Perfluorooctanesulfonate (PFOS)

Detection limits were adjusted accordingly.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

Maxxam Job: B7J1539 - Water Analysis

Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batch 5152828 (2017/09/09). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

FBF455	FEWRN01-005-SW-001	Perfluorohexanesulfonate (PFHxS)
FBF456	FEWRN01-005-SW-901	Perfluorohexanesulfonate (PFHxS)
FBF459	FEWRN01-MW071-GW-020	Perfluorohexanesulfonate (PFHxS)
FBF460	FEWRN01-MW-070-GW-020	All analytes
FBF470	FEWRN03-003-GW-020	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)
FBF471	FEWRN03-003-GW-920	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)
FBF472	FEWRN03-002-GW-020	Perfluorohexanesulfonate (PFHxS)
FBF476	FEWRN01-004-SW-001	Perfluorobutanoic acid (PFBA), 6:2 Fluorotelomersulfonate (6:2FTS)

Detection limits were adjusted accordingly.

The extracted internal standard analytes $^{13}C_2$ -Perfluorotetradecanoic acid ($^{13}C_2$ -PFTeDA) and $^{13}C_2$ -8:2 Fluorotelomersulfonate ($^{13}C_2$ -8:2FTS) are used to quantify native Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA) and 8:2 Fluorotelomersulfonate (8:2FTS) respectively. The recovery observed for $^{13}C_2$ -Perfluorotetradecanoic acid ($^{13}C_2$ -PFTeDA) was below the defined lower control limit (LCL) for the following sample:

FBF476 FEWRN01-004-SW-001

In addition, the recoveries observed for $^{13}C_2$ -8:2 Fluorotelomersulfonate ($^{13}C_2$ -8:2FTS) were above the defined upper control limit (UCL) for the following samples:

FBF469 *FEWRN-SB-002*

FBF476 FEWRN01-004-SW-001

Samples were re-extracted and re-analyzed to confirm these extracted internal standard analyte recoveries on QC batch 5159252 (2017/09/25). Acceptable recovery was obtained for $^{13}C_2$ -8:2 Fluorotelomersulfonate ($^{13}C_2$ -8:2FTS) in sample FBF476 (*FEWRN01-004-SW-001*) on re-analysis.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Sin Chii Chia, B.Sc.

schia@maxxam.ca Office 905 817 5700

PROJECT NARRATIVE

Maxxam Analytics

Client Project #: M2027.0003 (OMAHA)

Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

I. SAMPLE RECEIPT/ANALYSIS

a) Sample Listing

Maxxam	Client	Date	Date	Date	Date	Initial
ID	Sample ID	Sampled	Received	Prepped	Run	Calibration
PFOS and PFO	OA in soil by SPE/LCMS					
FBF441	FEWRN03-004-SS-001	2017/08/28	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF443	FEWRN03-003-SS-001	2017/08/28	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF444	FEWRN03-002-SS-001	2017/08/28	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF445	FEWRN03-004-SO-008	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF447	FEWRN03-003-SO-008	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF448	FEWRN03-001-SS-001	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF449	FEWRN03-003-SO-908	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF450	FEWRN03-002-SO-007	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF451	FEWRN02-004-SO-013	2017/08/30	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF453	FEWRN01-005-SD-001	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF454	FEWRN01-005-SD-901	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF457	FEWRN02-006-SD-001	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF461	FEWRN03-001-SO-008	2017/08/29	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF464	FEWRN02-003-SO-031	2017/08/31	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF466	FEWRN02-002-SO-031	2017/08/31	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF468	FEWRN02-001-SO-028	2017/08/31	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF473	FEWRN02-005-SS-001	2017/09/01	2017/09/02	2017/09/11	2017/09/19	2017/09/19
FBF475	FEWRN01-004-SD-001	2017/09/01	2017/09/02	2017/09/11	2017/09/19	2017/09/19
PFOS and PFO	DA in water by SPE/LCMS					
FBF440	FEWRN-RS-001	2017/08/28	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF442	FEWRN-SB-001	2017/08/28	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF446	FEWRN-RS-002	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF452	FEWRN-RS-003	2017/08/30	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF455	FEWRN01-005-SW-001	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF456	FEWRN01-005-SW-901	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF458	FEWRN02-006-SW-001	2017/08/29	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF459	FEWRN01-MW071-GW-020	2017/08/30	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF460	FEWRN01-MW-070-GW-020	2017/08/30	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF463	FEWRN-RS-004	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF469	FEWRN-SB-002	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF470	FEWRN03-003-GW-020	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF471	FEWRN03-003-GW-920	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF472	FEWRN03-002-GW-020	2017/08/31	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF474	FEWRN-RS-005	2017/09/01	2017/09/02	2017/09/07	2017/09/09	2017/09/09
FBF476	FEWRN01-004-SW-001	2017/09/01	2017/09/02	2017/09/07	2017/09/09	2017/09/09

Maxxam

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

- b) Shipping Problems: none encountered
- c) Documentation Problems: Level IV revised to reflect sample ID correction as per client request.

II. SAMPLE PREP:

No problems encountered

III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: all within recommended hold times
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager Assistant- Site Assessment and Remediation/Ultra Trace

2017/11/01

Date

Page 1 of 4

M2027.0003 C-92 4/26/18

Aerosta	rSES	1886 Floyd Cull Oak Ridge, TN 865-481-78	37830		in of Cus sis Requ					Det.	Р	Page 2 133 2/		
roject Name: Site Inspection	of Aqueous Film Forming Mam Areas		Job No.: M			T			0					
luitiple Sites, United States			Installation: FE Waven				Te		AMAL VEH	-		Sample Types:		
Agrostar Project Manager: Brian Odom, BOdom@specproenv.com (478) 397-4908. Send Data to: Jenny Vance, [vance@serostar.net (885) 483-7904							1					N = Normal FD = Field Duplicate AB = Ambient Blank or Field Reagent Blank		
ampler(a) Ash Wil	lis, Travis Cossella							1			1 9	EB = Equipment Rinsate		
aboratory Name/Address: laxxam Analytics, Inc	Laboratory Shipping Addres Maxxam Analytics	95:	Contact: Me	ollesa DiGr	azia	(wojed		1	5		1 6	Matrix: WG = Groundwater		
749 Campobello Rd. lississauga, Ontario 5N21.8	clo Fedex Depot 299 Cayuga Rd. Cheektowaga, NY 14225 Please Indicate "HOLD FOR Pid	TWHO?	Phone: (905) 817-5700, ext. 5784 email: MDiGrazis@maxxam.ca			of 18 analytes.			X			SO = Soil WP = Potable Water SE = Spdiment WS = Surface Water		
	Please indicate NOCD FOR PIC	CRUP		Sample		(New 191				1	1	WQ = Field QC (AB, EB)		
MAXXAM use only	Sample ID	Date Collected	Time Collected	Type	Matrix	FAS (a					1			
		-1/			1/2	6					-	NOTES		
	FEWRNO1-005-50-001	8/29/2017		N	SE	110	1		2.		-	-		
	FEWENOI-005-SD-901		1100	FO	SE	1×	1							
	FEWENOI-005-5W-001		1100	·N	WS	2×0	1							
	FEWENDI-005-SW-901	1	400	FO	WS	2/2								
	FEWRN02-006-50-001	8/29/17	1275	N	SE	3-		1				MS/MSD		
	FEWRNOZ-006-SW-001 .	8/24/17	1235	N	WS	6			1	-		MS/MSD		
	FEWRANI-MUNTI 020	8/30/17	1145	M	w	2			K			2		
	FEWRNO 1- MWOTI - UW-020	8/30/17	1145	N	WG	2			. /			-		
	FEWENSI MW - 070-LW - 020	8/30 17	1445	N	WG	2				1				
	FEWR NO3- 601 -50 -008	8/29/17	1730	N	50	1				1				
					10					1				
			4								1			
											1	7 48 5		
		0				1					1			
	141			1								1 4 1 1		
ELINQUISHED BY:	DINATION OF 1 1 2	RECEIVED BY	T.		of Container		Analyte List		anazyri		TREAS	(ARCORE		
Joney Blei	09/01/17 1700	Perspert		Flore	11:3	0		Prillian	- 1)	100	THULL THULL	100.00 Indiamental of 1000 c. 200 100.00 Indiamental of 100 c. 100 100.00 Indiamental of 100 c. 100 100 c. 100		
Jeromy Klei	1 ASC	TARAMSEET	Sinsky	G Data/Time	11.2/0	30	-	Dellac		er jaid	HEND A	Fill No. 1 Performance and 20 Fill No. 1 10 days 0 of Financial Adjusts ANYS 17848 print a hill provident adjusts ENV Mars.		
,	Light Com.	Begrossine Data/Time:					1	Victor Control of Control			9100.A	101.1) - Pellin - 101.00 111.0		

Page 2 of 4

M2027.0003 C-93 4/26/18

Aerosta	rSESA TITIS	1996 Floyd Cu Oak Ridge, 7 865-481-	N 37830		n of Cust sis Requ					265	F	134 Page 3 of 4
roject Name: Site Inspection fultiple Sites, United States	n of Aqueous Film Forming Foam Areas, Air Force Installations		Job No.: M2						LWAI VSII			
erostar Project Manager: end Data to:	Jenny Vance, jyance@aerostar.net (478) 397-4906 865) 483-7904					1			-		Sample Types: N = Normal FD = Field Duplicate
ampler(a): K. Bro	Laboratory Shipping Addre	saugh				-	1					AB = Ambient Blank or Field Reagent Blank EB = Equipment Rinsate
aboratory Name/Address: laxxam Analytics, Inc 740 Gampobello Rd. lississauga, Ontario 6N2L8	Laboratory, Shipping Addra Maxam Analytics clo FedEx Depot 299 Cayuga Rti Cheektowaga, NY 14225 Please Indicate "HOLD FOR Pi		Phone: (905 email: MDI	817-5700.	ext. 5784	hat of 18 amalytes beitting		1	\			Matrix: WC = Groundwater SO = Soil WP = Potable Water SE = Sediment WS = Surface Water WG = Field GC (All: EB)
MAXXAM use only	Sample (D	Date Collected	Time Collected	Sample Type	Matrix	PFAS (beil			1			NOTES
k 7	FEWRN- DE-104	8/3///7	0655	€B	wa	2				1		eff spion, asser wy symphe below
-1	FEWRNOZ 003-50-031 FEWRNOZ-003-50-031 FEWRNOZ-002-58-31	8/31/19	1010	XV	50	1				1		9550c v/ R5-004 above
	FCWRN02-012-58-31	8/31/17	1423	N	30	1					1	
	FEW ANDZ-001-50-028	8/31/17	1810	N	50	1					,	\
												W.
					-					- 1		2
					-							4
				-	-							-
			-	-0				-	-			
			+		-	-		-				
			1									
		- 1			-							
						1	-					1
			1									
		practice at			of Containers		Anaiyto					- The
RELINQUISHED BY:	09/01/17 1900	RECEIVED BY			11:32		List	to the con-	ANALYTE	0.00	PAR COR	PAR COM PAR
Ash willis	A5L DataTring	PARAMSEE	Singu	3.	0/31/3	0		Probasis Probasis		n wid	79100se 19100se 1910ss 1910ss	10 m 3 million agent lancy 1 million 10 million
rented Nache:	Time	Dylmad Name		Firm				feetime	bar y	renii .	PERMA PERMANENTAL PROPERTY AND ADMINISTRATION OF THE PERMANENT AND	1000 Administration File Name

Page 3 of 4

		865-481-				1			_	415	P	age 4 135	
Project Name: Site Inspection	on of Aqueous Film Forming Foam Areas, Air Force Installations		Job No.: Ma										
Aerostar Project Manager.	Brian Odom, BOdom@specproenv.com (178) 397-4906	Installation	re was	44EW	-			ANAL YSE	s		Sample Types:	
Send Data to:	Jenny Vance, jvance@aerostar.net (865) 483-7904								*		N = Normal FD = Field Duplicate	
Sampler(s):	7 N 11 + 101	*										AB = Ambiênt Blank or Field EB = Equipment Rinsate	Reagent Blank
aboratory Name/Address:	Traves Cassella Scremy Kl	\$8)	Contact: Me	Hissa DiGra	ria.	(wa						Matrix:	
taxxim Analytics, Inc 740 Campobello Rd.	Maxxam Analytics c/o FedEx Depot					at a						WG = Groundwater SO = Soil	
fississauga, Ontario 5N2L8	299 Cayuga Rd. Cheektowaga, NY 14225		Phone: (905 email: MD			15 analytes						WP = Potable Water SE = Sediment	
	Please indicate "HOLD FOR PI	скир-				lat of 12		1				WS = Surface Water WQ = Field QC (AB, EB)	
MAXXAM use only	Sample ID	Date Collected	Time	Sample Type	Matrix	8		1				WU - Field UC (AB, EB)	
manaam use only	aampile iu	Date Collected	Collected	Type	resident.	PFAS		1				NOTI	
1	FEWRN - 58-002	8-31-17	0925	AB	WO	2			1.			Taken from Gov hydrent	
	FEWRN03-003-6W-020	3-31-17	1110	N	W6	2			1				
	FEWRNOS- 003- 6W-920	8-31-17	1110	FD	W6	2							
	FENRIO3-002-6W-020	8-31-17	1534	N	Wb	2				D			
-	FEWRN02-005-55-001	9-1-17	0825	N	50	1				0	1		C - A - W -
	FEWRN - RS - 005 +	9-1-17	0820	EB	WO	2					1	TO Spen associate	- 00 l
	FEWENDI 704-50-601	9-1-17	6845	N	5€	1							· ·
,	FEWRNOY-004-5W-001	9-1-17	0845	N	WS	2						1	
			/										
			K .		-								
		,	1				1						
					_		-						1
		al T											-
				Tabila	of Container	114						2 4 3	. 1
ELINQUISHED BY:	anum Pi	RECEIVED BY:		20	13 09 0	12	Analyte List:		SSALVIA		ARPDES FOR COM	140	Patricis Car
horas	09/01/17 /900	lignature Partiet		Lorenda I (ETVE.	11:3			Pedicus	- 1/1	i-eut	SECO.	That the second second	1,000
reduct Marris	Find 1	LARAMS GET	SINGU	3	0/3//3	-0		Striking	winds 6	il i	71754 W10304	11 0/1 Protessarie had egt	NUMBER OF STREET
Squature DeleTime Squature		Des/Tens				Michigan Common or		Pedianicana and Phi	PRINT	TOTAL STREET	ATTEN HOLES		

Page 4 of 4

Appendix D Physiochemical Analytical Results

Table D-1 F.E. Warren Air Force Base Physiochemical Sample Analysis Results

AFFF	G 1.TD		% Passing	% Passing	USCS	TOC		A/ G 11 1
Area	Sample ID	Medium	#4 Screen	#200 Screen	Classification	(mg/kg)	pН	% Solids
1	FEWRN01-006-SS-001	SS	90.5	30.2	SM	12,900	8.29	92.7
1	FEWRN01-006-SO-017	so	93.8	53.1	ML	426	8.62	83.0
2	FEWRN02-007-SO-031	so	98.9	49.2	SM	215	8.45	84.8
3	FEWRN03-005-SS-001	SS	73.2	18.7	SM	4,220	7.98	81.7
3	FEWRN03-005-SO-008	SO	98.9	51.0	ML	132 J	8.43	78.1

% = percent

= number

mg/kg = milligrams per kilogram
AFFF = aqueous film forming foam
ID = identification

J = estimated value

ML = silt

pH = potential of hydrogen SM = silty sand SO = subsurface soil

SS = surface soil

TOC = total organic carbon

USCS = United Soil Classification System

delivering more than data from your environmental analyses

JENNY VANCE AEROSTAR SES LLC 1006 FLOYD CULLER CIRCLE OAK RIDGE, TN 37830

and

MELISSA DI GRAZIA MAXXAM 6740 CAMPOBELLA RD MISSISSAUGA, ON, CANADA L5N 2L8

PROJECT SITE: SI AFFF Sites, FE Warren AFB, WY

WORK ORDER/CONTRACT #: W9128F-15-D-0051

PROJECT #: M2027.0003

SDG: 130380

PREPARED: October 1, 2017 (REVISED 11-27-17)

DOCUMENT PAGES: 108

The data contained in the following report have been reviewed by the appropriate CT Laboratories LLC's staff members. In addition, CT Laboratories LLC certifies that to the best of our knowledge that the analyses reported herein are true, complete and correct within the limits of the methods employed and that they follow the applicable requirements as specified by the project plan, state-specific, NELAC or DOD QSM requirements. The estimated uncertainty of measurement is only available upon request. The reported results relate only to the tested samples. This report shall not be reproduced, except in full, without written approval of CT Laboratories LLC.

APPROVED BY: LABORATORY DIRECTOR

APPROVED BY:

Certifications: IL (NELAP 002413), KS (NELAP E-10368), KY (0023), WI (157066030), DOD ELAP (A2LA 3806.01), VA (7608), MD (344), LA (NELAP 115843), ISO17025 (A2LA 3806.01, GA EDP Stipulation (Accreditor: LA NELAP, ACC#: E971111, Scope: Non-potable water solid and chemical materials, biological tissue, Effective: 12/10/2014, Expires: annually), PA (68-04201) #008

CT Laboratories LLC • 1230 Lange Court • Baraboo, WI 53913 • 608-356-2760 www.ctlaboratories.com

Case Narrative

Client: MAXXAM/Aerostar SES LLC Project: FE Warren AFB, WY

Sample Receipt Date(s): 9-01 through 09-06-2017

SDG #: 130380 (folder 130380 and 130445 partial) - revised 11-27-17 for sample description change

Five samples were analyzed for (GSA)/hydrometer, pH, and TOC. GSA/hydrometer analyses were sub-contracted to Mi-Tech, Weston, WI. The assigned sample ID numbers, date sampled, and date received are indicated in the attached Project Summary. The samples were received intact and at a temperature within method specified acceptance limits. Any exceptions are noted below. The analyses were performed, where applicable, following QSM 5.0 requirements.

Sample Analysis and Quality Control

Inorganics:

The samples were analyzed using US EPA Method 9045D (pH) and the Llyod-Kahn method (total organic carbon, TOC). All samples were analyzed within the holding time. The following summaries of quality control procedures are included:

Initial and Continuing Calibration Verification Blanks Summary ICP Interference Check Data Spike Sample Recovery Duplicates Data Laboratory Control Sample Data Analysis Run Log

All analysis results met the method specified quality control criteria with the following exceptions:

pH (9045D) Solid Analyses

Analytical Run # 141851

All analysis results for this analytical run met the method/project specified quality control criteria.

TOC (Lloyd-Kahn) Solid Analyses

Analytical Run # 142064

All analysis results for this analytical run met the method/project specified quality control criteria.

Data Qualifiers

Code	
Α	Analyte averaged calibration criteria within acceptable limits.
В	Analyte detected in associated Method Blank.
С	Toxicity present in BOD sample.
D	Diluted Out.
E	Safe, No Total Coliform detected.
F	Unsafe, Total Coliform detected, no E. Coli detected.
G	Unsafe, Total Coliform detected and E. Coli detected.
Н	Holding time exceeded.
J	Estimated value.
L	Significant peaks were detected outside the chromatographic window.
M	Matrix spike and/or Matrix Spike Duplicate recovery outside acceptance limits.
N	Insufficient BOD oxygen depletion.
0	Complete BOD oxygen depletion.
Р	Concentration of analyte differs more than 40% between primary and confirmation analysis.
Q	Laboratory Control Sample outside acceptance limits.
R	See Narrative at end of report.
S	Surrogate standard recovery outside acceptance limits due to apparent matrix effects.
Т	Sample received with improper preservation or temperature.
U	Analyte concentration was not above the detection level.
V	Raised Quantitation or Reporting Limit due to limited sample amount or dilution for matrix
	background interference.
W	Sample amount received was below program minimum.
X	Analyte exceeded calibration range.
Υ	Replicate/Duplicate precision outside acceptance limits.

Ζ

Calibration criteria exceeded.

MANUAL INTEGRATION REASON CODES

CTLaboratories has identified four general cases with valid reasons supporting the use of manual integration techniques. These codes are used on chromatograms in this data package to document the reasons for manual integrations per CTLaboratories' SOP SS-10 current revision.

#1: Data system failed to select the correct peak or missed the peak entirely.

In some cases the chromatography system selects and integrates the "wrong peak". In this case the analyst must correct the selection and force the system to integrate the proper peak. In other instances the system may miss the peak completely. In this case the analyst manually integrated the peak

#2: Data System Splits the Peak Incorrectly or Integrates a False Peak as a Rider Peak.

This phenomenon is common at low concentrations where the signal to noise ratio is low. A single compound (peak) is incorrectly split into multiple peaks or integrated as a main peak with one or more rider peaks resulting in low or high area counts for the target compound.

#3: Improperly Integrated Isomers and/or coeluting compounds.

For when the system fails to distinguish coeluting compounds and or isomers. The integration areas and concentrations may be inaccurate, and they must be corrected by manual integration. Prime examples are compounds that are unresolved and integrated improperly when present at low concentrations in standards or samples.

#4: System Established Incorrect Baseline.

There are numerous situations in chromatography where the system establishes the baseline incorrectly. Some baseline errors will be obvious to the analyst and may be corrected via manual procedures.

#5: Miscellaneous.

Some situations involving integration errors may require in-depth review and technical judgment. These cases should be brought to the attention of the group supervisor. If the form of manual integration is not clearly covered by these four cases, then review and approval by the group supervisor or the QA/QC Supervisor will be required.

> 1230 Lange Court • Baraboo, WI 53913 • 608-356-2760 www.ctlaboratories.com

INORGANIC ANALYSIS DATA SHEET

FEWRN01-006-SO-017

Lab Name:	CT Laboratories	Cor	ntract: MAXXAM A	NALYTIC	S-AFFF SIT	E INVESTIGAT	TION
Matrix (soil/water): SOIL	SD	G No.:	130380)		
% Solids:	83.0	Lab	Sample ID:	915902	2		
Analytical Method	d: <u>EPA 8000C</u>	Dat	e Received:	09/06/2	2017		
Dilution Factor:	1.00	TC	LP/SPLP Extraction	n Date/tii	me:		
Analytical Run#	141820	Ana	alysis Date/Time	09/0	08/2017	08:20	
Analytical Prep E	Batch #:	Pre	p. Date/Time:				
ICAL Calibration	#:	Cor	ncentration Units:	%			
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
SOLID	Solids, Percent	83.0		0.1	0.1	0.1	0.1

INORGANIC ANALYSIS DATA SHEET

FEWRN01-006-SO-017

Lab Name:	CT Laboratories		Contract: MAXXAM A	ANALYTIC	S-AFFF SIT	E INVESTIGAT	ION	
Matrix (soil/water):	SOIL		SDG No.:	130380	15902 9/06/2017			
% Solids:	83.0		Lab Sample ID:	915902	15902 9/06/2017 Date/time:			
Analytical Method:	L-Kahn/9060A		Date Received:	09/06/2	9/06/2017 Date/time:			
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/tin	ate/time:			
Analytical Run#:	142064		Analysis Date/Time	09/1	09/15/2017 10:45			
Analytical Prep Batch #:			Prep. Date/Time:					
ICAL Calibration #:	ICAL - TOC010		Concentration Units:	mg/l	kg			
CAS#	Analyte	Concentration	on Qualifiers	DL	LOD	LOQ	RL	
TOC Total	al Organic Carbon	426		43	90	180	180	

INORGANIC ANALYSIS DATA SHEET

FEWRN01-006-SO-017

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-AFFF SIT	E INVESTIGAT	TION
Matrix (soil/water):	SOIL	_	SDG No.:	130380)		
% Solids:	83.0		Lab Sample ID:	915902	902 06/2017 e/time:		
Analytical Method:	EPA 9045D		Date Received:	09/06/2	2017		
Dilution Factor:	1		TCLP/SPLP Extraction	n Date/tir	me:		
Analytical Run#:	141851		Analysis Date/Time	09/0	08/2017	11:15	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	S.U			
CAS#	Analyte	Concentration	on Qualifiers	DL	LOD	LOQ	RL
PH pH		8.62		0.1	0.1	0.1	0.1

M2027.0003 D-8

INORGANIC ANALYSIS DATA SHEET

FEWRN01-006-SS-001

Lab Name:	CT Laboratories	Co	ntract: MAXXAM	ANALYTIC	S-AFFF SITE	INVESTIGAT	ION
Matrix (soil/water):	SOIL	SD	G No.:	130380)		
% Solids:	92.7	La	o Sample ID:	915894	ļ.		
Analytical Method:	EPA 8000C	Da	te Received:	09/06/2	2017		
Dilution Factor:	1.00	тс	LP/SPLP Extraction	n Date/tir	me: _		
Analytical Run#:	141820	An	alysis Date/Time	09/0	08/2017	08:20	
Analytical Prep Batch	#:	Pre	ep. Date/Time:				
ICAL Calibration #:		Co	ncentration Units:	%			
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
SOLID	Solids, Percent	92.7		0.1	0.1	0.1	0.1

INORGANIC ANALYSIS DATA SHEET

FEWRN01-006-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-AFFF SITI	E INVESTIGAT	ION	
Matrix (soil/water):	SOIL		SDG No.:	130380	09/06/2017			
% Solids:	92.7		Lab Sample ID:	915894	15894 9/06/2017 ate/time: 09/15/2017 10:33			
Analytical Method:	L-Kahn/9060A		Date Received:	09/06/2	2017			
Dilution Factor:	1.00		TCLP/SPLP Extraction	n Date/tii	me:			
Analytical Run #:	142064		Analysis Date/Time	09/	15/2017	10:33		
Analytical Prep Batch #:			Prep. Date/Time:					
ICAL Calibration #:	ICAL - TOC010		Concentration Units:	mg/	'kg			
CAS#	Analyte	Concentrati	on Qualifiers	DL	LOD	LOQ	RL	
TOC Tot	al Organic Carbon	12900		39	81	160	160	

INORGANIC ANALYSIS DATA SHEET

FEWRN01-006-SS-001

Lab Name:	CT Laboratories	Co	ntract: MAXXAM A	ANALYTIC	S-AFFF SITE	INVESTIGAT	ION
Matrix (soil/water):	SOIL	SD	G No.:	130380)		
% Solids:	92.7	La	b Sample ID:	915894	ļ		
Analytical Method:	EPA 9045D	Da	te Received:	09/06/2	2017		
Dilution Factor:	1	тс	LP/SPLP Extractio	n Date/tir	me:		
Analytical Run#:	141851	An	alysis Date/Time	09/0	08/2017	11:15	
Analytical Prep Batch	#:	Pre	ep. Date/Time:				
ICAL Calibration #:		Co	ncentration Units:	S.U			
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
PH p)H	8.29		0.1	0.1	0.1	0.1

INORGANIC ANALYSIS DATA SHEET

FEWRN03-005-SO-008

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL		SDG No.:	130380)		
% Solids:	78.1		Lab Sample ID:	915130)		
Analytical Method:	EPA 8000C		Date Received:	09/05/2	2017		
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/tir	me:		
Analytical Run #:	141774		Analysis Date/Time	09/0	08/2017	08:20	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	%			
CAS#	Analyte	Concentrat	ion Qualifiers	DL	LOD	LOQ	RL
SOLID Solid	s, Percent	78.1		0.1	0.1	0.1	0.1

1
INORGANIC ANALYSIS DATA SHEET

Sample Description

FEWRN03-005-SO-008

Lab Name:	CT Laboratories	(Contract: MAXXAM A	ANALYTIC	130 05/2017 e/time: 09/15/2017 09:56				
Matrix (soil/water):	SOIL		SDG No.:	130380)	7			
% Solids:	78.1	l	Lab Sample ID:	915130)				
Analytical Method:	L-Kahn/9060A		Date Received:	09/05/2	2017				
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/tir	me:				
Analytical Run#:	142064	/	Analysis Date/Time	09/1	09/15/2017 09:56				
Analytical Prep Batch #:			Prep. Date/Time:						
ICAL Calibration #:	ICAL - TOC010	(Concentration Units:	mg/	kg				
CAS#	Analyte	Concentration	n Qualifiers	DL	LOD	LOQ	RL		
TOC Tot	al Organic Carbon	132	J	46	96	190	190		

M2027.0003 D-13

INORGANIC ANALYSIS DATA SHEET

Sample Description
FEWRN03-005-SO-008

Lab Name:	CT Laboratories	Con	tract: MAXXAM A	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL	SDC	S No.:	130380)		
% Solids:	78.1	Lab	Sample ID:	915130)		
Analytical Method:	EPA 9045D	Date	Received:	09/05/2	2017		
Dilution Factor:	1	TCL	P/SPLP Extractio	n Date/tir	me:		
Analytical Run#:	141851	Ana	lysis Date/Time	09/0	08/2017	11:15	
Analytical Prep Batch #:		Prep	o. Date/Time:				
ICAL Calibration #:		Con	centration Units:	S.U			
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
PH pH		8.43		0.1	0.1	0.1	0.1

M2027.0003 D-14

INORGANIC ANALYSIS DATA SHEET

FEWRN03-005-SS-001

Lab Name:	CT Laboratories	Co	ontract: MAXXAM	ANALYTIC	S-SI AFFF S	ITES	
Matrix (soil/water):	SOIL	SI	OG No.:	130380)		
% Solids:	81.7	La	b Sample ID:	915129)		
Analytical Method:	EPA 8000C	Da	ate Received:	09/05/2	2017		
Dilution Factor:	1.00	то	CLP/SPLP Extraction	n Date/tir	me: _		
Analytical Run#:	141774	Ar	nalysis Date/Time	09/0	08/2017	08:20	
Analytical Prep Batch	#:	Pr	ep. Date/Time:				
ICAL Calibration #:		Co	oncentration Units:	%			
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
SOLID	Solids, Percent	81.7		0.1	0.1	0.1	0.1

INORGANIC ANALYSIS DATA SHEET

FEWRN03-005-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL		SDG No.:	130380)		
% Solids:	81.7		Lab Sample ID:	915129)		
Analytical Method:	L-Kahn/9060A		Date Received:	09/05/2	2017		
Dilution Factor:	1.00		TCLP/SPLP Extraction	n Date/ti	me:		
Analytical Run#:	142064		Analysis Date/Time	09/	15/2017	09:49	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:	ICAL - TOC010		Concentration Units:	mg/	'kg		
CAS#	Analyte	Concentrati	on Qualifiers	DL	LOD	LOQ	RL
TOC Tot	al Organic Carbon	4220		44	92	180	180

INORGANIC	ANALYSIS	DATA	SHEET

FEWRN03-005-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL	_	SDG No.:	130380)		
% Solids:	81.7		Lab Sample ID:	915129)		
Analytical Method:	EPA 9045D		Date Received:	09/05/2	2017		
Dilution Factor:	_1		TCLP/SPLP Extractio	n Date/tir	me:		
Analytical Run#:	141851		Analysis Date/Time	09/0	08/2017	11:15	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	S.U			
CAS#	Analyte	Concentration	on Qualifiers	DL	LOD	LOQ	RL
PH pH		7.98		0.1	0.1	0.1	0.1

INORGANIC ANALYSIS DATA SHEET

FEWRN02-007-SO-031

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL		SDG No.:	130380)		
% Solids:	84.8		Lab Sample ID:	915131			
Analytical Method:	EPA 8000C		Date Received:	09/05/2	017		
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/tir	me:		
Analytical Run#:	141774		Analysis Date/Time	09/0	08/2017	08:20	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	%			
CAS#	Analyte	Concentrati	on Qualifiers	DL	LOD	LOQ	RL
SOLID Solid	ls, Percent	84.8		0.1	0.1	0.1	0.1

INORGANIC ANALYSIS DATA SHEET

FEWRN02-007-SO-031

Lab Name:	CT Laboratories		Contract: MAXXAM A	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL		SDG No.:	130380)		
% Solids:	84.8		Lab Sample ID:	915131			
Analytical Method:	L-Kahn/9060A		Date Received:	09/05/2	017		
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/tir	me:		
Analytical Run #:	142064		Analysis Date/Time	09/1	15/2017	10:26	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:	ICAL - TOC010		Concentration Units:	mg/	kg		
CAS#	Analyte	Concentration	on Qualifiers	DL	LOD	LOQ	RL
TOC Tota	al Organic Carbon	215		42	88	180	180

INORGANIC ANALYSIS DATA SHEET

FEWRN02-007-SO-031

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SI AFFF S	SITES	
Matrix (soil/water):	SOIL		SDG No.:	130380)		
% Solids:	84.8		Lab Sample ID:	915131			
Analytical Method:	EPA 9045D		Date Received:	09/05/2	2017		
Dilution Factor:	_1		TCLP/SPLP Extractio	n Date/tir	me:		
Analytical Run#:	141851		Analysis Date/Time	09/0	08/2017	11:15	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	S.U			
CAS#	Analyte	Concentration	on Qualifiers	DL	LOD	LOQ	RL
PH pH		8.45		0.1	0.1	0.1	0.1

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75	88.8		
#4	73.2		
#10	57.5		
#40	39.0		
#200	18.7		
0.0330 mm.	13.6		
0.0211 mm.	12.2		
0.0124 mm.	10.7		
0.0088 mm.	10.0		
0.0062 mm.	10.0		
0.0031 mm.	8.5		
0.0013 mm.	7.5		

<u>(</u>	Client Sample Descr	<u>ription</u>
FEWRNO3-005-S	S-001	
Δ++	erberg Limits (ASTM	I D 4318)
PL= NP	LL= NV	PI= NP
USCS (D 2487)=	Classification SM AASHTO	(M 145)= A-1-b
D ₉₀ = D ₅₀ = 1.0666 D ₁₀ = 0.0062	Coefficients D ₈₅ = 13.5751 D ₃₀ = 0.1963 C _u = 371.48	D ₆₀ = 2.2961 D ₁₅ = 0.0411 C _c = 2.72
	Remarks	
Date Received:		Tested: 6/7/17
Tested By:	NJW	
Checked By:	DB	
Title:	ENVIRO. ENGINEER	

* (no specification provided)

Sample Number: 915129 Date Sampled: 8/29/17

Mi-Tech Services, Inc.

Client: CT LABS

Project No: 10743

Project: FE WARREN AFB WY #130380 MITECH

Weston, WI

<u>Figure</u>

Test Results (ASTM D 422-63 & ASTM D 2217) Opening Percent Spec.* Pass?					
Opening	Percent	Spec.	Pass?		
Size	Finer	(Percent)	(X=Fail)		
#4	98.9				
#10	98.0				
#40	94.3				
#200	51.0				
0.0269 mm.	39.0				
0.0176 mm.	35.9				
0.0105 mm.	32.8				
0.0076 mm.	30.1				
0.0055 mm.	27.9				
0.0028 mm.	22.0				
0.0012 mm.	15.9				
*					

FEWRNO3-005-S	Client Sample Des	cription
. 211111100 000 0		
PL= NP	erberg Limits (AS LL= NV	TM D 4318) PI= NP
USCS (D 2487)=	Classification ML AASHT	on O (M 145)= A-4(0)
D ₉₀ = 0.3576 D ₅₀ = 0.0687 D ₁₀ =	Coefficient D ₈₅ = 0.2927 D ₃₀ = 0.0075 C _u =	<u>s</u> D ₆₀ = 0.1075 D ₁₅ = C _c =
	Remarks	
Date Received:		e Tested: 9/7/17
Tested By:		
Checked By:	DB	
Title:	ENVIRO. ENGINEE	iR

(no specification provided)

Sample Number: 915130 Date Sampled: 8/29/17

Mi-Tech Services, Inc. Client: CT LABS

Project: FE WARREN AFB WY #130380 MITECH

Weston, WI Project No: 10743 Figure 2

Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
#4	98.9					
#10	97.9					
#40	82.1					
#200	49.2					
0.0282 mm.	34.5					
0.0182 mm.	32.7					
0.0108 mm.	29.6					
0.0077 mm.	28.3					
0.0056 mm.	25.6					
0.0028 mm.	22.0					
0.0012 mm.	17.6					

	Client Sample Desc	<u>ription</u>
FEWRNO2-007-S	O-031	
A.,		U.D. 4040)
PL= NP	<u>erberg Limits (ASTI</u> LL= NV	<u>VI D 4318)</u> PI= NP
	Classification	1
USCS (D 2487)=		(M 145)= A-4(0)
	Coefficients	
D₉₀= 0.9244 D₅₀= 0.0784	D₈₅= 0.5661	D₆₀= 0.1328
D ₁₀ = 0.0784	D ₃₀ = 0.0116 C _u =	D ₁₅ = C _c =
	Remarks	
	0.645	T 4 1 0/5/4 5
Date Received:		Tested: 9/7/17
Tested By:	NJW	
Checked By:	DB	
Title:	ENVIRO. ENGINEER	

Figure

* (no specification provided)

Sample Number: 915131 **Date Sampled:** 8/31/17

Mi-Tech Services, Inc. Client: CT LABS **Project:** FE WARREN AFB WY #130380 MITECH Weston, WI

Project No: 10743

Opening	Percent	Spec.*	Pass?				
Size	ize Finer (Percent)						
#4	90.5						
#10	82.6						
#40	68.1						
#200	30.2						
0.0327 mm.	24.0						
0.0209 mm.	21.6						
0.0122 mm.	19.8						
0.0087 mm.	18.7						
0.0062 mm.	18.1						
0.0030 mm.	16.8						
0.0013 mm.	12.2						

	Client Sample Descriptio	<u>n</u>
FEWRN01-006-S	S-001	
A 44	aubana Linaita (ACTM D.4	240)
PL= NP	erberg Limits (ASTM D 4 LL= NV	916) PI= NP
	Classification	
USCS (D 2487)=		15)= A-2-4(0)
	Coefficients	
D₉₀= 4.5168 D₅₀= 0.1859	D₈₅= 2.6110 D ₀ D ₁ D ₁ D ₁ D ₂ D ₃ D 3 D ₃ D 3 D 3	60= 0.2937 15= 0.0022
D ₁₀ = 0.1839	$C_{u} = C_{v}$	15- 0.0022 c=
	Remarks	
Date Received:	0/7/17 Pote Teets	ed: 9/8/17
		90 : 9/8/1/
Tested By:	INJ W	
Checked By:	DB	
Title:	ENVIRO. ENGINEER	

* (no specification provided)

Sample Number: 915894 Date Sampled: 9/5/17

Mi-Tech Services, Inc.

Client: CT Labs
Project: AFF SITE INVESTIGATION WY #130445 MITECH

Weston, WI

Project No: 10743

Figure 1

Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
#4	93.8						
#10	82.5						
#40	78.0						
#200	53.1						
0.0309 mm.	35.9						
0.0200 mm.	32.0						
0.0120 mm.	25.6						
0.0086 mm.	23.0						
0.0061 mm.	21.1						
0.0030 mm.	17.8						
0.0013 mm.	15.3						

Client Sample Description
FEWRN01-006-SO-017
Atterberg Limits (ASTM D 4318) PL= NP
USCS (D 2487)= ML AASHTO (M 145)= A-4(0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Date Received: 9/7/17 Date Tested: 9/8/17 Tested By: NJW
Checked By: DB
Title: ENVIRO. ENGINEER

* (no specification provided)

Sample Number: 915902 Date Sampled: 9/5/17

Mi-Tech Services, Inc.

Client: CT Labs
Project: AFF SITE INVESTIGATION WY #130445 MITECH

Weston, WI

Project No: 10743

Figure 2

Rev. 3/	2015				CHAIN OF	Custo	DY									_				-	2000	1 of_ 1
Company: Acrosfor SES LLC Project Contact: Brian Odom Telephone: 478 - 357-4966				CT LABORAT	0 R I F (760	Fax	608-3	8-356-2766 EMAIL: j atories.com Company					Page of of Tenny Vance juance Cacroslar.net in Acroslar. SES LCC			
Project Name: SI & APPF AREAS, Multiple Sites Project #: M2027.0003 Project FE V				mpany: MAXXAM ANALYTICS oject: FE WARREN							ogram: M RCRA SDWA NPDES Id Waste Other							9e	,TN'	oyd Culer Ct 37830 Odom D specproenu.com		
			Logged By: BNA PN	ed By: BNA PM: BM # M2027.0003									- 0	Addr	of SESLLC and Coulon C+ 37830							
				gh								*P	arty lis	ted is	respon	sible fo	r payn	nent o	f invoi	ce as	per CT L	aboratories' terms and condi
Client Sp	ecial Inst	ruction	ıs				0	پ	3	T	ANA	LYSE				T						Turnaround Time Normal RUSH* Date Needed:
5 - soil/sec	iment S	V - surfac	ce water V	VW - was	tewater DW - drinking water M - mlsc/waste	Filtered? Y/N	TPH TO	Hydrometer	GRIMIN SILL											Total # Containers	Designated MS/MSD	Rush analysis requires p CT Laboratories' appro Surcharges: 24 hr 200% 2-3 days 100% 4-9 days 50%
Date	Time	Matrix	Grab/ Comp	Sample #	Sample ID Description				_		Fill ir	Spa	ces w	ith B	ottles	per T	est	Щ.			_	CT Lab ID #
8/20/17	1906	5	COMP	ı	FEWRN03-005-55-001	2	×	X	4		T		T	了	(AX	Т				Т		915129
3/29/17 12/20/10	1605	S	Comp	1	FEWRNOS- 005 -50-00 8	2	x	х	+	丁	\perp				X							915130
7/33/17 3/31/17	1423	5	Comp	1_	FEWRN62-007-50-031	N	Х	х	×				-		+							915131
						-	-		+	+			4	1	4	-		Y		7		
						P	*							1		1			1			
												\exists		\pm		\perp			+	\rightarrow		
)						-			\dashv	+	+	4	\downarrow	\downarrow	*	-			\Box	\perp	V	
Relinquish		\$	>		Date/Time 9/61/17 /900	Rece	ived E	 y:						<u>e</u>		ate/Tim)10	<u>-</u>	\Rightarrow	Ice P	Lab Use Only Present Fes No
Received b	y:				Date/Time	Rece	Received for Laboratory by: Date					ite/Tim	ne	<u> </u>	44		Tem	emp 23 IR Gura O				
	M20	27.000	3						D	-26			1			- '				_		5/21/18

Appendix E Boring Logs and Field Forms

EMPLOYEE NAME: ASH WILLIS

EMPLOYEE NUMBER: 130276

JOB NUMBER: M2027.0003

Job Location: FE Warren

READINESS REVIEW DATE: 08/14/17

JOB TASKS:

SURFACE SAMPLING

GROUNDWATER SAMPLING

SOIL SAMPLING - SURFACE SOIL AND SUBSURFACE SOIL

SOIL BORING LOGGING

SURFACE WATER AND SEDIMENT SAMPLING

MOBE/DEMOBE TASKS

EQUIPMENT NEEDED:

SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE,

GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC.

SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

SW SAMPLING: SAMPLE CONTAINERS, SW COLLECTION DEVICE

PROPER PPE FOR ALL ABOVE TASKS IS A MINIMUM LEVEL D, PLUS NITRILES.

DOCUMENTS NEEDED:

FIELD FORMS: BORING LOG, GW SAMPLING LOG, SAMPLE LOG, LOG BOOK, CALIBRATION SHEETS

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

MINI-SONIC DRILLING. PERMANENT WELL INSTALLATION. UXO RECOGNITION AND ANOMALY AVOIDANCE.

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE

EMPLOYEE NAME: JEREMY KLEIN

EMPLOYEE NUMBER: 130286

JOB NUMBER: M2027.0003

Job Location: WPAFB

READINESS REVIEW DATE: 08/14/17

JOB TASKS:

SURFACE SAMPLING

GROUNDWATER SAMPLING

SOIL SAMPLING - SURFACE SOIL AND SUBSURFACE SOIL

SOIL BORING LOGGING

SURFACE WATER AND SEDIMENT SAMPLING

MOBE/DEMOBE TASKS

EQUIPMENT NEEDED:

SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE,

GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC.

SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

SW SAMPLING: SAMPLE CONTAINERS, SW COLLECTION DEVICE

PROPER PPE FOR ALL ABOVE TASKS IS A MINIMUM LEVEL D, PLUS NITRILES.

DOCUMENTS NEEDED:

FIELD FORMS: BORING LOG, GW SAMPLING LOG, SAMPLE LOG, LOG BOOK, CALIBRATION SHEETS

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

MINI-SONIC DRILLING. PERMANENT WELL INSTALLATION. UXO RECOGNITION AND ANOMALY AVOIDANCE.

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE

EMPLOYEE NAME: KALEB BRUMBAUGH

EMPLOYEE NUMBER: 130333

JOB NUMBER: M2027.0003

Job Location: FE Warren

READINESS REVIEW DATE: 08/14/17

JOB TASKS:

SURFACE SAMPLING

GROUNDWATER SAMPLING

SOIL SAMPLING - SURFACE SOIL AND SUBSURFACE SOIL

SOIL BORING LOGGING

SURFACE WATER AND SEDIMENT SAMPLING

MOBE/DEMOBE TASKS

EQUIPMENT NEEDED:

SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE,

GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC.

SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

SW SAMPLING: SAMPLE CONTAINERS, SW COLLECTION DEVICE

PROPER PPE FOR ALL ABOVE TASKS IS A MINIMUM LEVEL D, PLUS NITRILES.

DOCUMENTS NEEDED:

FIELD FORMS: BORING LOG, GW SAMPLING LOG, SAMPLE LOG, LOG BOOK, CALIBRATION SHEETS

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

MINI-SONIC DRILLING. PERMANENT WELL INSTALLATION. UXO RECOGNITION AND ANOMALY AVOIDANCE.

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE

EMPLOYEE NAME: TRAVIS CASSELLA

EMPLOYEE NUMBER:

JOB NUMBER: M2027.0003

Job Location: FE Warren

READINESS REVIEW DATE: 08/14/17

JOB TASKS:

SURFACE SAMPLING

GROUNDWATER SAMPLING

SOIL SAMPLING - SURFACE SOIL AND SUBSURFACE SOIL

SOIL BORING LOGGING

SURFACE WATER AND SEDIMENT SAMPLING

MOBE/DEMOBE TASKS

EQUIPMENT NEEDED:

SOIL BORING: MUNSELL CHARTS, TAPE MEASURE, PENS, SOIL BORING FORMS, USCS TABLE,

GW SAMPLING: YSI, PERISTALTIC PUMP, MULTIRAE, SAMPLE CONTAINERS ETC.

SEDIMENT SAMPLING: SAMPLE CONTAINERS, SPOONS

SW SAMPLING: SAMPLE CONTAINERS, SW COLLECTION DEVICE

PROPER PPE FOR ALL ABOVE TASKS IS A MINIMUM LEVEL D, PLUS NITRILES.

DOCUMENTS NEEDED:

FIELD FORMS: BORING LOG, GW SAMPLING LOG, SAMPLE LOG, LOG BOOK, CALIBRATION SHEETS

SIGNIFICANT TRAINING CONDUCTED PRIOR TO DEPARTURE:

MINI-SONIC DRILLING. PERMANENT WELL INSTALLATION. UXO RECOGNITION AND ANOMALY AVOIDANCE.

FIELD QC REVIEW SHEET

EQUIPMENT PACKED FOR TRAVEL ON: 08-15-17

TRAVEL DATES: 08/27/17 THRU 09-08-17

SITE SUPERVISOR SIGNATURE

12-20-2017 R: Projects/W2027.0003 Site Insp of AFFF Areas (Omaha District)/Boring_Log_Well Geographics Data/FE Warren/FEWRN01-001 bon

BORING LOG - FEWRN01-001

Well ID: FEWRN01-MW001

Start Date : 9/01/17 : 9/01/17 **End Date** Northing : 234401.78 Easting : 740945.32 Surface Elev* : 6129.06

Site Name : AFFF Area 01 : Cascade Drilling **Drilling Company**

Drilling Method : Mini Sonic/Boart Longyear Driller : Ryan Miller

Borehole Diameter : 6.0 in. Boring Completion : Monitoring Well : 2.0 in. PVC

Depth to Water (ft) : 19.2

Logged by : Kaleb Brumbaugh

	ı	FE V	Varren Air Force Base		Total Depth (ft)**		20.0	9.06			Logged by Signature	: Kaleb Brumbaugh <u>Kaleb Brumbaug</u> h
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels ▼ During Drilling DESCR	*North Datun **Belo (BGS	surements n American Vertical n (NAVD88) feet (ft) ow Ground Surface S) feet (ft)	PID (ppm)	USCS / LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	Well: FEWRN01-MW001 Elev (TOC): 6128.62
0-	1	100	(0.0 - 2.5) Well graded Gr 4/1 - 8/1, dark gray to whi sub-angular fine to coarse cobble, 20.0 - 27.5 cm, m	te, sub- e graine	round to d, scattered		GW			SS	FEWRN01-001-SS-001 Interval 0.0 - 1.0 ft	Flush Mount,8-in. Manhole 2ftX2ftX4in. Pad 12 in. skirt Riser 2.0 in. Sch 40 PVC
	2	90	(2.5 - 5.0) SILT with Grav plasticity, 10YR 6/3 pale to noncemented, gravel sub trace cobble, dry, (fill)	orown, I -angu l a	oose, r to sub-round,	0	МН					- Grout: 0.5 - 3.0 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons)
-	3	100	(5.0 - 13.0) CLAYEY SAN plasticity, 10YR 7/3, very fines, 5% medium sand, t sub-angular to sub-round	pale bro	own, 95% ave l ,		sc					Bentonite Seal 1/4 in. Uncoated Pellets 3.0 - 6.0 ft bgs
10-	4	100				7						— Filter Pack 16/30 Colorado Silica Sand 16.0 - 20.0 ft bgs
15-	5	100	(13.0 - 20.0) SANDSTON poorly cemented, medium some larger quartz inclus visible staining, most of cwith few competent piece	n to coa ions, ha ore was	rse grain with ird, dry, no							Screen (10 ft) 9.44 - 19.44 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
- 20-	6	80					SS		•	so	FEWRN01-001-S0-018 Interval 18.0 - 19.0 ft	End Cap
20-			Total Depth of Boring 20.0	0 feet								

12-20-2017 R:Projects/W2027.0003 Site Insp of AFFF Areas (Omaha District)/Boring_Log_Well Geographics Data/FE Warren/FEWRN01-003.bon

BORING LOG - FEWRN01-003

Well ID: FEWRN01-MW002

Start Date : 9/02/17 : 9/02/17 **End Date** Northing : 234194.01 Easting : 740625.92 Surface Elev* : 6131.49

Site Name : AFFF Area 01 : Cascade Drilling **Drilling Company**

Drilling Method : Mini Sonic/Boart Longyear

Driller : Ryan Miller Borehole Diameter : 6.0 in.

Boring Completion : Monitoring Well : 2.0 in. PVC

Depth to Water (ft) : 17.0

Logged by : Kaleb Brumbaugh

	F	EV	Varren Air Force Base		Surface Elev* Total Depth (ft)**		613 21.0					Logged by Signature	: Kal	eb Brumbaugh <i>aleb Brumbaugh</i>
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels ▼ During Drilling DESCR	*North Datun **Belo (BGS	surements n American Vertical n (NAVD88) feet (ft) ow Ground Surface S) feet (ft)	PID (ppm)	USCS / LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAN	MPLE ID	Well: FEWF Elev (TOC)	
0- - - 5- - 10- - -	1 2 3 5	100 100 100 100	(0.0 - 2.0) SILTY GRAVEI grayish brown, well grade grained with cobble, sub-anoncemented, dry (2.0 - 7.0) GRAVELY SAN to coarse grained for both non-plastic, loose, sub-anoncemented, sub-anoncemented for sub-anoncement	ID, non pale broading by MD, 10 asticity, round, asticity, area graminante	to low own, 98% ca, m toughness, white to 7/3, dark	0 0	GM SW GC		Dep	S	FEWRNO Ir 0.0	1-003-SS-001 1-003-SS-901 nterval 0 - 1.0 ft		Flush Mount,8-in. Manhole -2ftX2ftX4in. Pad 12 in. skirt -Riser 2.0 in. Sch 40 PVC -Grout: 0.5 - 3.9 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons) -Bentonite Seal 1/4 in. Uncoated Pellets 3.9 - 6.0 ft bgs -Filter Pack 16/30 Colorado Silica Sand 7.0 - 21.0 ft bgs -Screen (10 ft) 10.05 - 20.05 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
20-	7	100	(20.0 - 21.0) SANDSTON poorly cemented, hard, dr most of core was rock flow competent pieces Total Depth of Boring 21.0	y, no vi ur with f	sible staining,		SS	674 625 636						-End Cap

BORING LOG - FEWRN03-002

Well ID: FEWR03-MW002

 Start Date
 : 8/28/17

 End Date
 : 8/29/17

 Northing
 : 234763.09

 Easting
 : 738091.93

 Surface Elev*
 : 6155.04

Site Name : AFFF Area 03
Drilling Company : Cascade Drilling

Drilling Method : Mini Sonic/Boart Longyear

Driller : Ryan Miller Borehole Diameter : 6.0 in.

Boring Completion : Monitoring Well : 2.0 in. PVC

Depth to Water (ft) : 8.0

Logged by : Kaleb Brumbaugh

	F	E V	Varren Air Force Base		Total Depth (ft)**		26.0				Signature	: Kaleb Brumbaugh : <u>Kaleb Brumbaug</u> h
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels ▼ During Drilling DESCR	*North Datum **Belo (BGS	American Vertical (NAVD88) feet (ft) w Ground Surface (5) feet (ft)	PID (ppm)	USCS \ LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	Well: FEWRN03-MW002 Elev (TOC): 6154.59
10- -	2 3	100	(0.0 - 1.0) SILT, non-plass brown, 65% fines, 35% fin gravel, sub-angular to any trace mica, dry to slightly (1.0 - 5.0) CLAYEY SANI grayish brown to very palgrained and 10% medium to subround, low to non-pargillaceous matrix, trace (5.0 - 10.0) CLAYEY SAN pale brown, low plasticity fine grained and 5% med poorly graded, argillaceous mica, damp to trace mois 10% medium grained clay round to sub-angular, nor argillaceous matrix, trace (15.0 - 20.0) LEAN CLAY (subround to round), 10Y low plasticity, medium tou firm, fractured when core to dry (20.0 - 22.0) GRAVELY L Sand, 10YR 5/2, grayish medium toughness, round copping steam sub-round core in the core of the	itic, 10YII ne to me gular, no damp D, 10YR e brown n grained lastic, p mica, d ID, 10YI to non-I ium grai us matrix t at 8.0 f ND, 10Y with Gr R 5/2, g ghness broken EAN CL d pebble raded, fi to sub-a	R 5/2, grayish edium grained oncemented, 5/2 to 7/3, , 90% fine d, sub-angular oorly graded, amp R 7/3, very plastic, 95% ned sand, x, abundant ft bgs YR 7/3 to 5/2, , 90% fine d, sub-round to y plasticity, amp avel rayish brown, firm to very apart, damp AY with ow plasticity, es, fine to medium ngular, damp	0 0 0	SC SC CL CL		deQ ►	SS	FEWRN03-002-SS-001 Interval 0.0 - 1.0 ft	Flush Mount, 8-in. Manhole 2ftX2ftX4in. Pad 12 in. skirt Grout: 0.0 - 5.0 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons) Bentonite Seal 1/4 in. Uncoated Pellets 5.0 - 10.0 ft bgs Riser 2.0 in. Sch 40 PVC Filter Pack 16/30 Colorado Silica Sand 10.0 - 26.0 ft bgs Screen (10 ft) 14.87 - 24.87 ft bgs 0.010 in. continuous wrap vee wire Sch 40 PVC
- 25 –	7	100	(22.0 - 26.0) FAT CLAY, I 5/2, grayish brown, high t density, dry Total Depth of Boring 26.	oughne		0	СН					End Cap
			Total Deptit of Bulling 26.	o idel								

12-20-2017 R: Projects/W2027.0003 Site Insp of AFFF Areas (Omaha District)/Boring_Log_Well Geographics Data/FE Warren/FEWRN03-004.bon

BORING LOG - FEWRN03-004

 Start Date
 : 8/28/17

 End Date
 : 8/29/17

 Northing
 : 234809.64

 Easting
 : 738021.35

Site Name : AFFF Area 03
Drilling Company : Cascade Drilling

Drilling Method : Mini Sonic/Boart Longyear

Driller : Ryan Miller
Borehole Diameter : 6.0 in.
Boring Completion : Soil Boring

Depth to Water (ft) : 8.9

	F		oject# M2027.0003 Varren Air Force Base		Surface Elev* Total Depth (ft)**	: (7360 6154 30.0		J		Logged by Signature	· (π) : 8.9 : Kaleb Brumbaugh : <u>Kalsb Brumbaug</u> h
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels ▼ During Drilling DESCR	*Nort Datu **Bel (BG	surements h American Vertical m (NAVD88) feet (ft) ow Ground Surface S) feet (ft)	PID (ppm)	USCS\LITHOLOGY	Munsell Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	REMARKS
0-	1	100	(0.0 - 2.5) SILT with Grave 5/2, grayish brown, 70% fi to cobble size gravel, sub- noncemented, soft to very	nes, 30 angu l a	0% fine grained or to angular,	0	МН			ss	FEWRN03-004-SS-001 Interval 0.0 - 1.0 ft	Soil Boring Borehole backfill - Grout:
- - 5-	2	100	(2.5 - 5.0) SILTY SAND winon-plastic, 10YR 5/2, grafines and 30% gravel (fine subangular to subround to graded, damp	yish br to me	own, 70% dium sized),	0	SM					Mix Used: Portland Cement (94 lb bag), Sodium Bentonite (~3 lbs), Wotor (~7 gallops)
- - -	3	90	(5.0 - 10.0) CLAYEY SAN brown, low plasticity, 95% medium grained sand, sub poorly graded, argillaceou abundant mica, damp	fine gr -round	ained and 5% I to sub-angular,		sc		▼	so	FEWRN03-004-SO-008 Interval 8.0 - 9.0 ft	Water (~7 gallons)
10 - - - -	4	90	(10.0 - 15.0) CLAYEY SAI pale brown, 100% fine with grained clayey sand, trace sub-round to round to sub-plasticity, low toughness, a with cementing	n trace fine g -angua	medium ravel, lar, low	0	sc				0.0 - 9.0 ft	
15 — - -	5	83	(15.0 - 18.0) LEAN CLAY gravel, 10YR 7/3, very pal non-plastic, low toughness 95% fine 5% medium grain round, predominantly dry,	e brow s, soft t ned sa	n, low to o slightly firm, nd, sub-round to	0	CL					
- 20 – - -		100	(18.0 - 19.0) LEAN CLAY, 7/3 to 7/2, very pale brown toughness, dry (19.0 - 24.0) CLAYEY SAI brown, very low plasticity, fine 5% medium grained s sub-angular, argillaceous trace mica,	ND, 10 soft to	nt gray, medium YR 5/2, grayish firm, 95% ub-round to	o	SC					
25 — -	8	100	(24.0 - 27.0) CLAYEY SAN pale brown, low to very low 95% fine, 5% medium grai to sub-angular, trace argill mica, dry	v plast ined sa	icity to none, and, sub-round	0	sc		2			
- - 30-	9	100	(27.0 - 30.0) CLAYEY SAN very pale brown, low to ve none, 95% fine, 5% mediu sub-round to sub-angular, matrix, trace mica, wet to compare the sub-angular of the sub-	ry low m grai trace a damp a	plasticity to ned sand, argillaceous		sc		2			
			Total Depth of Boring 30.0	teet								

Į,	Instalfation: - Militer AFB	M2027,0003	PEWA	حلاوب			Ske:	PE WARREN Q	એ ક	oemer	Z EPT	A 2	<u> </u>	KEV.	2	·		
ţ	WELL NO: FEWE	NO1- M				S.		EWKNO							- 4-17			·····
_						- 4-		RGING DAT										
- 1	WELL DIAMETER (inches):	2.0	TŲT DIA	NETER (nches)	% 4	OD WE	LL SCREENINTE		- 3	STATIC DEPTH TO WATER (M	I STOCK	11.	12	PUR OR B	GE PUMP TYPE AILER:	Op		
	WELL VOLUME PUR		. VOLUME = (T	OTAL WELL	DEPTI	H BTOC -					APACITY			15			· · · · · · · · · · · · · · · · · · ·	
	(anly fil out if app	oEcable)	er (19,2	۴.	FI - 11,	12 FI) X	0.143	geVA	* 1.3	33 •	34						
	ECHIPMENT VOLLE (only in such app		EQUIPMENT	OL = PUMF	VOLU	ME+(TUB	ING CAPACI	TX X	TUBING	S LENGTH)	+ FLOW CE	LL VO					s	
	NITIAL PUMP OR TUBING	15		FINAL PUMP			5	PURG		143	5	P	URGING IL	,20	TOYAL VOLUME		2.7	ر ا
ľ	DEPTH IN WELL (feet):	VOLUME	CUMUL.	DEPTH IN W	RGE); , DEPTH	-S Kq	TEIAP,	ED AT:	OND.	DISSOLVE		ORP		PURGED (galons RBIOITY	COLOR		BOR
1	TIME	PURGED (gallons)	VOLUME	i	ALE	TO	(standard units)	(°C)		µS/0+(P)	OXYGEN		{mV}	•	NTUs)	(describ) {de	saribe)
ŀ	11126		PURGED (mallons)		pm)	WATER Ifeet BIDCI			M5/		ngs.	-+				2.4	-	
ŀ	1435	N/A 0.52	N/A 0,52		026	11.12	N/A	NA	رد		N/A 2.53		V/A	<u> </u>		Cloud	1 1	<u> </u>
ŀ	1455					11.39 12.20	7.42	14.14	****	540 544			227.0	76		- -	+	╀
ŀ	1535 1535	0.78	1,57	ე.(-	2.24	7.40	14.23		574	1.06		3723	¥x O		\vdash	╁	+
ŀ	1555	0,52	2.09			12.29	7. 35	13.96	0.4		0.71		718.2	***************************************	7 <u>2</u> 5 <u>1</u> 2	$\vdash \vdash$	+	+
-	1010	0.30	2.43	0.0		1,24	7.31	17.54	-	207	0.77		02.3		or.	$\vdash \vdash$	+	+
ŀ	10.16	0.13	7.61	0.0		12.24	1.31	13.55		v07	0.47		107.6		· K		+	+
ŀ	1620	0.13	2.74			12.24	7.31	13.51		005	0.5		99.9		12		+	Ţ
ŀ	100	V		· v	Ť	10.01	, ,,	17.7.				Ť					T	
Ì												\neg					†	
ı			-														\top	
ı					7												十	
								12										
									-					***************************************			T	
											-			-				
															······································			
ŀ						*********		<u> </u>	<u> </u>	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							\geq
- 1	WELL CAPACITY (G TUBING INSIDE DIA		•	•			•			0.65; 5° 3/8"≈ 0.0	,	7.47 ≂ 0.010 =		5,88 : 0.016				
	PURGING EQUIPMI		B ≃ Baller,	BP ≈ Bla			SP ≃ Electric	Submersible	Jump;		ristatic Pum		O = Other)			
Г		Ar	h		Γ		سم	MPLING DA	IA		I:	SAMPLIN	ig ,,		SAMPLING			
	SAMPLED BY (PRINT) / AI	FFILIATION: Tra	vis Cassa	in/AL	ļ	R(S) SIGNAT	URE(S):					NITIATE	DAT: 16	20	ENDED AT:	16	<u> </u>	
	PULIP OR TUBING DEPTH IN WELL (feel):	15			TUBING	AL CODE: PE			•		D-FILTERED: Fatration Equipm	Y ant Tame:	•	M)	Filter Size		mm	
ľ	DEI TITTI PPELLE (1991)	FIELD	DECONTAMINATIO	N: FUMP	γ (TUBING	Y (N (replace)	7			DUPLICA		(N)	+			
[SAMA	PLE CONTAINER S	PECIFICATION				SAA	IPLE PRESERVA	HON .								SAMPLE	
	SAMPLE IO CODE	# Containers	MATERIAL CODE	VOLUME (mL)	PR	useo	1	TOTAL VOL DED IN FIELD (40	L)	FINAL pH (S	itenard Units)	RALEND	ED ANALYSIS METHOD	AND/OR	SAMPLING EQU CODE	IPMENT		KATE (m) ninexte)
	FELECTION-001- GW - 015	2	PE	15 veach						,			EPA 537M		APF	2		
바	M3/MSP	Ч	PE	150 millad				XIX				ぜ	Pr 153	7M	APP			
Ì																		
-		Jan			ļ													
-											$\frac{1}{2}$						_	_
.	REMARKS: X	Casing XOR= 0	nt 0.4	5 below	i gr	ound Si	ur face	. PAD (ion (letei		b 1	19.71 11.5	6 g2 1 kg:	s.			
	MATERIAL CODES	: AG = A	mber Glass; (G = Clear G	lass;	PE = Pol	yethylene;	PP = Polypre	pylene:	S = Silic			O = Otho					
1.	SAMPLING EQUIPM		APP = Afic	r Peristallic (чтр;	B = Ba	iler, BP :	= Bladder Purt	p; £	SP = Elect	ric Submersit	ie Pun	np;	, (***************************************
L			११ = १९५४	verse Flow F				y Method (Tub			O = Othe	r (Spe	ctry)					

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings 25% saluration; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Dale: March 14, 2016

Als 17 5/22/18

Installation: + Allino 1748 6	112027 00A3 P E	hd m a c	. 1			l.,	EE WARDEN A)	CARA	ER E	-01	-u 2	1 10	Car Ann		<u> </u>	\neg
			<u> </u>		T		······									<u> </u>	
WELL NO: FEWRA	701 - MI	N00 Z			8/0		EWRN		005-	(JW-1	D I	2 ""	= 9	-4-1	7		
WELL		Itan	BING		V WEI	PUI L SCREEN INTE	RGING DAT		TATIC DEPTI	H +4			euer	GE PUMP TYPE			
	20		uino WETER (inches):	/4 DI		t d'⊅ri •			O WATER (fe	et BTOC):	10.	64		ALER:	PP		1
WELL VOLUME PUR	RGE: 1 WELL	.VOLUME = (1	OTAL WELL	DEPTH	втос –	STATIC DE	TAW OT HTS	ER) X	WELL C	APACITY						********	\neg
(only fil old if app	Fcable)	=	20.0	5 A	- 10.	64 E0 x	691.0	gai/fi	~ /, {	53	gai						
EPRING ASTRON		EQUIPMENTY	/OL. ≅ PUMF	VOLUM	E + (TUBI	NG CAPACI	TY X	T) BING	LENGTH)	+ FLOW CE	LLVC	LUME				***************************************	
(only 55 out it app	ticable)		W	원택	= (X	→	* +	gal_	=		gal					
INSTIAL PUMP OR TUBING	15	,	FINAL PUMP		•	15	PURGI		12	ZO		PURGING		TOTAL VOLUME	Γ.	A A	\neg
DEPTH IN WELL (feet):		CUMUL.	DEPTH IN W		DEPTH	рЯ	TEMP.	ED AT:	OND.	DISSOLVE		ENDED AT:		PURGED (gallon RBIDITY	COLOR	02	DOR
TIME	VOLUME PURGED	VOLUME		TE	TO	(standard units)	(°c)		Glen (P)	OXYGEN		(mV)	6	NTUs}	(dasaribe	. 1	icribe)
	(galions)	PURGED (nations)	te	pm) (te	WATER			mβ	1cm	mg/L							
1220	NIA	H/A	٥.	06411	0.02	NIA	NZA	N	//t	NA		NIG	N	/A	Clew	no	bre
1230	0.64	٥، لوز	0.	066 1	0.90	7-26	16.64	0.	910	6.72	<u> </u>	249.0	43	2			
1240	0.66	1.32	0.0	66 1	692	7.29	16.12	0.	894	3,4	1	232.5	Z	99	Ц_		
1300	1.32	2.04	0.6	66 1	0.52	7.27	15.77	نن	786	4.12		199.3		65		$oldsymbol{ol}}}}}}}}}}}}}}}}}$	$oldsymbol{oldsymbol{oldsymbol{\sqcup}}}$
1310	0.44	3,3	0.0	64 1	0.53	7.24	15.54	0.5	<u> </u>	3.93		135.6	9	10.4	Ц		\bot
1320	0.66	3.96	6.4	66/	0.93	7.24	15.50	0:	872	3.96	1 -	176.4		5.6	Ц_		\perp
1330	1340 0.66 4.636 0.066 0.74 7.22 16.36 0.369 4.63 -151.2 41.824.9																
1340	1340 0.06 4.636 0.066 0.74 7.22 16.36 0.869 4.63 -151.2 44.824.9 134.5 0.33 5.02 0.06 10.94 7.23 15.36 0.862 4.63 -143.1 20.4 1															$oxed{oxed}$	
1345	1345 0.33 5.02 0.06 10.94 7.23 15.36 0.862 4.63 143.1 20.4 1															<u> </u>	
TUBING INSIDE DIA, CAPACITY (Gal./Fl.): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.008; 1/2" = 0.010; 5/6" = 0.016																	
TUBING INSIDE DIA, CAPACITY (Gal./Ft.): 1/8" = 0,0008; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/6" = 0.016 PURGING EQUIPMENT CODES: B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristatilic Pump; O = Other (Specify)																	
	PURGING EQUIPMENT CODES: B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify) SAMPLING DATA																
SAMPLED BY (PRINT) / A	FER INTIONS	s Cossell	Q.	SAMPLER(TAMDIB (8)	RESI:					TAITIN	1.2	45	ENDED AT:	(3)	16	
PUMP OR TUBING	15			TUBING					FIEL	D-FILTERED:		A (N	Filter Size		mm	
DEPTH IN WELL (lost):	<i>g >=</i> F)ELC	DECONTAMINATIO	ON: PUMP	MATERIAL Y (N	~	TUBING	Y N (replaced	1		Fevation Equipm	DUPLIC) N				
SAN	LE CONTAINER S						IPLE PRESERVA						.		ŀ	BAMPLE F	PUMP
SAMPLE D CODE	# CONTAINERS	MATERIAL CODE	VOLUME (mL)		SERVATIVE UBED	AC	TOTAL VOL	เา	FINAL pH (Stenard Units)	INTEN	DED ANALYSIS METHOD	AND/OR	SAMPLING EQU CODE		FLOW RV per mi	ATE (mi. inute)
FENRMOL-003-	-,1		150m1										\dashv	400		,	
GW-015	2	39	each	_								EPA 537M		APP		100	ָ כ
CON-012	2	PE	15000				<u>~</u>										
							USK.	, , , , , , , , , , , , , , , , , , ,									
	754	2													$\subseteq \mathbb{I}$		
										1						_	-
REMARKS:	e casin	_{ફે ૦,} ૫3	Pelon	grum	~Ø 51	urlace.	.PAO C	01/~ t	L&T&D !	E DA	-4	19.82	- bg	B L	20.4	186	95
										Wi	 -	10.27		WLI	<i></i> U	109	iks O
MATERIAL CODES			GG = Clear G			yethylene;	PP ≈ Polypro				eflon;		er (Speci	fy)			
SAMPLING EQUIPM	NENT CODES		er Peristaitic everse Flow I		8 ≂ Bai Pump;		= Bladder Pum v Method (Tub			tric Submers O = Oth							
		7,, 11					t to antiches in										

pH: ± 0.2 unils Temporature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen; all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity; all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

July 9/5/17 5/22/18

Section Sect	96 ODOR (describe)
SAMPLED REMIRNO - MW - 070 DATE 8-30 - 29	ODOR
PURGING DATA PURGE PURGE: 1 PURGE PURGE: 1 PURGE PURGE: 1 PURG:	ODOR
ELL MCLINE PURGE: 1 WELL VOLUME PURGE: 1 SQUEMENT VOLUMENT VOLUME PURGE: 1 SQUEMENT VOLUME PURGE: 1 SQUEMENT VOLUME PURGE: 1 SQUEMEN	ODOR
DMETER (SCAPE) 1 WELL VOLUME TOTAL WELL CEPTH BTOC - STATIC DEPTH TOWATER) X WELL CAPACITY GALL VOLUME TOTAL WELL CEPTH BTOC - STATIC DEPTH TOWATER) X WELL CAPACITY GALL VOLUME TOTAL WELL CEPTH BTOC - STATIC DEPTH TOWATER) X WELL CAPACITY GALL VOLUME TOTAL WELL CEPTH BTOC - STATIC DEPTH TOWATER) X WELL CAPACITY GALL VOLUME TOTAL WELL CEPTH BTOC - STATIC DEPTH TOWATER) X WELL CAPACITY GALL VOLUME TOTAL WELL CEPTH BTOC - STATIC DEPTH TOWATER) X WELL CAPACITY GALL VOLUME GAL	ODOR
CONTINUE PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH BTOC - STATIC DEPTH TO WATER) X WELL CAPACITY Gall Payobookshi 1	ODOR
Conf. (if out is applicable) Col. Final, Pulse or Tubing Col. Final, Pulse Final, Pul	ODOR
Conty of with approximation Color Conty Color	ODOR
TIME PURCED PUR	ODOR
DEPTH IN WELL ((mail): LO	ODOR
TIME PURGED PURGED (gen)	
1016 PURCED Gallons PURCED PURCED Gallons PURCED Gallons PURCED Gallons PURCED	(describe)
1240 X X X X X X X X X	(Mescripe)
1250 0.79 0.79 0.079 12.45 7.35 10.26 0.899 7.26 602.3 17.8 13.30 3.16 3.95 0.079 12.62 7.09 16.14 0.916 6.55 614 6.12 1250 1.63 5.53 0.079 12.65 6.91 16.11 0.917 20.01 597.9 4.41 1410 1.63 3.11 0.019 12.45 6.72 15.73 0.915 6.59 6287 3.71 14.70 0.79 7.90 0.079 12.68 7.01 14.89 0.962 6.27 635.0 3.76 14.50 0.79 8.69 0.619 12.67 7.06 15.08 0.905 6.22 635.5 3.17 14.40 0.79 9.48 0.079 12.67 7.06 15.08 0.906 6.20 636.4 3.67 14.43 0.74 9.72 0.079 12.67 7.06 15.07 0.906 6.21 636.7 3.05 14.43 0.74 14.43 0.74 14.43 0.74 17.58 15.07 0.906 6.21 636.7 3.05 14.43 0.74 14.45 0.006 15.07 0.906 6.21 636.7 3.05 14.45 0.006 12.65 1	
1330 3.16 3.95 0.079 12.62 7.09 16.14 0.916 6.55 614 6.12 1260 1.53 5.53 0.079 12.65 6.91 16.11 0.917 20.01 597.9 4.41 1410 1.68 3.11 0.079 12.65 6.72 15.73 0.915 6.59 62.27 3.71 1470 0.79 7.90 0.079 12.65 7.01 14.87 0.962 6.27 635.0 3.76 1430 0.79 8.69 0.679 12.67 7.08 15.08 0.906 6.20 636.4 3.07 1440 0.79 9.48 0.079 12.67 7.06 15.08 0.906 6.20 636.4 3.07 1413 0.24 9.72 0.079 12.63 7.06 15.07 0.906 6.21 636.7 3.05 1413 0.24 9.72 0.079 12.63 7.06 15.07 0.906 6.21 636.7 3.05 1413 0.24 9.72 0.079 12.63 7.06 15.07 0.906 6.21 636.7 3.05 1413 0.24 9.72 0.079 12.63 7.06 15.07 0.906 6.21 636.7 3.05 1414 0.079 9.070	cons
1260	
U D 1,68 \$\frac{3}{3}\$.	
UID 1.68 3.11 0.019 17.65 6.72 15.73 0.915 6.59 6287 3.71 1470 0.79 7.90 0.079 12.68 7.01 14.89 0.962 6.27 635.0 3.76 1430 0.79 8.69 0.679 12.67 7.08 15.08 0.905 6.22 625.6 3.17 1440 0.79 9.48 0.679 12.68 7.06 15.08 0.906 6.20 636.4 3.07 1443 0.24 9.72 0.679 12.68 7.06 15.07 0.906 6.21 636.7 3.05 1443 0.24 9.72 0.679 12.68 7.06 15.07 0.906 6.21 636.7 3.05 1443 0.24 9.72 0.679 12.68 12.68 13.05 12.68	
1470 0.79 7.90 0.079 7.68 7.01 14.89 0.962 6.27 635.0 3.76 1430 0.79 8.69 0.619 12.67 7.08 15.08 0.905 6.22 635.6 3.17 1440 0.79 9.48 0.679 12.63 7.06 15.08 0.906 6.20 636.4 3.67 1443 0.24 9.72 0.679 12.63 7.66 15.07 0.906 6.21 636.7 3.05 WELL CAPACITY (Galions Per Foot): 0.75°=0.02; 1°=0.04; 1.25°=0.06; 2°=0.16; 3°=0.37; 4°=0.65; 5°=1.02; 6°=1.47; 12°=5.88 UBING INSIDE DIA. CAPACITY (Gali-FL): 1/8°=0.0006; 3/16°=0.0014; 1/4°=0.0026; 5/16°=0.004; 3/8°=0.006; 1/2°=0.010; 5/8°=0.016	
14 10	
IHHO 0.79 9.48 0.079 12.68 7.06 15.08 0.906 6.20 636.4 3.07 1443 0.24 9.72 0.079 12.63 7.06 15.07 0.906 6.21 636.7 3.05	
FELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/6" = 0.016	
ELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; (4" = 0.65;) 5" = 1.02; 8" = 1.47; 12" = 5.88 UBING INSIDE DIA, CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	1
UBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	-2-3
UBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016	
SAMPLING DATA	
MIPLED BY (PRINT) / AFFILIATION, ASL WILLIS ASSETTING SAMPLING SAM	112
77677 (0008) 11-1	·
TUBING TUBING FIELD-FLYERED: Y (N) FRet Stea EPTH IN WELL ((set)): MATERIAL CODE: PE Firstion Equipment Type;	mm m
FIELD DECONTAMINATION: PUMP Y (II) TUBING Y (Hyppaced) DUPLICATE: Y (II)	
	MPLE PUMP
	.OW RATE (mi. per minute)
CMBNO1-MM- 3 05- 1CA1	
270-611-020 2 PE 150ml EPA 537M APP 3	300
72 1	
* purple due from permangante	
REMARKS:	
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify)	
AMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	

NFFF - Reverse (NW Petrstante-Pulp). So shaw we mind (1 tubing Variety) Draity. O = Other (openly)

Stabilization Criteria, for range of variation of last three consecutive readings.

pH: ± 0.2 units Temperature; ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen; all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity; all readings

≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

Jul 9/5/17

2549	
\	GROUNDWAT

Aero	starSE	S		\	GRO	MON	ATER SA	MPLI	NG LO	G [*]					
Slabston: MNOTAGE			2001		\	1.	H-FE-WARREIN	6	n			· · ·			
					\				FORME	RE	PTA 2	(AF	FF AVE	EAI)
VELL NO: FEW	RNOI-	WMO	1 (FEWIRNE PURGING D		W071-	6W-	020	ATE: 7	'-3o-	11	
WELL	и	π	JBING	1.1	wei	t population	NTERVAL DEPTIE	-	STATIC DEPT			Pt	RGE PUMP TYPE	<u> </u>	·
		DI DI	AMETER (inche	_{s:} 74	OD CONTE	1.434	19.49n		TO WATER (6	est BTOC): /	3.91	OF	BALER; PC)	
VELL VOLUME PU (only file out it ap		LVOLUME≈ (TOTAL WEL	T DEL	≀н втос ~ }	STATIC	DEPTH TO W	ATER)	X WELL	CAPACITY (CAPACITY)					
lounh un ons a st	brcapiel	•	25.4	9	е 13,	TI FO	× 0.165	3936	503	3.	ĝaj.				
EQUIPMENT VOLU	ME PURGE: 1	EQUIPMENT	VOL. = PUN	P VOL	UME + (TUB	ING CAPA	CITY X	TUBIN			ELL VOLUME			·	
(only fit out if ea	proble)				gad = (× ft): +	gal		100	1143			
NITIAL PUMP OR TUBIN	30	win.m.m.	FINAL PUN			מַ		GING	105	<u></u>	PURGING	114/2	OTAL VOLUM PURGED (galo	7	92
EPTH IN WELL (feet):	VOLUME	CUMUL	ОЕРТН (N P	WELL (Ie: URGE	el): DEPTH	рH	TEMP.	ATED AT:	COND.	DISSOLV			IPURGED (gato URBIDITY	coros	ODOR
TIME	PURGED (gallons)	VOLUMI PURGEI		RATE	TO WATER	(slandard (elipu	¹ Cci		भवारत	OXYGE	(mV)		(KTUs)	{describe	(describe)
1050		trations		gpm)	(feet BTDC)	4 Y 4			S/cm	mg/L	1144	-			. 641
1055	0.26	N/K	10	/K	13.92	4/1	5.54		<u>/n</u> 289	6.58	154.0	N/		A/A	N/H
1105	0.52	0.7) <i>52</i> 052	4.03	7.12	14.67		256	5.9			32 65	Cleere	none
1115	0.52	1.30	**************************************	052		7.11	14.23		241	5.38			35	H^-	
1125	0.52	1.72		052	•	7.12	14.08		235	5.48			18		
1135	0.52	2,34	0.	052	14.03	7.11	13.91	1.2	223	5.9			72		
1140	0.26	2.60	Q.	052	14.02	7.12	14.05	J,t	234	5.64	241.2	1,	8 3		
1143	0.156	2.76	0.	052	14,02	7.12	14.06	11	235	5.61	1 2421) 1	. ৪০	7	
ELL CAPACITY (Gallons Per Foot); 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; (4" = 0.65;) 5" = 1.02; 6" = 1.47; 12" = 5.88															
WELL CAPACITY (TUBING INSIDE DI		•			,		•	_	= 0.65;) 5 ⁻ 3/8" = 0.0	•	• .	= 5.88 "= 0,016			
PURGING EQUIPM		B = Baller;				SP = Eleci	ric Submersibl	Pump;		eristallic Pun		er (Spec)	y)		······································
AMPLED BY (PRINT) / /	D ₁	nwillit /		Т		***************************************	AMPLING D	ATA			SAMPLING		SAMPLING		·····
	Tr	evis /	ASL		.er(s) signati	JRE(S):	<u>~></u>				INITIATED AT:		ENDED AY:	114	م
UNIP OR TUBING EPTH IN WELL (Gel):	20			TUBIN	g Rial code: Pe				1	.D-F&TERED: Filtration Equipm	Y nest Type:	(H)	-Fitter Size		mar
	FIELL	DECONTAMINATE	ON: PUKE	Υ			Y (N freptac					Y (N	7		
SAN	PLE CONTAINER S	PECIFICATION		╀-		·····	SAMPLE PRESERY	MOTE	T		INTENDED AWALY	RIS ANDUOS	SAMPI NIG EG		AMPLE PUMP LOW RATE (m)
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME (m).	"	PRESERVATIVE UBED	- 1	TOYAL VOL	ind 3	FINAL pH (Stanard (Jolls)	МЕТНО		CODE		bet tripings)
FEWENOI-MUN	1(-	1			2012		ACCES HE FILLO	necy	<u> </u>	i			 		
6M-070	" ລ	PE	150								EPA 531	'M	APP		200
				<u> </u>	,										
				<u> </u>			(SAR	<u>.</u>							
***************************************				╀											
	<u> </u>	L		<u></u>	,		····		İ	<u> </u>			1		
EHARKS:	•				•										
MATERIAL CODES		mber Glass;				yethylene;				one; T=T		her (Spec	oify)		
SAMPLING EQUIP	RENI CODES		er Peristallic everse Flow	Perista		SM = Sir	P = Bladder Pu raw Method (Tu	bing Gra	avity Drain);		ble Pump; er (Specify)				
		3 % Cmanific			labilization Crit	leria for ran	ge of variation of	lasi ihree	consecutive	readinas.				***************************************	

5% Dissolved Oxygen; all readings \leq 20% saturation; optional \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: March 14, 2016

																	
Installation: MANOTATES	M2027.0063	FE WA	RREN		·····		C WAREN-					TA:	3 (A	PPC,	ARU	A 2	
WELL NO: FEWR	N 07 -	mwoo	í	1	SAMP	LEID: F	EWRN		001 -	6W-	25	DAT	FΕ:	9-21	-1-	7	
	***************************************		<u> </u>		¥		RGING DAT		-			<u> </u>					
WELL	LANTOTANA	עד	BING	1 ,			RVAL DEPTH:		STATIC DEPT	H 24	······································		PUR	GE PUMP TYPE			
DIAMETER (Incline):	20	עם	WETER (inches):	1/40	0 30.	3 5 1	20.35 R	ŀ	TO WATER (eel BTOC):	16.	45	OR E	AILER:	PP		I
WELL VOLUME PUF	RGE: 1 WELL	VOLUME = (1	OTAL WELL	DEPTH B	TOC - E	TATIC DE	TAW OT HTS	ER) X	WELL (CAPACITY					***************************************		$\neg \neg$
(only fit out it app	ricable}		30.3	Pt:	- 20	g Fij ×	0.163	ຄະຕິເ	· 2.	18	gal						
CANDUCUTION	AT DIADOR- 4	rol governors	(O) D(() (O)		10.7	فسد					11.100	21.45					
DUIOV THEMPHOOD		ECOPMENT	VOL. = PUMP	VOLUME		3 GAPACI x	ry X ft)	ากตเทเ	J LENGIH gal) + FLOW CE	LL. VULI gai						- 1
(unay na vaca epp	, Jones 1			C	_	<u> </u>			904								
INITIAL PUMP OR TUBING	25	-	FINAL PUMP		2:	<	PURG		Λ.	304	PU	RGING	12.20	TOTAL VOLUME	. ,	1 . 1	- -
DEPTH IN WELL (feet):		CUMUL	DEPTH IN W		PTH .	ر. He	INITIAT TEMP.			Dissorvi		ORP		PURGED (galler RBIDITY	s): 7	1.8/	
TIME	VOLUME PURGEO	VOLUME		1		[standard	(°C)		usion	OXYGEN	- 1	(mV)		KORDII I NTVs)	(desarts		DOR scribe)
1	(gallons)	PURGED	fgr	am) VVA	ATER BTOCK	units)	1-7		5/cm	mg/L.		,,	,	,		" ""	
0804	P/A	ΝA	0.0		61	N/A	N/A	. 1	/A	N/A	٠,	J/A	~	IA.	C/04	7 / 7	one
		0.15								5.20		-			1/00	"// "	7/11
9810	0.156					7.50	12.61		449		'	01.4		23	-		-
0815	0.156	0.31			· · · · · · · · · · · · · · · · · · ·	1.51	12.51		448	5.17		10.7		06	-		
0840	0.65	0.96	 	117.	72	7,58	12.48	×	443	3.69		15.1	3)	? 2			4-1
0905	0.65	1,582		17		7.60	12.83	0.	441	2.77	7 1/	45.9	_	.72			┸
0930	0.65	2.23	2	17.	.74 7	1.59	13.18	0.4	135	3.29	5 1/	46.1	2	21			$T \cap$
0940	0940 0.25 2.492 17.63 7.57 13.73 0.437 3.37 153.5 164 0950 0.25 2.742 17.62 7.57 13.92 0.446 3.79 150.3 133 -																
	1 D10 0.52 3.262 1262 7.56 13.90 0.438 3.89 -138.3 106 CLEAR																
	1020 0.25 3.512 17.43 7.56 14.00 0.441 3.90 12.90 82.5																
	1030 0.25 3.512 17.43 7.56 14.00 0.441 3.90 12.90 82.5 1030 0.25 3.762 12.63 7.54 14.16 0.440 3.99 124.4 81.9																
1035																<u> </u>	
	/ELL CAPACITY (Gallons Per Foot): 0,75° = 0,02; 1° = 0,04; 1,25° = 0,06; 2° = 0,16; 3° = 0,37; 4° = 0.65; 5° = 1,02; 6° = 1,47; 12° = 5,88																
WELL CARACITY (C	allone Per For	vi≻ 0.76* = 0.0	12; 1° = 0.0	4 125*	= 0.06;	2* = 0,16	3" = 0.37;	<u>-</u>	0.65; 5	"= 1.02; 6	= 1,47;	12" =	E 88		.l		
TUBING INSIDE DIA		•	•	9/16" = 0,00		4" = 0.0026			3/8" = 0		= 0.010;		= 0.016				
PURGING EQUIPME		B = Bailer;		lder Pump;			Submersible I			eristaltic Pun		Other		}			
		SA MINIS				SAN	IPLING DA	TA									
SAMPLED BY (PRINT) / AF	FFILIATION:	ran migua wite duces	na lash	SAMPLER(S)	BIGNATURI		جي				SAMPLING	AE / 0	35	SAMPLING ENDED AT:	10	36	,
PUMP OR TUBING		MALE CHOSE	ARG ,	TUBING					FIE	LD-FILTERED;	Y		7	Filler Size		niu Ti	
DEPTH IN WELL (feet):	25			MATERIAL CO	ODE: PE					Filtration Equipm		`	مند	_			
	FIELD	DECONTAMINATO	ON: PUMP	ΥŃ)	TUBING	Y (Heplaced	\sim			DUPLICAT	E: Y	(4)			
SANF	LE CONTAINER S	PECIFICATION				SAM	PLE PRESERVA	ION								SAMPLE	PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	AOI tota (**)	PRESE	RVATIVE		TOTAL VOL	7	PINAL 40	(Stanard Units)	INTENDE	D ANALYSIS METHOD	S AND/OR	SAMPLING EQ CODE			IATE (ml. : imuto)
WATER OF TOPE	" colstwers	"MITTING PONE	-ocome such	US	ED.		DED IN FIELD (m	L)	133714.945		L					l	
FEWRNOD-WI-	,	0 -	150ml		_							PD 4 FA711		6 *			
GW-025	2	PE	each		-	1						EPA 537M		Ary	7	10	ן סכ
							~			*		_					
		~~~~~~~				1							$\overline{}$	<u>~</u>			
		2_				+			~				9				
						+					<del>                                     </del>	<del></del>				_	
		L	7									-					
≯ Cas	sing is	0.89	above q	round	<b>SUV</b>	hice , i	ON DAC	t Co	mple:	fed. T	D 01	اعدا	n Z	7.44 b	9 5		
REMARKS;	0		J									WI	. 10	i o o	grs		
MATERIAL CODES:			CG ≂ Clear G	ass; Pl	E = Polyel	hylene;	PP = Polypro	pyjene;	S=S#i	cone; T≔T	eflon;	O = Oth	er (Speci	fy)			
SAMPLING EQUIPN	ENT CODES		er Peristaltic F sverse Flow F		B = Baile		Bladder Pum			tric Submers	ible Pum _l er (Speci						
<del></del>		ACFF - R	PAGING LINK L				Method (Tub of variation of le				or (Open	14)			<del></del>		

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

Jay 1.7

	-	•		-		-	_	
3	A	le	ro	SÎ	ar	S	ES	

<u>~</u>					*******			<del>}</del>								
instatation: milletare	M2027.0003	FE W	JARRE,	V.		Ste	LEWARREN AL	, _F	orm	er fp	TA	3 CF	YFF1	CARE	A 2	۱ ۱
WELL NO: FEWE	י- בעע				, 8A	MPLEID: (	FLIENC	<u>ي</u> -	ለስጋ-	- 6W-	<i>p</i> 3:	<b>3</b> DA		1-2-		
1 0401	41-00	<del></del>					IRGING DAT		<u>~</u>			<u></u> 1			. 1	I
WELL		Īτυ	BING		WEL		ERVAL DEPTH:		STATIC D	ЕРТН 💥		<i>a</i> .	PUR	GE PUMP TYPE		
DIAMETER (inches):	2.0	עם	V/ETER (inches)	: 74	OD 132	SLFt	2756		TO WATE	R (feel BTOC):	ما	,91		BALLER: P		
WELL VOLUME PUF	RGE: 1 WELL	VOLUME = (1	TOTAL WELL	. DEPT	н втос -	STATIC D	EPTH TO WAT	ER)	X WEL	L CAPACITY		***************************************	***************************************			
(only fit out if epp	dicable)	=	38,51	٥	н . 13	.91 F0 x	0.163	ga\/ft	* 3	1,53	gal					
EQUIPMENT VOLUM	ME PURGE. 1	EQUIPMENT	/OL PUM	WOLL	IME + (TUB	ING CAPAC	ITY X	TUBIN	G LENG	TH) + FLOW C	ELL VO	DLUME				
(orly fil out if app			=		gal = {		A.	2		nal =	·····	gal				
INITIAL PUMP OR TUBING DEPTH IN WELL ((641):	33		FINAL PUMF DEPTH IN W			<b>ን</b>	PURG	NG ED AT:	145	5 <i>7</i>		PURGING ENDED AT:	600	TOTAL VOLUME PURGED (gañon	. 2	.68
, ,	VOLUME	CUMUL.	<del></del>	RGE	DEPTH	pH	TEMP.		COND.	DISSOLV	Æΰ	ORP		REIDITY	COLOR	ODOR
тие	PURGED	VOLUME	1	ATE	τo	(Slandard	(°C)	-	hgians-(£			(mV)	,	KTUs)	(describe)	(describa)
	(gallons)	PURGED (gallohs)	(9	pm)	WATER Ifeet BYOCI			WD	1cm	.Agm						
1458	N/A	N/A	0.	04	14.9	NIA	N/A	n	/A_	N/A	<b>\</b> -	N/A	Ŋ	19	Clear	rone
1505	6.28	0.28	<u> </u>	04	17.D	778	15 14	0	207	6.60	-1 -	145.3	2	10	1	1
1515	0.40	0.65	3 0.	04	17.13	7.61	14.96	0.	766	4.37	~ ~	170.3	1 '	80		
1575	0.40	1.08	0.		17.7	7.62	14.46	η.	766	17.9	7 -	1633		2.9		
เดิร์ดี	0.40	1.49	0.1		hn	7.6	14 14		769	3 2	<del>,</del> _	1475		5.6	$\vdash$	
1605	D.40						111 00			1, 2						<del>                                     </del>
1545 D.40 1.88 D.64 17.17 7.60 14.00 0.769 4.24 +132.4 31.8 1 1555 0.40 2.28 0.04 17.17 7.69 13.97 0.767 3.96 124.5 27.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																
<u>המני</u>																
1660	1660 0.40 2.68 0.04 17.17 7.57 13.90 6.766 3.99 1/8.2 197															
SAN,																
	And the second s															
	ELL CAPACITY (Galions Per Fool): 0.75* = 0.02; 1' = 0.04; 1.25* = 0.06; 22* = 0.16: 3' = 0.37; 4' = 0.65; 5' = 1.02; 6' = 1.47; 12' = 5.86															
			1					ļ								
WELL CAPACITY (G	allons Per Foo	ol): 0,75" = 0.0	2; 1*=0.0	}4;	1.25" = 0.06;	(2=0.1	8 <del>`</del> 3* = 0.37;	4" =	0.65;	5" = 1.02;	6" = 1.4	17; 12* <i>=</i>	5.80			
TUBING INSIDE DIA, CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016  PURGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristalitic Pump; O = Other (Specify)  SAMPLING DATA																
	Δς	حراني م		Τ			WIFEING DA	in			SAMPL	ING		SAMPLING		
SAMPLED BY (PRINT) / A	FILIATION: TIP Sef	en~ Klei	n/KL	SAMPL	er(s) signati	REISK	9				INITIAT	EDAT: 6	00	ENDED AT:	160	)
PUMP OR TUBING	<b>7</b> 2	a ·		TUBING	9					FIELD-FILTERED:		Y (	N)	Fiter Size	·····	aim
DEPTH (N WELL (leet):	<i>5.5</i>				HAL CODE: PE					Fibration Equip	•					
		DECONTAMINATION	OM: PUMP	Y	<u>( )</u>	TUBING	Y (N (replaced				DUPLE	XXTE: Y	N		·····	
SAMP	LE CONTAINER S	PECIFICATION		_			MPLE PRESERVA	NOF	_		L	nen atus kon	LUCON	SAMPLING EQU		WPLE PUMP
SAUPLE (O COOR	# CONTAINERS	MATERIAL CODE	VOLUME (mL)	P	RESERVATIVE	ŀ	TOTAL VOL		FINAL	pH (Stenard Units)	BALEN	METHOD	S MINEROSS	CODE	EFRENT F	bet teparte)
A			150		USEO	^	DDED (K FIELD (m	L)			<u> </u>			<del></del>		
600-033 600-033	2	PE	150ml						]			EPA 537M	,	APF	?   I	50
600 (0.5)			each	<u> </u>							╄			1 (1 1		
				<u> </u>			CAL									
							76									
											Π					
				T						7	1					
71	Cacia	0 6 05	ب اما م		S	63 - 0					<u> </u>	····				
T T	Lacing	@ 0.95 d	W ADOUT	91	www DI	L. VALVE										
HEMARKS: 1600 D	cuelope	d.														
													······································			
MATERIAL CODES:			CG = Clear G		PE = Poly		PP = Polypro				Teffon;		er (Spaci	fy)		
SAMPLING EQUIPN	IENT CODES;		er Peristablic I everse Flow I		B≖Bai Hic Pump:		= Bladder Pum w Melhod (Tub			ieciric Submer: in);						I
		NC					e of varietion of is				<u>19</u> P					

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) TurbIdHy: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

9/5/17 5/22/18

<b>3</b>			
	Hero	SIGI	SES
7.00			

installation: - Ather-Afti	M2027,0003 T	FE WA	0 R G N	3	<del></del>	She	TE WARREN (	<del>)</del>	EndM	<i>50</i>	en.	CM 2	1 kg	FF.	مدوده	<i>c</i> :71	<del></del>	$\neg$
WELLHO: FEWA	<u>'</u>				SA SA		EWRNO	2	Y 7 /	(1) mar	30		TE 9	-2-17	DIZ	BH	(	$\dashv$
TEWR	100x-e	70-34-2	77(10)	003	1		RGING DAT		10 5 - C	-W-0	<u>50</u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 2-1				
WELL		ŢU	BING		WEL	L SCREEN INT	ERVAL DEPTH:		STATIC DEPT	H <del>     </del>		- (	PUF	IGE PUMP TYPE				
DIAMETER (Exches):	2.0		WETER (inch		OD   35	35 E	2 <i>5</i> ,35ft		TO WATER (fe	et BYOC):	٦,	06	- 1	BAILER:	ľ	7		
WELL VOLUME PUF	RGE: 1 WELL	LVOLUME = (1	TOTAL WE	L DEPT	гн втос -	STATIC DI	EPTH TO WAT	ER) )							-		······································	
(only hit out if app	icabia)	Þ	35.3	9	A . /5.0	F1) x	0,16	galit	- 3	,24	gal							
EQUIPMENT YOLU		-EQUIPMENT	/OL. = PUI	IP VOL	JME + (TUB	NG CAPAC	ITX X	TUBIN	G LENGTH	+ FLOW C	ELL V	DLUME					•	ᅦ
(coly fil out if app			-		Da .	- <del>(</del> *	**		981			gal	···					
INITIAL PUMP OR TUBING DEPTH IN WELL (led):	30		PINAL PUI DEPTH IN		_{п):} 3	٥	PURG INITU	ING TED AT:	1317	3		PURGING ENDED AT:	415	TOTAL VOLUME PURGED (DAW)		3.'	14	ı
	VOLUME	CUMUL.		URGE	DEPTH	pH (standard	TEMP.	1	COND.	DISSOLV		ORP		ROIDITY	COS		000	R
TIME	PURGED (gallons)	VOLUME PURGED		RATE (cpm)	TO WATER	tanlis}	(°c)		D/CM	OXYGE mg/L	N	(mV)	i	(KTUs)	(dase	ribe)	(deseri	(be)
13.18	12/1	N/K		<del>აა</del> ზ	115.04	N/A	N/A	14/	<del>-1</del>	N/A		N/A	7	/ A	Cle	,,	Λo	100
1325	0.49	0.49	······································	.07	15.23	7.66	15.05		796	5.2		25.9		5.43	<u> </u>	**	1	
1330	0.49	0.98		107	15.23	7.61	14.81		990	3.59	····	-76.8		14.0	T			-
1335	0.49	1.47		07	15.23	7.58	13.93		946	2.6		- 133.L		72	Н			ᅱ
1840	0.49	1,96	<del></del>	,07	5 25	7,60	13.50	-	896	2.7		143.3	10	50	$\vdash$	1		ᅱ
1345	0,49	2.45		.07	15.24	7.(0)	13.45		747	220		133.1		01	$\Box$	-	$\dashv$	ᅱ
1350	0.49	2,94		67-	15.24	7.64	1335	-	838	2.4		(27.5		1 <del>, 7-</del>	$\Box$		_	$\dashv$
1355	0.20	3.14	<u></u>	.04	15.24	7.1.3	13.49		830	2.4	7 -	1127	<u> </u>	2.3	$\Box$		$\dashv$	一
1400	0.20	3.34	0	.04	15.22	7.64	13.58	_	217	2.40	-	110.8	6				十	ᅱ
1465	V- 20	3,54	0	. 04	15.20	7.63	13.63	0.	199	4.2		93.7		2.7	<del>                                     </del>		十	┨
1410	0.20	3.76		.04	15.20	7.62	13.28		797	4.15	_	87.0		1.9		H	┪	ᅥ
1415	0,20	3.9		10.	15.20	7.01	13.56	<del>  ~ </del>	193	4.1		75.3		0.0	1_			一
							1							7.0		-		ᅥ
								_							T			ᅥ
														,,,,,,,	忊			ᅱ
					-								_		T			ᅦ
															1	_		
WELL CAPACITY (G		-	-	,04;	1.25* = 0.08;	2" # 0.16	3* = 0.37;	4* =	0,65; 5*	= 1.02;	3" ≈ 1.4	7; 12" =	5.88	,				7
TUBING INSIDE DIA PURGING EQUIPME		Gei./FL): 1/8": B = Bailer;	= 0.0006; BP = B		0.0014;		6; 5/16" = ( Submersible )		$3/8^n = 0.0$	006; 1/2" eristallic Pur	= 0.01	0; 5/8" = O = Other	2 0.016					
				udde)	unipi co		MPLING DA			unotasuo nun	щи	O - Otte	tobecui	·/		_		
SAMPLED BY (PRINT) / AF	FILIATION: AS	n Willis rauptlein	l ISL	SAMPL	ER(8) SIGNATU	RE(S):	$\langle \rangle$				SAMPL INITIAT	ING L	115	BAMPLING		14	16	$\neg$
PUMP OR TUBING		the fleir	[4,-7	TUBING	3	~~			FIEL	D-FILTERED;	MITOG		*	ENDED AT: Filter Size			TIM:	
DEPTH IN WELL (feet):	<u>3u</u>				IAL CODE: PE				- 1	Filtration Equips	***************************************		<u> </u>	·				
Jg & \ - **	FIELD	DECONTAMINATION	ON: PUM	, Y	( <del>^</del> )	TURING	Y (N fregulaced				DUPLK	ATE: Y	M	)		1.		
aluji:	m marriage s	n or a second		+-	RESERVATIVE	3/0	IPLE PRESERVA TOTAL VOL	INCH.			INTEN		ANDIOR	SAMPLING EQ	JPMEN		PLE PUI W RATE	
SAMPLE ID CODE	# CONTARIERS	HATEFUAL CODE	VOLUME (m)	}	USED		DED IN FIELD (m	.,	FINAL pH (	Stenard Units)		METHOD		CODE			aet märed	
FEWENDZ-003-	_		150mL	乀		<del>-  </del>					<del> </del>					-		ᅱ
em-030	ユ	PE	each	`								EPA 537M		APP		$\prod$	50	ŀ
			······································	1	-	$\overline{}$						_						П
	ļ					7	540						<u></u>			1		$\neg$
	W.												0					
		ĺ														$\bot$		
* Cus	inly 55	0.610	sove or	ound	sur thce						-,						-	$\neg$
		PURC																]
ַנידּנּ	- NO D	vuk.	. t=															- 1
MATERIAL CODES:			CG = Clear	<del> </del>	PE = Poly		PP = Polypro				eflon;	O ≈ Oth	er (Speci	fy)				
SAMPLING EQUIPM	ENI CODES:	: APP = Afte RFPP = Re		Peristal		SM = Stray	= Bladder Pum y Method (Tub	ing Gra	vity Drain);	nc Submers O = Oth								
				S	abiliaplion Crit		of variation of la			nordbare.								

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen; all readings 2.20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity; all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

Jhr 9/5/17 5/22/18

<b>Aero</b>	starSE	S _{ire}	MB		GRO	JNDWA.	TER SAN	IPLIN	G LOC	3						
Installation: AUNOY AFE	1A2027;0002	FEMA	ran Al	PB.		Site	FE-WARREN		43/	AFFF.	Ana	2)				
WELLNO: FEIN	RN07-	W RACACO	4		5/	MPLE ID: FE	EWRNO?	,		***************************************		DA	7E: 9	7-2-	17	
1 2 4 5	1.1.	<del> </del>					RGING DAT		<del>4</del>	- 400					<u> </u>	
WELL	2"	TU	BING	1/.	A N WEL	L SCREEN INTE	RVAL DEPTH:	s	TATIC DEPTI	н 2 ывтос); / 5/	O.	<del></del>	PUR	GE PUMP TYPI		
DIAMETER (inches):		NOUNE C	BING WETER (inches	:/Y	TH BTOO	7671 1		- T	O WATER (fe	ADACITY	.70	3	OR I	BAILER: F	<u>P</u>	
WELL VOLUME PUI		P POLOME	128.7	6	Ft - 14	70 *	.16	gayy		#4	gal					
EQUIPMENT VOLU	ME PURGE.	-EQUIPMENT	VÓL = PÚM	P VOL	ULID-CILID	NG GAPACI	TY. X	TUBING		19 600 CE	LL VC	LUME				
(only fil oid if app	oldeolde)		*		gabi ≂ (	x	FI.)		A	) =		ieg				
INITIAL PUMP OR TUBING			FINAL PUM	P OR TL	BING		IPURG	ING				PURGING .		TOTAL VOLUM		
DEPTH IN WELL (leet):	ે સ્પ		DEPTHIN	WELL (le	6t):	19	INITIA	TED AT:	163			ENDED AT:	140	PURGED (galo	183: Z	84
THAE	VOLUME PURGED	CUMUL	1	URGE IÁTE	HT930 OT	fiq {standatd	TEMP.	l	OND. Siem	DISSOLVI	•	(mV)		ROIDITY (NTUs)	COLOR (describe	ODOR
Time.	(gallons)	PORGED		gpm)	WATER (feet BEOC)	units)	(5)	ms/		mg/L	·	Instal	'	M103)	(maseups	describe)
11,38	N/A	N/A	O.	05	13.75	N/A	NIK	N/	A	N/A	-	NA	44	(RE	Can	hone
1045	0.42	0.47		05	13.96	7.73	13.66	1.0		10.0	_	527		22		1
1650	0.42	8.0		03	12.96	7.65	12.38	0.0		5.2		-90.7	13		11-	1-1-
1110	0.50	1.30	0.	05	13.96	1.55	12.11	5 6		5.0	Ŕ	95.0	50	6.6		
1720	0,50	1.84	o.	05	13.96	7,50	12.00	0,0	++	5.60	, -	101.7		5.6		
1730	0.50	2.34	0	05	13.96	7.48	12.27	0.9	91	5.48	~ -	95.6	2		17	
1740	0.50	2.81	O.	05	13.96	7,49	12.23	0.9	87	5.20		92.2	4	9.3	1	L
			1													
							3									
	<u> </u>						724	<u> </u>				·····		dangen, he litter		
										ų.						
					ļ			<u> </u>	***************************************	,	_	-			<u> </u>	
	ļ				ļ											
								ļ							<b>-</b>	
	<u> </u>		L		<u> </u>		<u> </u>	L		<u> </u>			Ļ		1	
WELL CAPACITY (C TUBING INSIDE DIA		•	•	•	1.25" = 0.06; = 0.0014;	2" = 0.16 1/4" = 0.0020			0,65; 5° 3/8″≈0.(		" = 1.4 = 0.01		5.88 = 0,016	_		
PURGING EQUIPM		B = Baller,	BP = Bk			SP = Electric	Submersible	Pump;		eristaltic Pun		O = Other		)		
	Ac	كقالة لما		T			MPLING DA	\TA			SALIPL	NG 1 -	+11 N	SAMPLING	1	
SAMPLED BY (PRINT) / A	FFILIATION:	Casella	(BL)	SAMP	LER(S) SIGNAT	JRE(S):	<i></i>				INITIAT	ED AT:	740	ENDED AT:	171	41
PUMP OR TUBING DEPTH IN WELL (feel);	20	ıŁ		TUBIN	IG . RIAL CODE: PE					D-FILTERED: Fivalion Equips		`	Ð	Filer Size		suits
DEP STIN WELL (BEI).		DECONTAMINATI	OH: PUMF		N N	TUBING	Y N (replaced	7			DUPLIC		( N	7	······································	
ILIAS	PLE CONTAINER S	PECIFICATION		I		SAA	PLE PRESERVA	ион				····	```			IAMPLE PU <i>IE</i> P
EENKNOT-004	# CONTAINERS	MAYERIAL CODE	YOLUME (m.C	, '	PRESERVATIVE USED	i	TOTAL VOL IDED IN FIELD (m	st)	FJHAL pH (S	Stanard Units)	INTEN	METHOD	ROIDINA 8	SAMPLING EQ CODE		FLOW RATE (mL per minute)
CASHOS-093	7	PE	150ml	`								EPA 537M		API	,	190
6W-024	2	10	euch	<b> </b>		$\dashv$					_			7171		190
				<del> </del>			<b>&gt;</b> ₩									
<del></del>		av		+-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>ت                                     </u>	$\rightarrow$						<b>₹</b>		
<b></b>	<b></b>			+-						_					$\dashv$	
. Y.	->	L	. 1.				4 D :~			`						
REMARKS:	lasing	0,51 b urge cn	ielow 8	rius	nd surf	ace , po	ic Tingh	,ecq								
******			<del>, -, -, -, -, -, -, -, -, -, -, -, -, -,</del>	Class	DE 17-4	unthule	no w bata		0 v 00-		`~#	0 - 0"	(D)	fu)		
MATERIAL CODES SAMPLING EQUIPM		: APP = Aft	CG = Clear er Peristeltic	Pump;	B = 8a	yethylene; ller; BP =	PP = Polypro Bladder Pum		S = Silic SP = Elect	one; T ≃ 1 inc Submers	effon; ble Pu	O = Oth	er (obsci	i <b>y)</b>		
							v Method (Tub		ity Drain);	O = Oth	er (Sp	acify)		······································		

Stabilization Criteria for renge of variation of fast three consecutive readings

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

بيعتن					
	Ae	ros	for	SE	S
100		- 107 100	B 494 B	2000	

(F)							_										
Installation: MROTAPE	1,12027,0003	FE WA	RRE.	N V		Site;	E WARRE OL	7	wildi	ne 12	47 (Bu	ste. C	2 k)	(AF	FFA	KEH	3/1
WELLNO: FFIAI	121117	- Mub			SA SA	MPLEID: F	THOA!					DAT		7 7	7		ᆛ
, Lyv	K1102	- TALLING	<u>UI</u>				EWRN		001-(	SW T	720	5,,,	7	<del>///</del>	F		
WELL		1	472	- ;	E		RGING DAT										<del></del> 1
WELL DIAMETER (Inches):	2		BING Weter (be	hesk $y_4$	1 25	35 _{FL}	RVALDEDH:	[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DATIC DEPTH DWATER (fe	el BTOCh:	0.18	) }	1	GE PUMP TYPE BAILER:	PP		ŀ
WELL VOLUME PUR	RGE: 1 WELL														<del>'''</del>		
lanly fil out if app	(icable)	. 33	í		Ft · '	Fri x		paVR	ъ.		gali						
			25.	35	10-	12 Fi) X	9.16	-	2,2	13	•						l
EQUIPMENT VOLU	ME PURGE: 1	EQUIPMENT \	/OL. = PU	MP VOL	ME + (TUB	NG CAPACI	TY X	Tubing	LENGTH)	+ FLOW CE	LL VOLUME	······		<del></del>			-
(only fit out if app	icable)		w	Λ	gat = (m	0076 *	96 FI	+	25 gai	=	gal						1
INITIAL PUMP OR TUBING			Jews o	UMP OR TUE			PURG				PURGIA	0 1.	201	TOTAL VOLUME			
DEPTH IN WELL (feet):	9.0	0	1 "	N WELL (fee		90	IRITIAI		161	8	ENDED			PURGED (gation	a: a	108	8
	VOLUME	CUMUL,	- 1	PUNGE	DEPTH	pH (standarø	TEMP.	ÇC	OND.	DISSOLVE		1		RBIDITY	COLOR		OR
TIME	PURGED (gallons)	VOLUME PURGED		74XE (6000)	TO WATER	unl(s)	(°C)	m 5/	/^-	OXYGEN mg/L	(m)	<u>۱</u> ٠	¢	MTUs)	(describe	(des	cribe)
liars	N/A	(gailons)		100	(reet BTOC)	~ 1 £14	£ LC.A				1, 14		A.3	· •	Clem		
1010		N/A	7 2	10	996	N/F	N/A	N	<del>/ '-</del>	N/A	N/P	٦		<u> </u>	Leem	177	975
1020	0.232	0.23	<del>;                                    </del>	) ₋ D2G	11114	7.41	17,53	72.7	50	11.41	-77			06	Н	-	-
1030	0.232	0.40	- 1-	)·029	12,32	1.76	1000	0.1	31	5.70	<del></del>		20		<u> </u>	<u> </u>	$\vdash \vdash$
1600	0.232	0,69	<del></del>	1.029	13.6	7.49	16.91	_	732	8.5	1 720		ب	<u>, 03</u>	$oxed{oxed}$	<u> </u>	ightharpoonup
1700	0.232	0.92	3 (	<u> 2011)</u>	19.70	7.48	16.76	0,	73 O	5.37	3 -119	4		62	Ц_		$\sqcup$
710	0.132	<u> </u>	0 6	-079	15.00	7.47	16.42	0.7	22	5,43	-116	4	₹.	23	Ц_	<u> </u>	Ш
1720	0,232	11'39	2 0	1,629	1503	7,47	1595	06	709	.5.62	2 -110	5	н,	74			
<u> 1125                                   </u>	D.232	1.62	4 6	1829	15.52	<b>ી</b> . ત્ર	16,31	0	113	5:51	-1 -116	, [	4.	6D			
1730	0.232	1.35	16 6	1.529	15.62	7,48	(CP, J)	Đ.	715	5.54	-115	,3	4.	52			
1735	0,232	2.0	33 10	اثره.(	15.50	7.47	16:45	Di	75	5.51	116	5	4	.20	4		
7																1	
																1	一
									***************************************	***************************************						1	$\neg$
						7							· · · · · · · · · · · · · · · · · · ·		l	1	$\neg \neg$
						178			·—								一
											<del> </del>					†	一
														·····		<b>—</b>	$\equiv$
WELL CAPACITY (G	allons Per Foo	ot): 0.75" = 0.0	2: 1"=	0.04;	1,25° = 0,06;	2" = 0,16;	3" = 0,37;	4'≃(	).65: 5°	= 1.02; 6'	*= 1.47; *	2" = 1	5.88		<u> </u>		
TUBING INSIDE DIA		•		•		1/4" = 0.0026			3/8" = 0.0	•			0.016				1
PURGING EQUIPMI	NT CODES:	B = Bailer;	BP≃l	Bladder Pi	итр; Е		Submersible F		PP = Pe	ristailic Pum	ap; O⊭i	Other	(Specify	}			=
	1 1			7 T			MPLING DA	<u> </u>			SAMPLING			SAMPLING	,>	2.5	
SAMPLED BY (PRINT) / A	FILLATION J. K	lein, A.	rilisj	45 SAMPL	er(s) signati	RE(S):	Frank	Ke.	S.		INSTIATED AT:	\ /	づり	ENDED AT:	+I	クラ	'
PUMP OR TUBING		76	• •	TUBING			Ŋ			)-FILTEREO;	Y	7	B	Filter Size		mm	
DEPTH (N WELL (fast):	eiti o	DECONTAMINATIO	on: PU		AL CODE: PE	тивине	Y N teptacad			Filtration Equipm	ent Type: DUPLICATE:	Y	(N	·		*******	
SAME	LE CONTAINER S		. ro		(2	· · · · · · · · · · · · · · · · · · ·	PLE PRESERVAT				DOFLICATE:		_~~	<i></i>	Is	AMPLE P	URSP
				P	RESERVATIVE	$\Box$	TOTAL VOL	T		******			AND/OR	SAMPLING EQU		LOW RA	TE (mL
SAMPLE IB CODE	# CONTAINERS	MATERIAL CODE	VOLUME (r	nL)	USED	AO.	DEO IN FIELO (mi	ı, I	FINAL pH (S	lanard Unite)	MET	HOĐ	- 1	CODE		par राग्य	Arte)
FEWRN03	$\sim$	0-		-	,		. /	_ †		7				<i>A</i> ^		·····	$\dashv$
001-6W-020	<i>_</i>	PE	152		NIA	]	NI	F	N,	14	EPA	53714	- 1	API			
		,	· · · · · · · · · · · · · · · · · · ·	·····	ž/	1	···········		,								$\neg \neg$
							f,	_				*********			$\overline{}$		$\dashv$
								==									
				$\top$		_	<del></del>	一十							$\Rightarrow$	<u> </u>	
			, ,	<b></b>				L	···								
REMARKS:	ny or	www	<b>-&gt;4/6</b>	wie													ļ
								١									
MATERIAL CODES	60 - 4	mber Glass	CG ≃ Cles	e Clans	DE - D-1	enthurformer	PP = Polypro	nylaner	S = Silico	ne; T≖T	ofino: C =	OH	×/0	Li).			
SAMPLING EQUIPM					PE = Poly B = Bai		8ladder Pum			ne;   ≖   ic Submersil		Cale	r (Specil	Y)			$\dashv$
		RFPP = Re		w Peristal	lia Pump;	SM = Straw	Melhod (Tubi	ng Gravl	ty Drain);	<b>O</b> ≃ Othe	r (Specify)			······			
				2	OF ALCOHOLD THE	and include	of variation of te	Prinian co	niskranka (	MARINE.							

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2018

Jhu 9/5/17

AerostarSES	ing

(KA)														Q.F	
nstallation: HINOTALB	M2027.0003	FE WAR	LREN			Silo	FEWARREN	Building 13-002-0	1247	11	Rave 1	nels	1 AFF	-m	FA-3)
MELL NO: FEWE	11102	. مم	- Lalan	-	SA	MPLEID: FI	CMONO	2 000 - 1	4.1		~ 1	TF-	7 2:		···/
LEWK	(002-0	0245	MWU	<u> </u>			CIONIOC	5-002-6	- W	06	0   "	,	8-31-	1 (	
		γ					RGING DA								
WELL. DIAMETER (inches):	2	T .	JBING	. 14	OD NE	L SCREEN INT 5.15 FL	ERVAL DEPTH:	STATIC DEPT		11 6	•		RGE PUMP TYP!		
WELL VOLUME PU		VOLUME = 7	TOTAL INCH	* / T	THE PTOC	PTATIC DI	EDTH TO WAY	TO WATER (6		11.6	0	OR	BAILER: P		
		· voconce ·· (						•	APAGIIT						
que li tua l'A yino)	čcablo)	2	301	_	F1: -	fi) x	0.16	gai/ft ₩	10	gal					
			23.1.	<u> </u>	11.	يا	0.16	٠, ١	100						
EQUIPMENT VOLUI		EQUIPMENT	VOL. = PUN	IP VOL	JME + (TUB	ING CAPAC	πy x	TUBING LENGTH	+ FLOW C	ELL V	DLUME				
(only fill out if app	icable)		-	Đ	gad = ( N.	0.21	2016	0.25	$D_{\ell}3$	<u>.</u> ئ	gal				1
NITIAL PUMP OR TUBING	2 4		FINAL PUN	42 OR TU			losso.	130		-	PURGING ,	-4-	TOTAL MOUNT		,,,,,,
DEPTH IN WELL (lest):	20	<u>کا، '</u>	DEPTHIN		n: ~(	21,0	NITTA	EDAT: 1566	ı		PURGING ENDED AT:	539	TOTAL VOLUM PURGED (1985)	<i>y</i>	
	VOLUME	CUMUL		URGE	DEPTH	pH	TEMP.	COND.	DISSOLV	EĐ	ORP		RBIDITY	COLOR	ODOR
TIME	PURGED	VOLUM	ا . ا	RATE P	TÓ	(standard units)	(°C)	helew Sig	OXYGE		(mV)		(HTUs)	(describe)	(describe)
	(O ellous)	PUNGE	MC NE	Zaa'a	WATER			m/s/cm	mg/L					ļ	<u> </u>
1512	Ø	Ď	b.	50	11,29	7.43	18.19	0,571	4.95	5	37. Z	21	, 0	Clar	None
1514	1050	1050	1	Çυ	12.99	7.63	16.84	0.543	4,1	υ	27.4	2.	88	Class	None
1524	750	1860	1	50	13.25	7.34	16.50	0,534	3.44		37.10		00	Clea	12.42.41
1529	750	7550		30	14 11	7.31			3.2			<del></del>			-
					17.11	vá t	1647	7	<u> </u>		30.7	7.	00	Clev	none
1834	750	33 oo		50	14.95	7.41	16.53	01531	3, Z		25.3	20	3.3	cler	none
														l	
								<u></u>						<del> </del> ─	<del>                                     </del>
							<b></b>	<del></del> .	<del> </del>				***************************************	<del>                                     </del>	<del> </del>
			<del>-  </del>	_					ļ					<b> </b>	<b></b>
							<del>                                     </del>		ļ						
								س			.5				ļ
							P	1			ī			_	1
							<b>1</b>							<b>T</b>	1
	***************************************									_					†·····
							<del>                                     </del>		<b></b>					<del> </del>	ļ
							ļ								
														<u> </u>	
									<u> </u>						1
WELL CAPACITY (G	allons Per Foo	st); 0,75° = 0,0	)2; 1° = 0.	.04;	1.25" = 0,08;	2" = 0.16	3* = 0.37;	4" = 0.65; 5"	= 1.02; 6	3" = 1.4	17; 12°=	5.68			
TUBING INSIDE DIA										= 0,01		0.016			
PURGING EQUIPME	NT CODES:	B = Bailer;	BP = Bi	adder P	ımp; E		Submersible F		eristallic Pur	np;	O = Othe	(Specify	()	-	
		10	1	T			MPLING DA	· //		SALTPL	ING	. \$3.1	SAMPLING		
SAMPLEO BY (PRINT) / AF	FILIATION:	Klein 1	ASC	SAMPL	ER(S) SIGNATU	JRE(S):		15 Cas		ŧ	EDAT: 15	34	ENDED AT:	1539	⁷
PUMP OR TUBING	***************************************		,	TUBING	<del></del>	7/	Town	FIEL	D-FILTERED:	<b></b>	¥ /		Files Size		man I
EPTH IN WELL (feet):		30.12	<b>&gt;</b>	MATER	AL CODE: PE	0			Fittelion Equipo	neal Typ	at:				
		DECONTAMINATI	ON: PUMP	, Y	(A)	TURING	Y (Nipplaced			DUPLIC	ATE: Y	0	}		
ваме	LE CONTAINER S	PECIFICATION	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			SAL	IPLE PRESERVAT	ION				***************************************		s/	WAPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME (mL	, Pi	RESERVATIVE		TOTAL VOL	Fibral milias	itanard Units)	INTEN	DED ANALYSIS METHOD	ANDER	SAMPLING EQU CODE		LOW RATE (mt. per minute)
VILSU PERU COOL	B CONTINUENCE A	MATERIAL CODE	VOLOBE (II)E	Ί	USED	AE	DEO IN FIELD (mi		ranera cinte)	ŀ			4000	- 1	, majata,
FEWRN03	2	0	170		11/1		/ 4	4/	/ 1						
-002-GW-00	- <del>Z</del>	PE	125	1	14/14		NIM	/ /	A		EPA 537M		APP	[]	30
_				1	-,									-	
				_			ı.			<del>                                     </del>					
										<u> </u>					
		×		—						_					
				<u> </u>										_	<del></del>
<del>1506</del>	المعاشعة	<u> </u>													
EMARKS:			41												
	ĥ	cominga	t W	ell											
MATERIAL CODES:					pm - 0-*	a tha da · ·	ma - F-1								
SAMPLING EQUIPM		nber Glass;	CG = Clear ( er Peristaltic		PE = Poly B = Ball		PP = Polypro Bladder Pum		one; T=1			ar (Spaci	(y)		
	200201		everse Flow					o; ear = ciaci ng Gravity Drain);	asemous on 110 = 0						]
								si three consecutive r							1

pH: ± 0.2 units Temperature; ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

I	<b>2</b>	le	ro	sta	rS	ES	<b>.</b>
l	<b>***</b>	••		- E 3-4			úţ

instellation; M <del>INOT70</del> -B	1/2027,0003	Q FE	مالد ا	04 45 %	1	Site	FEWARREN P	, R		10.41	1 day	- G.	h\ /	Arrie G	Br	3)
WELLNO: FEW!	5N03-1					WIPLE ID: F	EWRNO	3 -00	3-66	V - 0.2	<u>C 1373</u> D	DA	ITE;	40FF 8-31.	-17	(,,)
				<u> </u>	¥-		RGING DA			3/				- ,		
WELL DIAMETER (Fiches):	2		UBING	school: 1/4			ERVAL DEPTH: 15.45 Ft		STATIC DEPT TO WATER (6		8.4	7		RGE PUMP TYPE	P	<b>)</b>
WELL VOLUME PU		L VOLUME = (	TOTAL V	VELL DEP	TH BTOC -	STATIC D	EPTH TO WA	TER)	X WELL C	CAPACITY	<b>D</b> \ '-'\$		DR	BAILER:	<u> </u>	
(only fill out if ap	picabie)	=	(25.	43	Ft • 7.	49 FI) ×	0.163	galift	* 2	76	gal					
EQUIRMENT VOLU (only fil old if ap		EQUIPMENT	VOL = P	UMP VOL	UMC→{TUB gal = (	ING CAPAC	ΠΥ X Ft }	HIBUT-	GT ENGTH	PS-COW C	ELL VOI	UME				
NITIAL PUMP OR TUBING DEPTH IN WELL ((col):	30			PUMP OR TU IN WELL (to		20	PURG	ING TED AT:	104	מיו	P	URGING NDED AT:	مین	TOTAL VOLUM		95
	VOLUME	CUMUL		PURGE	0EPTH	pH	темр.	١ .	COND.	DISSOLV		ORP		PURGEO (galor IRBIOITY	COLOR	ODOR
TIME	PURGED (gallons)	VOLUM PURGEI Jaailons	.	RATE (gpm)	TO WATER Jitest BTOC)	(standard units)	(°c)		45600_00 5/cr-	DXYGE		{mV}		(NTUs)	{describe	(describe)
1010	N/A	N/A		0.026	8.43	N/A	N/A	N	/A	N/A	1	N/A	٨	P/A	Clean	none
1040	0.78	0.73	3		10.97	7.77	16.69	1.0	52	7.7	<u> 3</u> -	16.9	2	4.4	ı	
1045	0.13	0,9	1		13.77	7.76	10.35	1.4	034	7.7	7 -	32.3	9	.37		
1050	0.13	1,04			13.91	7.77	14.55	1.	041	7.12	2 .	34.3	3	156		
1100	0.13	1.3	-		14.88	7.77	14.57		.041	7.2	7 -	31.8	7	.73		
7110	0.26	1.5	6	<u> </u>	15.82	7.75	14.54	1.	056	7.2	<u>1                                    </u>	44.2	4	.45	-	*
										<u> </u>	<u> </u> -		ļ		├	·
										<u> </u>						
							<del> </del>				-					<del>                                     </del>
			<u>-</u>			****	<b>-</b>		y	ļ			l		<u> </u>	<del> </del>
								7	4			····				
											7					
**************************************																
																<b></b>
WEIT CARACITY I	l Nellong Bos En		12. 45.	0.04	4 072 0 00		<u> </u>	L							<u> </u>	$\bot$
WELL CAPACITY (G TUBING INSIDE DIA							6; 3" = 0.37; 6; 5/16" = 0		0,65; 5° 3/8" = 0.0	-	6" = 1,47; " = 0,010;		5.88 = 0,018			
PURGING EQUIPM		B = Bailer;		Bladder P		SP = Electric	Submersible I VPLING DA	շտրը;		eristaltic Pur		O = Other		1		
SAMPLEO BY (PRIMT) / A	A)	n willis	(t	<b>4</b> )	ER(S) SIGNATL		VIPLING DA	IA			SAMPLIN			SAMPLING		
) FA	in Caesell	· Jerry	kt,	1		rectal.	20				INITIATED		<u> </u>	ENDEO AT:	1112	<u> </u>
DEPTH IN WELL (feel):	20	•		TUBIN	B RAL CODE; PE					D-FILTERED: Fitration Equips	Y erent Yven:	(	<u>ٺ</u>	Filter Stre		erien
		DECONTAMINATI	ON: PL	JMP Y	<b>⊘</b>	TUBING	Y (N (replaced				DUPLICA	E: (Y	) N			
SAME	LE CONTAINER S	PECIFICATION	1	_		SAL	IPLE PRESERVAT	ION			INTENDE	D ANA! VOIS	A A A I A I A I A I	CALIE ING EO		AMPLE PUMP LOW RATE (m
SAMPLE ID CODE	# CONTABLERS	MATERIAL CODE	VOLUME (	(mL)	RESERVATIVE USED	Af	TOTAL VOL	,	FINAL phi (S	itenard Units)	1331142	METHOD	, ALEDICA	CODE		bet winnte)
FEWEND3-003 -	_	0-	150m	L -		<del>                                     </del>	ACC IN FIELD (I)	-7		·····	<del>                                     </del>					
6W-020	2	Pe	each	£								EPA 537M		APP		100
CNEN 03- 203-	2	PE	150 M	<u> </u>			<del>\</del> 4	λ								
			<u> </u>					<b>*</b>	COMPAND OF THE PARTY OF THE PAR							
				_	<del></del>						<u> </u>					
3 <i>L</i> ~		4 C-			1 a		1 . 1		. 1 3		<u>L</u>	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>				
₩¥ X €	asing 4 Shople	D AFTER	grown L 3	conse	e dug o	o by bid	t not C e. paran	efer	) e led S							
MATERIAL CODES:	AG = A	nber Glass;	CG = Clea	ar Glass	PE = Poly	ethylene [,]	PP = Polypro	ovlene:	S m CiBoo	ne T⊷l	Felion;	O = Othe	r (500-)	5A		
SAMPLING EQUIPN		APP = Afte	er Perislai	ilic Pump;	B = Bail	ar, BP=	Bladder Pum	p; E	ESP = Electr	ic Submers	ble Pum	p;	" (ahaci	77/		
***************************************		RFPP = Re	everse Flo		lilo Pump;		/ Method (Tubi	ng Grav	vity Drain),	O ≃ Olh	er (Speci	fy)				

Stabilization Criteria for range of variation of leaf three consequity: readings

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings

≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Particle Solve March 1 0000

Revision Date: March 14, 2016

9/5/17

# SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

M2027.0003							
CALL CONTROL CONTROL							
FE WARREN							
9-1-17							
Ash willis / Sen	emy Klein	/Travis	Cassella				
EWRN01-004							
le Dr and Old	Glory Rd 3	In tersection					
cle all that apply):				/ater		Groundw	ater
m (circle one):	Channel/I	Ditch	Holding Po	nd/Lagoor	n	Lake/Pon	d
	River/Stream	ım	Trench			Other	
	SEDI	IMENT SAMPL	E				
FEWRNO1-004-51	0-001	Sample Colle	ection Time:	084	15		
0-0.5					17.	sand	
Spoon							
250ML			reservative.		NC	ONE	
		CE WATER SAM	ИPLE				
FEWRN01-004		CE WATER SAM	MPLE	08	y 5		
FEWRNO1-004 0-015	-5W-001	CE WATER SAM  Sample Collect	MPLE ection Time:	08	45 Ucyor	L	
FEWRN01-004	-5W-001	CE WATER SAM  Sample Collect	MPLE ection Time: ion Method: e Container:	08. Co.	45 110 HOR 150 M	<i>L</i> Turbid	Other
FEWRNO1-004/ 0-0,5 EPA 537M	- 5W-001	CE WATER SAN  Sample Collect Sample	MPLE ection Time: ion Method: e Container: (circle one):	08. Co.	45 11c YOR 150 M		Other
FEWRNO1-004/ 0-0,5 EPA 537M	- 5W-001	CE WATER SAM  Sample Collect Sample Water Quality  ATER SAMPLE	MPLE ection Time: ion Method: e Container: (circle one):	08. Co.	45 11c YOR 150 M		Other
FEWRNO1-004/ 0-0,5 EPA 537M	- 5W-001	CE WATER SAM  Sample Collect Sample Water Quality  ATER SAMPLE	MPLE ection Time: ion Method: e Container: (circle one): E (GRAB)	08. Co.	45 11c YOR 150 M		Other
FEWRNOI - 00 4/ 0 - 0 , 5 EPA 537M NONE	GROUNDW/	CE WATER SAM  Sample Collect Sample Water Quality  ATER SAMPLE  Sample Collect  Collect	MPLE ection Time: ion Method: e Container: (circle one): (GRAB) ection Time: ion Method:	08. Co.	45 11c YOR 150 M		Other
FEWRNO1-004/ 0-0,5 EPA 537M	GROUNDW/	CE WATER SAM  Sample Collect Sample Water Quality  ATER SAMPLE  Sample Collect  Collect	MPLE ection Time: ion Method: e Container: (circle one):  (GRAB) ection Time: ion Method: e Container:	08. Co.	45 11c YOR 150 M		Other
	Ash willis / Sen FWRN 01 - 004 le Dr and 014 sle all that apply): m (circle one): FEWRN 01-004-51 0-0.5 5000	Ash willis / Severny Klein  FWRN01 - 004  ILE Dr and Old Glory Rd:  Sedime  Channel/  River/Strea  SED  FEWRN01-004-50-001  0-0.5  50000	Ash willis / Sereny Klein / Travis  FWRN01-004  ILE Dr and Old Glory Rd Intersection  Sediment  Channel/Ditch  River/Stream  SEDIMENT SAMPL  FEWRN01-004-50-001  Sediment  Sediment  Sediment  Sediment  Sediment  Analy	Ash willis / Sereny Klein / Travis Cassella  FEWRN 01 - 004  ILE Dr and Old Glory Rd Intersection  Sediment Sediment Surface W  (circle one): Channel/Ditch Holding Po  River/Stream Trench  SEDIMENT SAMPLE  FEWRN 01 - 004 - 50 - 001 Sample Collection Time:  0-0.5 Sediment Description:  Spoon Analysis/Method:	Ash willis / Sereny Klein / Travis Cassella  FEWRN 01 - 004  ILE Dr and Old Glory Rd Intersection  Sediment Surface Water  The circle one): Channel/Ditch Holding Pond/Lagoor  River/Stream Trench  SEDIMENT SAMPLE  FEWRN 01-004-50-001 Sample Collection Time: 084  0-0.5 Sediment Description: Well sort  Spoon Analysis/Method:	Ash will's / Seremy Klein / Travis Cassella  FWRN01-004  ILE Dr and Old Glory Rd Intersection  Sediment Surface Water  Microcle one): Channel/Ditch Holding Pond/Lagoon  River/Stream Trench  SEDIMENT SAMPLE  FEWRN01-004-50-001 Sample Collection Time: 0845  0-0.5 Sediment Description: Well sorked silly Sediment Description: Mell sediment Descripti	Ash will's / Seremy Klein / Travis Cassella  FWRNOI - 004  ILE Dr and Old Glory Rd Intersection  Sediment Surface Water Groundw  In (circle one): Channel/Ditch Holding Pond/Lagoon Lake/Pond  River/Stream Trench Other  SEDIMENT SAMPLE  FEWRNOI-004-50-001 Sample Collection Time: 0845  0-0.5 Sediment Description: Well sorked silly Sand  Spoon Analysis/Method: EPA 537M

E-29

## AerostarSES... SAMPLE COLLECTION LOG SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

	111000 (0011	CE Omaha [	district)				
M2027.0003							
FE WARREN							
8.29-17							
	is Corse	Na / Ta	roma Klein	2			
	14 CNJX	11. 1 26					
005			WW I				
Missle Drive and	Old GI	ory Road	intersecti	on			
						Groundwa	ater
m (circle one):	Channel/[	Ditch	Holding Po	nd/Lagoon	1	Lake/Pond	
	River/Stream	n).	Trench			Other	
FEMIRALU- ANG	SEDI	State of the State	PLE				
		Sample C	ollection Time	1100	)		
	15 001		_			c)1 <del>L</del>	
				•			
		All					
PEWRNOI-005-	5W-901	Sample C	ollection Time: _				
						1_	
				_		Turbid	Other
	CDOLINDW/	TED SAMD	E (GDAR)				
	SKOONDWA	TER SAMI	LL (OKAB)				
		Sample 6	gllection Time: _				
		Colle	ection Method:				
					\		
NONE		Water Quali	ty (circle one):	Clear	Cloudy	Turbid	Other
rent and Duplicule G	on both	50 and	SM				
	B. 29-17  Ash Willis / Trans  NOI-005  Missle Drive and cle all that apply):  m (circle one):  FEWRNOI-005-5  0-0.5  5poon  2 X 250mL  FEWRNOI-005-  D-0.5  EPA 537M  NONE  EPA 537M  NONE	Ash willis / Travis Casse  Not-005  Missle Drive and Old Gl  Cle all that apply):  Sedimer  (circle one):  Channel/E  River/Stream  SEDI  FEWRNOI-005-5D-001  0-0.5  5poon  2 X 250mL  SURFAC  FEWRNOI-005-5W-001  D-0.5  EPA 537M  NONE  EPA 537M  NONE	B-29-17  Ash Willis / Travis Cassella / Je  JOI-005  Missle Drive and Old Glory Road  cle all that apply): Sediment  m (circle one): Channel/Ditch  River/Stream)  SEDIMENT SAME  FEWRNOI-005-5D-001 Sample Co  O-0.5 Sediment  J X 250m L  SURFACE WATER S.  FEWRNOI-005-5W-001 Sample Co  D-0.5 Sediment  SURFACE WATER S.  Colle  EPA 537M Sam  NONE Water Quali  GROUNDWATER SAMPL  GROUNDWATER SAMPL  SEMPLE SO  Colle  EPA 537M Sam  Water Quali  PA 537M Sam  Water Quali  Colle  EPA 537M Sam  Water Quali  Semple So  Colle  EPA 537M Sam  Water Quali  Colle  EPA 537M Sam  Water Quali  Semple So  Colle  EPA 537M Sam  Water Quali  Semple So  Colle  EPA 537M Sam  Water Quali  Semple So  Colle  EPA 537M Sam  NONE Sample S	Ash willis / Travis Casella / Jereng Klein  NOI-005  Missle Drive and Old Glory Road intersection of the all that apply):  Sediment Surface Warface Management Surface Warface Management Surface Warface Management Surface Warface Warface Management Sediment Sample Collection Time:  SEDIMENT SAMPLE  FEWRNOI-005-50-001 Sample Collection Time:  O-0.5 Sediment Description:  Analysis/Method:  Preservative:  SURFACE WATER SAMPLE  FEWRNOI-005-5W-001 Sample Collection Time:  O-0.5 Collection Method:  EPA 537M Sample Container:  NONE Water Quality (circle one)  GROUNDWATER SAMPLE (GRAB)  Sample Container:  NONE Water Quality (circle one):  Water Quality (circle one):	Ash willis / Travis Casella / Jeveny Klein  NOI-005  Missle Drive and Old Glory Road intersection  Cle all that apply): Sediment Surface Water  In (circle one): Channel/Ditch Holding Pond/Lagoon  River/Stream Trench  SEDIMENT SAMPLE  FEWRNOI-005-5D-001 Sample Collection Time: 1100  0-0.5 Sediment Description: Organic  Analysis/Method:  2 x 250mL Preservative:  SURFACE WATER SAMPLE  FEWRNOI-005-5W-001 Sample Collection Time: 11  D-0.5 Collection Method: Collection M	Ash willis / Travis Casella / Jereng Klein  JOI-005  Missle Drive and Old Glory Road intersection  Cleall that apply): Sediment Surface Water  Micircle one): Channel/Ditch Holding Pond/Lagoon  River/Stream Trench  SEDIMENT SAMPLE  FEWRNOI-005-50-001 Sample Collection Time: 1100  O-0.5 Sediment Description: Organic gravely  Analysis/Method: EPA  FEWRNOI-005-5W-901  FEWRNOI-005-5W-901  FEWRNOI-005-5W-901  Collection Method: Collector Method: Collector Method: Collector Method: Collection Method: Collector Method: Collection Method: Collectio	Ash willis / Travis Casella / Jereny Klein  NO1-005  Missle Drive and Old Glory Road intercetion  Ele all that apply): Sediment Surface Water Groundwa  (circle one): Channel/Ditch Holding Pond/Lagoon Lake/Pond  (River/Stream) Trench Other  SEDIMENT SAMPLE  FEWRNO1-005-5D-00 (Sample Collection Time: 1100  O-015 Sediment Description: organic gravely silt  Spoon Analysis/Method: EPA 537M  Preservative: NONE  SURFACE WATER SAMPLE  FEWRNO1-005-5W-001 Sample Collection Time: 1100  O-015 Collection Method: Collector  EPA 537M Sample Container: UK (50 mL  NONE Water Quality (circle one): Clear Cloudy Turbid  FA 537M Sample Container:  NONE Water Quality (circle one): Clear Cloudy Turbid  Water Quality (circle one): Clear Cloudy Turbid

E-30 M2027.0003



## AerostarSES... SAMPLE COLLECTION LOG SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

Project Name:	Site Inspections of A	FFF Areas (USACE O	maha District)				
ASL Project No:	M2027.0003						
Installation:	FE WARREN						
Date:	9-1-17						
Sample Technician(s):		eremy Klein /	Travis Cassella				
Station ID:	FEWRNOZ- OC						
ocation Description:							
50', 30' NE of	NE corner of	building 1337					
Type(s) of Sample (circ	cle all that apply):	Surface Sediment &	Surface W	/ater		Groundwa	ater
Sample Collected from	m (circle one):	Channel/Ditch	) Holding Po	nd/Lagoon		Lake/Pond	
		River/Stream	Trench			Other	
	* Surfa	SOID-SEDIMEN	SAMPLE				
Sample ID:	FEWRNO 2-005-	55-00) Sai	mple Collection Time:	0825			
	0-015		Sediment Description:			silt	
Collection Method:			Analysis/Method:		, ,		,
Sample Container:			Preservative:		No. 100 Personal Property Co.		
2 -4 27 20 20							
		SURFACE WA	TED CAMDI E				
Sample ID:		Sai	mple Collection Time:				
Sample Depth:			Collection Method:				
Analysis/Method:			Sample Container:		Claudy	Turbid	Other
Preservative.	NONE	VVale	er Quality (circle one):	Clear	Cloudy	Turbid	Other
		GROUNDWATER	CAMPI COAD				
		GROUNDWATER	SAMPLE (GRAB)				
Sample ID:		Sai	mple Collection Time:				
Sample Depth:			Collection Method:		\		
Analysis/Method:	EPA 53	7M	Sample Container:				
Preservative:			er Quality (circle one):	Clear	Cloudy	Turbid	Other
COMMENTS: *	Ditch DRY along	sed SD/SW to	55				
JOHNHEITTO: /	Direct Dry-Cyun	gen 307000 10					

# SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

Project Name:	Site Inspections of AFFF Areas (USACE Omaha District)										
ASL Project No:	M2027.0003										
Installation:	FE WARREN										
Date:	8-29-17										
Sample Technician(s):	Ash willis / Jeremy Klein										
Station ID: FEWIR	NO2 -006										
Location Description:	5 corner of Building 1337										
Type(s) of Sample (cir	cle all that apply):	Sediment Surface Water Groundwater									
Sample Collected fro	m (circle one):	Channel/Ditch Holding Pond/Lagoon Lake/Pond									
		River/Stream Trench Other									
	MS/WSD	CERTAIN CAMPIE									
01-10											
		Sample Collection Time: 1235									
Sample Depth:		Sediment Description: organic sil									
Collection Method:											
Sample Container:	3 x 250ml	Preservative: NONE									
Sample Depth: Analysis/Method:	FEWRN 02-006-SW. 0-0.5 EPA 537M	Collection Method: Collector  Sample Container: 6 X 15 on L									
Preservative:	NONE	Water Quality (circle one): Clear Cloudy Turbid Other									
	GR	ROUNDWATER SAMPLE (GRAB)									
Sample ID:		Sample Collection Time:									
Sample Depth:		Collection Method:									
Analysis/Method:		Sample Container:									
Preservative:		Water Quality (circle one): Clear Cloudy Turbid Other									
COMMENTS:											

In the 9/4/2/18

M2027.0003 E-32



		SI AFFF MULTIPLE SITES								
ASL Project No:		M2027.0003								
Installation:		FE WARREN								
Site:		AREA	1							
Date:		9-2-1	i							
Sample Technicia	an:		lis/Tra	vis Ca	ssella	15	eremy	Kleir	1	
Well ID No.:			01-00-		7 7 7 7 7	, -	t			
			(1)	,					50	
			In	itial Me	asurer	nents				
Well Total Depth:	* 20	. 85	ft BTOC	Water Le	vel:	11.8	8	ft BTOC		
						roc - :	STATIC D	DEPTH TO	WATER)	X WELL CAPACITY
(only fill out if app	licable)	=	( 20,85	Ft - 11.88	Ft) x C	.163	gal/ft =	1.43	Gal	
Calculated Well V	a collina de la collection de la collect	1.43	Gallons			Well Dia	The same of the sa	2.0	)	inches
0-11-1		AH	0.0441/6		011 11		100		411 -11	0.050 - 1/6
Calculation	ons:	1" diameter =	0.041 gal/π		2" diam	eter = U.	163 gal/ft	)	14" diameti	er = 0.653 gal/ft
Purging Method (	pump type):	MONSOON			_ F	low rate (i	ncl. units):	50	0-140	DOMIN
Flo	ow Rate	Turbidity	Temp	Cond.		to	DO	ODD	Total Gal	Commonts
lime	nl/min)	(NTUs)	(°C)	(mS/Cm)	) pH	water (BTOC	(mg/l)	ORP	Pumped	Comments
Time (n		(NTUs)			P/A	100000000000000000000000000000000000000	(mg/l)	N/A		
)746 5	nl/min)		(°C)	(mS/Cm)	N/A 7.56	(BTOC ) 11.71 13.44	N/A		Pumped P/A 0.66	DEVELOPMENT STARTE
0746 5 0750 50	nl/min)	(NTUs)	(°C)	(mS/Cm)	N/A 7.56	(BTOC ) 11.71	N/A	N/A	N/H 0.66 3.56	DEVELOPMENT STARTE
7746 5 0750 50 08/2 50	nl/min) 0 © 0 O 0 O	(NTUs)  N/A  ** OR  N/A  N/A	(°C) N/A 14.22 N/A	N/A 1.029 N/A N/A	N/A 7.56 N/A	(BTOC ) 11.71 [3.14] [3.45]	N/A 0.88 58/A N/A	N/A -458.6 N/A N/A	N/A 0.66 3.56 3.56	
7746 5 0750 50 08/2 50 08/6 140	nl/min)  0 ©  0 O  0 O	(NTUS)  N/A  ** OR  N/A  N/A  OR	(°C)  N/A  14.22  N/A  N/A  13.98	N/A 1.029 N/A N/A 1.003	N/A 7.56 N/A N/A 7.69	(BTOC ) 11.71 13.14 (3.44 14.5 15.6	N/A 0.88 53/A N/A 0.21	N/A -458.6 N/A N/A -610.3	0.66 3.56 3.56 5.04	DEVELOPMENT STARTE Stopped to surge Resummed development
7746 5 0750 50 08/2 50 08/6 140 08/8 140	nl/min)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR	(°C) N/A 14.22 N/A N/A 13.98 13.98	N/A 1.029 N/A N/A 1.003	N/A 7.56 N/A N/A 7.69	(BTOC ) 11.71 13.14 (5)4.5 14.5 15.6	N/A 0.88 5N/A N/A 0.21 0.21	N/A -458.6 N/A N/A -610.3 -614.9	N/A 0.66 3.56 3.56 5.04 5.78	DEVELOPMENT STARTE Stopped to surge Resummed developenal Turned of to recharge - due
0746 5 0750 50 08/2 50 08/8 140 08/8 140 0820 140	nl/min)  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  N/A	(°C)  N/A  14.22  N/A  N/A  13.98  N/A	N/A 1.029 N/A N/A 1.003 1.003	N/A 7.56 N/A N/A 7.69 7.69	(BTOC ) 11.71 13.44 (4.5 15.6 15.6 13.0	N/A 0.88 58/A N/A 0.21 0.21	N/A -458.6 N/A N/A -610.3 -614.9 N/A	N/A 0.66 3.56 3.56 5.04 5.78	DEVELOPMENT STARTE Stopped to surge Resummed development
0746 5 0750 50 08/2 50 08/8 140 0818 140 0820 141 0840 50	nl/min)  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  N/A  OR  OR	(°C)  N/A  14.22  N/A  N/A  13.98  13.98  N/A  14.00	N/A 1.029 N/A 1.003 1.003 N/A 1.059	N/A 7.56 N/A 7.69 7.69 7.69 7.69	(BTOC 11.71 13.14 14.5 15.6 15.6 13.0	N/A 0.88 58/A N/A 0.21 0.21 N/A 0.83	N/A -458.6 N/A N/A -610.3 -614.9 N/K -627.3	N/A 0.66 3.56 3.56 5.04 5.78 5.78	Stopped to surge Resummed to velopenal Turned off to recharge - due 3 low recharge. Resummed development
0746 5 0750 50 08/2 50 08/8 140 08/8 140 0820 140 0840 50 0850 50	nl/min)  0 0 00 00 00 00 00 00 00 00 00 00 00 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  OR  OR  OR  OR	(°C)  N/A  14.22  N/A  N/A  13.98  13.98  N/A  14.00  14.73	N/A 1.029 N/A 1.003 1.003 1.003 N/A 1.059	N/A 7.56 N/A 7.69 7.69 7.69 7.70 7.70 7.70	(BTOC 11.71 13.44 14.5 15.6 15.6 14.9 14.9	N/A 0.88 N/A 0.21 0.21 N/A 0.83 0.82	N/A -458.6 N/A N/A -610.3 -614.9 N/A -627.3	7/k 0.66 3.56 3.56 5.78 5.78 7.1 9.08	DEVELOPMENT STARTE  5 topped to surge  Resummed development  Turned of to recharge - due  5 low recharge.  Resummed development  5 topped to Surge
0746 5 0750 50 08/2 50 08/8 140 0818 140 0820 141 0840 50 0850 50	nl/min)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  OR  OR  OR  OR  OR	14.22 N/A 14.22 N/A 13.98 13.98 N/A 14.00 14.73 N/A	N/A 1.029 N/A 1.003 1.003 1.003 N/A 1.059 1.084 N/A	N/A 7.56 N/A 7.69 7.69 7.69 7.69 7.69 7.72 7.69 N/A	(BTOC 11.71 13.64 14.5 15.6 15.6 13.0 14.9 14.17 13,56	N/A 0.88 57/A N/A 0.21 0.21 N/A 0.82 N/A	N/A -458.6 N/A N/A -610.3 -614.9 N/A -627.3 -626.1 N/A	7/k 0.66 3.56 3.56 5.78 5.78 7.1 9.03 7.08	DEVELOPMENT STARTE  5 topped to surge  Resummed development  Turned of to recharge - due  5 low recharge.  Resummed development  5 topped to Surge
11me (n  )746 5  )750 50  08/2 50  08/2 50  08/8 140  0820 140  0840 50  0850 50  0908 5	nl/min)  0 0 00 00 00 00 00 00 00 00 00 00 00 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  OR  OR  OR  OR	(°C)  N/A  14.22  N/A  N/A  13.98  13.98  N/A  14.00  14.73	N/A 1.029 N/A 1.003 1.003 1.003 N/A 1.059	N/A 7.56 N/A 7.69 7.69 7.69 7.70 7.70 7.70	(BTOC 11.71 13.64 14.5 15.6 15.6 13.0 14.9 14.17 13,56	N/A 0.88 57/A N/A 0.21 0.21 N/A 0.82 N/A	N/A -458.6 N/A N/A -610.3 -614.9 N/A -627.3	7/A 0.66 3.56 3.56 5.78 5.78 7.1 9.08 7.08	DEVELOPMENT STARTE  5 topped to surge  Resummed development  Turned of to recharge - due 5 low we charge  Resummed development  5 topped to surge  Resummed development
11me (n  )746 5  )750 50  08/2 50  08/2 50  08/8 140  0820 140  0840 50  0850 50  0908 5	nl/min)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  OR  OR  OR  OR  OR	14.22 N/A 14.22 N/A 13.98 13.98 N/A 14.00 14.73 N/A	N/A 1.029 N/A 1.003 1.003 1.003 N/A 1.059 1.084 N/A	N/A 7.56 N/A 7.69 7.69 7.69 7.69 7.69 7.72 7.69 N/A	(BTOC 11.71 13.64 14.5 15.6 15.6 13.0 14.9 14.17 13,56	N/A 0.88 57/A N/A 0.21 0.21 N/A 0.82 N/A	N/A -458.6 N/A N/A -610.3 -614.9 N/A -627.3 -626.1 N/A	7/k 0.66 3.56 3.56 5.78 5.78 7.1 9.03 7.08	DEVELOPMENT STARTE  5 topped to surge  Resummed development  Turned of to recharge - due  5 low recharge.  Resummed development  5 topped to Surge
0746 5 0750 50 08/2 50 08/8 140 0818 140 0820 141 0840 50 0850 50	nl/min)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  OR  OR  OR  OR  OR	14.22 N/A 14.22 N/A 13.98 13.98 N/A 14.00 14.73 N/A	N/A 1.029 N/A 1.003 1.003 1.003 N/A 1.059 1.084 N/A	N/A 7.56 N/A 7.69 7.69 7.69 7.69 7.69 7.72 7.69 N/A	(BTOC 11.71 13.64 14.5 15.6 15.6 13.0 14.9 14.17 13,56	N/A 0.88 57/A N/A 0.21 0.21 N/A 0.82 N/A	N/A -458.6 N/A N/A -610.3 -614.9 N/A -627.3 -626.1 N/A	7/k 0.66 3.56 3.56 5.78 5.78 7.1 9.03 7.08	DEVELOPMENT STARTE  5 topped to surge  Resummed development  Turned of to recharge - due  5 low recharge.  Resummed development  5 topped to Surge
0746 5 0750 50 08/2 50 08/8 140 0818 140 0820 141 0840 50 0850 50	nl/min)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  OR  OR  OR  OR  OR	14.22 N/A 14.22 N/A 13.98 13.98 N/A 14.00 14.73 N/A	N/A 1.029 N/A 1.003 1.003 1.003 N/A 1.059 1.084 N/A	N/A 7.56 N/A 7.69 7.69 7.69 7.69 7.69 7.72 7.69 N/A	(BTOC 11.71 13.64 14.5 15.6 15.6 13.0 14.9 14.17 13,56	N/A 0.88 57/A N/A 0.21 0.21 N/A 0.82 N/A	N/A -458.6 N/A N/A -610.3 -614.9 N/A -627.3 -626.1 N/A	7/k 0.66 3.56 3.56 5.78 5.78 7.1 9.03 7.08	DEVELOPMENT STARTE  5 topped to surge  Resummed development  Turned of to recharge - due  5 low recharge.  Resummed development  5 topped to Surge
0746 5 0750 50 08/2 50 08/2 50 08/8 140 0820 140 0840 50 0850 50	nl/min)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(NTUS)  N/A  ** OR  N/A  N/A  OR  OR  OR  OR  OR  OR  OR	14.22 N/A 14.22 N/A 13.98 13.98 N/A 14.00 14.73 N/A	N/A 1.029 N/A 1.003 1.003 1.003 N/A 1.059 1.084 N/A	N/A 7.56 N/A 7.69 7.69 7.69 7.69 7.69 7.69 7.69	(BTOC 11.71 13.64 14.5 15.6 15.6 14.9 14.17 13.56 14.33	N/A 0.88 57/A N/A 0.21 0.21 N/A 0.82 N/A 0.22	N/A -458.6 N/A N/A -610.3 -614.9 N/A -627.3 -626.1 N/A	7/k 0.66 3.56 3.56 5.78 5.78 7.1 9.08 7.08 10.66	DEVELOPMENT STARTE  5 topped to surge  Resummed development  Turned of to recharge - due  5 low recharge.  Resummed development  5 topped to Surge

John 9 5 5 5 5 22 18



ASL Projed Installation			TIPLE SITES	•						
Installation		M2027.0003								
	ı:	FE WARREN								
Site:		Area								
Date:		9/2/8	2017							7
Sample Te	echnician:	Traves	Cass	ella	K	106	Bun	10	an h	
Well ID No	).:	FEWE	WOL-	MU	000	2	VET VEV		acog h	
Well Total	Depth: 201	38	ft BTOC	Water Le		0,8	3	ft BTOC		
WELL VOI	LUME PURGE: 1	WELL VOLUM			РТН ВТ	OC - :	STATIC D		WATER)	X WELL CAPACIT
(only fill ou	it if applicable)	=	(20.38	Ft - 10,2	A x o	NB	gal/ft =	.55	Gal	
	Well Volume:	,55	Gallons			Well Dia		2		inches
Ca	alculations:	1" diameter =	0.041 gal/ft		2" diame	eter = 0.1	163 gal/ft		4" diamete	er = 0.653 gal/ft
Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond.	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1405	<b>Enitiable</b>	purge	-				1-2-17			
MO	600 ml	ORM	17.9	1,18	7.68	12-128	Doy	112,8	2,40	
1420	600 ml	OR	16,3	1.17	7.71	12.51	1,04	65.1	2140	A.
1420	Stop Pu	mpto	Sunge	_		10: 41				
	Initiate	ourny -	1110	1 111		1004	2 40	(2.7		
1424					1 0 40					
1434	1000 MC	OK	14.8	1.14	7.67	13.23	2124	Sdrd	5.04	
	Stop Pum	p. Surg		1,14	7.67	13.23	2/24	Sara	5.04	
1434 1435 1437	Stop Pum Initiate F	- dun	e —				100	) v	5,04	
1434 1435 1437 1447	Stop Pum Initiate F 1000 ml	OR -	14.9	1.15	7.94	12.59	3.62	31.7	5.04	
1434 1435 1437 1447 1452	Stop Pum Initiate P 1000 ml Sqomb	OR	14.9	1.15	7.94 7.97	12.59	3.52	31.7	5,04 5,04 7,68 8,34	90
1434 1435 1437 1447 1452 1457	Stop Pum Initiate F 1000 ml	OR -	14.9	1.15	7.94 7.97 8.04	12.59	3.02 3.01 2.99	31.7 10.6 -17.9	5.04	90
434 1435 1437 1447 1452 1457	Initiate F 1000 ml Sooml 500 ml	OR	14.9	1.15	7.94 7.97 8.04	12.59	3.02 3.01 2.99	31.7 10.6 -17.9	5,04 5,04 7.68 8,34 8,34 19.66	90
1434 1435 1437 1447 1452	Initiate F 1000 ml Sooml 500 ml	OR	14.9	1.15	7.94 7.97 8.01 7.98	12.59	3.02 3.01 2.99	31.7 10.6 -17.9	5.04 5.04 7.68 8.34	90
1434 1435 1437 1447 1452 1457	Initiate F 1000 ml Sooml 500 ml	OR	14.9	1.15 1.18 1.17	7.94 7.97 8.01 7.98	12.59	3.02 3.01 2.99	31.7 10.6 -17.9	5,04 5,04 7.68 8,34 8,34 19.66	7

3,785mL/6al

OM .66 25 www. M2027.0003 9/3/18



Project Na	ame:	SI AFFF MULT	TIPLE SITES	S										
ASL Proje	ct No:	M2027.0003												
Installatio	n:	FE WARREN												
Site:		AKEA I												
Date:		8-29-17	7											
Sample T	echnician:	Ash Willis	/ Travi	Cas:	sella									
Well ID N	0.;	FEWRNOI - MW-070-6W-												
			In	itial Me										
Well Tota			ft BTOC	Water Le		2.10		ft BTOC						
WELL VO	LUME PURGE: 1	WELL VOLUME							WATER)	X WELL CAPAC				
The second second	ut if applicable)	7.51	(25.13	Ft - 12.10	Ft) x ∂	www.	gal/ft =		Gal					
Calculated	d Well Volume:	8.51	Gallons			Well Di	ameter:	4.0	The second second	inches				
C	alculations:	1" diameter = 0	0.041 gal/ft		2" diam	eter = 0.	163 gal/ft		4" diamete	er = 0.653 gal/ft				
		۸۸		ell Purgi	_				200	omi/min				
Purging M	lethod (pump type):	IVIon Soon	^		- F	low rate (	(incl. units)	800	~ [0]	o mily mily				
					1	Depth			1					
Time	Flow Rate	Turbidity	Temp	Cond.	рН	to water	DO	ORP	Total Gal	Comments				
Time	(ml/min)	(NTUs)	(°C)	(mS/Cm)	pri	(BTOC	(mg/l)	OKF	Pumped	Comments				
0743	1800mL)	Jut of range	12.06	1.288	7.19	12.7	6.86	544.3	0.63	Surged before				
0810	800m1	out of range	12.24		7.24		5.12		6.33	- 1				
0855		out of range	12.54	1.311	7.31	13.41		619.8	13.33					
0935		04 0 52.4	12.33	1.355	7.20	14. 22		642.3	21.78					
0959		67.0		1.354		14.13		618.7	26.64					
1020	1200	16.6	12.20	1.365	7.18	14.49		652.8						
1025	1200	11.0	12.11	1.365	7.19		5.20		34.88					
1030	1500	8.98	12.09	1.364	7.19	14.47	5.20	6535	36.46					
1035	1500	6.66	12.11	1.366	7.20	14.44	5.20		38.44					
1040	2000	6.25	12.12	1.366			5.20	654.5						
1045	2000	6.78	(2.12	1.366	7.50	14.43	7,26	054.5	43.06					
				7		IIII								
				AND										
			(											
Desulte	At End Of Durainas	4.18	12.12	( 7//	2.5-	111.11	<i>C</i> 2	I Cur.	4111 1.11					
Results	At End Of Purging:	4 10	16.16	1.366	7.20	179.95	5.20	1674.5	44.64					
	NTC. P	07///0						\NIF!!	Manh- la	as some type of				
		1910					^	pur	ple dye.	7, 7, 7, 0				
СОММЕ	,,,,,,													
	0843	Stonged to S.	urge		Starde oden and					Toused to Etnesto Perez =				
	0843	slopped to so						potassium perenagganate from TCE plume clean up						
	0843 6	slopped to sustained policy of Stapped to sustained to su	sain					potas:	TOE B	sto Perez -				

E-35

M2027.0003



Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FE WARREN
Site:	AREAI
Date:	8-28-17
Sample Technician:	Ash Willis / Travis Cassella
Well ID No.:	FEWRNOI-MWO71

## **Initial Measurements**

Well Total Depth:	25.49	ft BTOC	Water Leve	1: 13.88		ft BTOC			
WELL VOLUME PURGE	1 WELL VOLU							Χ	WELL CAPACIT
(only fill out if applicable)		( 23.41	Ft -13-88 F	t) x 0.653	gal/ft =	1,28	Gal		
Calculated Well Volume:	7,58	Gallons		Well D	iameter:	4.0	T	inche	es
Calculations:	1" diameter	= 0.041 gal/ft	2	" diameter = 0	.163 gal/fi		4" diamete	er = 0	.653 gal/ft

## **Well Purging Activites**

Purging Method (pump type):	Monsoon	Flow rate (incl. units):	~ 700ml	/min
				W ==

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	pH	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments	
1450	700m1/min	N/A	N/A	N/A	N/A	13.88	N/A	N/A	NIA	Surged before sto	arked
1455	700 ml/min	* OR	13.06	2.860	7.09	14.25	1.04	229.3	0.92		
1515		31.6	12.55	2.159	7.18	14.36	1.02	96.3	4.62	Surgel after this	rend
1520		216	12.41	2.156	7.16	14.40	1.06	76.6	5.54		
1532		120	12.33	2.149	7.28	14.40	1.00	41.4	7.76	Surgel after Ho	is rea
1536		OR	12.38	2.154	7. 29	14.30	1.02	31.8	8.5		
1546		6.99	12.14	2.141	7.16	14.55	1.61	29.6	10.35		
1550		7.00	12.12	2.138		14.54	1.00	27.0	11.08		
1552		5,54	12.12	2.141	7-18	14,55	0.97	24.3	11.45		
						7					
	,				0	Ray)					
				Y ===							
Results	At End Of Purging:	5,54	12.12	2.141	7.18	14,55	0.97	24.3	11.45		

* OV2 - out of range	three times. Developer	ment ended after purs	ing 11:45 god	

9/55

M2027.0003 E-36



Project Name:	SI AFFF MULTIPLE SITES	
ASL Project No:	M2027.0003	
Installation:	FE WARREN	
Site:	AREA 2	
Date:	9-2-17	
Sample Technician:	Ashwillis / Jeremy Klein	
Well ID No.:	FEWRN02-002 MW 001	
	<b>©</b>	
	Initial Measurements	
Well Total Depth: *2 *	7.87 ft BTOC Water Level: *17.04 ft BTOC	
WELL VOLUME PURGE:	1 WELL VOLUME = (TOTAL WELL DEPTH BTOC - STATIC DEPTH TO WATER) X WELL CAP	ACIT'
(only fill out if applicable)	= $(29.87 \text{ Ft} - 17.64 \text{ Ft}) \times 0.763 \text{ gal/ft} = 2.09 \text{ Gal}$	
Calculated Well Volume:	2.09 Gallons Well Diameter: 2.0 inches	
Calculations:	1" diameter = 0.041 gal/ft (2" diameter = 0.163 gal/ft) 4" diameter = 0.653 gal/ft	

## **Well Purging Activites**

Purging Method (pump type): _	W01200V	Flow rate (incl. units):	700 - 1800 ml	/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	) pH	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1030	700	N/A ** OR	NA	N/A	NA	16,68	NIA	01/4	NIA	Started Develop
1036	700	** OR	13.69	1.076		20.10		-296.9	0.74	
1052	700	bR	14.65	1.062	7.78		0.30	-544.6	3.7	Stopped to surge Resummed develo Stopped to surge Resummed develop
1053	750	NIA	N/A	NA		19.04	NIA	N/A	3.7	Resummed develo
1115	750	OR	11.27	1,075	7-65	21.32	5,50	98.5	8.06	Stopped to sny
118	700	NIA	NIA	N/A	NA	19.95	NA	NIA	8.06	Resummed develop
1135	700	ÓR	11.47	0.757	7.66	20,93	5.78	-80.4	11.2	
1140	700	OR	11.49	0,750	7.65	20.96	6,95	-73.1	12,12	Stopped to surg
1145	1800	NIA	N/A	NA	N/A	18.65	NIA	NIA	12.12	Stopped to surg Resume Develop
150	1800	00	11.02	0.754	7.65	23.20	5.81	-70.8	14.5	Developed
				>	AL					
								_		
Results A	At End Of Purging:	OR	11,62	0.754	7.45	23.20	5.81	-70.7	14.5	

COMMENTS: * Casing is 0.88 above ground surface ** OR = overrange 10.46 = 5 well volume

1150 Developed after persing 14.5 gel (75 mell volumes)

Jally 91 54/14



ASL Project No:	M2027.0003	3	
nstallation:	FE WARRE	N	
Site:	AREA .	2	
Date:	8-31-1		
Sample Technician:	ASA Wil	lis /Tra	vis Casgella / Jereny Klein
Vell ID No.:	FEWRI	V02-00-2	mw002
			60
		In	nitial Measurements
Vell Total Depth: * 38	.60	ft BTOC	Water Level: *17,04 ft BTOC
VELL VOLUME PURGE:	1 WELL VOLU	ME = (TOTAL	L WELL DEPTH BTOC - STATIC DEPTH TO WATER) X WELL CAPACI
only fill out if applicable)	=	(38.60	Ft - 17.04Ft) x 0.163 gal/ft = 3.51 Gal
Calculated Well Volume:	3.51	Gallons	Well Diameter: 2.0 inches
Calculations:	1" diameter	= 0.041 gal/ft	(2" diameter = 0.163 gal/ft 4" diameter = 0.653 gal/ft

Well Purging	Activites		
	Flow rate (incl. units):	900 -	15,000 ml/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C) (	Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1820	15000	N/A	NIA	NIA	NIA	16.99	NIA	N/A	NIA	Development sta
330	1000	** OR	13.41	0.406	7.89	-	The second second	12.9	3.98	
836	1000	OR	13.05	0.403	7. 88	18.81	0.97	13.3	5.57	stopped to surge
838	900	N/A	N/A	NIA	NIA	17.70	NIA	N/A	5,57	stopped to surge Resummed pursin
1343	900	OR	12.67	0.400	7.80	13.88	1,50	15.5	7.95	
1858	900	OR	12.21	0.392	7.81	18.90	1.12	16.4	10.33	Stopped to sur
1859	1000	N/A	NIA	NIA	N/A	17.85	NIA	NIA	10.33	Resummed pursi.
1909	10001200	012	12.05	0.392	8.00	19.30	1.09	3.0	10.69	
1920	1600	OR	11.67			19.10	1.17	3.2	14.87	
928	1600	250 ®	11.58	0.382	9.10	19.15	1.11	-70.5	18.25	
7		150	1 - 4							
					AZ					
					~					
							~~~			
				1 - 1 - 5						7
Deculte /	At End Of Purging:	350	11,58	0.382	9 10	19.15	1.11	-70.5	17.25	

COMMENTS: * Casing 0.98 above ground surface

17,57 = Swell volumes ** OR: over range

1928 DEVELOPED WERE purging 18.25 gol (>5 well volumes)

E-38

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	, FE WARREN
Site:	13 2
Date:	8/31/17
Sample Technician:	J.Klein / Ash Willis / Travis Cassella
Well ID No.:	FEWRNOZ-MW003
	+ 12 2 2

Initial Measurements

Well Total Depth: * 35 、\	3	ft BTOC	Water Level: * \5.3\	ft BTOC	
WELL VOLUME PURGE:	1 WELL VOLU	JME = (TOTAL	WELL DEPTH BTOC - STATIC I	DEPTH TO	WATER) X WELL CAPACI
(only fill out if applicable)	=	(35.13	Ft - 15.31Ft) x 0.163 gal/ft =	3, 23	Gal
Calculated Well Volume:	3.23	Gallons	Well Diameter:	2.0	inches
Calculations:	1" diameter	r = 0.041 gal/ft	2" diameter = 0.163 gal/ft	>	4" diameter = 0.653 gal/ft

Well Purging Activites

Purging Method (pump type): Mon 5000 Flow rate (incl. units): 400 - 2250 ml/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	> pH	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1653	1500	N/A	N/A	N/A	N/A	15,33	N/A	N/A	N/A	Development Star
1700	1500	KK OR	13.28	0.400	8.20	16.9	1.17	8.6	277	
1705	1500	OR	12.63	0.389	6.83	16.95	1.29	48.2	4.75	Stopped to surg
706	2250	NIA	N/A	N/A	N/A	15.79	N/A	NA	4,75	Resummed purge
1716	2250	OR	11.77	0,375	6.67	16.92	1.34	50.1	10.69	Stupped to surge Resumed to pur
1719®	1300	NIA	NIA	NIA	N/A	15.18	NIA	NA	10.69	Resumed to pur
734	1300	OR	12.25	0.378	6.81	16.32	2.09	44.2	14.12	
1737	400	OR	12.22	0.378		15.79	1.57	38.0	15.15	
747	400	OK	13.30	0.386		15.69		35.9	16.21	
752	400	DR	13.17	0.345	7.22	15.75	1.32	34.5	16.74	
				(P	2				
Results A	At End Of Purging:		13:15	0.385	7.21	15.76	1.32	34.2	16.74	

COMMENTS: * Casting is 0.78 above ground surface

• 16.15 = 5 well volumes

**NOR = over range
• Surged before in Hel purging

1752 DEVELOPED AFTER Pursing 16.74 (> 5 well volument)

John L. 502/18/17

E-39

1724

ect No: on:	M2027.0003										
on:	M2027,0003										
	FE WARREN AREA 2.										
	8-31-17 Ash willis /Travis Cassella / Jeremy Klein										
Геchnician:											
10.:											
		(A)									
		In	itial Mea	asurer	nents						
al Depth: 30.32											
DLUME PURGE: 1	WELL VOLUM	IE = (TOTAL	WELL DE	EPTH B	гос –	STATIC D	EPTH TO	WATER)	X WELL CAPAC		
	= '	(30.32	Ft - 14.75	Ft) x o	163	gal/ft =					
d Well Volume: 2	.53	Gallons			Well Dia	ameter:	2.0	9	inches		
Calculations:	1" diameter =	0.041 gal/ft		2" diam	eter = 0	163 gal/ft		4" diamete	er = 0.653 gal/ft		
	11 2012011			1		, es genit		, alamon	o. Globo gamit		
		We	ell Purgi	ing Ac	tivites						
Method (numn type):	· M-			_			500 -	an ml	Inia		
летной (рантр туре).	Monsoon			- г	low rate (inci. units).		200 11	/MIT		
					Depth						
Flow Rate	Turbidity	Temp	Cond.	nН		DO	OPP	Total Gal	Comments		
(ml/min)	(NTUs)	(°C)	(mS/Cm)	> P	(BTOC	(mg/l)	OKI	Pumped	Comments		
950	NA	NIA	Nin	A) /A	14 25	A)/A	NIA	AVA	Start developm		
130	4400				-				STANT ELECTOPIN		
1									Stopped to sur		
1200			N/A	and the same of th			The sales are		Office develop		
	OR	10.45			16.20						
1	OR	10.40	0.936	7.52	16.26	6.09	-137.0	10.17	Stopped to su		
1000	MA	NIA	NIA				NIA	10,17	Resummed Steve		
1	OR	10.41	0.936	7.52			- 39.2	12.81	Stopped to Su		
	N/A	NIA	N/A				NA	12.81	Resummed deve		
								13.47			
9 1	850	10.89	0.949	7.53	15.35	6.20	-124.8	14.13	Development fi		
				(60)							
							-				
								1-2-5			
	820	10.89	0.948	7,52	15.35	6.25	121.2	14.13			
At End Of Purging:	020										
	Al Depth: 30.32 OLUME PURGE: 1 Dut if applicable) ed Well Volume: 2 Calculations: Method (pump type): Flow Rate (mi/min) 1 200 1 000 1 500	Al Depth: 30.32 OLUME PURGE: 1 WELL VOLUM Dut if applicable) = Ed Well Volume: 2.53 Calculations: 1" diameter = Wethod (pump type): Monsoon Flow Rate (mi/min) (NTUs) P50 N/A V* OR 1 200 N/A V OR 1 000 M/A L 0R 500 DR	FEWRNO2-004 In In In In In In In I	FEWRNO2-004 MW00 Monsoon Monso	FE DRNO 2- 504 MWCQ4 MWC	No.: FEWRNO 2 - 854 MWOO 4	No.: FE	No.: FEWRNO 2- DOWN	No.: FEWRNO2-884 MW004 MW004		

WELL DEVELOPMENT LOG

Project Name: SI AFFF MULTIPLE SITES

ASL Project No: M2027.0003

Installation: FE WARREN AREA 3 Site:

Date: 8-31-17

Ash Willis /Travis Cassella / Jeremy Klein Sample Technician:

Well ID No .: FENRNO3- OOL FO MWOOL

Initial Measurements

Well Total Depth: * 2	5,37	ft BTOC	Water Level:	11,58	ft BTOC	
WELL VOLUME PURGE:	1 WELL VOLU	JME = (TOTAL	WELL DEPTH	BTOC - ST	ATIC DEPTH TO WATE	R) X WELL CAPACIT
(only fill out if applicable)	#	(25.37	Ft - 11.58Ft)	x 0.163 ga	al/ft = 2.25 Gal	
Calculated Well Volume:	2.25	Gallons		Well Diam	eter: 2	inches
Calculations:	1" diameter	= 0.041 gal/ft	(2")	liameter = 0.16	3 gal/ft 4" diam	neter = 0.653 gal/ft

Well Purging Activites

Flow rate (incl. units): 100 - 500 ml/min Purging Method (pump type): Monsoon

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond.	pH	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
226	100	N/A	NIA	N/A	NA	10.97	N/A	NIA	N/A	Start Development
230	100	864	18.01	0,027	7.89	12.07	10.36	-88.6	0.16	
1300	100	127	18.07	1.428	7.68		7.80		-	6topped to Surge Fo
1330	(00)	477	18.25	1.428	7.59	14.64	8.40	-189.9	174	5 topped to surge me
1332	100	NX	NA	NA	NA	14.90	NA	NA	174	Stopped to surge or RESUMMED purge
1400	100	86.2	16.92	1,380	7.59	15.43	7.42	-193.3	2,53	- 0
450	100	61.2	17.19	1.378	7.60	17.06	11.77	-161.3	3.85	Stopped to Suren
525 535	300	N/A	NIA	NIA	NIA	17.31	N/A	N/A	3.85	Roumed purge
525	300	260	16.89	1,377	7.58	18.65	6.70	-173,5	6.47	
535	500	89.5	16,15	1.348	7.53	19.98		-190.3		
545	500	125	15.00							
1545	500	103	15.95	1.402	7.57	21.53	7.07	-159.9	10.43	
605	500	70.8	16.51	1.401	7.60	22.12	6.93	-176.5	11.75	
					N.					
			1. 60	1 11 6	7.		101			
Results A	t End Of Purging:	68.1	16152	1.409	1.60	1 1	6.94	-116.6	11.75	

COMMENTS: * Casing 0.14 from ground surface

pro one out, but not completed

· 11,24 (Swell volumes)

DEVELOPED after pursing 5 well volumes 1605

E-41

Calculations:

Purging Method (numn type):

WELL DEVELOPMENT LOG

Project Name:	SI AFFF MULTIPLE SIT	ES
ASL Project No:	M2027.0003	
Installation:	FE WARREN	
Site:	AREA 3	
Date:	8-30-17	
Sample Technician:	Ash Willis 17	ravis Cassella / Jeremy Klein
Well ID No.:	FEWRNO 3-0	
		Initial Measurements
Well Total Depth: 25.48	₩ ft BTOC	Water Level: 12.48 * ft BTOC
WELL VOLUME PURGE: 1	WELL VOLUME = (TOT	AL WELL DEPTH BTOC - STATIC DEPTH TO WATER) X WELL CAPACITY
(only fill out if applicable)	= (25.47	3 Ft - 12.49Ft) x 0.163 gal/ft = 2.17 Gal
Calculated Well Volume:	2.12 Gallons	Well Diameter: 2.0 inches

Well Purging Activites

2" diameter = 0.163 gal/ft

4" diameter = 0.653 gal/ft

diging we	triod (parrip type)	. ///07/201	37 1			Flow rate (incl. units).				Too M. J.M.		
Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments		
2706	250	NI IA	4112	ALLA	NIA	12.50	NIA	NIA	ALIA	DENGARA		

Time	Flow Rate (ml/min)	Turbidity (NTUs)	(°C)	Cond. (mS/Cm)	рН	water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments	
0706	250	NIA	NIA	N/A	NIA	12.50	NIA	NA	NIA	DEVELOPMENT	TART
0710	250	** OR	14.26	0,560	7,77	13.80	8.69	179.3	0.26		
0722	250	OR	14.80	0,560	7.92	15.56	8.35	133.8	1.08	Stopped purges	to surse
0723	250	NA	N/A	NIA	NIA	15.0	N/A	NIA	1.08	Stopped purger	ins
0735	250	OR	15.22	0.547	7.97	16.21	8.07	92.1	1.94		. 0
0750	@250	277.3	15.74	0,557	8.05	17.84	8.32	18.8	2.93		
	7.50	717.3	15.84	0.557	8.04	17.82	8.33	19.0	3.92	Stopped to sur Resummed pury	se
0806	150	NIA	NIA	N/A	N/A	17.05	N/A	N/A	3.92	Resummed pury	inc.
0833	150	172.0	16.76	0.596	8.07	18.73	7.09	-112.3	4,99		0
0850	100	304	16.48	0.578	7.91	20.56	7.64	- 85.5	5.66		
1020	100	265	16.49	0.579	7.90	22.62	7.65	- 84.6	8.03		
			/								
			M	}							

16.49 0,579 7.90 22.62 7.65 - 846

COMMENTS: * Casing at ground surface * * OR = out of Range

Results At End Of Purging:

1020 DEVELOPED after purging 8.03 gul

1" diameter = 0.041 gal/ft

WELL DEVELOPMENT LOG

Project Name:	SI AFFF MULTIPLE SITES
ASL Project No:	M2027.0003
Installation:	FE WARREN
Site:	AREA 3
Date:	8-29-17
Sample Technician:	Ash willis / Jeremy Klein
Well ID No.:	FEWRN03-003 MWOUS

Initial Measurements

Well Total Depth: * 2	5.32	ft BTOC	Water Level:	4 6.8	6	ft BTOC		
WELL VOLUME PURGE:	1 WELL V	OLUME = (TOTAL	WELL DEPTH	BTOC -	STATIC	DEPTH TO	WATER)	X WELL CAPACIT
(only fill out if applicable)	=	(25.32	Ft - 6.86 Ft)	x 0.163	gal/ft =	3.00	Gal	
Calculated Well Volume:	3.06	Gallons		Well D	iameter:	2.0		inches
Calculations:	1" diam	eter = 0.041 gal/ft	2" 0	liameter = 0	.163 gal/ft		4" diamete	er = 0.653 gal/ft

Well Purging Activites

Purging Method (pump type): _	Monsoon	Flow rate (incl. units):	200-500 ml	/min	

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	→ pH	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments	
1436	200mL/min	N/A	N/A	NIA	N/A	6.88	NA	N/A	NA	DEUELOPE STAR	ETE
1510	200	540	17.18	1.026	7.91	16.13	3.60		1.79	Stopped to Surga	
1511	200	NIA	NA	N/A	7.00	7.01	NIA	NA	NIA	Resummed develo	
1540	500m1/min	XX OR	16.43	1.011	791	18.32	5.74	294.8	5.48		
1610	500	DR	17.07	1.035	7.87	22.78	4,00	225.2	9.44		
1637	500	OR	17.28	1.019	7.87	23.8	3.22	-293.2	13.0	Stopped to surse	
1638	500	NIA	NA	NJA	NIA	22.02	NIA	NIA	13.0	Stopped to surge Resummed development	ent
1306	500	OR	17.20	1.018	7.86	22.56		-43.0	16.7		
1810	500	OR	17.15	0.976	7.82		5.37	-122.8	17.22		
1815	500	OR	17.00	0.996	7.86	23.15	5.63	-116.4	17.88		
1820	500	OR	16.78	1.005	7.90	23.62	6.11	-117.5	18.54		
1825	500	OR	16.97	1.007		23.82	6.19	-118.7	19.20		
				-	AU)						
Results A	At End Of Purging:	OR	16.97	1.007	7-89	23.82	6.19	-118.7			

COMMENTS: + Casing 0.42 below ground surface

× + OR - out of range

15 god = 5 well volumes

1825 DEVELOPED DONE AFTER PURGING 19.20 (> Swell volumes)

Appendix F New Monitoring Wells Construction Details

Table F-1 F.E. Warren Air Force Base New and Existing Monitoring Well Construction Details

	1401	C I I I I I I I I I I I I I I I I I I I		or ce Buse 11	CW difd DAIS	ting monito	ring wen Const	- Tuction Dean	-	-	
AFFF Area	Well Identification	Northing (feet)	Easting (feet)	Top of Casing Elevation (feet)	Ground Surface Elevation (feet)	Total Boring Depth (feet bgs)	Approximate Depth Groundwater Encountered during Drilling (feet bgs)	Wellhead Completion Type	Total Well Depth (feet bgs)	Screen Interval (feet bgs)	Screen Length (feet)
Former	MW-070	234305.36	740558.92	6133.20	6132.20	N/A	N/A	Flushmount	24	9-24	15
FPTA 2	MW-071	234680.66	740832.08	6128.2	6127.80	N/A	N/A	Flushmount	24	9-24	15
(AFFF	FEWRN01-MW001	234401.78	740945.32	6128.62	6129.06	20	19.2	Flushmount	20	9.44-19.44	10
Àrea 1)	FEWRN01-MW002	234194.01	740625.92	6131.07	6131.49	21	17.0	Flushmount	21	10.05- 20.05	10
	FEWRN02-MW001	237253.64	736697.91	6151.97	6152.33	30	29.0	Flushmount	30	19.19- 29.19	10
Former FPTA 3	FEWRN02-MW002	237150.56	736736.63	6152.27	6152.76	40	32.0	Flushmount	37.5	26.97- 36.97	10
(AFFF Area 2)	FEWRN02-MW003	237304.25	736943.37	6147.12	6147.47	35	32.0	Flushmount	35	24.15- 34.15	10
	FEWRN02-MW004	237463.58	737010.80	6146.52	6147.00	30	14.0	Flushmount	30	19.07- 29.07	10
Building	FEWRN03-MW001	234716.19	738044.37	6154.46	6155.01	26.11	9.0	Flushmount	26.11	14.82- 24.82	10
1247— Base Fuels	FEWRN03-MW002	234763.09	738091.93	6154.59	6155.04	26	8.0	Flushmount	26	14.87- 24.87	10
(AFFF Area 3)	FEWRN03-MW003	234817.24	738063.07	6154.06	6154.58	35	9.0	Flushmount	26	15.45- 25.45	10

AFFF = aqueous film forming foam

bgs = below ground surface

FPTA = fire protection training area

N/A = not applicable

Table F-2 GPS Coordinates

Sample Location	Northing	Easting
FEWRN-005-(SW&SD)-001	234825.59	741360.07
FEWRN02-006-(SW&SD)-001	234832.34	742101.89
FEWRN02-005-SS-001	237605.26	737196.77
FEWRN01-004-(SW SD)-001	237982.06	737019.68

M2027.0003 8/7/18

Appendix G Groundwater Level Measurements

Table G-1 F.E. Warren Air Force Base Groundwater Level Measurements

Station ID	Top of Casing Elevation ¹	Depth to Water (ft btoc)	Groundwater Elevation (amsl) September 5, 2017
FEWRN01-MW001	6128.62	11.14	6117.48
FEWRN01-MW002	6131.07	9.63	6121.44
MW-070	6133.20	12.28	6120.92
MW-071	6128.20	13.99	6114.21
FEWRN02-MW001	6151.97	15.84	6136.13
FEWRN02-MW002	6152.27	15.63	6136.64
FEWRN02-MW003	6147.12	14.22	6132.90
FEWRN02-MW004	6146.52	13.78	6132.74
FEWRN03-MW001	6154.46	8.42	6146.04
FEWRN03-MW002	6154.59	9.44	6145.15
FEWRN03-MW003	6154.06	8.53	6145.53

¹NAVD 1988

amsl = above mean sea level

btoc = below top of casing

ft = foot/feet

ID = identification

FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS AT F.E. WARREN AIR FORCE BASE WYOMING

Prepared for:

Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 Lackland AFB, Texas 78236-9853

Contract No. FA8903-08-D-8772 Task Order 0065 CDRL A001A

December 2015

FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS AT F.E. WARREN AIR FORCE BASE WYOMING

Prepared for:

Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 Lackland AFB, Texas 78236-9853

Contract No. FA8903-08-D-8772 Task Order 0065 CDRL A001A

Prepared by:

CH2M HILL 9311 San Pedro Avenue, Suite 800 San Antonio, Texas, 78216

December 2015

Form Approved				pproved		
REPORT DOCUMENTATION PAGE				OMB N. 0704 0100		
Public reporting for this collection of information is estimated to average 1 hour per i				QMB No. 0704-0188		
instruction, searching existing dat						
of information. Send comments						
suggestions for reducing this bur						
1215 Jefferson Davis Highway, S						
Reduction Project (0704B0188), V			-1302, and to the Offic	C OI Iviana	gement and Budget, I aperwork	
1. AGENCY USE ONLY (Leave		2. REPORT DATE		3 REPO	RT TYPE AND DATES	
1. AGENCT OSE ONET (Ecave	Oldlik)	2. KEI OKI DITIE		COVE		
				0011		
		December 2015	j		FINAL	
4. TITLE AND SUBTITLE				5. FUNDING NUMBERS		
	_ ~ .					
Preliminary Assessment Report for		inated Compounds at		Contract No. FA8903-08-D-8772		
F.E. Warren Air Force Base, Wyo	oming			Delivery	Order No. 0065	
(AUTHOR(C)						
6. AUTHOR(S)						
HydroGeoLogic, Inc.						
Trydro GeoLogie, me.						
7. PERFORMANCE ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMANCE				FORMANCE		
ORGANIZATION REPORT				ANIZATION REPORT		
HydroGeoLogic, Inc.			NUM	IBER		
404 East Ramsey Road, Suite 210						
San Antonio, Texas 78216 AF5065						
			NSORING/MONITORING			
AGENCY REPORT NUMBER			NCY REPORT NUMBER			
AFCEC/EXEW			A001A			
2261 Hughes Avenue, Suite 155 Lackland AFB, Texas 78236-9853			A001A			
Lackland AFB, Texas /8236-9853						
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE				TRIBUTION CODE		
Unlimited						
13. ABSTRACT (Maximum 200	words)					
This is a Preliminary Assessment					erfluorinated compounds may	
have been released to the environment	ment throu	gh the use or discharge	e of aqueous film-form			
4. SUBJECT TERMS 15. NUMBER OF PAGES			BER OF PAGES			
				16. PRICE CODE		
17. SECURITY	18. SEC	URITY	19. SECURITY		20. LIMITATION OF	
CLASSIFICATION OF		ASSIFICATION OF	CLASSIFICAT	ION OF	ABSTRACT.	
REPORT	THI	S PAGE.	ABSTRACT.			
Unclassified	Unclassified Unclassified Unclassified Unlimited		Unlimited			

TABLE OF CONTENTS

1.0	INT	RODI	CTION		1_1
1.0	1.1)	
	1.2			OBJECTIVES	
	1.3			VIRONMENTAL SETTING	
		1.3.1			
		1.3.2		ologic Setting	
		1.3.3		gic Setting	
		1.3.4		al Receptors	
	1.4	REPO	RT ORGA	NIZATION	1-4
	1.5	PREL	IMINARY	ASSESSMENT METHODS	1-4
2.0	FIR	E TRA	INING AI	REAS	2-1
_,,	2.1			1	
		2.1.1	Descripti	on and Operational History	2-1
		2.1.2		naracteristics	
		2.1.3	Pathway	and Environmental Hazard Assessment	2-1
				Groundwater Pathway and Targets	
			2.1.3.2	Surface Water Pathway and Targets	2-1
			2.1.3.3	Soil and Air Exposure Pathways and Targets	2-1
	2.2	FORM		. 2	
		2.2.1		on and Operational History	
		2.2.2		naracteristics	
		2.2.3	•	and Environmental Hazard Assessment	
				Groundwater Pathway and Targets	
				Surface Water Pathway and Targets	
				Soil and Air Exposure Pathways and Targets	
	2.3			. 3	
		2.3.1	-	on and Operational History	
		2.3.2		naracteristics	
		2.3.3	•	and Environmental Hazard Assessment	
				Groundwater Pathway and Targets	
				Surface Water Pathway and Targets	
			2.3.3.3	Soil and Air Exposure Pathways and Targets	2-4
3.0	NO	N-FIRE	TRAINI	NG AREAS	3-1
	3.1	FIRE		S	
		3.1.1		ire Station (Building 1501)	
				Description and Operational History	
				Waste Characteristics	
				Pathway and Environmental Hazard Assessment	
				3.1.1.3.1 Groundwater Pathway and Targets	3-1

Page

			3.1.1.3.2	Surface Water Pathway and Targets	3-1
			3.1.1.3.3		
	3.1.2	Fire Stat	tion 1 (Buil	ding 324)	3-1
		3.1.2.1	Description	on and Operational History	3-1
		3.1.2.2	Waste Ch	aracteristics	3-2
		3.1.2.3	Pathway a	and Environmental Hazard Assessment	3-2
			3.1.2.3.1	Groundwater Pathway and Targets	3-2
			3.1.2.3.2	Surface Water Pathway and Targets	3-2
			3.1.2.3.3	Soil and Air Exposure Pathways and Targets	3-2
	3.1.3	Fire Stat	tion 2 (Buil	ding 1250)	3-2
		3.1.3.1	Description	on and Operational History	3-2
				aracteristics	
		3.1.3.3		and Environmental Hazard Assessment	
			3.1.3.3.1	Groundwater Pathway and Targets	
			3.1.3.3.2	Surface Water Pathway and Targets	3-3
			3.1.3.3.3	Soil and Air Exposure Pathways and Targets	3-3
3.2	OTHE	ER			3-3
	3.2.1	Building		ardous Waste)	
		3.2.1.1		on and Operational History	
				aracteristics	
		3.2.1.3	•	and Environmental Hazard Assessment	
				Groundwater Pathway and Targets	
			3.2.1.3.2	, ,	
				Soil and Air Exposure Pathways and Targets	
	3.2.2			ck Maintenance)	
		3.2.2.1	Description	on and Operational History	3-4
				aracteristics	
		3.2.2.3	-	and Environmental Hazard Assessment	
				Groundwater Pathway and Targets	
			3.2.2.3.2	, E	
			3.2.2.3.3	1 5	
	3.2.3	_	•	se Fuels)	
		3.2.3.1	_	on and Operational History	
				aracteristics	
		3.2.3.3	•	and Environmental Hazard Assessment	
			3.2.3.3.1	, B	
			3.2.3.3.2	, ε	
			3.2.3.3.3	Soil and Air Exposure Pathways and Targets	
	3.2.4	-	•	zmart)	
		3.2.4.1		on and Operational History	
				aracteristics	
		3.2.4.3	-	and Environmental Hazard Assessment	
			3.2.4.3.1	, E	
			3.2.4.3.2	, E	
			3.2.4.3.3	Soil and Air Exposure Pathways and Targets	3-7

4.0 SUM	MARY AND CONCLUSIONS	4-1					
4.1							
4	4.1.1 Fire Training Areas						
	4.1.1.1 Fire Training Areas Closed Prior to 1970						
	4.1.1.2 Fire Training Areas Operational After 1970	4-1 4-1					
4	4.1.2 Non-Fire Training Areas						
	4.1.2.1 Fire Stations						
4.0	4.1.2.2 Other						
4.2	CONCLUSIONS	4-1					
5.0 REFE	ERENCES	5-1					
	LIST OF TABLES						
Table 1.1	Fire Training Areas and Non-Fire Training Areas Identified for Potential AFFF Releases, F.E. Warren AFB, Wyoming	1-2					
Table 4.1	able 4.1 Preliminary Assessment Report Summary and Findings, F.E. Warren AFB, Wyoming						
	LIST OF FIGURES						
Figure 1.1	All Identified Locations, F.E. Warren AFB, Wyoming						
Figure 2.1	Locations in the Eastern Portion of F.E. Warren AFB, Wyoming						
Figure 2.2	Former FPTA 3, F.E. Warren AFB, Wyoming						
Figure 3.1	Former Fire Station, F.E. Warren AFB, Wyoming						
Figure 3.2	Locations in the Central Portion of F.E. Warren AFB, Wyoming						
Figure 3.3	Building 930 (Hazardous Waste), F.E. Warren AFB, Wyoming						
	LIST OF APPENDICES						
Appendix A	A Photo Documentation						
Appendix B Field Documentation							
Appendix C Records of Communication							

LIST OF ACRONYMS AND ABBREVIATIONS

AFB Air Force Base

AFCEC Air Force Civil Engineer Center AFFF aqueous film-forming foam

ANG Air National Guard

Base F.E. Warren Air Force Base

bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980

EDR Environmental Data Resources, Inc.

FPTA Fire Protection Training Area

FTA Fire Training Area
HGL HydroGeoLogic, Inc.

JP-4 jet propellant fuel number 4 JP-8 jet propellant fuel number 8

IRP Installation Restoration Program

OWS oil-water separator

PA preliminary assessment
PFC perfluorinated compound
PFOA perfluorooctanoic acid
PFOS perfluorooctane sulfonate

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation
RIV Rapid Intervention Vehicle

SI Site Inspection

USAF U.S. Air Force

USEPA U.S. Environmental Protection Agency

USFWS U.S. Fish and Wildlife Service

FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS F.E. WARREN AIR FORCE BASE WYOMING

1.0 INTRODUCTION

The Air Force Civil Engineer Center (AFCEC) contracted with HydroGeoLogic, Inc. (HGL) and subcontractor CH2M HILL (the HGL Team) to perform preliminary assessment (PA) activities at multiple U.S. Air Force (Air Force or USAF) and Air National Guard (ANG) Fire Training Areas (FTAs) to determine probable environmental release of perfluorinated compounds (PFCs). Specifically, HGL is completing PA activities consistent with the U.S. Environmental Protection Agency (USEPA) Guidance for Preparing Preliminary Assessments under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) (USEPA, 1991) to determine potential releases of PFCs at 82 Air Force and ANG installations from FTAs and other known and suspected PFCs or aqueous film-forming foam (AFFF) usage or storage areas. The work is being performed by HGL and its team subcontractor, CH2M HILL, under the existing 4P Architecture and Engineering Contract, Contract Number FA8903-08-D-8772, Task Order 0065.

Under authority of CERCLA and the Superfund Amendments and Reauthorization Act of 1986, CH2M HILL conducted a PA visit at F.E. Warren Air Force Base (AFB) during the week of August 24, 2015. F.E. Warren AFB is an active Air Force installation in Laramie County, Wyoming. The location of F.E. Warren AFB and the locations identified on F.E. Warren AFB during this PA visit are shown on Figure 1.1.

1.1 BACKGROUND

PFCs are compounds used in the formulation of AFFF, which the Air Force has used in fire training exercises, suppressing aircraft and other vehicle fires, and in aircraft hangar fire suppression systems. Although PFCs are not regulated under CERCLA or the Resource Conservation and Recovery Act (RCRA), there is evidence that perfluorooctane sulfonate (PFOS) (and less so perfluorooctanoic acid [PFOA]) is a possible environmental contaminant following AFFF release. Both compounds may present potential, non-carcinogenic risks to human health and the environment (Chang et al., 2014; Porter, 2011; Rak and Vogel, 2009; USAF, 2012).

Several federal government documents confirm the initial use of AFFF by the Air Force beginning in 1970:

- Military Specification for AFFF (MIL-F-24385) formally issued in 1969
- General Accounting Office determination on sole source award protest to provide AFFF to the Navy in December 1969
- A History of USAF Fire Protection Training at Chanute Air Force Base, 1964-1976 (Coates, 1977)

Based on Air Force performance testing results on AFFF, the Air Force Director of Civil Engineering, M.G. Goddard, issued authorization in 1970 for the Air Force to procure AFFF. No usage within the Air Force is documented or suspected prior to 1970.

1.2 PURPOSE AND OBJECTIVES

The objective of this PA Report is to identify locations at F.E. Warren AFB where PFCs may have been released into the environment and to provide an initial assessment of possible migration pathways and receptors of potential contamination. In 1991, the Air Force began a program to replace existing non-engineered FTAs with new engineered FTAs that use propane fuel. At F.E. Warren AFB, an FTA is currently being constructed that will use propane.

This PA Report documents the known FTAs, as well as additional locations where AFFF may have been released into the environment at F.E. Warren AFB (Table 1.1). The purpose of the PA is to determine the potential environmental release of PFCs specifically from AFFF usage and storage. This PA Report differentiates locations that pose little or no potential threat to human health and the environment from locations that warrant further investigation.

Table 1.1
Fire Training Areas and Non-Fire Training Areas Identified for Potential AFFF Releases, F.E. Warren AFB, Wyoming

AFFF Keleases, F.E. Walten AFD, Wyolning
Fire Training Areas
Former Fire Protection Training Area (FPTA) 1
Former FPTA 2
Former FPTA 3
Non-Fire Training Areas
Fire Stations
Former Fire Station (Building 1501)
Fire Station 1 (Building 324)
Fire Station 2 (Building 1250)
Other
Building 930 (Hazardous Waste)
Building 1240 (Truck Maintenance)
Building 1247 (Base Fuels)
Building 1285 (Hazmart)

1.3 BASEWIDE ENVIRONMENTAL SETTING

A detailed description of the geology, hydrogeology, and hydrology is presented in the Final Supplemental Preliminary Assessment Report (Parsons Engineering, 2003) and is summarized in the sections below. Ecological receptors listed below are presented in the Environmental Data Resources (EDR) report (EDR, 2015).

1.3.1 Geology

The majority of the region is underlain by tertiary units that are of sedimentary origin and generally consist of sand, gravel, clay, siltstone, and limestone. These units are overlain by Quaternary

sediments that include alluvial terrace and floodplain deposits. These sediments are generally unconsolidated and consist of lenticular beds of clay, silt, sand, gravel, and boulders.

Beneath the Base, the tertiary-age (late Miocene) Ogallala unit can be described as a heterogeneous mixture of sand and gravel beds, silt, clay, and thin limestone units. The beds are sometimes cemented by calcium carbonate. Lenses of sand and gravel are generally sporadic, but consistently occur from the surface to a depth of about 10 feet below ground surface (bgs) in the southwestern part of the Base. Below this depth, the predominant sediments are fine-grained, but sand and gravel still occur. The Ogallala is about 300 feet thick in the northern part of the Base, thinning to the south to approximately 30 feet in valleys where it has been deeply eroded.

1.3.2 Hydrogeologic Setting

The unconfined High Plains aquifer is the principal source for water supply wells in the area surrounding F.E. Warren AFB. Numerous wells near the Base are used for domestic and livestock water supply. Depth to the water table in this area is variable, being at the land surface near streams that act as discharge areas, and increasing in depth with distance from discharge areas. In the southern portion of the Base, the depth to the water table generally ranges from about 10 to 40 feet bgs. The direction of groundwater flow in the shallow aquifer zone is generally toward the discharge areas of Crow Creek, Diamond Creek, and the unnamed tributary to Crow Creek. Groundwater beneath the Base is recharged locally by some areal infiltration of precipitation despite the relatively dry climate. Groundwater is discharged via evapotranspiration in the riparian areas, flow into streams, and springs and seeps near the streams.

Drinking water at F.E. Warren AFB is obtained from the Cheyenne Public Utilities, which uses both groundwater and surface water sources. The City owns and operates about 35 groundwater wells located west and northwest of Cheyenne. The wells pump from the Ogallala and White River Aquifers. Surface water is collected from the Douglas Creek Drainage, located in the Snowy Range Mountains, about 75 miles west of Cheyenne. Surface water is also collected from the Crow Creek Drainage, located in the Pole Mountain/Vedauwoo area, about 30 miles west of Cheyenne (Board of Public Utilities, 2014). All drinking water sources used by the City of Cheyenne are located upstream or upgradient of the F.E. Warren watershed. No active or contingent drinking water wells are located on Base.

1.3.3 Hydrologic Setting

Surface water at the Base occurs as stream flow, seeps, and lakes. Stream flow results from groundwater discharge and from rainfall and snowmelt runoff. Crow Creek is the major perennial stream that drains southern areas of the Base. Overall, Crow Creek is a gaining stream (that is, receives groundwater discharge) through the Base area. Two tributaries to Crow Creek also drain the southern part of the Base: an unnamed tributary and Diamond Creek. The unnamed tributary is an interrupted stream, with alternating reaches that are perennial, intermittent, or ephemeral. Diamond Creek, the second largest stream on F.E. Warren AFB, is perennial along most of its length, with low flows maintained by groundwater discharge. The upper reach of Diamond Creek, covering the first 300 yards or so on the Base, is intermittent. Diamond Creek is also a gaining creek across the Base except in periods of loss during the warmer months of July through September. These stream discharge losses are likely due to evaporation. Seeps contribute to stream flows in Crow Creek and its unnamed tributary throughout the year.

1.3.4 Ecological Receptors

The following endangered species are known to inhabit Laramie County (EDR, 2015):

- Bald Eagle Bird
- Mountain Plover Bird
- Preble's Meadow Jumping Mouse Mammal
- Black-footed Ferret Mammal
- Colorado Butterfly Plant Plant

It is possible that these endangered species may be found within the boundaries of F.E. Warren AFB. Additionally, the Colorado Butterfly Plant Research Natural Area is located across the majority of the Base.

1.4 REPORT ORGANIZATION

This PA Report is organized as follows:

- Section 1.0, Introduction, provides a project overview and describes the methods used to conduct the PA.
- Section 2.0, Fire Training Areas, describes the FTAs identified during the PA visit.
- Section 3.0, Non-Fire Training Areas, describes the non-FTAs identified during the PA visit.
- Section 4.0, Summary and Conclusions, summarizes and provides conclusions for both FTAs and non-FTAs.
- Section 5.0, References, lists the references cited in this report.

In addition, the following support information is appended to this report:

- Appendix A, Photo Documentation
- Appendix B, Field Documentation
- Appendix C, Records of Communication

If a location's operational history indicates that AFFF was not used, then no pathway and environmental hazard assessments were completed for that particular location.

1.5 PRELIMINARY ASSESSMENT METHODS

This PA Report was prepared in accordance with the following guidance documents:

- CERCLA Guidance (USEPA, 1991)
- Interim Air Force Guidance (USAF, 2012)
- U.S. Fish and Wildlife Service (USFWS) Guidance (USFWS, 2015)

The performance of this PA included the following activities:

- Reviewing information and reports in the Administrative Record.
- Reviewing documents related to Air Force use of AFFF.

- Conducting a 1-day visit to F.E. Warren AFB.
- Conducting interviews with government personnel including the Water Program Manager; Fire Department staff (Fire Inspector, Health and Safety Officer, and Assistant Chief of Special Operations); Hazardous Waste staff; fuel technicians; and the Environmental Chief.
- Visiting and photographing locations where AFFF has been stored, released, or used.
- Performing an environmental data records search to document nearby populations and recording water supply well information and wetlands information.

FIGURE

2.0 FIRE TRAINING AREAS

2.1 FORMER FPTA 1

2.1.1 Description and Operational History

Former FPTA 1 (also known as IRP Site FT008) was an FTA located in the central part of the Base. Former FPTA 1 was located about 150 yards south of Crow Creek and was used from 1950 to 1965. Two bermed pits were located at the FPTA, and these pits ranged from approximately 150 to 300 feet in diameter. No fuel storage facilities were present. Waste oils, solvents, gasoline, jet propellant fuel number 4 (JP-4), and other combustible liquids were used in the training exercises. Training exercises were conducted three to four times per month, and an estimated 500 gallons of flammable liquids were consumed in each exercise. The area was not pre-wet prior to training. Water and protein foam were used as extinguishing agents (U.S. Geological Survey, 1991). Activity at FPTA 1 ceased prior to the introduction of AFFF in 1970. This IRP site was remediated to address petroleum-hydrocarbon-contaminated soil. The geographical coordinates of former FPTA 1 are 41°8'50.72"N and 104°51'42.62"W. The location of former FPTA 1 is shown on Figures 1.1 and 2.1.

2.1.2 Waste Characteristics

Not applicable.

2.1.3 Pathway and Environmental Hazard Assessment

Not applicable.

2.1.3.1 Groundwater Pathway and Targets

Not applicable.

2.1.3.2 Surface Water Pathway and Targets

Not applicable.

2.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

2.2 FORMER FPTA 2

2.2.1 Description and Operational History

Former FPTA 2 (also known as IRP Site FT009) is located between Omaha and Missouri Avenues and between Third and Fourth Streets and is approximately 0.25 mile south of Crow Creek. FPTA 2 consisted of two unlined, bermed training pits that were used from 1965 to 1989. No retention ponds were present. Waste oils, solvents, hydraulic fluid, and other combustible liquids were used in training exercises until 1974. After 1974, only JP-4 was used in the training exercises.

No fuel storage facilities were at the site. Fire training exercises occurred twice per month, and 300 to 400 gallons of JP-4 were consumed per exercise. AFFF and water were used to extinguish fires from 1972 until the FPTA was closed in 1989 (U.S. Geological Survey, 1991). This site was considered to need no remedial action, as presented in the Final Record of Decision for Operable Unit 5 (USAF, 1994). The geographical coordinates are 41°8'34.40"N and 104°51'32.70"W. The location of former FPTA 2 is shown on Figures 1.1 and 2.1.

2.2.2 Waste Characteristics

An unknown amount of AFFF was used to extinguish flames during fire training activities at former FPTA 2. The burn pits were unlined, and water from the pits infiltrated soils and likely migrated to the uppermost, shallow groundwater.

2.2.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows 63 day care facilities (includes large day care operations and small in-home day care facilities); 2 nursing homes; 26 schools (includes public and private schools and academies); 89 hospitals, clinics, and doctor offices (includes outpatient surgery centers, home health care agencies, rehabilitation centers, pharmacies, and urgent care centers); and 2 colleges within the potential migration area of 4 miles from any given potential release location of PFCs. One elementary school, Freedom Elementary, is located on Base, and one elementary school, Pioneer Park Elementary, is located nearby but off Base. The closest elementary school is at least 0.5 mile south-southeast (hydrologically upgradient) of former FPTA 2. The on-Base child development center is located approximately 1 mile northeast (hydrologically upgradient) of former FPTA 2.

2.2.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeologic settings are provided in Section 1.3. Groundwater in this area generally flows northeast toward Crow Creek, which is located approximately 0.2 mile northeast of former FPTA 2. AFFF likely infiltrated soils at former FPTA 2 and entered the uppermost, shallow groundwater beneath the training area. Shallow groundwater in this area flows to the northeast and discharges into Crow Creek.

F.E. Warren AFB drinking water sources are all located more than 4 miles upgradient of the Base and do not support a complete drinking water exposure pathway. The fact that F.E. Warren AFB does not use the groundwater below the Base as a supply of drinking water would also render this drinking water exposure pathway incomplete for F.E. Warren AFB workers and residents. However, because of the relatively shallow depth to groundwater in some areas (approximately

12 feet bgs at former FPTA 2 [AECOM Technical Services, Inc., 2013]), excavation workers could be exposed to groundwater.

No public water supply or residential wells are located between this location and Crow Creek, where groundwater likely daylights (EDR, 2015).

2.2.3.2 **Surface Water Pathway and Targets**

The surface water drainage near former FPTA 2 flows northeast to Crow Creek. Crow Creek flows east and discharges off Base via Outfall OFF 1. Crow Creek discharges into Wyoming Hereford Ranch Reservoir Number 1 approximately 6 miles off Base. F.E. Warren AFB drinking water does not come from surface water sources located within the watershed of F.E. Warren AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water. Because runoff flows into nearby drainages, a complete exposure pathway for non-ingestion exposures exists, such as dermal exposure to humans. Ingestion by aquatic or other animals is also a potential pathway for ecological receptors.

A 100-year flood zone is along Crow Creek located north and northeast of former FPTA 2. The nearest waterbody is Crow Creek located approximately 0.2 mile northeast. Wetlands are also located along the banks of Crow Creek.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of former FPTA 2 (EDR, 2015; USFWS, 2015). Local waterways, particularly Lake Pearson, are used for recreational fishing (Wright, 2015, personal communication; Appendix C). However, Lake Pearson is not located downstream of former FPTA 2.

2.2.3.3 Soil and Air Exposure Pathways and Targets

AFFF was released to the soils during fire training activities. The training pits were both unlined. No residents or workers are present at former FPTA 2. The nearest residents are approximately 0.3 mile south of former FPTA 2. Workers are present approximately 0.1 mile to the west. The well-vegetated area surrounding former FPTA 2 would preclude any fugitive dust emissions and potential exposures. Current and planned land use does not involve potential human health exposure, and no intrusive work is currently planned that would allow for dermal soil exposures to utility or construction workers. The potential of exposure to burrowing animals, if present, would exist.

The population within 4 miles of the area is approximately 32,580. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Freedom Elementary School, located approximately 0.5 mile to south-southeast of former FPTA 2 (EDR, 2015). The nearest day care facility is the F.E. Warren AFB Child Development Center, located approximately 1 mile to the northeast.

The former FPTA 2 area is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. The Colorado Butterfly Plant Research Natural Area is located within the former FPTA 2 area.

2.3 FORMER FPTA 3

2.3.1 Description and Operational History

Former FPTA 3 is located in the northern portion of the Base and was opened in 1990. FPTA 3 was operated until approximately 2000. FPTA 3 consisted of an aircraft carcass in a polyethylene-lined training pit and a polyethylene-lined retention pond. The training pit was connected to an oilwater separator (OWS), and water from the pit was piped to the retention pond. No outlet piping was present in the pond and it is presumed that the contents of the retention pond were left in place to evaporate. Jet propellant fuel number 8 (JP-8) was used as a fuel. FPTA 3 was shut down in 2000 because one of the liners beneath the training pit was found to be leaking; however, the leak did not extend beyond the second liner (Riedel, 2015, personal communication; Appendix C). Most of the recent training conducted at FPTA 3 was for structural training; therefore, AFFF was used only in a limited capacity (Kimble, 2015, personal communication; Appendix C).

Former FPTA 3 was decommissioned in 2007 (Riedel, 2015, personal communication; Appendix C) and a new FPTA being built at this location will use propane (Kimble, 2015, personal communication; Appendix). During the decommissioning, the retention pond was drained and the liner was removed. The pond was then backfilled with clean material. The site was then graded with 6 inches of topsoil and re-vegetated. In addition to removal of the retention pond, the OWS was removed, and inlet and outlet pipes on both sides of the OWS were capped and left in place (TolTest, 2008). Since this FPTA was decommissioned in 2007, no training using AFFF has occurred (Kimble, personal communication; Appendix C).

Because this system was contained, and both the pit and the pond were lined, AFFF is not likely to have impacted the surrounding environmental media. The geographic coordinates are 41°9'3.43"N and 104°52'26.32"W. The location of former FPTA 3 is shown on Figures 1.1 and 2.2.

2.3.2 Waste Characteristics

Not applicable.

2.3.3 Pathway and Environmental Hazard Assessment

Not applicable.

2.3.3.1 Groundwater Pathway and Targets

Not applicable.

2.3.3.2 **Surface Water Pathway and Targets**

Not applicable.

2.3.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

FIGURES

3.0 NON-FIRE TRAINING AREAS

3.1 FIRE STATIONS

3.1.1 Former Fire Station (Building 1501)

3.1.1.1 Description and Operational History

The former fire station (Building 1501) was located at the north end of the Base and was built in 1987 to support the Peacekeeper missile operations. This small two-bay fire station had two trucks. While AFFF was never used at the former fire station, it may have been stored in small quantities on the trucks (Riedel, 2015, personal communication; Appendix C). It is estimated that the former fire station was active until approximately 1998 (Watson, 2015, personal communication; Appendix C). No use, leaks, or spills of AFFF are known to have occurred (Riedel, 2015, personal communication; Appendix C). The geographical coordinates of the former fire station (Building 1501) are 41°10'8.77"N and 104°52'45.25"W. The location of the former fire station (Building 1501) is shown on Figures 1.1 and 3.1.

3.1.1.2 <u>Waste Characteristics</u>

Not applicable.

3.1.1.3 Pathway and Environmental Hazard Assessment

Not applicable.

3.1.1.3.1 Groundwater Pathway and Targets

Not applicable.

3.1.1.3.2 Surface Water Pathway and Targets

Not applicable.

3.1.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.1.2 Fire Station 1 (Building 324)

3.1.2.1 <u>Description and Operational History</u>

Fire Station 1 is located in Building 324, which was built in 1909 and currently serves as one of two fire stations on Base. The building originally served as a horse stable (Kimble, 2015, personal communication; Appendix C) but sometime prior to 1979, the building was converted to Fire Station 1 (Watson, 2015, personal communication; Appendix C). Fire Station 1 has two fire trucks, Engine 4 and Engine 8, that each holds 20 gallons of AFFF. The trucks are pump tested but not foam tested and, because the station does not have crash trucks, time and distance testing is not

required. No washing or refilling of trucks with AFFF occurs at Fire Station 1 (Kimble, 2015, personal communication; Appendix C). All use of AFFF for training is currently suspended as directed by the Air Force (Kimble, 2015, personal communication; Appendix C). AFFF use at Fire Station 1 is very limited, and no leaks or spills are known to have occurred here (Kimble, 2015, personal communication; Appendix C). Floor drains in Building 324 connect to the sanitary sewer that goes off Base to a publicly owned treatment works (Wright, 2015, personal communication; Appendix C). The geographical coordinates of Fire Station 1 (Building 324) are 41°9'1.20"N and 104°51'26.72"W. The location of Fire Station 1 (Building 324) is shown on Figures 1.1 and 2.1.

3.1.2.2 Waste Characteristics

Not applicable.

3.1.2.3 Pathway and Environmental Hazard Assessment

Not applicable.

3.1.2.3.1 Groundwater Pathway and Targets

Not applicable.

3.1.2.3.2 Surface Water Pathway and Targets

Not applicable.

3.1.2.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.1.3 Fire Station 2 (Building 1250)

3.1.3.1 Description and Operational History

Fire Station 2 (Building 1250) was built in 1941 and currently serves as one of two fire stations on Base. Fire Station 2 likely became active in the 1950s or 1960s when helicopter use began (Wright, 2015, personal communication; Appendix C). Fire Station 2 has three fire trucks, Engine 5 and Rapid Intervention Vehicles (RIVs) 1 and 2, each of which holds 60 to 70 gallons of AFFF. The trucks are pump tested but not foam tested. While the RIVs are capable of serving as crash trucks and carry AFFF, they are not used in for that purpose (Kimble, 2015, personal communication; Appendix C). The trucks are refilled with AFFF inside Fire Station 2 using 5-gallon buckets that are stored onsite (Kimble, 2015, personal communication; Appendix C). Floor drains in Building 1250 discharge to an OWS that connects to the sanitary sewer (Watson, 2015, personal communication; Appendix C). AFFF use at Fire Station 2 is very limited, and no leaks or spills are known to have occurred here (Kimble, 2015, personal communication; Appendix C). The geographical coordinates of Fire Station 2 (Building 1250) are 41°9'1.20"N and 104°51'26.72"W. The location of Fire Station 2 (Building 1250) is shown on Figures 1.1 and 3.2.

3.1.3.2 Waste Characteristics

Not applicable.

3.1.3.3 Pathway and Environmental Hazard Assessment

Not applicable.

3.1.3.3.1 Groundwater Pathway and Targets

Not applicable.

3.1.3.3.2 Surface Water Pathway and Targets

Not applicable.

3.1.3.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.2 OTHER

3.2.1 Building 930 (Hazardous Waste)

3.2.1.1 Description and Operational History

Building 930, built in 1993, serves as the hazardous waste storage building. Waste AFFF has periodically been stored at this building until transport and final disposal off Base. Records from January 13, 2005, show that four 55-gallon drums of AFFF were submitted to the hazardous waste storage facility by the fire department for off-Base disposal. However, no leaks or spills of AFFF geographical coordinates of Building 930 (Hazardous Waste) are 41°7'59.88"N and 104°52'11.12"W. The location of Building 930 (Hazardous Waste) is shown on Figures 1.1 and 3.3.

3.2.1.2 Waste Characteristics

Not applicable.

3.2.1.3 Pathway and Environmental Hazard Assessment

Not applicable.

3.2.1.3.1 Groundwater Pathway and Targets

Not applicable.

3.2.1.3.2 Surface Water Pathway and Targets

Not applicable.

3.2.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.2.2 Building 1240 (Truck Maintenance)

3.2.2.1 <u>Description and Operational History</u>

Building 1240, built in 1995, serves as the truck maintenance facility. Building 1240 formerly had an AFFF system that was replaced with a water suppression system in 2012. No additional information is known about the former AFFF system; however, no known system discharges, leaks or spills are known to have occurred (Watson, 2015, personal communication; Appendix C). Building 1240 is connected to a polyethylene-lined containment pond located between Buildings 1240 and 1247, and if spills occur, they can be diverted to this pond as necessary (McKinley, 2015, personal communication; Appendix C). The pond liner was replaced with a new polyethylene liner in approximately 2013 (Watson, 2015, personal communication; Appendix C). In the past, the pond has filled with water and been pumped out to the nearby grassy areas, but this has been done only when the pond fills with rainwater (Watson, 2015, personal communication; Appendix C). The geographical coordinates of Building 1240 (Truck Maintenance) are 41°8'37.86"N and 104°52'8.10"W. Building 1240 (Truck Maintenance) is shown on Figures 1.1 and 3.2.

3.2.2.2 Waste Characteristics

Not applicable.

3.2.2.3 Pathway and Environmental Hazard Assessment

Not applicable.

3.2.2.3.1 Groundwater Pathway and Targets

Not applicable.

3.2.2.3.2 Surface Water Pathway and Targets

Not applicable.

3.2.2.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

3.2.3 Building 1247 (Base Fuels)

3.2.3.1 Description and Operational History

Building 1247 (Base Fuels) was built in 1995 and has an active AFFF system with overhead lines. The AFFF tank size is unknown, but it is estimated it to be 200 to 300 gallons (Shafer, 2015, personal communication; Appendix C). Building 1247 is connected to a polyethylene-lined containment pond located between Buildings 1240 and 1247, and spills can be diverted to this

pond as necessary (McKinley, 2015, personal communication; Appendix C). The pond liner was replaced with a new polyethylene liner in approximately 2013 (Watson, 2015, personal communication; Appendix C). In the past, the pond has filled with water and been pumped out to the nearby grassy areas, but this has been done only when the pond fills with rainwater (Watson, 2015, personal communication; Appendix C).

An AFFF leak occurred in the bay of Building 1247 when a pipe in the fire suppression system froze and broke; however, the year of the leak is not known. All AFFF was contained inside the hangar (Shafer, 2015, personal communication; Appendix C). Floor drains in this building discharge to an OWS and then to the sanitary sewer (which flows to a publicly owned treatment works) unless manually diverted to the containment pond (Wright, 2015, personal communication; Appendix C). It is not clear if the valve to the containment pond was opened during the spill; however, the AFFF either entered the OWS (which flows to the sanitary sewer) or the containment pond (where it would have been left to evaporate). The geographical coordinates of Building 1247 (Base Fuels) are 41°8'36.36"N and 104°52'12.08"W. The location of Building 1247 (Base Fuels) is shown on Figures 1.1 and 3.2.

3.2.3.2 Waste Characteristics

If AFFF was diverted to the containment pond during the AFFF leak, AFFF may have been released when the pond filled with rainwater and was pumped out and released to nearby grassy areas.

3.2.3.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows 63 day care facilities (includes large day care operations and small in-home day care facilities); 2 nursing homes; 26 schools (includes public and private schools and academies); 89 hospitals, clinics, and doctor offices (includes outpatient surgery centers, home health care agencies, rehabilitation centers, pharmacies, and urgent care centers); and 2 colleges within the potential migration area of 4 miles from any given potential release location of PFCs. One elementary school, Freedom Elementary, is located on Base, and one elementary school, Pioneer Park Elementary, is located nearby but off Base. The closest elementary school is at least 1 mile southeast (hydrologically upgradient) of Building 1247. The on-Base child development center is located approximately 1.5 miles northeast (hydrologically upgradient) of Building 1247.

3.2.3.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeologic settings are provided in Section 1.3. Groundwater in this area generally flows northeast toward Crow Creek, which is located approximately 0.7 mile northeast of Building 1247. If AFFF was contained in the rainwater that was released to surrounding grassy areas, it likely infiltrated soils and entered the uppermost, shallow groundwater beneath the area. Shallow groundwater in this area flows to the northeast and discharges into Crow Creek.

F.E. Warren AFB drinking water sources are all located more than 4 miles upgradient of the Base and do not support a complete drinking water exposure pathway. The fact that F.E. Warren AFB does not use the groundwater below the Base as a supply of drinking water would also render this drinking water exposure pathway incomplete for F.E. Warren AFB workers and residents. Because of the depth to groundwater in this area (approximately 18 feet bgs [AECOM Technical Services, Inc., 2013]), excavation workers would not be exposed to groundwater.

No public water supply or residential wells are located between this location and Crow Creek, where groundwater likely daylights (EDR, 2015).

3.2.3.3.2 Surface Water Pathway and Targets

The surface water drainage near Building 1247 flows northeast to Crow Creek. Crow Creek flows east and discharges off Base via Outfall OFF 1. Crow Creek discharges into Wyoming Hereford Ranch Reservoir Number 1 approximately 6 miles off Base. F.E. Warren AFB drinking water does not come from surface water sources located within the watershed of F.E. Warren AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water. Because runoff flows into nearby drainages, a complete exposure pathway for non-ingestion exposures exists, such as dermal exposure to humans. Ingestion by aquatic or other animals is also a potential pathway for ecological receptors.

A 100-year flood zone is along Crow Creek located north and northeast of Building 1247. The nearest waterbody is Crow Creek located approximately 0.4 mile north-northeast. Wetlands are also located along the banks of Crow Creek.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of Building 1247 (EDR, 2015; USFWS, 2015). Local waterways, particularly Lake Pearson, are used for recreational fishing (Wright, 2015, personal communication; Appendix C). However, Lake Pearson is not located downstream of Building 1247.

3.2.3.3.3 Soil and Air Exposure Pathways and Targets

AFFF may have been released to the soils during removal of rainwater from the containment pond. Workers are present in Building 1247. The nearest residents are approximately 0.7 mile south-southeast of Building 1247. The well-vegetated and/or paved area surrounding Building 1247 and the containment pond would preclude any fugitive dust emissions and potential exposures. Current and planned land use does not involve potential human health exposure, and no intrusive work is currently planned that would allow for dermal soil exposures to utility or construction workers. The potential of exposure to burrowing animals, if present, would exist.

The population within 4 miles of the area is approximately 32,580. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Freedom Elementary School, located approximately 1 mile southeast of Building 1247 (EDR, 2015). The nearest day care facility is the F.E. Warren AFB Child Development Center, located approximately 1.5 miles to the northeast.

The Building 1247 area is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. The Colorado Butterfly Plant Research Natural Area is located within the former Building 1247 area.

3.2.4 Building 1285 (Hazmart)

3.2.4.1 Description and Operational History

Building 1285, built in 1995, serves as the Base Hazmart. AFFF is stored here for distribution as needed on base. During the PA visit to Building 1285, thirty-nine 55-gallon drums of AFFF were being stored at the location. Building 1285 has a temporary berm inside the building but no floor drains. All AFFF is stored with secondary containment. If a spill occurs, it would be cleaned up by a contractor (Wright, 2015, personal communication; Appendix C). However, no leaks or spills are known to have occurred here (McKinley, 2015, personal communication; Appendix C). The approximate geographical coordinates of Building 1285 (Hazmart) are 41°8'48.78"N and 104°52'4.58"W. The location of Building 1285 (Hazmart) is shown on Figures 1.1 and 3.2.

3.2.4.2 Waste Characteristics

Not applicable.

3.2.4.3 Pathway and Environmental Hazard Assessment

Not applicable.

3.2.4.3.1 Groundwater Pathway and Targets

Not applicable.

3.2.4.3.2 Surface Water Pathway and Targets

Not applicable.

3.2.4.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

FIGURES

4.0 SUMMARY AND CONCLUSIONS

The following sections summarize the findings of the PA for AFFF on F.E. Warren AFB and provide conclusions based on those findings.

4.1 SUMMARY

4.1.1 Fire Training Areas

4.1.1.1 Fire Training Areas Closed Prior to 1970

FTAs that were closed prior to 1970 would not have had AFFF applied for firefighting and are not considered to have been impacted by PFOA or PFOS from AFFF use. Former FPTA 1 was closed prior to 1970.

4.1.1.2 <u>Fire Training Areas Operational After 1970</u>

Former FPTA 2 was used from 1965 until 1989. Former FPTA 3 was used from 1990 to 2000. Former FPTA 2 was unlined and could contain PFOA- and PFOS-impacted media. Therefore, contaminants could be present in soils and in groundwater underlying this location. Former FPTA 3 was a contained system with a lined pit and retention pond. Environmental media are not thought to have been impacted by fire training activities at former FPTA 3.

4.1.2 Non-Fire Training Areas

4.1.2.1 <u>Fire Stations</u>

F.E. Warren AFB currently has two fire stations on Base, Fire Station 1 (Building 324) and Fire Station 2 (Building 1250). Additionally, one former fire station exists (Building 1501). No operational activities at any of these fire stations are thought to have resulted in PFOA- or PFOS-impacted media.

4.1.2.2 Other

Other identified buildings are Building 930, where hazardous waste is held for off-Base disposal; Building 1240, where an AFFF system previously existed; Building 1247, where an AFFF system currently exists; and Building 1285, where AFFF is stored. No leaks or spills are known to have occurred in Buildings 930 and 1240, and they are not likely to have media impacted by PFOA and PFOS. A release of AFFF from the pipes in Building 1247 may have been released to the containment pond, which on occasion was pumped out when it filled with rainwater and released to the surrounding grassy areas. Nearby media may have been impacted by PFOA and PFOS.

4.2 CONCLUSIONS

Table 4.1 summarizes the findings from this PA Report and presents possible future location management decisions. The identified locations are categorized by group as follows:

• Group 1 – High mass of AFFF released and probability of groundwater contamination.

- Group 2 Unknown mass or medium mass of AFFF released.
- Group 3 Low mass of AFFF released.
- Group 4 No AFFF released.

Based on the group designation and rationale for each location, recommendations are provided in Table 4.1. In accordance with the USEPA CERCLA PA and Site Inspection (SI) guidance documents (USEPA 1991; USEPA 1992), each identified location is recommended for one of the following actions: Implement removal action due to imminent threat; Close out due to no release; Initiate a Remedial Investigation (RI); or Initiate an SI.

- Removal actions, as defined in CERCLA Section 104, are actions taken to eliminate, control, or otherwise mitigate a threat posed to public health or the environment due to a release or threatened release of hazardous substances (USEPA, 1991).
- Close out or no further remedial action planned is defined as a disposition decision that further response under the federal Superfund is not necessary (USEPA, 1991).
- RI is defined as a field investigation to characterize the nature and extent of contamination at a location. The RI supports development, evaluation, and selection of the appropriate response alternative (USEPA, 1991).
- SI is defined as an investigation to collect and analyze waste and environmental samples to support an evaluation (USEPA, 1992).

Table 4.1
Preliminary Assessment Report Summary and Findings
F.E. Warren Air Force Base, Wyoming

Locations	Group	Rationale	Recommendations
Former FPTA 1	Group 4	Pre-1970.AFFF not used.	Close out with no additional investigation.
Former FPTA 2	Group 1	 AFFF used to extinguish fires. Training pit unlined. Unknown quantity of AFFF used but likely significant due to years of operation. 	Initiate SI.
Former FPTA 3	Group 4	 AFFF used to extinguish fires. Contained system with lined training pit and retention pond that is not known to have released AFFF to the environment. 	Close out with no additional investigation.
Former Fire Station (Building 1501)	Group 4	 Small two-bay station with only two trucks. AFFF was not used at this station, although it may have been stored in small quantities on the trucks. No known leaks or spills. 	Close out with no additional investigation.

Table 4.1 Preliminary Assessment Report Summary and Findings F.E. Warren Air Force Base, Wyoming

Locations	Group	Rationale	Recommendations
Fire Station 1 (Building 324)	Group 4	 No washing or refilling of trucks with AFFF occurs at this station. Trucks are pump tested but not foam tested. No storage of AFFF. No known leaks or spills have occurred. 	Close out with no additional investigation.
Fire Station 2 (Building 1250)	Group 4	 Trucks are filled using 5-gallon buckets inside the bays, and the floor drains flow to an OWS and then to the sanitary sewer to an off-Base treatment plant. Trucks are pump tested but not foam tested. AFFF use at this station is very limited. No known leaks or spills have occurred. 	Close out with no additional investigation.
Building 930 (Hazardous Waste)	Group 4	AFFF stored until final disposal off Base.No known leaks or spills.	Close out with no additional investigation.
Building 1240 (Truck Maintenance)	Group 4	 Former AFFF system from 1995 to 2012. No known AFFF system discharges occurred. 	Close out with no additional investigation.
Building 1247 (Base Fuels)	Group 3	 Has AFFF system. One spill, but all AFFF was contained in building and in either containment pond or OWS. Containment pond allowed to evaporate; however, when filled with rainwater, it was occasionally pumped out and released to grassy areas. 	Initiate SI.
Building 1285 (Hazmart)	Group 4	 AFFF storage. No known leaks or spills.	Close out with no additional investigation.

December 2015

5.0 REFERENCES

- AECOM Technical Services, Inc. 2013. Long-term Monitoring and Maintenance Program Zones A, B, C, D, and E 2013 Annual Report. December.
- Board of Public Utilities. 2014. "Water The Clear Choice" Consumer Confidence Report January 1 to December 31, 2013. City of Cheyenne, Wyoming. April.
- Chang, E.T., H.O Adami, P. Boffetta, P. Cole, T.B. Starr, and J.S. Mandel. 2014. A Critical Review of Perfluoroocanoate and Perfluorooctanesulfonate Exposure and Cancer Risk in Humans, Critical Reviews in Toxicology, 44(S1): 1-81.
- Coates, C.Y. (Center Historian). 1977. A History of USAF Fire Protection Training at Chanute Air Force Base, 1964–1976. Chanute Technical Training Center, Chanute AFB, Illinois. February.
- Environmental Data Resources, Inc. (EDR). 2015. EDR Offsite Receptor Report 4397049.3s, EDR NEPACHECK 4397049.2s, EDR GEOCHECK 4397049.1s. August.
- Kimble, Floyd (Assistant Chief, Special Operations). 2015. Personal communication. August 26.
- McKinley, Andy (Environmental Chief). 2015. Personal communication. August 26.
- Parsons Engineering. 2003. Final Supplemental Preliminary Assessment Report. April.
- Porter, R., 2011. AFCEE/TDV Emerging Issues. Perfluorinated Compounds. Air Force Restoration and Technology Transfer Workshop. March.
- Rak, Andrew and Catherine M. Vogel. 2009. Increasing Regulation of Perfluorinated Compounds and the Potential Impacts at Air Force Installations. Prepared for the U.S. Air Force. March.
- Riedel, Ronnie (Fire Department Health and Safety Officer). 2015. Personal communication. August 26.
- Shafer, Chris (Fuel Technician). 2015. Personal communication. August 26.
- Toltest, Inc. (Toltest). 2008. Project Summary Report. Prepared for Tank Removal and Closure. March.
- Trevi Joe (Hazardous Waste Technician). 2015. Personal communication. August 26.
- U.S. Air Force (USAF). 1994. Final Record of Decision for Operable Unit 5. September.
- U.S. Air Force (USAF). 2012. Interim Air Force Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations. August.
- U.S. Environmental Protection Agency (USEPA). 1991. Guidance for Preparing Preliminary Assessments under CERCLA. September.
- U.S. Environmental Protection Agency (USEPA). 1992. Guidance for Performing Site Inspections under CERCLA. September.
- U.S. Fish and Wildlife Service (USFWS). 2015. U.S. Fish and Wildlife Service. Geospatial Fisheries Information Network (GeoFIN). Available at: http://ecos.fws.gov/geofin/.
- U.S. Geological Survey. 1991. Remedial Investigation for F.E. Warren Air Force Base Wyoming. May.
- Watson, Tom (90MW Quality Assurance). 2015. Personal communication. August 26.
- Wright, Shain (Water Program Manager). 2015. Personal communication. August 26.

APPENDIX A PHOTO DOCUMENTATION

PHOTOGRAPH LOG

Team:	FFL	kanen	100 S. 210-15	
Project N	WILLIAM TO THE PARTY OF THE PAR		Observation Period: Start: 1-35 Step:	
Weather:	SUM	Ty		
No.	Time	Lysi Nosemur	Location/Description	
1	130	-	Blag 324 Station I BOW	
3	131		11/11/11/11/2011	
49-	135		Black 1950 Stanco a TRIVS	
5	1,218	-	Base Fuel Building 1247 Mec Room	
5	141		Bigg 1247 bay exerned lines	
	143		" " alversion value to and	
8	155	E	sexention and which siegers 1240+1247	
10	210	WI	FOLMER ETA	
11	311	WE	Byla 1383 Hozmart Storago -39 drums	
183	221		Blog 1501 Former Fire States	
14	333	E	Storm water and that discharges to crow cre	OF
5	227	SE	FPTA 2 - FORMER LOCATION	
	-			
	-			
_	-	-		
	-			
	-			
	1			
	T			
-				

A HEL

Photo 1

Photo 3

Photo 2

Photo 4

Photo 5

Photo 7

Photo 6

Photo 8

Photo 9

Photo 11

Photo 10

Photo 12

Photo 13

Photo 15

Photo 14

APPENDIX B FIELD DOCUMENTATION

APPENDIX B.1 POTENTIAL HAZARDOUS WASTE SITE FORMS

Identification	
State: WY	CERCLIS #:

	A					
	Assessment Form					very Date:
		1. Gene	eral Site Informati	on	•	
Name: F.E. Warrer	ı AFB	Street Address:				
City: Cheyenne State		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude: 41° 8'50.72"N	Longitude: 104°51'42.62"W	Approximate Ar Acres Square Ft	rea of Site:3	Status of Site: Active Inactive	☐ Not Specified ☐ NA (GW plume, etc.)	
Site Name: Former	r Fire Protection Trai	ning Area 1				
Site Description. 0	sed from 1950 to 19	*				
		2. Owner/	Operator Informa			
Owner: F.E. Warre	n AFB		Operator: Same	as owner		
Street Address:			Street Address:			
City:			City:			
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership: Private County Federal Agency Municipal Name: _DOD_ Not Specified State Other			Type of Ownersh Private Federal Agency Name: State Indian	Count Munic	ipal pecified	
		3. Site E	valuator Informat	ion		
Name of Evaluator Kelly Teplitsky Street Address: 91	r: 91 South Jamaica St	Agency/Organiz CH2M HILL reet	City: Englewood		Date Prepared 09/11/15 State: CO	d:
Name of EPA or State Agency Contact:			Street Address:			
City: State:		Telephone:				
		4. Site Dispo	sition <i>(for EPA us</i>	se only)		
- '	nse/Removal Assessr	nent	CERCLIS Recomm		Signature:	
Recommendation:	Yes		Higher Priori	,	Name (typed)	:
Da	ate:		RCRA Other:		Position:	

	5. General Site Characteristics						
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:			
that apply):	. –	Urban		Beginning Year _1950s_			
Industrial		☐ Urban ☐ Suburban ☐ Rural		Ending Year 1965_			
Type of Site Operations (shock	call that applyl:			Waste Generated: NA			
Type of Site Operations (check all that apply): Manufacturing (must check subcategory) Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Products Paints, Varnishes Industrial Organic Chemicals Agricultural Chemicals Miscellaneous Chemical Products Primary Metals Metal Coating, Plating, Engraving Metal Forging, Stamping Fabricated Structural Metal Products Electronic Equipment Other Manufacturing Mining Metals Coal Oil and Gas Non-metallic Minerals		Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill DOD DOE DOI Other Federal Facility RCRA Treatment, Storage, or Disposal Large Quantity Generator Small Quantity Generator Subtitle D Municipal Industrial "Converter" "Protective Filer" "Non-or Late Filer" Note Specified		Waste Generated: NA Onsite Offsite Onsite and Offsite Waste Deposition Authorized By: Present Owner Former Owner Unauthorized Unknown Waste Accessible to the Public: Yes No Distance to Nearest Dwelling, School, or Workplace: NA_feet			
		_		NA_Teet			
	6. Waste Cha	racteristics Inform	mation				
	(Refer to P	A Table 1 for WC Sco					
Source Type: (check all that apply)	Source Waste Quantity:	Tier*:	General Type of (check all that app				
□ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Containers □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Tailings Pile □ Trash Pile (open drum) □ Land Treatment			Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hos Radioactive Was Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Mining Waste pital Waste Explosives Ste Other_AFFF_			
Contaminated GW Plume (unidentified source) Contaminated SW/Sediment (unidentified source) Contaminated Soil Other No Sources *C=Constituent, W=Wast	estream, V=Volume, A=Area		Physical State of that apply):	Waste as Deposited (check all Solid Sludge Powder Liquid Gas			

	7. Ground Water Pathwa	ay		
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by		
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray	vn From:	
Yes	Yes			
☑ No	✓ No	0 - 1/4 Mile	NA	
If you Dietomonto monaret Dainline		0 - 1/4 WIIIC		
If Yes, Distance to nearest Drinking Well:		>1/4 - 1/2 Mile	NA	
Feet	Have Primary Target Drinking			
	Water Wells Been Identified:	>1/2 - 1 Mile	NA	
Type of Drinking Water Wells Within 4				
Miles	☑ No	>1 - 2 Mile	NA	
(check all that apply):	If Yes, Enter Primary Target	>2 - 3 Mile	NIA	
Municipal Private	Population:	>2 - 5 WITE	NA	
✓ None	People ³	>3 - 4 Mile	NA	
Depth to Shallowest Aquifer:	Nearest Designated Wellhead	-		
	Protection Area ⁶ :	Total Within 4 Miles ⁴	NA	
~ 12 Feet	Protection Area :			
Karst Terrain/Aquifer Present:	Underlies Site			
☐ Yes	>0-4 Miles None Within 4 Miles	*Use population #s for PA Tab		
☑ No	None Wallin Thines	*Note nearest well for #5 on	GW Pathway Scoresheet	
	8. Surface Water Pathwa	y		
Type of Surface Water Draining Site and	1 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to	
that apply):		Surface Water:		
Stream River	Pond	_NA_ Feet		
I =	Other	Miles		
Is There a Suspected Release to Surface	· Water¹:	Site is Located in:		
		Annual - 10 yr Floodplain		
☐ Yes ☐ No		>10yr - 100yr Floodplain >100yr - 500yr Floodplain		
		>500yr Floodplain		
Deigling Materials I again Along the	- Courte as Material Maleuration Detle	List All Secondary Target Drinking Water Intakes:		
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target	Drinking water intakes:	
Yes				
☑ No		Name: Water Body: Flow	(cfs): Population Served:	
Have Primary Target Drinking Water Int	akes Been Identified:			
. –	ice to Nearest Drinking			
Water Intake	e : Miles ⁶			
If Yes, Enter Population Served by Targe	et Intake:			
	Total within 1	L5 Miles ⁴		
NA People ⁴	Total within 3	is ivilles		
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target	: Fisheries ¹⁰ :	
Yes No If Yes, Distance	Water Body/ Fishery Name	: Flow (cfs):		
	Miles			
Have Primary Target Fisheries Been Ide	ntified:			
Yes Vo				

8. Surface Water Pathway (continued)						
Wetlands Located Along the Surface Wa	ter Migration	Other Sensitiv Migration Pat		ironment	s Located Along the Surface Water	
Yes No		Yes No			, Distance to Nearest Sensitive onment: _ Miles	
Have Primary Target Wetlands Been Id	Have Primary	Targe	t Sensitiv	e Environments Been Identified:		
Yes No	☐ Yes ☐ No					
List All Wetlands:	List All Sensit	tive En	ıvironmen	ts ¹¹ :		
Water Body: Flow (cfs): Frontage miles:	Water Body :		Flow (cfs):	Sensitive Environment Type:		
					·	
		xposure Path	-			
Are People Occupying Residence or Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination: Yes No Yes No If Yes, Enter Total Residential Population: Number of Worke Number of Worke Population of Worke) 1,000	Ic	dentified o	estrial Sensitive Environments Been on or Within 200 Feet of Areas of Suspected Contamination:	
					□ No t Each Terrestrial Sensitive	
				*Refer to PA	nent ⁵ :	<u>-</u>
	10	Air Pathway				
Is there a Suspected Release to Air ¹ :	10.			Vithin 4 N	Miles of the Site ⁶ :	
☐ Yes ☑ No Enter Total Population on or Within:		Yes No			w Many Acres: Acres	
Onsite		Other Sensitive Environments Located Within 4 Miles of the Sit			s Located Within 4 Miles of the Site	<u>:</u> :
0-1/4 Mile				Yes No		
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :		ts Within 1/2 Mile of the Site ⁶ :		
>1/2-1 Mile		<u>Distance:</u>	<u>Sensiti</u>	ve Environ	ment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite				
>2-3 Miles		0-1/4 Mile				
>3-4 Miles		>1/4-1/2 Mile				
Total Within 4 Miles ³⁻⁵ _NA_		*Refer to PA Table 10 for calculations on air pathway exposures				

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Identification	
State: WY	CERCLIS #:
OFFICIAL DI	5 .

				•			
	Asse	ssment For	CERCLIS Discovery Date:			very Date:	
		1. Gener	al Site Information	on			
Name: F.E. Warren	AFB	Street Address:	:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
Latitude: 41° 8'34.40"N	Longitude: 104°51'32.70"W	Approximate Are Acres Square Ft	Increspectment			etc.)	
Site Name: Former	Fire Protection Train	ing Area 2		!			
between Third and	ne Former FPTA 2 (als Fourth Streets and is sthat were used fro	s about a quarter o m 1965 until 1989	of a mile south of C . No retention pon	row Creek. This F nds were present.	PTA consisted		
		2. Owner/C	Operator Informa				
Owner: F.E. Warrer	ı AFB		Operator: Same a	s owner			
Street Address:			Street Address:				
City:			City:				
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:		
Type of Ownership: Private County Federal Agency Municipal Name: _DOD_ Not Specified State Other			Type of Ownership: Private County Federal Agency Municipal Name: Not Specified State Other Indian				
		3. Site Eva	aluator Informati	on			
Name of Evaluator: Kelly Teplitsky Street Address: 919	91 South Jamaica Stre	Agency/Organiza CH2M HILL eet	City: Englewood		Date Prepared: 09/11/15 State: CO		
Name of EPA or Sta	te Agency Contact:		Street Address:				
City: State:		State:	Telephone:				
		4. Site Dispos	ition <i>(for EPA use</i>	only)			
Emergency Respon Recommendation:	se/Removal Assessm	ent	CERCLIS Recommendation: Higher Priority SI Lower Priority SI		Signature:		
	Yes No		NFRAP RCRA	. 31	Name (typed):		
Da	te:		Other:		Position:		

5. General Site Characteristics						
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:		
that apply): Industrial Agricul	ture DOI	Urban		Beginning Year _1965_		
☐ Commercial ☐ Mining ☐ Other Federal ☐ Poop ☐ Facility: ☐ Forest/Fields ☐ DOE ☐ Other ☐ Othe			ırban	Ending Year 1989_		
Type of Site Operations (check	all that apply).			Waste Generated: NA		
Manufacturing (must check subcated Lumber and Wood Products Inorganic Chemicals Plastic and/or Rubber Products	;	Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill		Onsite Offsite Onsite and Offsite		
Industrial Organic Chemical Agricultural Chemicals Miscellaneous Chemical Pro Primary Metals Metal Coating, Plating, Engi	Other Landfill DOD DOE DOI Other Federal Facility RCRA		Waste Deposition Authorized By: Present Owner Former Owner Present & Former Owner Unauthorized Unknown			
Metal Forging, Stamping Fabricated Structural Metal Electronic Equipment Other Manufacturing Mining Metals	Treatment, Storage, or Disposal Large Quantity Generator Small Quantity Generator Subtitle D Municipal Industrial "Converter"		Waste Accessible to the Public: ☐ Yes ☑ No			
Coal Oil and Gas Non-metallic Minerals		☐ "Protective Filer" ☐ "Non-or Late Filer" ☐ Note Specified ☐ Other		Distance to Nearest Dwelling, School, or Workplace: 350 feet		
	6. Waste Cha	racteristics Inforr	mation			
	(Refer to P	A Table 1 for WC Sco	re)			
Source Type: (check all that apply)	Source Waste Quantity:	Tier*:	General Type of (check all that app			
Landfill Surface Impoundment Drums Tanks and Non-Dum Containers Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment			Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hos Radioactive Wa Construction/De	Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Mining Waste pital Waste Explosives Ste Other_AFFF_		
Contaminated GW Plume (unidentified source) Contaminated SW/Sediment (unidentified source) Contaminated Soil Other No Sources *C=Constituent, W=Wast	estream, V=Volume, A=Area		that apply):	Waste as Deposited (check all Solid Sludge Powder Liquid Gas		

	7. Ground Water Pathwa	ay			
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Population Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray			
Yes	✓ Yes				
▼ No	☐ No	0 - 1/4 Mile	NA		
157		0 - 1/4 Wille	NA		
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA		
Well: Feet	Have Primary Target Drinking	, , ,			
1eet	Water Wells Been Identified:	>1/2 - 1 Mile	NA		
Type of Drinking Water Wells Within 4					
Miles	☑ No	>1 - 2 Mile	NA		
(check all that apply):	If Yes, Enter Primary Target	>2 2 Mile	NIA		
Municipal	Population:	>2 - 3 Mile	NA		
Private None	People ³	>3 - 4 Mile	NA		
Depth to Shallowest Aquifer:	Nearest Designated Wellhead				
·		Total Within 4 Miles ⁴	NA		
~ 12 Feet	Protection Area ⁶ :				
Karst Terrain/Aquifer Present:	Underlies Site				
Yes	>0-4 Miles None Within 4 Miles	*Use population #s for PA Tab			
✓ No	None Within 4 Piles	*Note nearest well for #5 on	GW Pathway Scoresheet		
	8. Surface Water Pathwa	ay			
Type of Surface Water Draining Site and	1 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to		
that apply):		Surface Water:	•		
Stream River	Pond Dlake	Feet			
	Pond Lake Other	0.2 Miles			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
✓ Yes		Annual - 10 yr Floodplain			
No No		>10yr - 100yr Floodplain >100yr - 500yr Floodplain			
		>500yr Floodplain			
Drinking Water Intake Located Along th	e Surface Water Migration Dath	List All Secondary Target Drinking Water Intakes:			
	e Surface Water Migration Fatil.	List All Secondary ranger	Dilliking Water intakes.		
Yes					
☑ No		Name: Water Body: Flow	(cfs): Population Served:		
Have Primary Target Drinking Water Int	akes Been Identified:				
□ Voc. If Voc. Distan	es to Nearest Drinking				
I —	ce to Nearest Drinking e: Miles ⁶				
	ivilles				
If Yes, Enter Population Served by Targe	et Intake:				
NA People ⁴	Total within 1	L5 Miles ⁴			
IVA People					
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target	Fisheries ¹⁰ :		
Yes No If Yes, Distance	Water Body/ Fishery Name				
☐ TeS ☑ INO	Miles				
Have Primary Target Fisheries Been Ide	ntified:				
Yes No					

8. Surface Water Pathway (continued)							
Wetlands Located Along the Surface Wa Path:		Other Sensitive Environments Located Along the Surface Water Migration Path:					
☑ Yes ☐ No		Yes No			Distance to Nearest Sensitive onment: _0 Miles		
Have Primary Target Wetlands Been Id	entified:	Have Primary	Targ	et Sensitive	Environments Been Identified:		
☐ Yes ☑ No	☐ Yes ☑ No						
List All Wetlands:	List All Sensi	itive E	nvironment	ts ¹¹ :			
Water Body: Flow (cfs): Frontage miles:		Water Body :		Flow (cfs):	Sensitive Environment Type:		
	9. Soil Exposure Pathway						
Are People Occupying Residence or Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination: Number of Worker Number of Worker 1 - 100 101 - 1 101 - 1 1 > 1,00		O 1,000	ŀ	Have Terrestrial Sensitive Environments Be Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:			
☐ Yes ☑ No					□ No Each Terrestrial Sensitive		
If Yes, Enter Total Residential Population:	Population Withir			Environment⁵: _Colorado Butterfly Plant Research Natural Area			
NA People ²							
	10.	Air Pathway					
Is there a Suspected Release to Air ¹ : Yes No Enter Total Population on or Within:		Wetlands Loc Yes No	ated '		iles of the Site ⁶ : v Many Acres: Acres		
Onsite		Other Sensitive Environments Located Within 4 Miles of the Site:					
0-1/4 Mile		✓ Yes ☐ No					
>1/4-1/2 Mile		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :			s Within 1/2 Mile of the Site ⁶ :		
>1/2-1 Mile		<u>Distance:</u>	<u>Sensit</u>	tive Environr	ment Type/Wetlands Area (acres):		
>1-2 Miles		Onsite 0-1/4 Mile	Colo	rado Butte	rfly Plant Research Natural Area		
>2-3 Miles		>1/4-1/2 Mile					
>3-4 Miles					n air pathway exposures		
Total Within 4 Miles ³⁻⁵ _32,580_							

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Identification	
State: WY	CERCLIS #:
CEDCLIC Disco.	Data:

	_	- -		•			
	Asse	ssment For	m		CERCLIS Disco	very Date:	
		1. Gener	al Site Information	on	•		
Name: F.E. Warren	AFB	Street Address:					
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
Latitude:	Longitude:	Approximate Are	a of Site:3	Status of Site:	!	!	
41° 9'3.43"N	104°52'26.32"W	Acres		Active	Not Specified		
		Square Ft		✓ Inactive	NA (GW plume,	etc.)	
Site Name: Former	Fire Protection Train	ing Area 3			<u> </u>		
	ie Former FPTA 3 is l	-	hern portion of the	Base and was or	pened in 1990.	This FPTA was	
-	roximately 2000. The		· ·	-			
	y-lined retention por						
	ntents of the retenti					, , , , , , , , , , , , , , , , , , ,	
l cecinion pona. Con		on pond were lere	m place to evapore				
		2. Owner/C	Operator Informa	tion			
Owner: F.E. Warrer	ı AFB		Operator: Same a	s owner			
Street Address:			Street Address:				
City:			City:				
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:		
Type of Ownership:	: :	.1	Type of Ownership:				
Private	☐ County		Private	County			
Federal Agency	Municipa	ıl	Federal Agency Municipal				
Name: _DOD	Not Spec	cified	Not Sp		ecified		
State	Other		State Other				
Indian							
		3. Site Eva	aluator Informati	on			
Name of Evaluator:		Agency/Organiza	tion:		Date Prepared	l:	
Kelly Teplitsky		CH2M HILL			09/11/15		
Street Address: 919	91 South Jamaica Str	eet	City: Englewood		State: CO		
			' -				
Name of EPA or Sta	te Agency Contact:		Street Address:				
	,						
City: State:			•	Telephone:			
,			relephone.				
		4. Site Dispos	ition <i>(for EPA use</i>	only)			
Emergency Respons	se/Removal Assessm		CERCLIS Recomm		Signature:		
Recommendation:			Higher Priority SI				
	Yes		Lower Priority	/ SI	Name (typed):		
	No		☐ NFRAP ☐ RCRA		<u> </u>		
D-:	-		Other:		Position:		
Dai	ເປ	D-1-		I			

5. General Site Characteristics					
Predominant Land Use Withir	n 1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):					
Industrial Agricu	ılture 🔲 DOI	☐ Urba	ın	Beginning Year _1990_	
Commercial Mining	Other Federal Facility:	✓ Subu	ırban	Ending Year 2000_	
Residential DOD Forest/Fields DOE		Rura	ıl		
-	Other			Unknown	
Type of Site Operations (chec	k all that apply):			Waste Generated: NA	
Manufacturing (must check subc	ategory)	Retail		✓ Onsite	
Lumber and Wood Product	rs ·	Recycling		Offsite	
Inorganic Chemicals		Junk/Salvage Yard Municipal Landfill		Onsite and Offsite	
Plastic and/or Rubber Proc Paints, Varnishes	lucts	Other Landfill		Waste Deposition Authorized	
Industrial Organic Chemica	als	✓ DOD		By: Present Owner	
Agricultural Chemicals		DOE		Former Owner	
Miscellaneous Chemical Pro	oducts	DOI Other Federal Facili	itv	Present & Former Owner	
Primary Metals Metal Coating, Plating, Eng	ıravina	RCRA		Unauthorized Unknown	
Metal Forging, Stamping	,		orage, or Disposal	Waste Accessible to the Public:	
Fabricated Structural Meta	l Products	Large Quantity Small Quantity		vaste /teeessible to the rabile.	
☐ Electronic Equipment☐ Other Manufacturing		Subtitle D	Generator		
l		Municipa	al	∐ Yes ✓ No	
Mining Metals		Industrial			
Coal		Converter"		Distance to Nearest Dwelling,	
Oil and Gas		"Protective File "Non-or Late F		School, or Workplace:	
Non-metallic Minerals		Note Specified	iici		
		Other		NA feet	
				1000	
		racteristics Inform			
Causaa Turaa		A Table 1 for WC Sco		1Masks	
Source Type: (check all that apply)	Source Waste Quantity: (include unit)	Tier*:	General Type of (check all that app		
(спеск ан тнас арргу)	(include unit)		Γ		
Landfill			☐ Metals ☐ Organics	Pesticides/Herbicides Acids/Bases	
Surface Impoundment			Inorganics	Oily Waste	
Drums Tanks and Non-Dum Containers			Solvents	Municipal Waste	
Chemical Waste Pile			Paints/Pigment	= 1	
Scrap Metal or Junk Pile			Laboratory/Hos	·	
Tailings Pile			_	emolition Waste	
Trash Pile (open drum)			_		
Land Treatment Contaminated GW Plume	-		Physical State of	f Waste as Deposited (check all	
(unidentified source)			that apply):	Waste as Deposited (check an	
Contaminated SW/Sediment			''″ г	Solid	
(unidentified source) Contaminated Soil			[Sludge	
Other				Powder	
☐ No Sources				Liquid Gas	
*C=Constituent, W=Was	testream, V=Volume, A=Area			_ 003	

	7. Ground Water Pathwa			
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Po	pulation Served by	
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdrav	vn From:	
Yes	Yes			
✓ No	✓ No	0 - 1/4 Mile	NA	
If you Dietomore to manuart Drinking		0 - 1/4 WIIIC		
If Yes, Distance to nearest Drinking Well:		>1/4 - 1/2 Mile	NA	
Feet	Have Primary Target Drinking			
	Water Wells Been Identified:	>1/2 - 1 Mile	NA	
Type of Drinking Water Wells Within 4	l les			
Miles	☑ No	>1 - 2 Mile	NA	
(check all that apply):	If Yes, Enter Primary Target	>2 - 3 Mile	NA	
Municipal Private	Population:	/2 - 3 WITE	NA	
✓ None	People ³	>3 - 4 Mile	NA	
Depth to Shallowest Aquifer:	Nearest Designated Wellhead	-		
~ 12 Feet	Protection Area ⁶ :	Total Within 4 Miles ⁴	_NA	
Karst Terrain/Aquifer Present:	Underlies Site >0-4 Miles	4.		
☐ Yes	None Within 4 Miles	*Use population #s for PA Tab		
☑ No	_	*Note nearest well for #5 on	GW Pathway Scoresheet	
	8. Surface Water Pathwa	ау		
Type of Surface Water Draining Site and	15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to	
that apply):		Surface Water:		
☑ Stream ☐ River ☐ F	Pond Lake	Feet		
Bay Ocean C	Other	NA Miles		
	1	C'ta ta La cata d'ta		
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:		
Yes		Annual - 10 yr Floodplain >10yr - 100yr Floodplain		
☑ No		>100yr - 500yr Floodplain		
		>500yr Floodplain	า	
Drinking Water Intake Located Along the	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:		
	•		-	
Yes ✓ No				
INO INO		Name: Water Body: Flow	(cfs): Population Served:	
Have Primary Target Drinking Water Int	akes Been Identified:			
Yes If Yes, Distan	ce to Nearest Drinking			
I —	e: Miles ⁶			
If Yes, Enter Population Served by Targe	t Intake:			
NA People ⁴		Total within 1	L5 Miles ⁴	
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target	Fisheries ¹⁰ :	
_	e to Nearest Fishery:	Water Body/ Fishery Name		
	Miles			
Have Primary Target Fisheries Been Ider	ntified:			
☐ Yes ✓ No				
i				

8. Surface Water Pathway (continued)				
Wetlands Located Along the Surface Wa Path:	ter Migration	Other Sensitive Migration Path	ve Environments Located Along the Surface Water h:	
✓ Yes ☐ No		Yes No	If Yes, Distance to Nearest Sensitive Environment: _0 Miles	
Have Primary Target Wetlands Been Id	entified:	Have Primary	Target Sensitive Environments Been Identified:	
☐ Yes ☑ No			☐ Yes ☑ No	
List All Wetlands:		List All Sensiti	tive Environments ¹¹ :	
Water Body: Flow (cfs): Frontage miles:		Water Body :	Flow (cfs): Sensitive Environment Type:	
	9. Soil E	xposure Pathy	way	
Are People Occupying Residence or Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination:	Number of Worked None 1 - 100 101 - 3 > 1,00) 1,000	Have Terrestrial Sensitive Environments Been Identified on or Within 200 Feet of Areas of Known or Suspected Contamination: Yes	
☐ Yes ☑ No			☐ No If Yes, List Each Terrestrial Sensitive	
Population Within Population: Population: Population Within Within Population Within			Environment ⁵ : _Colorado Butterfly Plant Research Natural Area	
NA People ²				
	10.	Air Pathway		_
Is there a Suspected Release to Air ¹ : Yes No Enter Total Population on or Within:		Wetlands Loca Yes No	ated Within 4 Miles of the Site ⁶ : If Yes, How Many Acres: Acres	
Onsite		Other Sensitive	ve Environments Located Within 4 Miles of the Site:	
0-1/4 Mile			✓ Yes ☐ No	
>1/4-1/2 Mile		List All Sensitiv	ve Environments Within 1/2 Mile of the Site ⁶ :	_
>1/2-1 Mile		<u>Distance:</u> <u>S</u>	Sensitive Environment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite (Colorado Butterfly Plant Research Natural Area	
>2-3 Miles		_		
>3-4 Miles		>1/4-1/2 Mile *Refer to PA Table	e 10 for calculations on air pathway exposures	
Total Within 4 Miles ³⁻⁵ _NA			•	

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Identification	
State: WY	CERCLIS #:
CEDCUS Disessi	Data.

	A					
	Asse	ssment For	m		CERCLIS Discov	very Date:
		1. Genera	al Site Information	on		
Name: F.E. Warren	AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude: 41° 9'3.43"N	Longitude: 104°52'26.32"W	Approximate Area1.1 Acres			Not Specified NA (GW plume, etc.)	
Site Name: Former	Fire Station	L		Į.		
support the peacek at this station, it ma It is estimated that	is former fire station eeper missile operat ay have been stored this station was activ of AFFF is known to h	ions. It was a smal in small quantities ve until approxima nave occurred (Rie	ll two bay station the on the trucks (Ried tely 1998 (Watson del, 2015, persona	hat had two trucl del, 2015, person , 2015, personal (l communication	ks. While AFFF all communicat communication	was never used ion; Appendix C).
		2. Owner/C	Operator Informa	tion		
Owner: F.E. Warrer	AFB		Operator: Same a	s owner		
Street Address:		Street Address:				
City:			City:			
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership: Private County Federal Agency Municipal Name: _DOD Not Specified State Other			Type of Ownership: Private County Federal Agency Municipal Name: Not Specified State Other Indian			
		3. Site Eva	aluator Informati	on		
Name of Evaluator: Kelly Teplitsky Street Address: 919	1 South Jamaica Stre	Agency/Organizat CH2M HILL eet	cition:		Date Prepared: 09/11/15 State: CO	
Name of EPA or State Agency Contact:		Street Address:				
City: State:		Telephone:				
		4. Site Dispos	ition <i>(for EPA use</i>	only)		
Emergency Respons Recommendation:	se/Removal Assessm	ent	CERCLIS Recommendation: Higher Priority SI Lower Priority SI NFRAP Signature: Name (type		Signature: Name (typed):	
No Date:		RCRA Other: Date:		Position:		

5. General Site Characteristics				
Predominant Land Use With	in 1 Mile of Site (check all	Site Setting:		Years of Operation:
that apply):				
☐ Industrial ☐ Agric	culture DOI	Urba	n	Beginning Year _1987_
Commercial Minii	ng Other Federal	✓ Subu	ırban	Ending Year 1998_
Residential DOD Forest/Fields DOE		Rura	ıl	Eliding real 1996_
Polest/Pields DOE	Other			Unknown
Type of Site Operations (che	ck all that apply):			Waste Generated: NA
Manufacturing (must check sub	category)	Retail		Onsite
Lumber and Wood Produc	cts	Recycling		☐ Offsite
Inorganic Chemicals		Junk/Salvage Yard		Onsite and Offsite
Plastic and/or Rubber Pro Paints, Varnishes	oducts			Marka Barasitian Arabarian
Industrial Organic Chemic	cals	✓ DOD		Waste Deposition Authorized Present Owner
Agricultural Chemicals		DOE		By: Present Owner Former Owner
Miscellaneous Chemical P	roducts	DOI	_	Present & Former Owner
Primary Metals		Other Federal Facili	ity	Unauthorized
☐ Metal Coating, Plating, Er☐ Metal Forging, Stamping	ngraving	RCRA Treatment Sto	orage, or Disposal	Unknown
Fabricated Structural Met	al Products	Large Quantity		Waste Accessible to the Public:
Electronic Equipment		Small Quantity	Generator	
Other Manufacturing		Subtitle D		Yes
Mining		∭ Municipa ☐ Industria		✓ No
Metals		"Converter"	dl	
Coal		"Protective File	er"	Distance to Nearest Dwelling,
Oil and Gas		☐ "Non-or Late F	iler"	School, or Workplace:
Non-metallic Minerals		☐ Note Specified		
		Other		NA feet
		racteristics Inform		
- -		A Table 1 for WC Sco		
Source Type:	Source Waste Quantity:	Tier*:	General Type of (check all that app	
(check all that apply)	(include unit)		I.—	
Landfill			☐ Metals ☐ Organics	Pesticides/Herbicides
Surface Impoundment			Inorganics	☐ Acids/Bases☐ Oily Waste
Drums			Solvents	Municipal Waste
Tanks and Non-Dum Containers Chemical Waste Pile			Paints/Pigment	=
Scrap Metal or Junk Pile			Laboratory/Hos	·
Tailings Pile			Radioactive Wa	ste
Trash Pile (open drum)			Construction/D	emolition waste
Land Treatment				
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all
(unidentified source) Contaminated SW/Sediment			that apply):	_
(unidentified source)				Solid
Contaminated Soil				Sludge Powder
Other No Sources				Powder Liquid
<u> </u>				Gas
*C=Constituent, W=Wa	stestream, V=Volume, A=Area		_	

	7. Ground Water Pathwa	ay		
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Po	pulation Served by	
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray		
Yes	Yes			
☑ No	☑ No	0 1/4 04:1-	NIA	
		0 - 1/4 Mile	NA	
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA	
Well:	Have Primary Target Drinking	71/4 1/2 WIIIC		
Feet	Water Wells Been Identified:	>1/2 - 1 Mile	NA	
Type of Drinking Water Wells Within 4	☐Yes	,		
Miles	☑ No	>1 - 2 Mile	NA	
(check all that apply):	If Vac Enter Driman, Target			
☐ Municipal	If Yes, Enter Primary Target Population:	>2 - 3 Mile	NA	
Private	People ³			
<u></u> ✓ None	1 еоріе	>3 - 4 Mile	NA	
Depth to Shallowest Aquifer:	Nearest Designated Wellhead	Tabal NACAbia A NACI and	NI A	
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴	_NA	
Karst Terrain/Aquifer Present:	Underlies Site			
naise remain, iquire resent.	>0-4 Miles	*Use population #s for PA Tab	2 مار	
Yes	None Within 4 Miles	*Note nearest well for #5 on		
✓ No				
	8. Surface Water Pathwa	·		
Type of Surface Water Draining Site and	l 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to	
that apply):		Surface Water:		
✓ Stream River F	Pond Lake	Feet		
Bay Ocean C	Other	NA N	1iles	
	1	Cita in Language in .		
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:		
Yes		Annual - 10 yr Floodplain >10yr - 100yr Floodplain		
☑ No		>100yr - 500yr Floodplain		
		>500yr Floodplair		
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:		
Drinking Water intake Escated Allong th	e sarrace water imgration ratio	List / III Secondary ranges	Dimining Water intakes.	
Yes				
✓ No		Name: Water Body: Flow	(cfs): Population Served:	
Have Primary Target Drinking Water Int	akes Been Identified:			
□ Vee	as to Named Brighton			
I —	ce to Nearest Drinking e: Miles ⁶			
water intake	e Miles			
If Yes, Enter Population Served by Targe	et Intake:			
		Total within 1	L5 Miles ⁴	
NA People ⁴				
Fisheries Located Along the Surface Wa	ter Migration Path	List All Secondary Target	Fisheries ¹⁰ :	
If Van Dietana	te to Nearest Fishery:			
Yes No If Yes, Distance	Miles	Water Body/ Fishery Name	: Flow (cfs):	
Have Primary Target Fisheries Been Ider				
Yes No				

8. Surface Water Pathway (continued)				
Wetlands Located Along the Surface War Path:	ater Migration	Other Sensitive Migration Path:	Environments Located Along the Surface Water	
✓ Yes □ No		Yes No	If Yes, Distance to Nearest Sensitive Environment: _ Miles	
Have Primary Target Wetlands Been Id	entified:	Have Primary Ta	arget Sensitive Environments Been Identified:	
☐ Yes ☑ No			☐ Yes ☑ No	
List All Wetlands:		List All Sensitiv	re Environments ¹¹ :	
Water Body: Flow (cfs): Frontage miles:		<u>Water Body</u> :	Flow (cfs): Sensitive Environment Type:	
	9. Soil E	xposure Pathw	ау	
Are People Occupying Residence or Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination: Yes		0 1,000	Have Terrestrial Sensitive Environments Been Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:	
			✓ No If Yes, List Each Terrestrial Sensitive	
			Environment ⁵ : - *Refer to PA Table 7 for environment types	
	10.	Air Pathway	-1	
Is there a Suspected Release to Air ¹ : Yes No Enter Total Population on or Within:		Wetlands Locate Yes No	ed Within 4 Miles of the Site ⁶ : If Yes, How Many Acres: Acres	
Onsite		Other Sensitive Environments Located Within 4 Miles of the Site:		
0-1/4 Mile			Yes No	
>1/4-1/2 Mile		List All Sensitive	Environments Within 1/2 Mile of the Site ⁶ :	
>1/2-1 Mile		<u>Distance:</u> <u>Se</u>	nsitive Environment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite Co	olorado Butterfly Plant Research Natural Area	
>2-3 Miles		>1/4-1/2 Mile		
>3-4 Miles			0 for calculations on air pathway exposures	
Total Within 4 Miles ³⁻⁵ _NA				

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Identification	
State: WY	CERCLIS #:
OFFICIAL DI	5 .

	A					
Assessment Form					CERCLIS Discov	very Date:
		1. Gener	al Site Information	on		
Name: F.E. Warren	AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude: 41° 9'3.43"N	Longitude: 104°52'26.32"W	Approximate Are			Not Specified NA (GW plume, etc.)	
Site Name: Fire Sta	tion 1				_	
stations on Base. The sometime prior to 1 This station has two	e Station 1 is located ne building originally 1979, the building wa o fire trucks, Engine 4 cause the station do	served as a horse as converted to Fir I and Engine 8, tha	stable (Kimble, 202 e Station 1 (Watso at each hold 20 gall	15, personal com n, 2015, persona ons of AFFF. The	munication; Ap I communicatio trucks are pum	pendix C) but n; Appendix C).
		2. Owner/C	Operator Informa	tion		
Owner: F.E. Warrer	AFB		Operator: Same a	s owner		
Street Address:		Street Address:				
City:			City:			
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership: Private County Federal Agency Municipal Name: _DOD Not Specified State Other			Type of Ownership: Private County Federal Agency Municipal Name: Not Specified State Other Indian			
		3. Site Eva	aluator Informati	on		
Name of Evaluator: Kelly Teplitsky Street Address: 919	1 South Jamaica Stre	Agency/Organiza CH2M HILL eet	City: Englewood		Date Prepared: 09/11/15 State: CO	
Name of EPA or State Agency Contact:		Street Address:				
City: State:		Telephone:				
		4. Site Dispos	ition <i>(for EPA use</i>	only)		
Emergency Response/Removal Assessment Recommendation:		CERCLIS Recommendation: Higher Priority SI Lower Priority SI NFRAP Signature: Name (typed):				
□ No Date:			RCRA Other: Date:		Position:	

5. General Site Characteristics				
Predominant Land Use Withir	1 Mile of Site (check all	Site Setting:		Years of Operation:
that apply):				
☐ Industrial ☐ Agricu	lture DOI	Urba	ın	Beginning Year _?_
Commercial Mining	Other Federal	✓ Subu	ırban	Ending Voor procent
Residential DOD	Facility:	Rura	l	Ending Year present_
Forest/Fields DOE	Other			Unknown
				_
Type of Site Operations (check	k all that apply):			Waste Generated: NA
Manufacturing (must check subca	itegory)	Retail		Onsite
Lumber and Wood Product	S	Recycling		☐ Offsite
Inorganic Chemicals		Junk/Salvage Yard		Onsite and Offsite
☐ Plastic and/or Rubber Prod☐ Paints, Varnishes	ucts	Municipal Landfill Other Landfill		Marka Barasikian Arkhariand
Industrial Organic Chemica	ls	DOD DOD		Waste Deposition Authorized Present Owner
Agricultural Chemicals		DOE		By: Present Owner Former Owner
Miscellaneous Chemical Pro	oducts	DOI		Present & Former Owner
Primary Metals		Other Federal Facili	ity	Unauthorized
Metal Coating, Plating, Eng Metal Forging, Stamping	raving		orage, or Disposal	Unknown
Fabricated Structural Metal	Products	Large Quantity		Waste Accessible to the Public:
Electronic Equipment		Small Quantity	Generator	
Other Manufacturing		Subtitle D		Yes
Mining				✓ No
Metals		"Converter"		
Coal		"Protective File	er"	Distance to Nearest Dwelling,
Oil and Gas		U"Non-or Late F	iler"	School, or Workplace:
Non-metallic Minerals		Note Specified		
		Other		NA feet
	C Marka Cha			
		racteristics Inform A Table 1 for WC Sco		
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste
(check all that apply)	(include unit)		(check all that app	
			Metals	Pesticides/Herbicides
Landfill			Organics	Acids/Bases
Surface Impoundment Drums			Inorganics	Oily Waste
Tanks and Non-Dum Containers			Solvents	Municipal Waste
Chemical Waste Pile			Paints/Pigment Laboratory/Hos	= -
Scrap Metal or Junk Pile			Radioactive Wa	·
Tailings Pile			_	emolition Waste
Trash Pile (open drum) Land Treatment				
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all
(unidentified source)			that apply):	Waste as Deposited (check an
Contaminated SW/Sediment			Γ	Solid
(unidentified source) Contaminated Soil				Sludge
Other				Powder
No Sources				Liquid Gas
*C=Constituent, W=Was	testream, V=Volume, A=Area			

	7. Ground Water Pathwa	ay		
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Po	pulation Served by	
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray		
☐ Yes	Yes			
☑ No	☑ No	0 1/4 04:1-	NIA	
		0 - 1/4 Mile	NA	
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA	
Well:	Have Primary Target Drinking	71/4 - 1/2 WIIIE		
Feet	Water Wells Been Identified:	>1/2 - 1 Mile	NA	
Type of Drinking Water Wells Within 4	Yes	_,		
Miles	☑ No	>1 - 2 Mile	NA	
(check all that apply):				
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile	NA	
Private	Population: People ³			
✓ None	Peoples	>3 - 4 Mile	NA	
Depth to Shallowest Aquifer:	Nearest Designated Wellhead]		
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴	_NA	
Karst Terrain/Aquifer Present:	Underlies Site			
Karst retrain/Aquiter Fresent.	>0-1 Miles	*Use population #s for PA Tab	1- 2	
☐ Yes	✓ None Within 4 Miles	*Note nearest well for #5 on		
✓ No		Note flearest well for #5 off	GW Fathway Scoresheet	
	8. Surface Water Pathwa	ay		
Type of Surface Water Draining Site and	l 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to	
that apply):		Surface Water:		
☑ Stream ☐ River ☐ F	Pond Lake	Feet		
	Other	NA Miles		
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:		
		Annual - 10 yr Flo	•	
Yes No		>10yr - 100yr Floodplain >100yr - 500yr Floodplain		
		>500yr Floodplain		
		List All Secondary Target Drinking Water Intakes:		
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target	Drinking Water Intakes:	
☐ Yes				
☑ No		Name: Water Body: Flow	(cfs): Population Served:	
House Drimery Torget Drinking Water Int	aleas Boon Idontified			
Have Primary Target Drinking Water Int	akes Been identified:			
Yes If Yes, Distan	ce to Nearest Drinking			
✓ No Water Intake	e: Miles ⁶			
If Yes, Enter Population Served by Targe	at Intako			
in res, Enter Population Served by rarge	et iiitake.			
NA People ⁴		Total within 1	L5 Miles ⁴	
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target	Fisheries ¹⁰	
If Van Dietana	te to Nearest Fishery:	Water Body/ Fishery Name		
Yes No If Yes, Distance	Miles	<u>vvater bouy/ risilery ivame</u>	. <u>1 10w (CIS)</u> .	
Have Primary Target Fisheries Been Ide				
				
Yes No				

	8. Surface Wat	er Pathway (cor	ntinued)	
Wetlands Located Along the Surface Wa	ater Migration		nvironments Located Along the Surface Water	
Path:		Migration Path:		
✓ Yes ☐ No		☐ Yes ☑ No	If Yes, Distance to Nearest Sensitive Environment: _ Miles	
Have Primary Target Wetlands Been Id	entified:	Have Primary Tai	rget Sensitive Environments Been Identified:	
☐ Yes ☑ No			☐ Yes ☑ No	
List All Wetlands:		List All Sensitive	Environments ¹¹ :	
Water Body: Flow (cfs): Frontage miles:		<u>Water Body</u> :	Flow (cfs): Sensitive Environment Type:	
	9. Soil E	xposure Pathwa	y .	
Are People Occupying Residence or	Number of Worke	•	Have Terrestrial Sensitive Environments Been	
Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination:	None		Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:	
			✓ No	
Yes Vo			If Yes, List Each Terrestrial Sensitive	
	Population Withir	n 1 Mile:	Environment ⁵ :	
If Yes, Enter Total Residential Population:	NA Pe	eople ⁷		
NA People²		•	*Refer to PA Table 7 for environment types	
	10	Air Dathwei	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Is there a Suspected Release to Air ¹ :	10.	Air Pathway	d Within 4 Miles of the Site ⁶ :	
Yes No Enter Total Population on or Within:		Yes No	If Yes, How Many Acres: Acres	
Onsite		Other Sensitive E	invironments Located Within 4 Miles of the Site:	
0-1/4 Mile			✓ Yes No	
>1/4-1/2 Mile		List All Sensitive	Environments Within 1/2 Mile of the Site ⁶ :	
>1/2-1 Mile		<u>Distance:</u> <u>Sen</u>	sitive Environment Type/Wetlands Area (acres):	
>1-2 Miles		Onsite Co 0-1/4 Mile	lorado Butterfly Plant Research Natural Area	
>2-3 Miles				
>3-4 Miles		>1/4-1/2 Mile	for calculations on air pathway exposures	
Total Within 4 Miles ³⁻⁵ _NA		neier to PA Table 10	roi calculations on all patriway exposures	

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Potential Hazardous Waste Site Preliminary

Identification				
State: WY	CERCLIS #:			
CERCUS Discovery Date:				

Assessment Form					CERCLIS Discov	very Date:
		1. Gener	al Site Information	on		
Name: F.E. Warren	AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude:	Longitude:	Approximate Are	a of Site:	Status of Site:	•	
41° 9'1.20"N	104°51'26.72"W	<1 Acres		✓ Active	Not Specified	
		Sc	quare Ft	Inactive	NA (GW plume,	etc.)
Site Name: Fire Station 2						
Site Description: Fire Station 2 is located in Building 1250, which was built in 1941, and currently serves as one of two fire stations on Base. This station likely became active in the 1950s or 1960s when helicopters use began (Wright, 2015, personal communication; Appendix C). This station has three fire trucks, Engine 5 and Rapid Intervention Vehicles (RIV) 1 and 2, that each hold 60 to 70 gallons of AFFF. The trucks are pump tested but not foam tested. While the RIVs can serve as crash trucks and carry AFFF, they are not used in that manner (Kimble, 2015, personal communication; Appendix C). The trucks are refilled with AFFF inside this station using 5-gallon buckets that are stored onsite (Kimble, 2015, personal communication; Appendix C). Drains in Building 1250 flow to an OWS that then connects to the sanitary sewer (Watson, 2015, personal communication; Appendix C).						
		2. Owner/C	Operator Informa	tion		
Owner: F.E. Warrer	AFB		Operator: Same as owner			
Street Address:		Street Address:				
City: City:						
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership:			Type of Ownershi	p:		
Private		Private County Federal Agency Municipal Name: Not Specified State Other Indian				
		3. Site Eva	aluator Informati	on		
Name of Evaluator: Kelly Teplitsky		Agency/Organizate CH2M HILL	tion:		Date Prepared 09/11/15	:
Street Address: 919	1 South Jamaica Str	eet	City: Englewood State: CO			
Name of EPA or State Agency Contact:		Street Address:				
City: State:		Telephone:				
		4. Site Dispos	ition <i>(for EPA use</i>	only)		
Emergency Respons	se/Removal Assessm	ient	CERCLIS Recommo	endation:	Signature:	
Recommendation:	□ Yes		Higher Priority SI Lower Priority SI Name (typed):			
☐ Yes ☐ No Date:			☐ NFRAP ☐ RCRA ☐ Other: Date:		Position:	

5. General Site Characteristics					
Predominant Land Use Within	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):				Decise 1050-2	
Industrial Agricul	ture DOI	Urba	n	Beginning Year1950s?	
Commercial Mining Residential DOD	Other Federal Facility:	☑ Subu	ırban	Ending Year present_	
Residential DOD Forest/Fields DOE		Rura	ıl		
	Other			Unknown	
Type of Site Operations (check	all that apply):			Waste Generated: NA	
Manufacturing (must check subca	ragony)	□ p-t-:		Onsite	
Lumber and Wood Products		Retail Recycling		Offsite	
Inorganic Chemicals		Junk/Salvage Yard		Onsite and Offsite	
Plastic and/or Rubber Produ	icts	Municipal Landfill			
Paints, Varnishes	_	☐ Other Landfill ☐ DOD		Waste Deposition Authorized	
Industrial Organic Chemical Agricultural Chemicals	5	DOE		By: Present Owner Former Owner	
Miscellaneous Chemical Pro	ducts	DOI		Present & Former Owner	
Primary Metals		Other Federal Facili	ity	Unauthorized	
Metal Coating, Plating, Engi	aving	RCRA	orage, or Disposal	Unknown	
Metal Forging, Stamping Fabricated Structural Metal	Products	Large Quantity		Waste Accessible to the Public:	
Electronic Equipment		Small Quantity			
Other Manufacturing		Subtitle D		Yes	
Mining				☑ No	
☐ Metals		"Converter"	ui		
Coal		"Protective File	er"	Distance to Nearest Dwelling,	
Oil and Gas		Non-or Late F	Filer"	School, or Workplace:	
Non-metallic Minerals		Note Specified			
		Other		NA feet	
	6. Waste Cha	racteristics Inform	mation		
		A Table 1 for WC Sco			
Source Type:	Source Waste Quantity:	Tier*:	General Type of		
(check all that apply)	(include unit)		(check all that app	oly):	
Landfill			Metals	Pesticides/Herbicides	
Surface Impoundment			Organics Inorganics	☐ Acids/Bases☐ Oily Waste	
Drums			Solvents	☐ Municipal Waste	
Tanks and Non-Dum Containers			Paints/Pigment	=	
Chemical Waste Pile Scrap Metal or Junk Pile			Laboratory/Hos	· — ·	
Tailings Pile			Radioactive Wa	ste	
Trash Pile (open drum)			Construction/Do	emonuon waste	
Land Treatment					
Contaminated GW Plume				f Waste as Deposited (check all	
(unidentified source) Contaminated SW/Sediment			that apply):	7	
(unidentified source)			-	Solid Sludge	
Contaminated Soil Other				Powder	
No Sources				Liquid	
	estream, V=Volume, A=Area			Gas	

	7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Po	pulation Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray				
☐ Yes	Yes					
☑ No	☑ No	0 4/4 N4:1-	NIA			
		0 - 1/4 Mile	NA			
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA			
Well:	Have Primary Target Drinking	71/4 - 1/2 WIIIE				
Feet	Water Wells Been Identified:	>1/2 - 1 Mile	NA			
Type of Drinking Water Wells Within 4	Yes	_,				
Miles	☑ No	>1 - 2 Mile	NA			
(check all that apply):						
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile	NA			
Private	Population: People ³					
✓ None	Peoples	>3 - 4 Mile	NA			
Depth to Shallowest Aquifer:	Nearest Designated Wellhead]				
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴	_NA			
Karst Terrain/Aquifer Present:	Underlies Site					
Karst retrain/Aquiter Fresent.	>0-1 Miles	*Use population #s for PA Tab	1- 2			
Yes	✓ None Within 4 Miles	*Note nearest well for #5 on				
✓ No		Note flearest well for #5 off	GW Fathway Scoresheet			
	8. Surface Water Pathwa	ay				
Type of Surface Water Draining Site and	l 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to			
that apply):		Surface Water:				
☑ Stream ☐ River ☐ F	Pond Lake	Feet				
	Other	NAN	1iles			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:				
		Annual - 10 yr Flo	•			
Yes No		>10yr - 100yr Floodplain >100yr - 500yr Floodplain				
		>500yr Floodplain				
		List All Secondary Target Drinking Water Intakes:				
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target	Drinking Water Intakes:			
☐ Yes						
☑ No		Name: Water Body: Flow	(cfs): Population Served:			
House Drimery Torget Drinking Water Int	aleas Boon Idontified					
Have Primary Target Drinking Water Int	akes Been identified:					
Yes If Yes, Distan	ce to Nearest Drinking					
✓ No Water Intake	e: Miles ⁶					
If Yes, Enter Population Served by Targe	at Intako					
in res, Enter Population Served by rarge	et iiitake.					
NA People ⁴		Total within 1	L5 Miles ⁴			
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target	Fisheries ¹⁰			
If Van Dietana	te to Nearest Fishery:	Water Body/ Fishery Name				
Yes No If Yes, Distance	Miles	water bouy/ risilery indme	. <u>1 10w (CIS)</u> .			
Have Primary Target Fisheries Been Ide						
						
Yes No						

	8. Surface Wat	er Pathway (c	ontinued)		
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water			
Path:		Migration Path			
✓ Yes No		Yes No	If Yes, Distance to Nearest Sensitive Environment: _ Miles		
Have Primary Target Wetlands Been Id	entified:	Have Primary T	Target Sensitive Environments Been Identified:		
☐ Yes ☑ No		☐ Yes ☑ No			
List All Wetlands:		List All Sensiti	ve Environments ¹¹ :		
Water Body: Flow (cfs): Frontage miles:		Water Body :	Flow (cfs): Sensitive Environment Type:		
					
	9 Soil F	xposure Pathy	way		
Are People Occupying Residence or	Number of Worke	•	Have Terrestrial Sensitive Environments Been		
Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination:	nding School or Daycare on or in 200 Feet of Area of Known or		Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:		
			☑ No		
Yes No			If Yes, List Each Terrestrial Sensitive		
If Yes, Enter Total Residential	Population Withir	1 Mile:	Environment ⁵ :		
Population:	_NA People ⁷				
NA People²			*Refer to PA Table 7 for environment types		
	10.	Air Pathway			
Is there a Suspected Release to Air ¹ :			ted Within 4 Miles of the Site ⁶ :		
☐ Yes ☑ No Enter Total Population on or Within:		✓ Yes ☐ No	If Yes, How Many Acres: Acres		
Onsite		Other Sensitive	Environments Located Within 4 Miles of the Site:		
0-1/4 Mile		✓ Yes □ No			
>1/4-1/2 Mile		List All Sensitive	e Environments Within 1/2 Mile of the Site ⁶ :		
>1/2-1 Mile		<u>Distance:</u> <u>So</u>	ensitive Environment Type/Wetlands Area (acres):		
>1-2 Miles			Colorado Butterfly Plant Research Natural Area		
>2-3 Miles		0-1/4 Mile _			
>3-4 Miles		>1/4-1/2 Mile _	10 for calculations on air pathway exposures		
Total Within 4 Miles ³⁻⁵ _NA		Refer to PA Table	to for calculations on air patriway exposures		

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Identification	
State: WY	CERCLIS #:
055011051	

	_						
Assessment Form					CERCLIS Disco	very Date:	
1. General Site Information							
Name: F.E. Warren	AFB	Street Address:					
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:	
Latitude: 41° 7'59.88"N	Longitude: 104°52'11.12"W	Approximate Area of Site: <1 Acres Square Ft Status of Site: ☐ Active ☐ Inactive			☐ Not Specified☐ NA (GW plume, etc.)		
Site Name: Building	g 930 (Hazardous wa	iste)		•			
building until transp disposed of by the	Site Description: Building 930, built in 1993, serves as the hazardous waste building. AFFF has periodically been stored at this building until transport and final disposal off base. On January 13, 2005 records show that four 55-gallon drums were disposed of by the fire department. However, no leaks or spills of AFFF are known to have occurred here (Travinio, 2015, personal communication; Appendix C).						
		2. Owner/0	Operator Inform	ation			
Owner: F.E. Warrer	ı AFB		Operator: Same	as owner			
Street Address:			Street Address:				
City:			City:				
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:		
Type of Ownership: Private							
		3. Site Eva	aluator Informa	tion			
Name of Evaluator: Kelly Teplitsky	91 South Jamaica Str	Agency/Organiza CH2M HILL	1		Date Prepared: 09/11/15 State: CO		
Street Address. 919	'I South Jamaica Sti	eet	City: Englewood State: CO				
Name of EPA or State Agency Contact:		Street Address:					
City: State:			Telephone:				
		4. Site Dispos	ition <i>(for EPA u</i>	se only)			
Emergency Respons Recommendation:	se/Removal Assessm	nent	CERCLIS Recommendation: Signature:				
necommendation.	Yes		Lower Priority SI NFRAP NAME (typed):		:		
∐ No		RCRA Position:		Position:			

5. General Site Characteristics					
Predominant Land Use Withir	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):					
☐ Industrial ☐ Agricu	llture DOI	Urba	ın	Beginning Year _1993_	
Commercial Mining	Other Federal	✓ Subu	ırban	Ending Voor procent	
Residential DOD	Facility:	Rura	l	Ending Year present_	
Forest/Fields DOE	Other			Unknown	
				_	
Type of Site Operations (chec	k all that apply):			Waste Generated: NA	
Manufacturing (must check subca	ategory)	Retail		Onsite	
Lumber and Wood Product	S	Recycling		☐ Offsite	
Inorganic Chemicals		Junk/Salvage Yard		Onsite and Offsite	
☐ Plastic and/or Rubber Prod☐ Paints, Varnishes	ucts	Municipal Landfill Other Landfill		Marka Barasitian Arabarian	
Industrial Organic Chemica	ls	DOD DOD		Waste Deposition Authorized Present Owner	
Agricultural Chemicals		DOE		By: Present Owner Former Owner	
Miscellaneous Chemical Pro	oducts	DOI		Present & Former Owner	
Primary Metals		Other Federal Facili	ity	Unauthorized	
Metal Coating, Plating, Eng Metal Forging, Stamping	raving		orage, or Disposal	Unknown	
Fabricated Structural Metal	Products	Large Quantity		Waste Accessible to the Public:	
Electronic Equipment		Small Quantity	Generator		
Other Manufacturing		Subtitle D		Yes	
Mining				✓ No	
Metals		"Converter"			
Coal		"Protective File	er"	Distance to Nearest Dwelling,	
Oil and Gas		U"Non-or Late F	iler"	School, or Workplace:	
Non-metallic Minerals		Note Specified			
		Other		NA feet	
	C Marks Cha				
		racteristics Inform A Table 1 for WC Sco			
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste	
(check all that apply)	(include unit)		(check all that app		
			Metals	Pesticides/Herbicides	
Landfill			Organics	Acids/Bases	
Surface Impoundment Drums			Inorganics	Oily Waste	
Tanks and Non-Dum Containers			Solvents	Municipal Waste	
Chemical Waste Pile			Paints/Pigment Laboratory/Hos	= -	
Scrap Metal or Junk Pile			Radioactive Wa	·	
Tailings Pile			_	emolition Waste	
Trash Pile (open drum) Land Treatment					
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all	
(unidentified source)			that apply):	Waste as Deposited (effect an	
Contaminated SW/Sediment			Γ	Solid	
(unidentified source) Contaminated Soil				Sludge	
Other				Powder	
No Sources				Liquid Gas	
*C=Constituent, W=Was	testream, V=Volume, A=Area				

	7. Ground Water Pathway					
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Po	pulation Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray				
Yes	Yes					
☑ No	☑ No	0 1/4 04:1-	NIA			
		0 - 1/4 Mile	NA			
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA			
Well:	Have Primary Target Drinking	71/4 1/2 WIIIC				
Feet	Water Wells Been Identified:	>1/2 - 1 Mile	NA			
Type of Drinking Water Wells Within 4	☐Yes	,				
Miles	☑ No	>1 - 2 Mile	NA			
(check all that apply):	If Vac Enter Driman, Target					
☐ Municipal	If Yes, Enter Primary Target Population:	>2 - 3 Mile	NA			
Private	People ³					
<u></u> ✓ None	1 еоріе	>3 - 4 Mile	NA			
Depth to Shallowest Aquifer:	Nearest Designated Wellhead	Tabal NACAbia A NACI and	NI A			
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴	_NA			
Karst Terrain/Aquifer Present:	Underlies Site					
naise remain, iquire r resent.	>0-4 Miles	*Use population #s for PA Tab	2 مار			
Yes	None Within 4 Miles	*Note nearest well for #5 on				
✓ No						
	8. Surface Water Pathwa	·				
Type of Surface Water Draining Site and	l 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to			
that apply):		Surface Water:				
✓ Stream River F	Pond Lake	Feet				
Bay Ocean C	Other	NA N	1iles			
	1	Site is Legated in				
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:				
Yes		Annual - 10 yr Floodplain >10yr - 100yr Floodplain				
☑ No		>100yr - 500yr Floodplain				
		>500yr Floodplain				
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target Drinking Water Intakes:				
Drinking Water intake Escated / Hong til	e sarrace water imgration ratio	List / III Secondary ranges	Dimining Water intakes.			
Yes						
✓ No		Name: Water Body: Flow	(cfs): Population Served:			
Have Primary Target Drinking Water Int	akes Been Identified:					
□ Vee	as to Named Brighton					
I —	ce to Nearest Drinking					
water intake	e: Miles ⁶					
If Yes, Enter Population Served by Targe	et Intake:					
		Total within 1	L5 Miles ⁴			
NA People ⁴						
Fisheries Located Along the Surface Wa	ter Migration Path	List All Secondary Target	Fisheries ¹⁰ :			
If Van Dietana	te to Nearest Fishery:					
Yes No If Yes, Distance	Miles	Water Body/ Fishery Name	: Flow (cfs):			
Have Primary Target Fisheries Been Ider						
Yes No						

	8. Surface Wat	er Pathway (d	(continued)		
Wetlands Located Along the Surface Wa	ater Migration		ve Environments Located Along the Surface Water		
Path:		Migration Path			
✓ Yes □ No		Yes No	If Yes, Distance to Nearest Sensitive Environment: _ Miles		
Have Primary Target Wetlands Been Id	entified:	Have Primary	Target Sensitive Environments Been Identified:		
☐ Yes ☑ No			☐ Yes ✓ No		
List All Wetlands:		List All Sensit	tive Environments ¹¹ :		
Water Body: Flow (cfs): Frontage miles:		<u>Water Body</u> :	Flow (cfs): Sensitive Environment Type:		
	9 Soil F	xposure Path	nway		
Are People Occupying Residence or	Number of Worke	•	Have Terrestrial Sensitive Environments Been		
Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination:	re on or f Known or None		Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:		
Yes			✓ No		
☑ No			If Yes, List Each Terrestrial Sensitive		
Population Within If Yes, Enter Total Residential		n 1 Mile:	Environment ⁵ :		
Population:	_NA Pe	ople ⁷			
NA People²			*Refer to PA Table 7 for environment types		
	10.	Air Pathway			
Is there a Suspected Release to Air ¹ :			ated Within 4 Miles of the Site ⁶ :		
☐ Yes ☑ No Enter Total Population on or Within:		Yes No	If Yes, How Many Acres: Acres		
Onsite		Other Sensitiv	ve Environments Located Within 4 Miles of the Site:		
0-1/4 Mile			✓ Yes ☐ No		
>1/4-1/2 Mile		List All Sensitiv	ive Environments Within 1/2 Mile of the Site ⁶ :		
>1/2-1 Mile		<u>Distance:</u>	Sensitive Environment Type/Wetlands Area (acres):		
>1-2 Miles			Colorado Butterfly Plant Research Natural Area		
>2-3 Miles		0-1/4 Mile			
>3-4 Miles			le 10 for calculations on air pathway exposures		
Total Within 4 Miles ³⁻⁵ _NA		Neier to FA Table	ic 20.00. Consultations on all parintal caposares		

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Identification **Potential Hazardous Waste Site Preliminary** CERCLIS #: State: WY **Assessment Form CERCLIS Discovery Date:** 1. General Site Information Name: F.E. Warren AFB Street Address: City: Chevenne State: WY Zip Code: County: Co. Code: Cong. Dist: Laramie Latitude: Approximate Area of Site: Status of Site: Longitude: 41° 8'37.86"N 104°52'8.10"W _<1___ Acres ✓ Active ☐ Not Specified Square Ft Inactive NA (GW plume, etc.) Site Name: Building 1240 (Truck maintenance) Site Description: Building 1240, built in 1995, serves as the truck maintenance facility. This building formerly had an AFFF system that was replaced with a water suppression system in 2012. No additional information is known about the former AFFF system; however, no known leaks or spills are known to have occurred (Watson, 2015, personal communication; Appendix C). This building is connected to a poly-lined containment pond located between Buildings 1240 and 1247 and spills 2. Owner/Operator Information Owner: F.E. Warren AFB Operator: Same as owner Street Address: Street Address: City: City: State: ND Telephone: Telephone: Zip Code: State: Zip Code: Type of Ownership: Type of Ownership: Private County County Private Municipal Municipal ✓ Federal Agency Federal Agency Name: _DOD__ Not Specified Not Specified Name: State State Other_ Other_ Indian Indian

3. Site Evaluator Information Name of Evaluator: Agency/Organization: Date Prepared: CH2M HILL 09/11/15 Kelly Teplitsky Street Address: 9191 South Jamaica Street City: Englewood State: CO Name of EPA or State Agency Contact: Street Address: City: State: Telephone: 4. Site Disposition (for EPA use only) **Emergency Response/Removal Assessment CERCLIS Recommendation:** Signature: Higher Priority SI Recommendation: Lower Priority SI Name (typed): Yes ☐ NFRAP ☐ No RCRA Other: _ Position: Date: __

5. General Site Characteristics					
Predominant Land Use Withir	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):					
Industrial Agricu	lture DOI	Urba	ın	Beginning Year _1995_	
Commercial Mining	Other Federal	✓ Subu	ırban	Ending Voor procent	
Residential JOOD	Facility:	Rura	l	Ending Year present_	
Forest/Fields DOE	Other			Unknown	
				_	
Type of Site Operations (check	k all that apply):			Waste Generated: NA	
Manufacturing (must check subca	itegory)	Retail		Onsite	
Lumber and Wood Product	S	Recycling		☐ Offsite	
Inorganic Chemicals		Junk/Salvage Yard		Onsite and Offsite	
☐ Plastic and/or Rubber Prod☐ Paints, Varnishes	ucts	Municipal Landfill Other Landfill		Marka Barasikian Arkhariand	
Industrial Organic Chemica	ls	DOD DOD		Waste Deposition Authorized Present Owner	
Agricultural Chemicals		DOE		By: Present Owner Former Owner	
Miscellaneous Chemical Pro	oducts	DOI		Present & Former Owner	
Primary Metals		Other Federal Facili	ity	Unauthorized	
Metal Coating, Plating, Eng Metal Forging, Stamping	raving		orage, or Disposal	Unknown	
Fabricated Structural Metal	Products	Large Quantity		Waste Accessible to the Public:	
Electronic Equipment		Small Quantity	Generator		
Other Manufacturing		Subtitle D		Yes	
Mining				✓ No	
Metals		"Converter"			
Coal		"Protective File	er"	Distance to Nearest Dwelling,	
Oil and Gas		U"Non-or Late F	iler"	School, or Workplace:	
Non-metallic Minerals		Note Specified			
		Other		NA feet	
		racteristics Inform A Table 1 for WC Sco			
Source Type:	Source Waste Quantity:	Tier*:	General Type of	Waste	
(check all that apply)	(include unit)		(check all that app		
			Metals	Pesticides/Herbicides	
Landfill			Organics	Acids/Bases	
Surface Impoundment Drums			Inorganics	Oily Waste	
Tanks and Non-Dum Containers			Solvents	Municipal Waste	
Chemical Waste Pile			Paints/Pigment Laboratory/Hos	= -	
Scrap Metal or Junk Pile			Radioactive Wa	·	
Tailings Pile			_	emolition Waste	
Trash Pile (open drum) Land Treatment					
Contaminated GW Plume			Physical State of	f Waste as Deposited (check all	
(unidentified source)			that apply):	Waste as Deposited (effect an	
Contaminated SW/Sediment			Г	Solid	
(unidentified source) Contaminated Soil				Sludge	
Other				Powder	
No Sources				<u>✓</u> Liquid	
*C=Constituent, W=Was	testream, V=Volume, A=Area			_ Gas	

7. Ground Water Pathway					
Is Ground Water Used for Drinking			List Secondary Target Population Served by		
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray			
☐ Yes	Yes				
☑ No	☑ No	0 4/4 N4:1-	NIA		
		0 - 1/4 Mile	NA		
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA		
Well:	Have Primary Target Drinking	71/4 - 1/2 WIIIE			
Feet	Water Wells Been Identified:	>1/2 - 1 Mile	NA		
Type of Drinking Water Wells Within 4	Yes	,			
Miles	☑ No	>1 - 2 Mile	NA		
(check all that apply):	If Vac Fatan Brimson, Tauast				
Municipal Municipal	If Yes, Enter Primary Target	>2 - 3 Mile	NA		
Private	Population: People ³				
✓ None	People*	>3 - 4 Mile	NA		
Depth to Shallowest Aquifer:	Nearest Designated Wellhead	T . 134531 . 4 8431 . 4			
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴	_NA		
Karst Terrain/Aquifer Present:	Underlies Site				
Karse retrain/Aquiter Fresche.	>0-4 Miles	*Use population #s for PA Tab	do 2		
Yes	None Within 4 Miles	*Note nearest well for #5 on			
✓ No		Note ficurest well for #5 off	dw rathway scoresnect		
	8. Surface Water Pathwa	зу			
Type of Surface Water Draining Site and	l 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to		
that apply):		Surface Water:			
☑ Stream ☐ River ☐ F	Pond Lake	Feet			
Bay Ccean C	Other	NA Miles			
	1	a			
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
☐ Yes		Annual - 10 yr Floodplain >10yr - 100yr Floodplain			
√ No		>10yr - 100yr Floodplain >100yr - 500yr Floodplain			
_		>500yr Floodplain			
Drinking Water Intake Located Along th	o Surface Water Migration Bath	List All Socondary Target	Drinking Water Intakes:		
Drinking water intake Located Along th	e Surface Water Migration Patri.	List All Secondary ranger	Dillikilig water ilitakes.		
☐ Yes					
☑ No		Name: Water Body: Flow	(cfs): Population Served:		
Have Primary Target Drinking Water Int	akes Been Identified:				
	akes been identified.				
· –	ce to Nearest Drinking				
✓ No Water Intake	e: Miles ⁶				
If Yes, Enter Population Served by Targe	et Intake:				
li res) Enter repaidtion served sy range	in maker				
NA People ⁴		Total within 1	L5 Miles ⁴		
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target	Fisheries ¹⁰ :		
If Voc Distance to Normat Fishers		Water Body/ Fishery Name			
Yes No If Yes, Distance to Nearest Fishery: Water Body/ Fishery Nam					
Have Primary Target Fisheries Been Ide	ntified:				
Yes ✓ No					
☐ Tes ☑ NO					

8. Surface Water Pathway (continued)					
Wetlands Located Along the Surface Wa	ater Migration	Other Sensitive Environments Located Along the Surface Water			
Path:		Migration Path:			
✓ Yes ☐ No		☐ Yes ☑ No	If Yes, Distance to Nearest Sensitive Environment: _ Miles		
Have Primary Target Wetlands Been Id	entified:	Have Primary	Target Sensitive Environments Been Identified:		
☐ Yes ☑ No		☐ Yes ☑ No			
List All Wetlands:		List All Sensitive Environments ¹¹ :			
Water Body: Flow (cfs): Frontage miles:		Water Body :	Flow (cfs): Sensitive Environment Type:		
	9 Soil F	xposure Path	nway		
Are People Occupying Residence or	Number of Worke	•	Have Terrestrial Sensitive Environments Been		
Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination: Number of Worke Number of Worke) 1,000	Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:		
Yes			☑ No		
☑ No			If Yes, List Each Terrestrial Sensitive		
If Yes, Enter Total Residential	Population Withir	n 1 Mile:	Environment ⁵ :		
Population:	_NA Pe	ople ⁷			
NA People²			*Refer to PA Table 7 for environment types		
	10.	Air Pathway			
Is there a Suspected Release to Air ¹ :			ated Within 4 Miles of the Site ⁶ :		
☐ Yes ☑ No Enter Total Population on or Within:		✓ Yes □ No	If Yes, How Many Acres: Acres		
·		Other Sensitiv	ve Environments Located Within 4 Miles of the Site:		
Onsite 0-1/4 Mile		✓ Yes □ No			
		List All Sensitive Environments Within 1/2 Mile of the Site ⁶ :			
>1/2-1 Mile		<u>Distance:</u>	Sensitive Environment Type/Wetlands Area (acres):		
>1-2 Miles		Onsite	Colorado Butterfly Plant Research Natural Area		
>2-3 Miles		0-1/4 Mile			
>3-4 Miles			e 10 for calculations on air pathway exposures		
Total Within 4 Miles ³⁻⁵ _NA		NCICL TO FA TABLE	e 20 for carculations on all patientaly exposures		

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Potential Hazardous Waste Site Preliminary

Identification		
State: WY	CERCLIS #:	
CEDCITIC D.		

				•		
Assessment Form			CERCLIS Disco	very Date:		
1. General Site Information						
Name: F.E. Warren	AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude:	Longitude:	Approximate Are	ea of Site: Status of Site:			•
41° 8'37.86"N	104°52'8.10"W	<1 Acres	Active Not Specified			
		S	Square Ft Inactive NA (GW plume, etc.)		etc.)	
Site Name: Buildin	g 1247 (Base Fuels)			!		
Site Description: Bu	ıilding 1247, Base Fu	els, was built in 19	995 and has an activ	ve AFFF system w	vith overhead li	nes. The AFFF
tank size is unknow	n but staff estimates	s it to be 200 to 30	00 gallons (Schafer,	2015, personal c	ommunication	; Appendix C).
This building is con	nected to a poly-line	d containment po	nd located betwee	n Buildings 1240	and 1247 and s	spills can be
diverted to this por	nd as necessary (Mck	(inley, 2015, perso	onal communication	n; Appendix C).		
		2. Owner/0	Operator Informa	tion		
Owner: F.E. Warrer	n AFB		Operator: Same a	s owner		
Street Address:			Street Address:			
City:	City:					
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership	Type of Ownership: Type of Ownership:					
Private	☐ County		Private	County		
Federal Agency Municipal		Federal Agency Municipal				
Name: _DOD State		cified	Name: Not Specified			
Indian	Other		Indian	Other		
		3. Site Eva	aluator Informati	on		
Name of Evaluator: Agency/Organization:		tion:	on: Date Prepared:		l:	
Kelly Teplitsky CH2M HILL				09/11/15		
Street Address: 9191 South Jamaica Street		City: Englewood State: CO		State: CO		
Name of EPA or State Agency Contact:		Street Address:				
City:		State:	Telephone:			
4. Site Disposition (for EPA use only)						
Emergency Respon	se/Removal Assessm	nent	CERCLIS Recomm	CERCLIS Recommendation:		
Recommendation:			Higher Priority SI		Signature:	
∏Yes				Name (typed):	:	
□ No			□ NFRAP □ RCRA Position:			
Da	te:		Other:		osition.	
Date:			Date:			

5. General Site Characteristics					
Predominant Land Use Withir	1 Mile of Site (check all	Site Setting:		Years of Operation:	
that apply):					
Industrial Agricu	ilture DOI	Urba	in	Beginning Year _1995_	
Commercial Mining	Other Federal Facility:	✓ Subu	ırban	Ending Year present_	
Residential DOD Forest/Fields DOE		Rura	l		
	Other			Unknown	
Type of Site Operations (chec	k all that apply):			Waste Generated: NA	
Manufacturing (must check subca	ategory)	Retail		✓ Onsite	
Lumber and Wood Product	S	Recycling		Offsite	
Inorganic Chemicals		Junk/Salvage Yard		Onsite and Offsite	
☐ Plastic and/or Rubber Prod☐ Paints, Varnishes	ucts	Municipal Landfill Other Landfill		Marta Danasitian Authorized	
Industrial Organic Chemica	ls	DOD DOD		Waste Deposition Authorized Present Owner	
Agricultural Chemicals		DOE		By: Present Owner Former Owner	
Miscellaneous Chemical Pro	oducts	DOI Other Federal Facili	itv	Present & Former Owner	
Primary Metals Metal Coating, Plating, Eng	raving	RCRA	ity	Unauthorized Unknown	
Metal Forging, Stamping	laving		orage, or Disposal	Waste Accessible to the Public:	
Fabricated Structural Metal	Products	Large Quantity		waste Accessible to the Public.	
Electronic Equipment		Small Quantity Subtitle D	Generator	_	
Other Manufacturing		Municipa	al	∐ Yes ✓ No	
Mining		☐ Industria		I S NO	
☐ Metals ☐ Coal		Converter"		Distance to Nearest Dwelling,	
Oil and Gas		☐ "Protective File		School, or Workplace:	
Non-metallic Minerals		☐ "Non-or Late F☐ Note Specified	·iier	School, of Workplace.	
_		Other		0 foot	
		_		0 feet	
		racteristics Inforr			
		A Table 1 for WC Sco			
Source Type:	Source Waste Quantity:	Tier*:	General Type of		
(check all that apply)	(include unit)		(check all that app		
Landfill			☐ Metals ☐ Organics	Pesticides/Herbicides Acids/Bases	
Surface Impoundment			Inorganics	Oily Waste	
Drums			Solvents	Municipal Waste	
Tanks and Non-Dum Containers Chemical Waste Pile			Paints/Pigment	= 1	
Scrap Metal or Junk Pile			Laboratory/Hos	· — ·	
Tailings Pile			_	ste	
Trash Pile (open drum)					
Land Treatment Contaminated GW Plume			Physical State of	f Waste as Deposited (check all	
(unidentified source)			that apply):	waste as Deposited (check dil	
Contaminated SW/Sediment			гитат арртуј.	Solid	
(unidentified source)			-	Solid Sludge	
Contaminated Soil Other				Powder	
No Sources			<u> </u>	Liquid	
*C=Constituent, W=Was	testream, V=Volume, A=Area			_ Gas	

7. Ground Water Pathway					
Is Ground Water Used for Drinking Is There a Suspected Release to		List Secondary Target Population Served by			
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray	vn From:		
Yes	✓ Yes				
☑ No	□ No	0 1/4 Mile	NIA		
		0 - 1/4 Mile	NA		
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA		
Well:	Have Primary Target Drinking	7 1/ 1/2 1/11			
Feet	Water Wells Been Identified:	>1/2 - 1 Mile	NA		
Type of Drinking Water Wells Within 4	Yes				
Miles	☑ No	>1 - 2 Mile	NA		
(check all that apply):	If Yes, Enter Primary Target				
Municipal Municipal	Population:	>2 - 3 Mile	NA		
☐ Private	People ³	2 4 4 4 4 4			
✓ None		>3 - 4 Mile	NA		
Depth to Shallowest Aquifer:	Nearest Designated Wellhead	Total Within 4 Miles ⁴	NA		
NA	Protection Area ⁶ :	Total Within 4 Miles	_IVA		
Karst Terrain/Aquifer Present:	Underlies Site				
	>0-4 Miles	*Use population #s for PA Tab	le 2		
Yes	✓ None Within 4 Miles	*Note nearest well for #5 on	GW Pathway Scoresheet		
✓ No	O Confere Water Bath				
Turn of Confess Water Dusining City and	8. Surface Water Pathwa	i	F A C		
Type of Surface Water Draining Site and	115 Milles Downstream (check all	Shortest Overland Distar Surface Water:	nce From Any Source to		
that apply):		Surface water:			
	Pond Lake	Feet			
Bay Ocean C	Other	0.4 N	liles		
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:			
list the dispersion hereast to surrace		Annual - 10 yr Floodplain			
<u></u> ✓ Yes		>10yr - 100yr Floodplain			
☐ No		>100yr - 500yr Floodplain			
		>500yr Floodplair	1		
Drinking Water Intake Located Along the	e Surface Water Migration Path:	List All Secondary Target	Drinking Water Intakes:		
□ Voc					
☐ Yes ☐ No		Name: Water Body: Flow	(cfs): Population Served:		
		Name: Water Body: Flow	ropulation served.		
Have Primary Target Drinking Water Int	akes Been Identified:				
Yes If Yes, Distan	ce to Nearest Drinking				
✓ No Water Intake	e: Miles ⁶				
If Yes, Enter Population Served by Targe	et Intake:				
		Total within 1	L5 Miles ⁴		
NA People ⁴		Total within 2	L3 ivilles		
Fisheries Legated Along the Courts as Man	tor Migration Dath:		F: 1 · 10		
Fisheries Located Along the Surface Water Migration Path:		List All Secondary Target			
Yes No If Yes, Distance to Nearest Fishery: Miles		Water Body/ Fishery Name	: Flow (cfs):		
Have Primary Target Fisheries Been Ider					
	imicu.				
☐ Yes ✓ No					

	8. Surface Wat	er Pathway ((continued)
Wetlands Located Along the Surface Wa	ater Migration		ve Environments Located Along the Surface Water
Path:		Migration Pat	
✓ Yes □ No		☐ Yes ☑ No	If Yes, Distance to Nearest Sensitive Environment: _ Miles
Have Primary Target Wetlands Been Id	entified:	Have Primary	Target Sensitive Environments Been Identified:
☐ Yes ☑ No			☐ Yes ☑ No
List All Wetlands:		List All Sensi	itive Environments ¹¹ :
Water Body: Flow (cfs): Frontage miles:		Water Body :	Flow (cfs): Sensitive Environment Type:
		·	
	0 Sail E	xposure Path	
Are People Occupying Residence or	Number of Worke	•	Have Terrestrial Sensitive Environments Been
Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination:	None) 1,000	Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:
☐ Yes ☑ No			✓ No If Yes, List Each Terrestrial Sensitive
If Yes, Enter Total Residential Population:	Population Within		Environment ⁵ :
NA People ²	_NAre	υ ριε	*Refer to PA Table 7 for environment types
	10.	Air Pathway	
Is there a Suspected Release to Air ¹ :		Wetlands Loca	cated Within 4 Miles of the Site ⁶ :
☐ Yes ☑ No Enter Total Population on or Within:		Yes No	If Yes, How Many Acres: Acres
Onsite		Other Sensitiv	ve Environments Located Within 4 Miles of the Site:
0-1/4 Mile			✓ Yes No
>1/4-1/2 Mile		List All Sensiti	ive Environments Within 1/2 Mile of the Site ⁶ :
>1/2-1 Mile		<u>Distance:</u>	Sensitive Environment Type/Wetlands Area (acres):
>1-2 Miles		Onsite 0-1/4 Mile	Colorado Butterfly Plant Research Natural Area
>2-3 Miles			
>3-4 Miles			le 10 for calculations on air pathway exposures
Total Within 4 Miles ³⁻⁵ _32,580		Neier to I A Table	to to the calculations of an paritial exposures

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

Potential Hazardous Waste Site Preliminary

Identification	
State: WY	CERCLIS #:
CEDCUS Disessi	Data.

				•		
	Asse	ssment For	m		CERCLIS Discov	very Date:
		1. Gener	al Site Information	on		
Name: F.E. Warren	AFB	Street Address:				
City: Cheyenne		State: WY	Zip Code:	County: Laramie	Co. Code:	Cong. Dist:
Latitude: 41° 8'48.78"N	Longitude: 104°52'4.58"W	Approximate Are<1 Acres So		Status of Site: Active Inactive	Not Specified NA (GW plume,	etc.)
Site Name: Building	g 1285 (Hazmart)	L				
base. During a visit floor drains. If a spi	ilding 1285, built in 1 to the building, 39 5 Il occurs, it would be or spills are known to	5-gallon drums of cleaned up by a c	AFFF were stored hontractor (Wright,	nere. The building 2015, personal c	g has a tempora ommunication;	ary berm but no Appendix C).
		2. Owner/C	Operator Informa	tion		
Owner: F.E. Warrer	ı AFB		Operator: Same a	s owner		
Street Address:		Street Address:				
City:			City:			
State: ND	Zip Code:	Telephone:	State:	Zip Code:	Telephone:	
Type of Ownership: Private Federal Agency Name: _DOD State Indian	County Municipal		Type of Ownershi Private Federal Agency Name: State Indian	p: County Municip Not Spe		
		3. Site Eva	aluator Informati	on		
Name of Evaluator: Kelly Teplitsky	11 South Jamaica Stre	Agency/Organiza CH2M HILL	1		Date Prepared 09/11/15 State: CO	:
Street Address. 919	1 30utii Jamaica 3ti e	eet	City: Englewood		State. CO	
Name of EPA or Sta	te Agency Contact:		Street Address:			
City:		State:	•	Telephone:		
		4. Site Dispos	ition <i>(for EPA use</i>	only)		
Emergency Respons Recommendation:	se/Removal Assessm Yes No	ent	CERCLIS Recomme Higher Priority Lower Priority NFRAP RCRA	y SI	Signature: Name (typed): Position:	
Dat	te:		Other: Date:		i osition.	

	5. Genera	l Site Characteris	tics	
Predominant Land Use Withir	1 Mile of Site (check all	Site Setting:		Years of Operation:
that apply):				
Industrial Agricu	lture DOI	Urba	ın	Beginning Year _1995_
Commercial Mining		✓ Subu	ırban	Ending Year present_
Residential DOD Forest/Fields DOE	Facility:	Rura	I	Lituing real present_
	Other			Unknown
Type of Site Operations (check	k all that apply):			Waste Generated: NA
<u> </u>				_
Manufacturing (must check subca		Retail		✓ Onsite Offsite
Lumber and Wood Product Inorganic Chemicals	S	Recycling Junk/Salvage Yard		Onsite and Offsite
Plastic and/or Rubber Prod	ucts	Municipal Landfill		_
Paints, Varnishes		Other Landfill		Waste Deposition Authorized
Industrial Organic Chemica	ls	☑ DOD □ DOE		By: Present Owner
Agricultural Chemicals Miscellaneous Chemical Pro	odusts	DOI		Former Owner Present & Former Owner
Primary Metals	ducts	Other Federal Facili	ity	Unauthorized
Metal Coating, Plating, Eng	raving	RCRA		Unknown
Metal Forging, Stamping	D. J	Treatment, Sto	orage, or Disposal	Waste Accessible to the Public:
Fabricated Structural Metal Electronic Equipment	Products	Small Quantity		
Other Manufacturing		Subtitle D		∏Yes
Mining		Municipa		☐ No
Metals		☐ Industria	al	_
Coal		"Converter" "Protective File	ar"	Distance to Nearest Dwelling,
Oil and Gas		Non-or Late F		School, or Workplace:
Non-metallic Minerals		Note Specified		
		Other		NA feet
		racteristics Inform		
Carrier Turan		A Table 1 for WC Sco		'M/
Source Type:	Source Waste Quantity:	Tier*:	General Type of (check all that app	
(check all that apply)	(include unit)		Γ	
Landfill			☐ Metals ☐ Organics	Pesticides/Herbicides Acids/Bases
Surface Impoundment			Inorganics	Oily Waste
Drums Tanks and Non-Dum Containers			Solvents	Municipal Waste
Chemical Waste Pile			Paints/Pigment	= 1
Scrap Metal or Junk Pile			Laboratory/Hos	· — ·
Tailings Pile			_	emolition Waste
Trash Pile (open drum)				
Land Treatment Contaminated GW Plume			Physical State of	f Waste as Deposited (check all
(unidentified source)			that apply):	waste as Deposited (check all
Contaminated SW/Sediment			Гас арр.ул.	Solid
(unidentified source) Contaminated Soil				☐ Sludge
Other				Powder
No Sources				Liquid
*C=Constituent, W=Was	testream, V=Volume, A=Area			_ Gas

	7. Ground Water Pathwa	ay	
Is Ground Water Used for Drinking	Is There a Suspected Release to	List Secondary Target Po	pulation Served by
Within 4 Miles:	Ground Water ¹ :	Ground Water Withdray	
☐ Yes	Yes		
☑ No	☑ No	0 1/4 04:1-	NIA
		0 - 1/4 Mile	NA
If Yes, Distance to nearest Drinking		>1/4 - 1/2 Mile	NA
Well:	Have Primary Target Drinking	71/4 - 1/2 WIIIE	
Feet	Water Wells Been Identified:	>1/2 - 1 Mile	NA
Type of Drinking Water Wells Within 4	Yes	_,	
Miles	☑ No	>1 - 2 Mile	NA
(check all that apply):			
Municipal	If Yes, Enter Primary Target	>2 - 3 Mile	NA
Private	Population: People ³		
✓ None	Peoples	>3 - 4 Mile	NA
Depth to Shallowest Aquifer:	Nearest Designated Wellhead]	
NA	Protection Area ⁶ :	Total Within 4 Miles ⁴	_NA
Karst Terrain/Aquifer Present:	Underlies Site		
Karst retrain/Aquiter Fresent.	>0-1 Miles	*Use population #s for PA Tab	1- 2
Yes	✓ None Within 4 Miles	*Note nearest well for #5 on	
✓ No		Note flearest well for #5 off	GW Fathway Scoresheet
	8. Surface Water Pathwa	ау	
Type of Surface Water Draining Site and	l 15 Miles Downstream (check all	Shortest Overland Distar	nce From Any Source to
that apply):		Surface Water:	
☑ Stream ☐ River ☐ F	Pond Lake	Feet	
	Other	NAN	1iles
Is There a Suspected Release to Surface	Water ¹ :	Site is Located in:	
		Annual - 10 yr Flo	•
Yes 7 No		>10yr - 100yr Flo	•
		>500yr Floodplair	
Drinking Water Intake Located Along th	e Surface Water Migration Path:	List All Secondary Target	Drinking Water Intakes:
☐ Yes			
☑ No		Name: Water Body: Flow	(cfs): Population Served:
House Drimery Torget Drinking Water Int	aleas Boon Idontified		
Have Primary Target Drinking Water Int	akes Been identified:		
Yes If Yes, Distan	ce to Nearest Drinking		
✓ No Water Intake	e: Miles ⁶		
If Yes, Enter Population Served by Targe	at Intako		
in res, Enter Population Served by rarge	et iiitake.		
NA People ⁴		Total within 1	L5 Miles ⁴
Fisheries Located Along the Surface Wa	ter Migration Path:	List All Secondary Target	Fisheries ¹⁰
If Van Dietana	te to Nearest Fishery:	Water Body/ Fishery Name	
Yes No If Yes, Distance	Miles	<u>vvater bouy/ risilery ivame</u>	. <u>1 10w (CIS)</u> .
Have Primary Target Fisheries Been Ide			
			
Yes No			

	8. Surface Wat	er Pathway (c	ontinued)
Wetlands Located Along the Surface Wa	ater Migration		Environments Located Along the Surface Water
Path:		Migration Path	
✓ Yes No		Yes No	If Yes, Distance to Nearest Sensitive Environment: _ Miles
Have Primary Target Wetlands Been Id	entified:	Have Primary T	Target Sensitive Environments Been Identified:
☐ Yes ☑ No			☐ Yes ☑ No
List All Wetlands:		List All Sensiti	ve Environments ¹¹ :
Water Body: Flow (cfs): Frontage miles:		Water Body :	Flow (cfs): Sensitive Environment Type:
			
	9 Soil F	xposure Pathy	way
Are People Occupying Residence or	Number of Worke	•	Have Terrestrial Sensitive Environments Been
Attending School or Daycare on or Within 200 Feet of Area of Known or Suspected Contamination:	□ None □ 1 - 100 □ 101 - 1 □ > 1,00	O 1,000	Identified on or Within 200 Feet of Areas of Known or Suspected Contamination:
			☑ No
Yes No			If Yes, List Each Terrestrial Sensitive
If Yes, Enter Total Residential	Population Withir	1 Mile:	Environment ⁵ :
Population:	_NA Pe	ople ⁷	
NA People²			*Refer to PA Table 7 for environment types
	10.	Air Pathway	
Is there a Suspected Release to Air ¹ :			ted Within 4 Miles of the Site ⁶ :
☐ Yes ☑ No Enter Total Population on or Within:		✓ Yes ☐ No	If Yes, How Many Acres: Acres
Onsite		Other Sensitive	Environments Located Within 4 Miles of the Site:
0-1/4 Mile			✓ Yes No
>1/4-1/2 Mile		List All Sensitive	e Environments Within 1/2 Mile of the Site ⁶ :
>1/2-1 Mile		<u>Distance:</u> <u>So</u>	ensitive Environment Type/Wetlands Area (acres):
>1-2 Miles			Colorado Butterfly Plant Research Natural Area
>2-3 Miles		0-1/4 Mile _	
>3-4 Miles		>1/4-1/2 Mile _	10 for calculations on air pathway exposures
Total Within 4 Miles ³⁻⁵ _NA		Refer to PA Table	to for calculations on air patriway exposures

¹⁻¹¹ Refers to question number on the PA scoresheet for each particular pathway

APPENDIX B.2 OTHER

ellow-ADD			List of AF Hangars fo	or Evaluation or	Active Duty Bases		
ed-DELETE reen-UPDATE			High Expansion	AFFF	Deluge	мајсом	STATE/ COUNTRY
CCI CI DAIL	Base/Site	Hangar Bldg #	Foam				
1	Altus AFB	509		Х		AETC	ОК
	Altus AFB	514		Х		AETC	ОК
	Altus AFB	518				AETC	ОК
	Altus AFB	517		Х		AETC	ОК
	Altus AFB	435			Х	AETC	ОК
	Altus AFB	285				AETC	ОК
2	Columbus	246				AETC	MS
	Columbus	406	х			AETC	MS
	Columbus	440		Х		AETC	MS
	Columbus	450	Х			AETC	MS
	Columbus	460	Х			AETC	MS
	Columbus	995		Х		AETC	MS
3	JBSA Lackland	826	Х			AETC	TX
	JBSA Lackland	829		X		AETC	TX
	JBSA Lackland	933	Х			AETC	TX
	JBSA Lackland	935				AETC	TX
	JBSA Lackland	946		X		AETC	TX
4	JBSA Randolph	40		X		AETC	TX
	JBSA Randolph	44		X		AETC	TX
	JBSA Randolph	82		X		AETC	TX
	JBSA Randolph	83		X		AETC	TX
5	Keesler AFB	4247	X			AETC	MS
	Keesler AFB	4278	X			AETC	MS
	Keesler AFB	4204	 	X		AETC	MS
6	Keesler AFB	4254	X	X		AETC AETC	MS TX
U	Laughlin AFB	50		۸			
	Laughlin AFB					AETC	TX
	Laughlin AFB	414				AETC	TX
	Laughlin AFB	502	X			AETC	TX
	Laughlin AFB	508				AETC	TX
7	Luke AFB	408		X		AETC	AZ
	Luke AFB	431		X		AETC	AZ
	Luke AFB	485		X		AETC	AZ
	Luke AFB	840		X		AETC	AZ
	Luke AFB	913	Х			AETC	AZ
	Luke AFB	914	Х			AETC	AZ
	Luke AFB	915	Х			AETC	AZ
	Luke AFB	922		Х		AETC	AZ
	Luke AFB	968		Х		AETC	AZ
	Luke AFB	984				AETC	AZ
	Luke AFB	Dock #1	X			AETC	AZ
	Luke AFB	Dock #2	X			AETC	AZ
	Luke AFB	Dock #3	X			AETC	AZ
	Luke AFB	Dock #4	X			AETC	AZ
		995					
	Luke AFB		Х			AETC	AZ
	Luke AFB	999		X		AETC	AZ
	Luke AFB	1019		X		AETC	AZ
	Luke AFB	1022		X		AETC	AZ
8	Maxwell AFB	1454				AETC	AL
	Maxwell AFB	1455				AETC	AL
9	Sheppard	2414		Х		AETC	TX
10	Vance AFB	195			X	AETC	OK
	Vance AFB	198				AETC	OK
	Vance AFB	141			X	AETC	OK
	Vance AFB	199	Х			AETC	OK
11	Andrews AFB	1914	Х			AFDW	MD
	Andrews AFB	1794				AFDW	MD
	Andrews AFB	1754				AFDW	MD
	Andrews AFB	1734				AFDW	MD
	Andrews AFB	1714				AFDW	MD
	Andrews AFB	1279				AFDW	MD
	Andrews AFB	1279			+	AFDW	MD
				v		AFDW	
	Andrews AFB	1225		X			MD
	Andrews AFB	1228		X		AFDW	MD
	Andrews AFB	5032	X			AFDW	MD
	Andrews AFB	5016				AFDW	MD
	Andrews AFB	3640		X		AFDW	MD
	Andrews AFB	3635		Х		AFDW	MD
	Andrews AFB	3188			X	AFDW	MD
	Andrews AFB	3158	Х			AFDW	MD
	Andrews AFB	3148			Х	AFDW	MD
	Andrews AFB	3119	Х			AFDW	MD
	Andrews AFB	3002		х		AFDW	MD
	Andrews AFB	2409				AFDW	MD

ellow-ADD			List of AF Hangars	for Evaluation on A	ctive Duty Bases		
d-DELETE			High Expansion	AFFF	Deluge	МАЈСОМ	STATE/ COUNTRY
reen-UPDATE	Bass/Site	Honory Blda #	Foam	AFFF	Deluge	IVIAJCOIVI	STATE/ COUNTRY
	Base/Site Andrews AFB	Hangar Bldg #				AFDW	MD
		1915	X				MD
	Andrews AFB	1288	X	X		AFDW	MD
	Andrews AFB	3629	X			AFDW	MD
12	Barksdale	6200	Х			AFGSC	LA
	Barksdale	6050	X			AFGSC	LA
	Barksdale	6214		X		AFGSC	LA
	Barksdale	6215		X		AFGSC	LA
	Barksdale	6604	Х			AFGSC	LA
	Barksdale	6626		X		AFGSC	LA
	Barksdale	6628		Х		AFGSC	LA
	Barksdale	6824		X		AFGSC	LA
	Barksdale	6825	Х			AFGSC	LA
	Barksdale	6850	X			AFGSC	LA
13	F.E. Warren	1250				AFGSC	WY
14	F.E. Warren Malmstrom AFB	7600-Delete 1440/ Bay 5	<u>X</u>	Х		AFGSC AFGSC	MT
15	Minot AFB	836	<u>X</u>			AFGSC	ND
	Minot AFB	837	Х		1	AFGSC	ND
	Minot AFB	863	X		1	AFGSC	ND
	Minot AFB	867	Х		1	AFGSC	ND
	Minot AFB	899		Х		AFGSC	ND
	Minot AFB	970		Х		AFGSC	ND
16	Whiteman AFB	1		X (Cannons)		AFGSC	MO
	Whiteman AFB	T-9		X (Cannons)		AFGSC	MO
	Whiteman AFB	52	X		X	AFGSC	MO
	Whiteman AFB	27		X		AFGSC	MO
	Whiteman AFB	1125		Х		AFGSC	MO
	Whiteman AFB	91			Х	AFGSC	МО
	Whiteman AFB	1117			Х	AFGSC	МО
	Whiteman AFB	1118			Х	AFGSC	МО
	Whiteman AFB	5050		X	Х	AFGSC	MO
	Whiteman AFB	5051		Х		AFGSC	МО
	Whiteman AFB	5052		Х		AFGSC	МО
	Whiteman AFB	5053		Х		AFGSC	МО
	Whiteman AFB	5054		Х		AFGSC	МО
	Whiteman AFB	5055		X		AFGSC	MO
	Whiteman AFB	5058		X		AFGSC	MO
	Whiteman AFB	5059		X		AFGSC	MO
	Whiteman AFB	5060		X		AFGSC	MO
	Whiteman AFB	5061		X		AFGSC	MO
	Whiteman AFB	5062		X		AFGSC	MO
	Whiteman AFB	5063		X		AFGSC	MO
	Whiteman AFB	5064		X	+	AFGSC	MO
	Whiteman AFB	5064		X	1	AFGSC	MO
					+		
	Whiteman AFB	5205		X	+	AFGSC	MO
4-	Whiteman AFB	5206		Х	1	AFGSC	MO
17	Eglin AFB	71			-	AFMC	FL
	Eglin AFB	72		Х	1	AFMC	FL
	Eglin AFB	130			1	AFMC	FL
	Eglin AFB Eglin AFB	138		X		AFMC AFMC	FL FL
	Eglin AFB	440		X		AFMC	FL
	Eglin AFB	985	х	^		AFMC	FL
	Eglin AFB	1318				AFMC	FL
	Eglin AFB	1332	x		1	AFMC	FL
	Eglin AFB	1344				AFMC	FL
	Eglin AFB	1386		Х	1	AFMC	FL
	Eglin AFB	1412		X	1	AFMC	FL
	Eglin AFB	1417	х	^	1	AFMC	FL
	Eglin AFB	3020				AFMC	FL
	Eglin AFB	3029			1	AFMC	FL
	Eglin AFB	3057	^	Х	1	AFMC	FL
	Eglin AFB	3087		X	1	AFMC	FL
	Eglin AFB	3150		X	1	AFMC	FL
		110		^	 		FL FL
10	Eglin AFB	25		V	Х	AFMC	_
18	Hill AFB			X	+	AFMC	UT
	Hill AFB	37		X	+	AFMC AFMC	UT
	LISHAED						
	Hill AFB	40		X			
	Hill AFB Hill AFB	40 42 43		X X X		AFMC AFMC	UT UT

ellow-ADD			<u>List of AF Hangars for Evaluation on Active Duty Bases</u>				
ed-DELETE reen-UPDATE			High Expansion	AFFF	Deluge	MAJCOM	STATE/ COUNTRY
	Base/Site	Hangar Bldg #	Foam				
	Hill AFB	48		X		AFMC	UT
	Hill AFB	204				AFMC	UT
	Hill AFB	206	Х			AFMC	UT
	Hill AFB	220	V	Х		AFMC AFMC	UT UT
	Hill AFB Hill AFB	222	X	Х		AFMC	UT
	Hill AFB	227		X		AFMC	UT
	Hill AFB	236		X		AFMC	UT
	Hill AFB	237	х	^		AFMC	UT
	Hill AFB	269	X			AFMC	UT
	Hill AFB	270	^	Х		AFMC	UT
	Hill AFB	275			X	AFMC	UT
	Hill AFB	5187	Х			AFMC	UT
	Hill AFB	5196			Х	AFMC	UT
	Hill AFB	674	Х			AFMC	UT
19	Hanscom	1715	х		Х	AFMC	MA
20	Kirtland AFB	481	Х			AFMC	NM
	Kirtland AFB	985	х			AFMC	NM
	Kirtland AFB	986	Х			AFMC	NM
	Kirtland AFB	1037		Х		AFMC	NM
	Kirtland AFB	1069		Х		AFMC	NM
	Kirtland AFB	1000			Х	AFMC	NM
	Kirtland AFB	1001			Х	AFMC	NM
	Kirtland AFB	1002			Х	AFMC	NM
	Kirtland AFB	760			Х	AFMC	NM
21	Robins AFB					AFMC	GA
	Robins AFB	47			Х	AFMC	GA
	Robins AFB	48			Х	AFMC	GA
	Robins AFB	49			Х	AFMC	GA
	Robins AFB	50		Х		AFMC	GA
	Robins AFB	54		Χ		AFMC	GA
	Robins AFB	59			X	AFMC	GA
	Robins AFB	89		X		AFMC	GA
	Robins AFB	110				AFMC	GA
	Robins AFB	125				AFMC	GA
	Robins AFB	131		Х		AFMC	GA
	Robins AFB	137			X	AFMC	GA
	Robins AFB	2026		X		AFMC	GA
	Robins AFB	2030		X		AFMC	GA
	Robins AFB	2036		X		AFMC	GA
	Robins AFB	2071		X		AFMC	GA
	Robins AFB	2316		X		AFMC	GA GA
22	Robins AFB	2328		X		AFMC	GA OK
22	Tinker AFB	230 Dock 1	V	Х		AFMC	OK OK
	Tinker AFB	230 Dock 2	X			AFMC	OK OK
	Tinker AFB Tinker AFB	230 Dock 3 230 Dock 4		Х		AFMC AFMC	OK OK
	Tinker AFB	230 DOCK 4		Х		AFMC	OK OK
	Tinker AFB	820		X		AFMC	OK
	Tinker AFB	976		X		AFMC	OK
	Tinker AFB	1053	х			AFMC	ОК
	Tinker AFB	1082		Х		AFMC	OK
	Tinker AFB	2136		X		AFMC	OK
	Tinker AFB	2280		X		AFMC	OK
	Tinker AFB	3102 Center Dock		X		AFMC	OK
	Tinker AFB	3102 S Dock		X		AFMC	OK
	Tinker AFB	3105		Х		AFMC	ОК
23	Edwards AFB	151		Х		AFMC	CA
	Edwards AFB	160		Х		AFMC	CA
	Edwards AFB	1030			х	AFMC	CA
	Edwards AFB	1207	Х			AFMC	CA
	Edwards AFB	1210	Х			AFMC	CA
	Edwards AFB	1414			Х	AFMC	CA
	Edwards AFB	1600a-delete		Х			
	Edwards AFB	1600		Х		AFMC	CA
	Edwards AFB	1608		X		AFMC	CA
	Edwards AFB	1623			X	AFMC	CA
	Edwards AFB	1624		Х		AFMC	CA
	Edwards AFB	1630				AFMC	CA
	Edwards AFB	1634			X	AFMC	CA
	Edwards AFB	1635			X	AFMC	CA
	Edwards AFB	1810	Х			AFMC	CA

1 DEL PET			List of AF Hangars f	or Evaluation on	Active Duty Bases		
ed-DELETE reen-UPDATE	Base/Site	Hangar Bldg #	High Expansion Foam	AFFF	Deluge	МАЈСОМ	STATE/ COUNTRY
	Edwards AFB	1820				AFMC	CA
	Edwards AFB	1830			X	AFMC	CA
	Edwards AFB	1864			x	AFMC	CA
	Edwards AFB	1870		Х		AFMC	CA
	Edwards AFB	1874		X		AFMC	CA
	Edwards AFB	1881		X		AFMC	CA
		4305	V				CA
	Edwards AFB Edwards AFB	4505	Х		X	AFMC AFMC	CA
		4801-Delete			^		
	Edwards (NASA)			X		AFMC	CA
	Edwards (NASA)	4802-Delete		Х		AFMC	CA
	Edwards (NASA)	4820-Delete 4840-Delete		X		AFMC	CA
	Edwards (NASA) Edwards (NASA)	4840-Delete 4826-Delete		X		AFMC AFMC	CA
	Edwards (NASA)	4833-Delete		Λ	X	AFMC	CA CA
24	Wright-Pat	34007	х			AFMC	ОН
	Wright-Pat	34015	х			AFMC	ОН
	Wright-Pat	34016				AFMC	OH
	Wright-Pat	34020		Х		AFMC	ОН
	Wright-Pat	30206S	х			AFMC	OH
	Wright-Pat	30206N				AFMC	OH
	Wright-Pat	30268		Х		AFMC	OH
	Wright-Pat	30148		X		AFMC	ОН
25	Cannon	109		X		AFSOC	NM
23	Cannon	119		X		AFSOC	NM
	Cannon	119		X		AFSOC	NM
	Cannon	126		X		AFSOC	NM
	Cannon	133		X		AFSOC	NM
	Cannon	173		^		AFSOC	NM
	Cannon	174				AFSOC	NM
	Cannon	194				AFSOC	NM
	Cannon	195				AFSOC	NM
	Cannon	196				AFSOC	NM
	Cannon	197	^	Х		AFSOC	NM
	Cannon	199	х	^		AFSOC	NM
	Cannon	204		Х		AFSOC	NM
	Cannon	208				AFSOC	NM
	Cannon	4605	X			AFSOC	NM
	Cannon	4606				AFSOC	NM
	Cannon	4607	X			AFSOC	NM
	Cannon	4609	X			AFSOC	NM
26	Hurlburt Field	90029	^	Х		AFSOC	FL
20	Hurlburt Field	90032	х			AFSOC	FL
	Hurlburt Field	90225	^	Х		AFSOC	FL
	Hurlburt Field	90700	х	^		AFSOC	FL
	Hurlburt Field	90800				AFSOC	FL
	Hurlburt Field	90810		Х		AFSOC	FL
	Hurlburt Field	90815		^		AFSOC	FL
	Hurlburt Field	90816		Х		AFSOC	FL
	Hurlburt Field	90825		^		AFSOC	FL
	Hurlburt Field	91262	x			AFSOC	FL
	Hurlburt Field	91262				AFSOC	FL
	Hurlburt Field	90580		Х		AFSOC	FL
27	Patrick	630	+	X		AFSPC	FL
21	Patrick	647		X		AFSPC	FL FL
	Patrick	750		^		AFSPC	FL FL
	Patrick	750	_ ^	Х		AFSPC	FL
	Patrick	985		X	-	AFSPC	FL
	Patrick	985		X		AFSPC	FL
20					+		CO
28	Peterson	133		X	-	AFSPC AFSPC	co
	Peterson Peterson	140		^		AFSPC	CO
	Peterson	140	Х	Х		AFSPC	CO
		214		X		AFSPC	co
	Peterson				+		
20	Peterson	210		X		AFSPC	CO
29	Thule AB	HG.7/Bldg 623		X		AFSPC	Greenland
	Thule AB	HG.8/Bldg 624		X		AFSPC	Greenland
30	JB Charleston	519		X		AMC	SC
	JB Charleston	578		X		AMC	SC
	JB Charleston	700				AMC	SC
	JB Charleston	63		X		AMC	SC
	JB Charleston	532	Х		1	AMC	SC

ellow-ADD			List of AF Hangars f	or Evaluation on	Active Duty Bases		
Red-DELETE			High Expansion	AFFF	Deluge	МАЈСОМ	STATE/ COUNTRY
reen-UPDATE	D/6:4-		Foam	AFFF	Deluge	INIAJCONI	STATE/ COUNTRY
	Base/Site JB Charleston	Hangar Bldg #				ANAC	
	JB Charleston	570 515				AMC	SC SC
24						AMC	
31	Dover AFB	706	X			AMC	DE
	Dover AFB	711			X	AMC	DE
	Dover AFB	714		X		AMC	DE
	Dover AFB	715		X		AMC	DE
	Dover AFB	945				AMC	DE
32	Fairchild AFB	1019				AMC	WA
	Fairchild AFB	1029				AMC	WA
	Fairchild AFB	1037	X			AMC	WA
	Fairchild AFB	1033	Х			AMC	WA
	Fairchild AFB	1012	X			AMC	WA
33	Grand Forks AFB	601		X		AMC	ND
	Grand Forks AFB	603		XX		AMC	ND
	Grand Forks AFB	605		Х		AMC	ND
	Grand Forks AFB	649 Bay 1		Х		AMC	ND
	Grand Forks AFB	649 Bay 2		X		AMC	ND
	Grand Forks AFB	649 Bay 3		Х		AMC	ND
34	Little Rock AFB	207			+	AMC	AR
34		207			+	AMC	AR
	Little Rock AFB Little Rock AFB	233 222 North		Х	+	AMC	AR
			1			_	_
	Little Rock AFB	222 South	 	X		AMC	AR
	Little Rock AFB	228				AMC	AR
	Little Rock AFB	245				AMC	AR
	Little Rock AFB	250				AMC	AR
	Little Rock AFB	255 North		X		AMC	AR
	Little Rock AFB	255 South	 	X		AMC	AR
	Little Rock AFB	276	t	.,		AMC	AR
	Little Rock AFB	280		X		AMC	AR
	Little Rock AFB	282				AMC	AR
35	MacDill AFB	1071	X			AMC	FL
36	McConnell AFB	10	t	X		AMC	KA
	McConnell AFB	1106	t			AMC	KA
	McConnell AFB	1107		X		AMC	KA
	McConnell AFB	1166	 	X		AMC	KA
	McConnell AFB	1176		X		AMC	KA
37	JB-MDL	4401 DIX		Х		AMC	NJ
	JB-MDL	3333		X		AMC	NJ
	JB-MDL	3370	 	X		AMC	NJ
	JB-MDL	3209			X	AMC	NJ
	JB-MDL	307 LKH			Х	AMC	NJ
	JB-MDL	3336		X		AMC	NJ
	JB-MDL	3211	Х			AMC	NJ
	JB-MDL	2201	Х			AMC	NJ
	JB-MDL	1823	Х			AMC	NJ
	JB-MDL	1837	X			AMC	NJ
38	Scott AFB	433	X			AMC	IL
	Scott AFB	506	Х			AMC	IL
	Scott AFB	742	Х			AMC	IL
	Scott AFB	5024		Х		AMC	IL
	Scott AFB	5026			Х	AMC	IL
39	Travis AFB	14		Х		AMC	CA
	Travis AFB	808				AMC	CA
	Travis AFB	809				AMC	CA
	Travis AFB	810			Х	AMC	CA
	Travis AFB	811	1	Х		AMC	CA
	Travis AFB	818				AMC	CA
	Travis AFB	837				AMC	CA
40	Eielson AFB	1335		Х		PACAF	AK
	Eielson AFB	1338		X		PACAF	AK
	Eielson AFB	1340		×		PACAF	AK
	Eielson AFB	1344	 	X		PACAF	AK
	Eielson AFB	1346-Delete		^	Х	PACAF	AK
	Eielson AFB	1348		Х		PACAF	AK
	Eielson AFB	1232-Delete		Х		PACAF	A
	Eielson AFB	1227	 	X		PACAF	AK
	Eielson AFB	1176				PACAF	AK
	Eielson AFB	1171	1	X		PACAF	AK
	Eielson AFB	1140		X		PACAF	AK
	Eielson AFB	1300	Х			PACAF	AK

ellow-ADD ed-DELETE			List of AF Hangars fo	r Evaluation on	Active Duty Bases		
reen-UPDATE	Base/Site	Hangar Bldg #	High Expansion Foam	AFFF	Deluge	MAJCOM	STATE/ COUNTRY
41	JBER - Elmendorf	1 - 11551	х			PACAF	AK
	JBER - Elmendorf	6 - 9311		Х		PACAF	AK
	JBER - Elmendorf	8 - 14410		X		PACAF	AK
	JBER - Elmendorf	10 - 15455		X		PACAF	AK
	JBER - Elmendorf	11 - 16430	x	^		PACAF	AK
			 				+
	JBER - Elmendorf	12 - 16456	Х			PACAF	AK
	JBER - Elmendorf	15 -16716	x			PACAF	AK
	JBER - Elmendorf	16 - 15668		Х		PACAF	AK
	JBER - Elmendorf	17 - 16670		Х		PACAF	AK
	JBER - Elmendorf	- 				PACAF	
		18 - 17470		Х			AK
	JBER - Elmendorf	19 - 8681	Х			PACAF	AK
	JBER - Elmendorf	20 - 17534	x			PACAF	AK
	JBER - Elmendorf	21 - 17508	х			PACAF	AK
	JBER - Elmendorf					PACAF	AK
		23 - 17660	 				-
	JBER - Elmendorf	24 - 9684	Х			PACAF	AK
	JBER - Elmendorf	25 - 9694	x			PACAF	AK
	JBER - Elmendorf	869	Х			PACAF	AK
	JBER - Elmendorf	26 - 10682	х			PACAF	AK
	JBER - Elmendorf	9696	х			PACAF	AK
	JBER - Elmendorf	6263		Х		PACAF	AK
	JBER - Elmendorf	47433			X	PACAF	AK
	JBER - Elmendorf	47433			X	PACAF	AK
						PACAF	
42	JBER - Elmendorf	47427	X		Х		AK
42	Kadena AB Kadena AB	3559 3667	Λ		X	PACAF PACAF	Japan Japan
	Kadena AB	3672			X	PACAF	Japan
	Kadena AB	1 -781		Х		PACAF	Japan
	Kadena AB	2 -780		Х		PACAF	Japan
	Kadena AB	3 -762			Х	PACAF	Japan
	Kadena AB	3448	Х			PACAF	Japan
	Kadena AB	3534		X		PACAF	Japan
	Kadena AB	3542	,,		X	PACAF	Japan
	Kadena AB Kadena AB	3560 3660	X	X		PACAF PACAF	Japan
	Kadena AB	3671		^	x	PACAF	Japan Japan
	Kadena AB	3339		X		PACAF	Japan
	Kadena AB	3541			Х	PACAF	Japan
	Kadena AB	3548		Х		PACAF	Japan
70	Kunsan AB	2257		Х		PACAF	Korea
	Kunsan AB	2820		X		PACAF	Korea
	Kunsan AB	2827		X		PACAF	Korea
43	Misawa AB	909		Х		PACAF	Japan
	Misawa AB	911		X		PACAF	Japan
	Misawa AB	949		v	X	PACAF	Japan
	Misawa AB Misawa AB	963 970	X	X	+	PACAF PACAF	Japan Japan
	Misawa AB	970		X		PACAF	Japan
	Misawa AB	1208	x	X		PACAF	Japan
	Misawa AB	3005		X		PACAF	Japan
	Misawa AB	3008		Х		PACAF	Japan
	Misawa AB	3012		Х		PACAF	Japan
	Misawa AB	3015		X		PACAF	Japan
	Misawa AB	3020 3021		X	+	PACAF	Japan
	Misawa AB Misawa AB	3021		X		PACAF PACAF	Japan Japan
	Misawa AB	3102		X		PACAF	Japan
	Misawa AB	3130			х	PACAF	Japan
	Misawa AB	3140		Х		PACAF	Japan
	Misawa AB	3141		Х		PACAF	Japan
	Misawa AB	3216		Х		PACAF	Japan
	Misawa AB	3217		Х		PACAF	Japan
	Misawa AB	3220		X		PACAF	Japan
	Misawa AB	3226		X	+	PACAF	Japan
N	Misawa AB	3280	X	X	_	PACAF	Japan

low-ADD			List of AF Hangars f	or Evaluation on	Active Duty Bases		
d-DELETE een-UPDATE	Base/Site	Hangar Bldg #	High Expansion Foam	AFFF	Deluge	MAJCOM	STATE/ COUNTRY
	Misawa AB	3295		Х		PACAF	Japan
	Misawa AB	3307		X		PACAF	Japan
	Misawa AB	3313		X		PACAF	Japan
44	Osan AB	849		X		PACAF	Korea
	Osan AB	851		Х		PACAF	Korea
	Osan AB	1104		Х		PACAF	Korea
	Osan AB	1173		Х		PACAF	Korea
	Osan AB	1215		X	х	PACAF	Korea
	Osan AB	1731		Х		PACAF	Korea
	Osan AB	1732		X		PACAF	Korea
	Osan AB	1782		X		PACAF	Korea
	Osan AB Osan AB	1783 1784		X		PACAF PACAF	Korea
	Osan AB	1785		X		PACAF	Korea Korea
	Osan AB	1786		X		PACAF	Korea
	Osan AB	1787		X		PACAF	Korea
45	Yokota AB	1	х			PACAF	Japan
	Yokota AB	702		Х		PACAF	Japan
	Yokota AB	906		Х		PACAF	Japan
	Yokota AB	1503	<u> </u>	Х		PACAF	Japan
	Yokota AB	1587	Х			PACAF	Japan
46	Aviano AB	933	Х			USAFE	Italy
	Aviano AB	925	Х			USAFE	Italy
	Aviano AB	921	Х			USAFE	Italy
47	Incirlik AB	345		X		USAFE	Turkey
	Incirlik AB	116				USAFE	Turkey
	Incirlik AB	2115	X			USAFE	Turkey
48	RAF Fairford	1205		X		USAFE	United Kingdom
	RAF Fairford	1217		X		USAFE	United Kingdom
49	RAF Lakenheath	1219		X		USAFE	United Kingdom
	RAF Lakenheath	1220		Х		USAFE	United Kingdom
	RAF Lakenheath	1229		Х		USAFE	United Kingdom
	RAF Lakenheath	1212	х			USAFE	United Kingdom
						USAFE	-
	RAF Lakenheath	1304	X				United Kingdom
	RAF Lakenheath	1473	Х			USAFE	United Kingdom
	RAF Lakenheath	1470	X			USAFE	United Kingdom
	RAF Lakenheath	1260	X				United Kingdom
50	RAF Mildenhall	539		X		USAFE	United Kingdom
	RAF Mildenhall	711		Х		USAFE	United Kingdom
	RAF Mildenhall	715		Х		USAFE	United Kingdom
	RAF Mildenhall	769		Х		USAFE	United Kingdom
	RAF Mildenhall	772		Х		USAFE	United Kingdom
	RAF Mildenhall	775	Х			USAFE	United Kingdom
	RAF Mildenhall	803		Χ		USAFE	United Kingdom
	RAF Mildenhall	814				USAFE	United Kingdom
51	Ramstein AB	2018				USAFE	Germany
	Ramstein AB	2210	Х			USAFE	Germany
	Ramstein AB	2331		X		USAFE	Germany
	Ramstein AB	2512		X		USAFE	Germany
	Ramstein AB	2291E 2291F			-	USAFE	Germany
	Ramstein AB Ramstein AB	2291F 2310A			+	USAFE USAFE	Germany Germany
	Ramstein AB	2310A 2311A				USAFE	Germany
	Ramstein AB	2311A				USAFE	Germany
	Ramstein AB	2509A	· · ·	Х		USAFE	Germany
	Ramstein AB	2509B		X		USAFE	Germany
	Ramstein AB	3330E		-		USAFE	Germany
52	Spangdahlem AB	157		Х		USAFE	Germany
	Spangdahlem AB	364	 	X		USAFE	Germany
53	Beale AFB	1042		Х		ACC	CA
	Beale AFB	1043		Х		ACC	CA
	Beale AFB	1044				ACC	CA
	Beale AFB	1045	x		1	ACC	CA

54 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Base/Site Beale AFB Davis-Mothan Dyess AFB	Hangar Bldg # 1068 1069 1074 1075 1077 11200 128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X X X	Deluge	MAJCOM	STATE/ COUNTRY CA CA CA CA CA CA CA CA AZ
54 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Beale AFB Davis-Mothan Davis-Mot	1068 1069 1074 1075 1077 11200 128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X	X	ACC	CA CA CA CA CA CA CA CA CA AZ
54 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Beale AFB Davis-Mothan Davis-Afb Dyess AFB	1069 1074 1075 1077 11200 128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X	X	ACC	CA CA CA CA CA CA CA CA CA AZ
54 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Beale AFB Beale AFB Beale AFB Beale AFB Beale AFB Davis-Mothan Davis-ABB Dyess AFB	1074 1075 1077 11200 128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X	X	ACC	CA CA CA CA CA CA CA CA AZ
54 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Beale AFB Beale AFB Beale AFB Beale AFB Davis-Mothan Davis-ABB Dyess AFB	1075 1077 11200 128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X	X	ACC	CA CA CA CA CA CA AZ
54 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Beale AFB Beale AFB Davis-Mothan Davis-Motha	1077 11200 128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5112 5110 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X	X	ACC	CA CA CA AZ
54 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Beale AFB Davis-Mothan Davis-ABB Dyess AFB	11200 128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X	X	ACC	CA
54 DD	Davis-Mothan Davis-AB Davis-Mothan Davis-AFB Dyess AFB Dyess AFB Dyess AFB Dyess AFB Dyess AFB Dyess AFB	128 129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X X X X X X X X X X X X	X X X X	X	ACC	AZ A
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis	129 136 269 1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X	X X X X	X	ACC	AZ A
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis	136 269 1440 1447 1550 1750 4784 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X X	X X X	X	ACC	AZ A
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis	269 1440 1447 1550 1750 1750 4844 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X	X X X	X	ACC	AZ A
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis	1440 1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X X X X	X X X	X	ACC	AZ A
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis	1447 1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X	X X X	X	ACC	AZ A
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis	1550 1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X	X X X	X	ACC	AZ AZ AZ AZ AZ AZ AZ AZ AZ TX
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Dyess AFB	1750 4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X X	X X X		ACC	AZ AZ AZ AZ AZ AZ AZ AZ TX
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Dyess AFB	4844 5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315 4312	X X X	X X X		ACC	AZ AZ AZ AZ AZ AZ AZ TX
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Dyess AFB	5255 Bay 1 5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X X X	X X X		ACC	AZ AZ AZ AZ AZ AZ TX
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Davis-Mothan Dyess AFB	5255 Bay 2 5256 5430 7506 5112 5110 5105 5020 4314 4315	X	X X X		ACC ACC ACC ACC ACC ACC	AZ AZ AZ AZ AZ TX
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Davis-Mothan Davis-Mothan Dyess AFB	5256 5430 7506 5112 5110 5105 5020 4314 4315	X	X X X		ACC ACC ACC ACC ACC	AZ AZ AZ TX
55 D D D D D D D D D D D D D D D D D D D	Davis-Mothan Davis-Mothan Dyess AFB	5430 7506 5112 5110 5105 5020 4314 4315 4312	X	X X		ACC ACC ACC ACC	AZ AZ TX
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Davis-Mothan Dyess AFB	7506 5112 5110 5105 5020 4314 4315 4312		X X		ACC ACC ACC	AZ TX
55 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Dyess AFB	5112 5110 5105 5020 4314 4315 4312		X X		ACC ACC	TX
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB	5110 5105 5020 4314 4315 4312		Х		ACC	
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB	5105 5020 4314 4315 4312					
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB Dyess AFB Dyess AFB Dyess AFB Dyess AFB Dyess AFB	5020 4314 4315 4312		V		1	TX
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB Dyess AFB Dyess AFB Dyess AFB	4314 4315 4312	 	X		ACC	TX
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB Dyess AFB Dyess AFB	4315 4312	1 2	X		ACC	TX
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB Dyess AFB	4312	Х			ACC	TX
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB			X		ACC	TX
56 E E E E E E E E E E E E E E E E E E E				Х		ACC	TX
56 E E E E E E E E E E E E E E E E E E E	Dyess AFB	4317-Delete		Х		ACC	TX
56 <u>E</u>		4225	 	X		ACC	TX
E E E E E E E E	Dyess AFB	4230				ACC	TX
E E E E E E E E	Ellsworth AFB	7230	Х			ACC	SD
E E E E E E F F	Ellsworth AFB	7232	Х			ACC	SD
E E E E E 57 H	Ellsworth AFB	7234	Х			ACC	SD
E E E E 57 H	Ellsworth AFB	7236	Х			ACC	SD
E E E E 57 H	Ellsworth AFB	7242	Х			ACC	SD
E E E 57 H	Ellsworth AFB	7246	Х			ACC	SD
E E E 57 H	Ellsworth AFB	7248	X			ACC	SD
57 H	Ellsworth AFB	7250	Х			ACC	SD
57 H	Ellsworth AFB	7252	Х			ACC	SD
57 H	Ellsworth AFB	7254	Х			ACC	SD
_	Ellsworth AFB	618	Х			ACC	SD
I	Holloman AFB	285		Х		ACC	NM
ĮH	Holloman AFB	286		Х		ACC	NM
Н	Holloman AFB	301	Х			ACC	NM
Н	Holloman AFB	500	Х			ACC	NM
_	Holloman AFB	564				ACC	NM
_	Holloman AFB	578				ACC	NM
	Holloman AFB	868		Х		ACC	NM
_	Holloman AFB	898				ACC	NM
	Holloman AFB	1020		Х		ACC	NM
	Holloman AFB	11285		X		ACC	NM
	Holloman AFB	21295		X		ACC	NM
—	Holloman AFB	21296		X		ACC	NM
	Holloman AFB	21297		X		ACC	NM
	Holloman AFB	21808		X	1	ACC	NM
_	Holloman AFB	21810		X		ACC	NM
	Holloman AFB	21811		X	1	ACC	NM
-	Holloman AFB	21812		X		ACC	NM
	Holloman AFB	21813		X	+	ACC	NM
_	Holloman AFB	21814		X		ACC	NM
	Holloman AFB	21815		X	+	ACC	NM
	Holloman AFB	21816	 	X	+	ACC	NM
_	Holloman AFB	21817		X		ACC	NM
	Holloman AFB	21818		X	+	ACC	NM
	Holloman AFB	21819		X	+	ACC	NM
		2402		^	X	ACC	VA
_		2402			X	ACC	VA VA
	JBLE - Ft Eustis						
	JBLE - Ft Eustis JBLE - Ft Eustis	2413		v	Х	ACC	VA
	JBLE - Ft Eustis JBLE - Ft Eustis JBLE - Ft Eustis			X		ACC	VA
_	JBLE - Ft Eustis JBLE - Ft Eustis JBLE - Ft Eustis JBLE - Ft Eustis	2448		X			VA
) E	JBLE - Ft Eustis JBLE - Ft Eustis JBLE - Ft Eustis	2448 338 342				ACC ACC	VA

ellow-ADD			List of AF Hangars for Evaluation on Active Duty Bases						
ed-DELETE reen-UPDATE	Base/Site	Hangar Bldg #	High Expansion Foam	AFFF	Deluge	МАЈСОМ	STATE/ COUNTRY		
	JBLE - Langley	369	х			ACC	VA		
	JBLE - Langley	371			X	ACC	VA		
	JBLE - Langley	373		Х		ACC	VA		
	JBLE - Langley	374		Х		ACC	VA		
	JBLE - Langley	750				ACC	VA		
	JBLE - Langley	751	х			ACC	VA		
	JBLE - Langley	752			Х	ACC	VA		
	JBLE - Langley	753		Х		ACC	VA		
	JBLE - Langley	789				ACC	VA		
	JBLE - Langley	790				ACC	VA		
	JBLE - Langley	791	Х			ACC	VA		
	JBLE - Langley	1362		Х		ACC	VA		
60	Moody AFB	609	Х			ACC	GA		
	Moody AFB	642	х			ACC	GA		
	Moody AFB	644		Х		ACC	GA		
	Moody AFB	646				ACC	GA		
	Moody AFB	658		Х		ACC	GA		
	Moody AFB	701		X		ACC	GA		
	Moody AFB	718	х			ACC	GA		
	Moody AFB	730				ACC	GA		
	Moody AFB	744	 			ACC	GA		
	Moody AFB	774		Х		ACC	GA		
	Moody AFB	774		X		ACC	GA		
	Moody AFB	773		X		ACC	GA		
61	Mtn Home AFB	198		X	-	ACC	ID		
01	Mtn Home AFB	200		X		ACC	ID		
		205		^		ACC	ID		
	Mtn Home AFB	203	x						
	Mtn Home AFB			X		ACC	ID ID		
	Mtn Home AFB	1330				ACC	ID		
62	Mtn Home AFB	1332	.,	X	_	ACC	ID		
62	Nellis/Creech	190				ACC	AZ		
	Nellis/Creech	199		X		ACC	AZ		
	Nellis/Creech	220			_	ACC	AZ		
	Nellis/Creech	232			_	ACC	AZ		
	Nellis/Creech	244				ACC	AZ		
	Nellis/Creech	252				ACC	AZ		
	Nellis/Creech	256		X		ACC	AZ		
	Nellis/Creech	283				ACC	AZ		
	Nellis/Creech	285		X		ACC	AZ		
	Nellis/Creech	297	X			ACC	AZ		
	Nellis/Creech	2211		X		ACC	AZ		
	Nellis/Creech	61664		X		ACC	AZ		
	Nellis/Creech	259				ACC	AZ		
	Nellis/Creech	CREECH 120				ACC	AZ		
	Nellis/Creech	CREECH 707		X		ACC	AZ		
	Nellis/Creech	CRRECH 719		.,		ACC	AZ		
	Nellis/Creech	CREECH 718		X		ACC	AZ		
	Nellis/Creech	CREECH 791	X			ACC	AZ		
	Nellis/Creech	CREECH 792	X			ACC	AZ		
	Nellis/Creech	CREECH 1000				ACC	AZ		
	Nellis/Creech	CREECH 1003			-	ACC	AZ		
	Nellis/Creech	CREECH 1009				ACC	AZ		
	Nellis/Creech	CREECH 1130	Х			ACC	AZ		
63	Offutt AFB	306-1			X	ACC	NE		
	Offutt AFB	306-2			X	ACC	NE		
	Offutt AFB	306-3			X	ACC	NE		
	Offutt AFB	307-3			Х	ACC	NE		
	Offutt AFB	491		X		ACC	NE		
	Offutt AFB	492		X		ACC	NE		
	Offutt AFB	493		X		ACC	NE		
	Offutt AFB	457	 	X		ACC	NE		
	Offutt AFB	565	Х			ACC	NE		
64	Seymour- Johnson AFB	4909	х			ACC	NC		
	Seymour- Johnson AFB	4822			+	ACC	NC		
	Seymour- Johnson AFB		 	v	+	ACC	_		
	*	4828		X			NC NC		
	Seymour Johnson AFB	4735	 	X		ACC	NC NC		
	Seymour-Johnson AFB	4538	+	X		ACC	NC		
	Seymour- Johnson AFB	4537		Х		ACC	NC		
	Seymour- Johnson AFB	4535		X		ACC	NC		

Yellow-ADD Red-DELETE			List of AF Hangars for Evaluation on Active Duty Bases						
Green-UPDATE			High Expansion	AFFF	Deluge	MAJCOM	STATE/ COUNTRY		
	Base/Site	Hangar Bldg #	Foam						
	Seymour- Johnson AFB	4522	х	Х		ACC	NC		
65	Shaw AFB	1511	Х			ACC	SC		
	Shaw AFB	712	Х			ACC	SC		
	Shaw AFB	1200	X			ACC	SC		
	Shaw AFB	1614	X			ACC	SC		
66	Tyndall AFB	295		Х		ACC	FL		
	Tyndall AFB	280		Χ		ACC	FL		
	Tyndall AFB	290		Χ		ACC	FL		
	Tyndall AFB	316		Χ		ACC	FL		
	Tyndall AFB	335	Х			ACC	FL		
	Tyndall AFB	180	Х			ACC	FL		
	Tyndall AFB	182	Х			ACC	FL		
	Tyndall AFB	156			Х	ACC	FL		
	Tyndall AFB	227			Х	ACC	FL		
	Tyndall AFB	315			Х	ACC	FL		
67	Eareckson AFB	754		Х	Х	PACAF	AK		
	Eareckson AFB	755		Х	Х	PACAF	AK		
68	King Salmon AFB	160		Х		PACAF	AK		
69	Curacao	900		х		ACC	Curacao Netherlands Antilles		

APPENDIX C RECORDS OF COMMUNICATION

FE Warren AFB AFFF Preliminary Assessment Meeting August 26, 2105 10am to noon Sign in Sheet

Meeting Attendee	Organization	Job Title	How Long in Current Position?	How Long at this Base in Current and Previous Positions?	Have you held similar positions at other bases? Which Bases?	How Long?
Name Floydzeu 14. able	90 CES	AC Special Ups	timets	241415	Y'S IAJ'S AFB	Zyers
Name STAIN WRIGHT PI	90/055/0016	WATER MER	6mont 18	4/24RS	No	NO
Name Tom Watson	90 MXG/NIXQ	UEC		8 YES	No	No
Name Andy McKinley	90LEXLESE	Environment	4 yours	7 Years	No	-
Name Adan Galicia	GOMYGAINE	QCI	945	284RS	no	_
Name Chris Shafor	90 LRS TSL	Fuel Tech	Tyrs	Tyrs	No	
Name LOW LATEROLYPSSE	90CES/ CEF	Fire Inspector	10	38 y/s		

FE Warren AFB AFFF Preliminary Assessment Meeting August 26, 2105 10am to noon Sign In Sheet

		Sign In Sheet				
Meeting Attendee	Organization	Job Title	How Long in Current Position?	How Long at this Base in Current and Previous Positions?	Have you held similar positions at other bases? Which Bases?	How Long?
Name RONDIE RIEDE	90 CES/	H45 Office	A 2003- PRECNT	1988	N	
Name						
Email						
Name						
Email						
Name						
Email						
Phone						
Email						

Subject: Meeting Minutes for Preliminary Assessment Kickoff Meeting at

F.E. Warren Air Force Base

Date: August 26, 2015

Time: 10:00 a.m. to 11:00 a.m.

Attendees: See attached sign in sheet

Fire Station 1 - Building 324, Built in 1909

Serves as current station. Was a fire station in 1979 (Watson). All trucks refilled using 5-gallon buckets. No AFFF tanks. Trucks washed at the Base car wash (Kimble). No refilling done here and no foam tanks in this building because refilling is done at Building 1250. AFFF is not currently used for testing (Kimble). No time/distance required b/c no crash trucks (Kimble).

Engine 8 and 4 are kept here. Each hold 20 gallons of AFFF.

Trucks are pump tested but not foam tested (Kimble).

Drains to OWS and then sanitary sewer (Wright).

Fire Station 2 - Building 1250, Built in 1941

Likely started operations in the 1960s when helicopters were used (Wright). Served as overflow because Station 1 is too small.

Drains in this building flow to OWS and then to sanitary sewer (Watson).

Store 5-gallon buckets here for truck refilling (Kimble).

Engine 5, RIV 1 and RIV 2 located here. Engine 5 and RIV 1 carries 60 gallons; RIV 2 carries 71 gallons. Trucks are pump tested but not foam tested (Kimble).

Former Fire Station – Building 1501, Built in 1987

This station was built to support the peacekeeper missile operations and was a small two-bay station (Riedel). Limited knowledge about this station, but Watson thinks it may have been in use until 1998. No storage of AFFF at the station. Two trucks were used here, and foam was never shot from vehicles (Riedel).

Former FPTA 3

Opened in 1990 and was operated until approximately 2000. Used JP-8 fuel. Aircraft carcass present. Retention pond was present and lined. Shut down because one of the poly-liners beneath the pit was found to be leaking. Not known to have caused contamination because leak did not extend beyond second liner (Riedel). The actual training area was decommissioned in 2007 (Riedel). Training pit most often used for structural training (Kimble). In last several years, used more for structural training with no foam used (Kimble).

Drainage would have gone to Diamond Creek (Wright).

New FTA is being built at this location and will be propane (Kimble).

Former FPTA 1

IRP site. No one was aware of operational history or location of this FPTA.

Former FPTA 2

IRP site. Used until 1989. A depression served as a training pit but not sure if a liner existed (Latendresse). AFFF may have been used here per Mr. Latendresse. No retention pond was present (Riedel).

Building 930 - Hazardous Waste

Some AFFF was disposed of here. On January 13, 2005, records show that four 55-gallon drums were disposed of by the fire department. No leaks or spills have occurred (Joe Travinio [haz waste technician]).

Building 1285 – Hazmart, built in 1995

Observed thirty-nine 55-gallon drums stored here during on site visit. No leaks/spills known to have occurred (McKinley). Temporary berm but no drains. Cleaned up by contractor if spilled (Wright).

Building 1240 - Truck Maintenance, built in 1995

Formerly had an AFFF system that was replaced with water only in 2012. No known leaks or spills (Watson). Served by a poly-lined containment pit located b/n Buildings 1240 and 1247 (McKinley). Liner was replaced approximately 2 years ago. When pit fills with water, it is pumped out to grass but this has only been done when pond is full of rainwater (Watson).

Building 1250 -

Only has an HEF system that was installed in 2008 or 2009, never had AFFF (McKinley, Watson). Had roll-around fire extinguisher systems prior to HEF system (Watson). Drains go to OWS to sanitary sewer (Wright).

Building 1247 – Base Fuel Building, built in 1995

Has an active AFFF system with overhead lines. Size of AFFF tank is unknown, but staff estimate it to be 200 to 300 gallons. A diversion valve is located inside the building that can divert floor drains from OWS to the retention pond (Wright). Bypass to go to storm (Wright).

There was a leak in the bay when a pipe froze/broke. All discharge was contained inside the hangar (Shafer). Drains flow to OWS then sanitary sewer (Wright). Served by a poly-lined containment pit located b/n Buildings 1240 and 1247. Liner was replaced approximately 2 years ago. Pit never known to be used to contain AFFF. When pit fills with water, it is pumped out to grass, but this has only been done when pond is full of rainwater (McKinley).

AFFF tank estimated at 200 to 300 gallons (Shafer)

Building 7600 -

Has HEF system but is not under Air Force control b/c it is on Army property.

Drinking water – comes from Cheyenne Public Utilities, and all sources are located well upgradient of F.E. Warren watershed.

Used to be a residential well in Nob Hill, but it was connected to the city in the 1990s.

No on Base emergency response events.

Jet crash during frontier days in ~1978 but was off Base. Not likely to have used foam (Watson).

Crow Creek diminishes on its way to Pine Bluffs and goes away. Doesn't make it out of state. Recharges groundwater (Wright).

Fax To: AECOM

Contact: Brittany Kirchmann

Fax: 000-000-0000 Date: 01/08/2019 Fax From: Sean McLaughlin

EDR

Phone: 1-800-352-0050

EDR PUR-IQ® Report

"the intelligent way to conduct historical research"

for Cheyenne AASF Cheyenne AASF Fe Warren AFB, WY 82005 Lat./Long. 41.196149 / 104.870486 EDR Inquiry # 5528367.2s

The EDR PUR-IQ report facilitates historical research planning required to complete the Phase I ESA process. The report identifies the *likelihood* of prior use coverage by searching proprietary EDR-Prior Use Reports comprising nationwide information on: city directories, fire insurance maps, aerial photographs, historical topographic maps, flood maps and National Wetland Inventory maps.

Potential for EDR Historical (Prior Use) Coverage - Coverage in the following historical information sources may be used as a guide to develop your historical research strategy:

1. City Directory: Coverage may exist for portions of Laramie County, WY.

2. Fire Insurance Map: When you order online any EDR Package or the EDR Radius Map with

EDR Sanborn Map Search/Print, you receive site specific Sanborn

Map coverage information at no charge.

3. Aerial Photograph: Aerial photography coverage may exist for portions of Laramie

County. Please contact your EDR Account Executive for information

about USGS photos available through EDR.

4. Topographic Map: The USGS 7.5 min. quad topo sheet(s) associated with this site:

Historical: Coverage exists for LARAMIE County

Current: Target Property: TP | 2012 | 5645427 Cheyenne North, WY
Additional required for 1 Mile radius: W | 2012 | 5649463 Round Top Lake, WY

EDR's network of professional researchers, located throughout the United States, accesses the most extensive national collections of city directory, fire insurance maps, aerial photographs and historical topographic map resources available for Fe Warren AFB, WY. These collections may be located in multiple libraries throughout the country. To ensure maximum coverage, EDR will often assign researchers at these multiple locations on your behalf. Please call or fax your EDR representative to authorize a search.

EDR - HISTORICAL SOURCE(S) ORDER FORM

AECOM Brittany Kirchmann Account # 1861179

Cheyenne AASF Cheyenne AASF Fe Warren AFB, WY 82005 LARAMIE County Lat./Long. 41.196149 / 104.870486 EDR Inquiry # 5528367.2s

Should you wish to change or add to your order, fax this form to your EDR account executive:

Sean McLaughlin Ph: 1-800-352-0050 Fax: 1-800-231-6802

Reports		
EDR Sanborn Map® Search/Print		
EDR Fire Insurance Map Abstract		
EDR Multi-Tenant Retail Facility® Re	port	
EDR City Directory Abstract		
EDR Aerial Photo Decade Package		
USGS Aerial 5 Package		
USGS Aerial 3 Package		
EDR Historical Topographic Maps		
Paper Current USGS Topo (7.5 min.)		
Environmental Lien Search		
Chain of Title Search		
NJ MacRaes Industrial Directory Rep	ort	
EDR Telephone Interview		
Shipping:		
Email Express, Next Day Delivery Express, Second Day Delivery Express, Next day Delivery Express, Second Day Delivery U.S. Mail	Customer Account Customer Account	RUSH SERVICE IS AVAILABLE Acct # Acct #

Cheyenne AASF Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.3

January 08, 2019

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

01/08/19

Site Name: Client Name:

Chevenne AASF AECOM

Cheyenne AASF 12120 Shamrock Plaza Fe Warren AFB, WY 82005 Omaha, NE 68154

EDR Inquiry # 5528367.3 Contact: Brittany Kirchmann

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by AECOM were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # C981-46C9-974A

PO# NA

Project Cheyenne AASF

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results

Certification #: C981-46C9-974A

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

AECOM (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Cheyenne AASF

Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.5

January 08, 2019

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

01/08/19

Site Name: Client Name:

Cheyenne AASF AECOM

Cheyenne AASF 12120 Shamrock Plaza Fe Warren AFB, WY 82005 Omaha, NE 68154

EDR Inquiry # 5528367.5 Contact: Brittany Kirchmann

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2017	1"=500'	Flight Year: 2017	USDA/NAIP
2012	1"=500'	Flight Year: 2012	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
2002	1"=750'	Flight Date: June 24, 2002	USGS
1994	1"=500'	Acquisition Date: June 23, 1994	USGS/DOQQ
1990	1"=1000'	Flight Date: June 17, 1990	USGS
1980	1"=500'	Flight Date: August 21, 1980	USDA
1978	1"=1000'	Flight Date: September 07, 1978	USGS
1947	1"=750'	Flight Date: June 15, 1947	USGS

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Cheyenne AASF

Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.2s

January 08, 2019

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map	2
Detail Map.	3
Map Findings Summary.	4
Map Findings	8
Orphan Summary	9
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map.	A-5
Physical Setting Source Map.	A-8
Physical Setting Source Map Findings.	A-10
Physical Setting Source Records Searched	PSGR.

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

CHEYENNE AASF FE WARREN AFB, WY 82005

COORDINATES

Latitude (North): 41.1961490 - 41° 11' 46.13" Longitude (West): 104.8704860 - 104° 52' 13.74"

Universal Tranverse Mercator: Zone 13 UTM X (Meters): 510860.2 UTM Y (Meters): 4560327.5

Elevation: 6290 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 5645427 CHEYENNE NORTH, WY

Version Date: 2012

West Map: 5649463 ROUND TOP LAKE, WY

Version Date: 2012

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20150620 Source: USDA

MAPPED SITES SUMMARY

Target Property Address: CHEYENNE AASF FE WARREN AFB, WY 82005

Click on Map ID to see full detail.

MAP				RELATIVE	DIST (ft. & mi.)
ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	ELEVATION	DIRECTION
Reg	FRANCIS E. WARREN AI		DOD	Same	1 ft.
1	HUNNICUTT OFF-BASE P		UXO	Higher	1529, 0.290, West

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list	
Proposed NPL	National Priority List Proposed National Priority List Sites Federal Superfund Liens
Federal Delisted NPL si	te list
Delisted NPL	National Priority List Deletions

Federal CERCLIS list

FEDERAL FACILITY	Federal Facility Site Information listing
SEMS	Superfund Enterprise Management System

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE	Superfund	Enterprise	Management	System	Archive

Federal RCRA CORRACTS facilities list

CORRACTS Correct	ctive	Action	Report
------------------	-------	--------	--------

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF RC	CRA - Treatment,	Storage and Disposal
--------------	------------------	----------------------

Federal RCRA generators list

RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generator

Federal institutional controls / engineering controls registries

LUCIS	Land Use Control Information System
US ENG CONTROLS	Engineering Controls Sites List

US INST CONTROL..... Sites with Institutional Controls

Federal ERNS list

ERNS..... Emergency Response Notification System

State- and tribal - equivalent CERCLIS

NPL list.

State and tribal landfill and/or solid waste disposal site lists

SWF/LF..... Solid Waste Facility Database

SHWF..... Solid & Hazardous Waste Facility Database

State and tribal leaking storage tank lists

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

LTANKS..... Known Contaminated Sites

State and tribal registered storage tank lists

FEMA UST..... Underground Storage Tank Listing

UST...... Underground Storage Tanks

AST...... Wyoming Aboveground Storage Tanks

State and tribal institutional control / engineering control registries

ENG CONTROLS..... Engineering Controls Site Listing

INST CONTROL...... Sites with Institutional Controls

State and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing

VCP.....List of Voluntary Remediation Program Sites

State and tribal Brownfields sites

BROWNFIELDS..... Brownfields Sites Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY..... Recycling Facilities

..... Open Dump Inventory IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

CDL...... Clandestine Drug Lab Site Locations US CDL...... National Clandestine Laboratory Register

Local Land Records

LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS..... Hazardous Materials Information Reporting System

SPILLS..... SPILL Database

Other Ascertainable Records

RCRA NonGen / NLR RCRA - Non Generators / No Longer Regulated

FUDS..... Formerly Used Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR_____ Financial Assurance Information

EPA WATCH LIST..... EPA WATCH LIST

2020 COR ACTION...... 2020 Corrective Action Program List

TSCA...... Toxic Substances Control Act
TRIS....... Toxic Chemical Release Inventory System

SSTS..... Section 7 Tracking Systems ROD...... Records Of Decision RMP..... Risk Management Plans

RAATS...... RCRA Administrative Action Tracking System

PRP..... Potentially Responsible Parties PADS...... PCB Activity Database System

ICIS..... Integrated Compliance Information System

FTTS......FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide

Act)/TSCA (Toxic Substances Control Act)

..... Material Licensing Tracking System COAL ASH DOE Steam-Electric Plant Operation Data

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER...... PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS..... Incident and Accident Data

CONSENT...... Superfund (CERCLA) Consent Decrees

INDIAN RESERV..... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS..... Lead Smelter Sites

US AIRS..... Aerometric Information Retrieval System Facility Subsystem

US MINES..... Mines Master Index File ABANDONED MINES..... Abandoned Mines

FINDS...... Facility Index System/Facility Registry System ECHO..... Enforcement & Compliance History Information DOCKET HWC..... Hazardous Waste Compliance Docket Listing

FUELS PROGRAM..... EPA Fuels Program Registered Listing

EMI..... Air Quality Permit Listing

ASBESTOS ASBESTOS DRYCLEANERS DRYCLEANERS

Financial Assurance Information listing

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
EDR Hist Auto	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA LF	Recovered Government Archive Solid Waste Facilities List	
RGA LUST	Recovered Government Archive Leaking Underground Storage Tai	nk

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

DOD: Consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

A review of the DOD list, as provided by EDR, and dated 12/31/2005 has revealed that there is 1 DOD site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
FRANCIS E. WARREN AI		0 - 1/8 (0.000 mi.)	0	8

UXO: A listing of unexploded ordnance site locations

A review of the UXO list, as provided by EDR, and dated 09/30/2017 has revealed that there is 1 UXO site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
HUNNICUTT OFF-BASE P		W 1/4 - 1/2 (0.290 mi.)	1	8

Due to poor or inadequate address information, the following sites were not mapped. Count: 2 records.

 Site Name
 Database(s)

 NIELSEN TRUST PROPERTY
 VCP

 CHEYENNE ATCT
 RGA LUST

OVERVIEW MAP - 5528367.2S

SITE NAME: Cheyenne AASF ADDRESS: Cheyenne AASF Fe Warren AFB WY 82005 CLIENT: CONTACT: INQUIRY#: 5528367.2s LAT/LONG: 41.196149 / 104.870486

January 08, 2019 9:18 am DATE:

DETAIL MAP - 5528367.2S

SITE NAME: Cheyenne AASF ADDRESS:

Cheyenne AASF Fe Warren AFB WY 82005 41.196149 / 104.870486 LAT/LONG:

CLIENT: CONTACT: AECOM Brittany Kirchmann

INQUIRY#: 5528367.2s

January 08, 2019 9:19 am DATE:

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMENT	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Federal Delisted NPL sit	te list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Federal CERCLIS NFRA	P site list							
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Federal RCRA CORRAC	TS facilities li	st						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COR	RACTS TSD f	acilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generator	rs list							
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional con engineering controls re								
LUCIS US ENG CONTROLS US INST CONTROL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
State- and tribal - equiva	alent CERCLIS	6						
SHWS	N/A		N/A	N/A	N/A	N/A	N/A	N/A
State and tribal landfill a solid waste disposal site								
SWF/LF SHWF	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal leaking	storage tank l	ists						
INDIAN LUST LTANKS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal registere	ed storage tar	ık lists						
FEMA UST	0.250		0	0	NR	NR	NR	0

Database		Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST AST INDIAN UST TANKS	0.250 0.250 0.250 0.250		0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal institution control / engineering control								
ENG CONTROLS INST CONTROL	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal voluntary	/ cleanup sites							
INDIAN VCP VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal Brownfie	lds sites							
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	TAL RECORDS							
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / S Waste Disposal Sites	Colid							
SWRCY INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500		0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0
Local Lists of Hazardous Contaminated Sites	waste /							
US HIST CDL CDL US CDL	TP TP TP		NR NR NR	NR NR NR	NR NR NR	NR NR NR	NR NR NR	0 0 0
Local Land Records								
LIENS 2	TP		NR	NR	NR	NR	NR	0
Records of Emergency R	Release Reports	5						
HMIRS SPILLS	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Other Ascertainable Rec	ords							
RCRA NonGen / NLR FUDS DOD SCRD DRYCLEANERS US FIN ASSUR EPA WATCH LIST	0.250 1.000 1.000 0.500 TP TP		0 0 1 0 NR NR	0 0 0 0 NR NR	NR 0 0 0 NR NR	NR 0 0 NR NR NR	NR NR NR NR NR	0 0 1 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	TP		NR	NŘ	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	Ö
SSTS	TP		NR	NR	NR	NR	NR	Õ
ROD	1.000		0	0	0	0	NR	Ö
RMP	TP		NR	NR	NR	NR	NR	0
RAATS	TP		NR	NR	NR	NR	NR	0
PRP	TP		NR	NR	NR	NR	NR	0
PADS	TP		NR	NR	NR	NR	NR	0
ICIS	TP		NR	NR	NR	NR	NR	0
FTTS	TP		NR	NR	NR	NR	NR	0
MLTS	TP		NR	NR	NR	NR	NR	0
COAL ASH DOE	TP		NR	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	0
HIST FTTS DOT OPS	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	Ö	Ö	0	NR	0
UMTRA	0.500		Õ	Ö	Ö	NR	NR	Õ
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	Ō
US AIRS	TP		NR	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.250		0	0	NR	NR	NR	0
FINDS	TP		NR	NR	NR	NR	NR	0
ECHO	TP		NR	NR	NR	NR	NR	0
UXO	1.000		0	0	1	0	NR	1
DOCKET HWC	TP		NR	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
EMI	TP		NR	NR	NR	NR	NR	0
ASBESTOS DRYCLEANERS	TP 0.250		NR 0	NR	NR NR	NR NR	NR NR	0
Financial Assurance	0.250 TP		NR	0 NR	NR NR	NR NR	NR NR	0 0
MINES	0.250		0	0	NR	NR	NR	0
UIC	TP		NR	NR	NR	NR	NR	0
NPDES	TP		NR	NR	NR	NR	NR	ő
EDR HIGH RISK HISTORIC	AL RECORDS							
EDR Exclusive Records	;							
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		Ö	NR	NR	NR	NR	Ö
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOVER	NMENT ARCHI	/ES						
Exclusive Recovered G	ovt. Archives							
RGA LF	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
RGA LUST	TP		NR	NR	NR	NR	NR	0
- Totals		0	1	0	1	0	0	2

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

N/A = This State does not maintain a SHWS list. See the Federal CERCLIS list.

Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) **EPA ID Number**

DOD DOD CUSA122479 FRANCIS E. WARREN AIR FORCE BASE Region N/A

FRANCIS E. WARREN AIR FOR (County), WY

< 1/8 1 ft.

DOD:

Feature 1: Air Force DOD Feature 2: Not reported Feature 3: Not reported URL: Not reported

Name 1: Francis E. Warren Air Force Base

Not reported Name 2: Name 3: Not reported

State: WY DOD Site: Yes

Tile name: **WYLARAMIE**

HUNNICUTT OFF-BASE PROPERTY UXO 1018153746 West N/A

1/4-1/2 F. E. WARREN AFB, WY

0.290 mi. 1529 ft.

UXO: Relative:

Higher DoD Component: Air Force

FRANCIS E WARREN AIR FORCE BASE Installation Name: Actual:

Facility Address 2: Not reported 6295 ft. Site ID: TG300A Site Type: Target Area

Latitude: 41.196886 Longitude: -104.881210 **EDR ID Number**

Count: 2 records. ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
CHEYENNE CHEYENNE		NIELSEN TRUST PROPERTY CHEYENNE ATCT	ADJACENT TO SW CORNER OF CHEYE ON CHEYENNE AIRPORT		VCP RGA LUST

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 11/14/2018 Source: EPA
Date Data Arrived at EDR: 11/27/2018 Telephone: N/A

Date Made Active in Reports: 12/07/2018 Last EDR Contact: 12/28/2018

Number of Days to Update: 10 Next Scheduled EDR Contact: 04/15/2019
Data Release Frequency: Quarterly

NPL Site Boundaries

Sources

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 EPA Region 7

Telephone 215-814-5418 Telephone: 913-551-7247

EPA Region 4 EPA Region 8

Telephone 404-562-8033 Telephone: 303-312-6774

EPA Region 5 EPA Region 9

Telephone 312-886-6686 Telephone: 415-947-4246

EPA Region 10

Telephone 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 11/14/2018 Source: EPA
Date Data Arrived at EDR: 11/27/2018 Telephone: N/A

Date Made Active in Reports: 12/07/2018 Last EDR Contact: 12/28/2018

Number of Days to Update: 10 Next Scheduled EDR Contact:

Next Scheduled EDR Contact: 04/15/2019
Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994

Number of Days to Update: 56

Source: EPA

Telephone: 202-564-4267 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Federal Delisted NPL site list

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Source: EPA

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/27/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 10

Telephone: N/A

Last EDR Contact: 12/28/2018

Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

Federal CERCLIS list

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 11/07/2016 Date Data Arrived at EDR: 01/05/2017 Date Made Active in Reports: 04/07/2017

Number of Days to Update: 92

Source: Environmental Protection Agency Telephone: 703-603-8704 Last EDR Contact: 01/04/2019

Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/27/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 10

Source: EPA Telephone: 800-424-9346 Last EDR Contact: 12/28/2018

Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Quarterly

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/28/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 9

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 12/28/2018

Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Quarterly

Federal RCRA CORRACTS facilities list

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 12/03/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: 303-312-6149 Last EDR Contact: 12/03/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

Federal RCRA generators list

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: 303-312-6149 Last EDR Contact: 12/03/2018

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: 303-312-6149 Last EDR Contact: 12/03/2018

Next Scheduled EDR Contact: 04/08/2019
Data Release Frequency: Quarterly

RCRA-CESQG: RCRA - Conditionally Exempt Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: 303-312-6149 Last EDR Contact: 12/03/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 10/17/2018 Date Data Arrived at EDR: 10/25/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 43

Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 10/15/2018

Next Scheduled EDR Contact: 02/25/2019 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 07/31/2018 Date Data Arrived at EDR: 08/28/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 17

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 11/28/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

US INST CONTROL: Sites with Institutional Controls

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 07/31/2018 Date Data Arrived at EDR: 08/28/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 17

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 11/28/2018

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 09/24/2018 Date Data Arrived at EDR: 09/25/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 45

Source: National Response Center, United States Coast Guard

Telephone: 202-267-2180 Last EDR Contact: 12/21/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

State- and tribal - equivalent CERCLIS

SHWS: This state does not maintain a SHWS list. See the Federal CERCLIS list and Federal NPL list.

State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A

Number of Days to Update: N/A

Source: Department of Environmental Quality

Telephone: 307-777-7752 Last EDR Contact: 11/16/2018

Next Scheduled EDR Contact: 03/04/2019

Data Release Frequency: N/A

State and tribal landfill and/or solid waste disposal site lists

SWF/LF: Solid Waste Facility Database

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 01/26/2017 Date Data Arrived at EDR: 03/01/2017 Date Made Active in Reports: 08/29/2017

Number of Days to Update: 181

Source: Department of Environmental Quality

Telephone: 307-777-7752 Last EDR Contact: 11/30/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

SHWF: Solid & Hazardous Waste Facility Database

A listing of Solid and Hazardous waste facility locations in the state.

Date of Government Version: 01/26/2017 Date Data Arrived at EDR: 03/01/2017 Date Made Active in Reports: 08/29/2017

Number of Days to Update: 181

Source: Department of Environmental Quality

Telephone: 307-777-7752 Last EDR Contact: 11/30/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Annually

State and tribal leaking storage tank lists

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 10/26/2018

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land

Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land
A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 04/10/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: Environmental Protection Agency Telephone: 415-972-3372 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

Date of Government Version: 04/25/2018
Date Data Arrived at EDR: 05/18/2018
Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Iowa, Kansas, and Nebraska

Date of Government Version: 04/24/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 05/08/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 10/26/2018

LTANKS: Known Contaminated Sites Leaking storage tank sites.

> Date of Government Version: 07/09/2018 Date Data Arrived at EDR: 07/13/2018 Date Made Active in Reports: 08/28/2018

Number of Days to Update: 46

Source: Department of Environmental Quality

Telephone: 307-777-7781 Last EDR Contact: 10/12/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Annually

State and tribal registered storage tank lists

FEMA UST: Underground Storage Tank Listing

A listing of all FEMA owned underground storage tanks.

Date of Government Version: 05/15/2017 Date Data Arrived at EDR: 05/30/2017 Date Made Active in Reports: 10/13/2017

Number of Days to Update: 136

Source: FEMA

Telephone: 202-646-5797 Last EDR Contact: 12/20/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Varies

UST: Underground Storage Tanks

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 05/23/2008 Date Data Arrived at EDR: 07/24/2008 Date Made Active in Reports: 08/12/2008

Number of Days to Update: 19

Source: Department of Environmental Quality

Telephone: 307-777-7781 Last EDR Contact: 12/20/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Annually

AST: Wyoming Aboveground Storage Tanks Registered Aboveground Storage Tanks.

> Date of Government Version: 05/23/2008 Date Data Arrived at EDR: 07/24/2008 Date Made Active in Reports: 08/13/2008

Number of Days to Update: 20

Source: Department of Environmental Quality

Telephone: 307-777-7781 Last EDR Contact: 12/20/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Annually

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 04/24/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 10/26/2018

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 04/25/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 04/10/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 05/08/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 10/26/2018

TANKS: Storage Tank Listing

A listing of aboveground and underground storage tank locations.

Date of Government Version: 07/09/2018 Date Data Arrived at EDR: 07/13/2018 Date Made Active in Reports: 08/28/2018

Number of Days to Update: 46

Source: Department of Environmetnal Quality

Telephone: 307-777-7752 Last EDR Contact: 10/12/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Varies

State and tribal institutional control / engineering control registries

ENG CONTROLS: Engineering Controls Site Listing
A listing of sites with engineering controls in place.

Date of Government Version: 11/19/2018 Date Data Arrived at EDR: 11/19/2018 Date Made Active in Reports: 01/04/2019

Number of Days to Update: 46

Source: Department of Environmental Quality

Telephone: 307-777-5547 Last EDR Contact: 11/16/2018

Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Quarterly

INST CONTROL: Sites with Institutional Controls

Voluntary Remediation Program sites with institutional Controls in place.

Date of Government Version: 11/19/2018 Date Data Arrived at EDR: 11/19/2018 Date Made Active in Reports: 01/04/2019

Number of Days to Update: 46

Source: Department of Environmental Quality

Telephone: 307-777-7752 Last EDR Contact: 11/16/2018

Next Scheduled EDR Contact: 03/04/2019

Data Release Frequency: Varies

State and tribal voluntary cleanup sites

VCP: List of Voluntary Remediation Program Sites

A listing of sites participating in the Voluntary Remediation Program.

Date of Government Version: 11/19/2018 Date Data Arrived at EDR: 11/19/2018 Date Made Active in Reports: 01/04/2019

Number of Days to Update: 46

Source: Department of Environmental Quality

Telephone: 307-777-5447 Last EDR Contact: 11/16/2018

Next Scheduled EDR Contact: 03/04/2019

Data Release Frequency: Varies

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015 Date Data Arrived at EDR: 09/29/2015 Date Made Active in Reports: 02/18/2016

Number of Days to Update: 142

Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 12/19/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Varies

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008 Date Data Arrived at EDR: 04/22/2008 Date Made Active in Reports: 05/19/2008

Number of Days to Update: 27

Source: EPA, Region 7 Telephone: 913-551-7365 Last EDR Contact: 04/20/2009

Next Scheduled EDR Contact: 07/20/2009

Data Release Frequency: Varies

State and tribal Brownfields sites

BROWNFIELDS: Brownfields Sites Listing

A listing of Brownfields sites locations. Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment.

Date of Government Version: 11/19/2018 Date Data Arrived at EDR: 11/19/2018 Date Made Active in Reports: 01/04/2019

Number of Days to Update: 46

Source: Department of Environmental Quality

Telephone: 307-777-7752 Last EDR Contact: 11/16/2018

Next Scheduled EDR Contact: 03/04/2019

Data Release Frequency: Varies

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 09/18/2018 Date Data Arrived at EDR: 09/18/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 52

Source: Environmental Protection Agency

Telephone: 202-566-2777 Last EDR Contact: 12/18/2018

Next Scheduled EDR Contact: 04/01/2019 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY: Recycling Facilities

A listing of recycling facility locations.

Date of Government Version: 09/30/2009 Date Data Arrived at EDR: 11/02/2009 Date Made Active in Reports: 11/25/2009

Number of Days to Update: 23

Source: Department of Environmental Quality

Telephone: 307-777-7752 Last EDR Contact: 11/27/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Annually

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands

Location of open dumps on Indian land.

Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008

Number of Days to Update: 52

Source: Environmental Protection Agency

Telephone: 703-308-8245 Last EDR Contact: 10/25/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Date Data Arrived at EDR: 05/07/2009 Date Made Active in Reports: 09/21/2009

Number of Days to Update: 137

Source: EPA, Region 9 Telephone: 415-947-4219 Last EDR Contact: 10/22/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: No Update Planned

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258

Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004

Number of Days to Update: 39

Source: Environmental Protection Agency

Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014 Date Data Arrived at EDR: 08/06/2014 Date Made Active in Reports: 01/29/2015

Number of Days to Update: 176

Source: Department of Health & Human Serivces, Indian Health Service

Telephone: 301-443-1452 Last EDR Contact: 11/02/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 09/21/2018 Date Data Arrived at EDR: 09/21/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 49

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 11/26/2018

Next Scheduled EDR Contact: 03/11/2019
Data Release Frequency: No Update Planned

CDL: Clandestine Drug Lab Site Locations

Information collected by the Wyoming Department of Health concerning Drug Lab Sites.

Date of Government Version: 05/01/2018 Date Data Arrived at EDR: 06/08/2018 Date Made Active in Reports: 07/27/2018

Number of Days to Update: 49

Source: Department of Health Telephone: 307-777-8736 Last EDR Contact: 12/14/2018

Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Varies

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 09/21/2018 Date Data Arrived at EDR: 09/21/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 49

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 11/26/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Quarterly

Local Land Records

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 08/13/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/16/2018

Number of Days to Update: 43

Source: Environmental Protection Agency

Telephone: 202-564-6023 Last EDR Contact: 12/28/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 03/26/2018 Date Data Arrived at EDR: 03/27/2018 Date Made Active in Reports: 06/08/2018

Number of Days to Update: 73

Source: U.S. Department of Transportation

Telephone: 202-366-4555 Last EDR Contact: 12/21/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

SPILLS: SPILL Database

Spills reported to the Department of Environmental Quality

Date of Government Version: 07/03/2018 Date Data Arrived at EDR: 08/10/2018 Date Made Active in Reports: 09/06/2018

Number of Days to Update: 27

Source: Department of Environmental Quality

Telephone: 307-777-7783 Last EDR Contact: 11/16/2018

Next Scheduled EDR Contact: 02/25/2019 Data Release Frequency: Varies

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: 303-312-6149 Last EDR Contact: 12/03/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 01/31/2015 Date Data Arrived at EDR: 07/08/2015 Date Made Active in Reports: 10/13/2015

Number of Days to Update: 97

Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285 Last EDR Contact: 11/19/2018

Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 11/10/2006 Date Made Active in Reports: 01/11/2007

Number of Days to Update: 62

Source: USGS

Telephone: 888-275-8747 Last EDR Contact: 10/12/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Semi-Annually

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 02/06/2006 Date Made Active in Reports: 01/11/2007

Number of Days to Update: 339

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 10/12/2018

Next Scheduled EDR Contact: 01/21/2019

Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 01/01/2017 Date Data Arrived at EDR: 02/03/2017 Date Made Active in Reports: 04/07/2017

Number of Days to Update: 63

Source: Environmental Protection Agency

Telephone: 615-532-8599 Last EDR Contact: 11/16/2018

Next Scheduled EDR Contact: 02/25/2019 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 08/31/2018 Date Data Arrived at EDR: 09/25/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 45

Source: Environmental Protection Agency

Telephone: 202-566-1917 Last EDR Contact: 12/21/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013 Date Data Arrived at EDR: 03/21/2014 Date Made Active in Reports: 06/17/2014

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 617-520-3000 Last EDR Contact: 11/05/2018

Next Scheduled EDR Contact: 02/18/2019 Data Release Frequency: Quarterly

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 73

Source: Environmental Protection Agency

Telephone: 703-308-4044 Last EDR Contact: 11/09/2018

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

Source: EPA

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 06/21/2017 Date Made Active in Reports: 01/05/2018 Number of Days to Update: 198

Telephone: 202-260-5521 Last EDR Contact: 12/21/2018

Next Scheduled EDR Contact: 04/01/2019 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 01/10/2018 Date Made Active in Reports: 01/12/2018

Source: EPA Telephone: 202-566-0250

Last EDR Contact: 11/16/2018

Number of Days to Update: 2

Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 12/10/2010 Date Made Active in Reports: 02/25/2011

Source: EPA

Telephone: 202-564-4203 Last EDR Contact: 10/24/2018

Number of Days to Update: 77

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 08/13/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/16/2018

Source: EPA

Telephone: 703-416-0223 Last EDR Contact: 12/28/2018

Number of Days to Update: 43

Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/22/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 44

Source: Environmental Protection Agency

Telephone: 202-564-8600 Last EDR Contact: 10/23/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995

Number of Days to Update: 35

Source: EPA

Telephone: 202-564-4104 Last EDR Contact: 06/02/2008

Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 08/13/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 36

Source: EPA

Telephone: 202-564-6023 Last EDR Contact: 12/28/2018

Next Scheduled EDR Contact: 02/18/2019 Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 09/14/2018 Date Data Arrived at EDR: 10/11/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 57

Source: EPA

Telephone: 202-566-0500 Last EDR Contact: 10/11/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: Quarterly

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: Quarterly

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 08/30/2016 Date Data Arrived at EDR: 09/08/2016 Date Made Active in Reports: 10/21/2016

Number of Days to Update: 43

Source: Nuclear Regulatory Commission

Telephone: 301-415-7169 Last EDR Contact: 10/11/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 08/07/2009 Date Made Active in Reports: 10/22/2009

Number of Days to Update: 76

Source: Department of Energy Telephone: 202-586-8719 Last EDR Contact: 12/05/2018

Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 07/01/2014 Date Data Arrived at EDR: 09/10/2014 Date Made Active in Reports: 10/20/2014

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: N/A

Last EDR Contact: 12/03/2018

Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 05/24/2017 Date Data Arrived at EDR: 11/30/2017 Date Made Active in Reports: 12/15/2017

Number of Days to Update: 15

Source: Environmental Protection Agency Telephone: 202-566-0517

Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 10/02/2018 Date Data Arrived at EDR: 10/03/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 37

Source: Environmental Protection Agency

Telephone: 202-343-9775 Last EDR Contact: 01/03/2019

Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2007

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2008

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 07/31/2012 Date Data Arrived at EDR: 08/07/2012 Date Made Active in Reports: 09/18/2012

Number of Days to Update: 42

Source: Department of Transporation, Office of Pipeline Safety

Telephone: 202-366-4595 Last EDR Contact: 10/30/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 09/30/2018 Date Data Arrived at EDR: 10/12/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 56

Source: Department of Justice, Consent Decree Library

Telephone: Varies

Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2015 Date Data Arrived at EDR: 02/22/2017 Date Made Active in Reports: 09/28/2017

Number of Days to Update: 218

Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 11/21/2018

Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater

than 640 acres.

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 07/14/2015 Date Made Active in Reports: 01/10/2017

Number of Days to Update: 546

Source: USGS

Telephone: 202-208-3710 Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 08/08/2017 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 3

Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 11/01/2018

Next Scheduled EDR Contact: 02/18/2019 Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 06/23/2017 Date Data Arrived at EDR: 10/11/2017 Date Made Active in Reports: 11/03/2017

Number of Days to Update: 23

Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 12/14/2018

Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 08/13/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/16/2018

Number of Days to Update: 43

Source: Environmental Protection Agency

Telephone: 703-603-8787 Last EDR Contact: 12/28/2018

Next Scheduled EDR Contact: 04/15/2019

Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010

Number of Days to Update: 36

Source: American Journal of Public Health

Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Telephone: 202-564-2496

Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018
Data Release Frequency: Annually

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/29/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 37

3

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959 Last EDR Contact: 11/30/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Semi-Annually

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 12/05/2005 Date Data Arrived at EDR: 02/29/2008 Date Made Active in Reports: 04/18/2008

Number of Days to Update: 49

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 11/30/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011

Number of Days to Update: 97

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 11/30/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 09/10/2018 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 3

Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 12/19/2018

Next Scheduled EDR Contact: 03/25/2019 Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 08/07/2018 Date Data Arrived at EDR: 09/05/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 30

Source: EPA

Telephone: (303) 312-6312 Last EDR Contact: 12/05/2018

Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Quarterly

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 09/02/2018 Date Data Arrived at EDR: 09/05/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 9

Source: Environmental Protection Agency

Telephone: 202-564-2280 Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 03/18/2019 Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 07/26/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 71

Source: Environmental Protection Agency

Telephone: 202-564-0527 Last EDR Contact: 11/30/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 06/19/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 87

Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 10/15/2018

Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Varies

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 08/22/2018 Date Data Arrived at EDR: 08/22/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 44

Source: EPA

Telephone: 800-385-6164 Last EDR Contact: 11/19/2018

Next Scheduled EDR Contact: 03/04/2019 Data Release Frequency: Quarterly

AIRS: Air Quality Permit Listing

A listing of Air Quality permits included in the DEQa??s current database and their legacy system AQDS.

Date of Government Version: 08/27/2018 Date Data Arrived at EDR: 08/29/2018 Date Made Active in Reports: 11/01/2018

Number of Days to Update: 64

Source: Department of Environmental Quality

Telephone: 307-777-7872 Last EDR Contact: 11/26/2018

Next Scheduled EDR Contact: 03/11/2019

Data Release Frequency: Varies

ASBESTOS: Asbestos Notification Listing

Asbestos site notifications

Date of Government Version: 06/13/2018 Date Data Arrived at EDR: 06/15/2018 Date Made Active in Reports: 07/27/2018

Number of Days to Update: 42

Source: Department of Environmental Quality

Telephone: 307-777-7394 Last EDR Contact: 12/07/2018

Next Scheduled EDR Contact: 03/25/2019 Data Release Frequency: Varies

DRYCLEANERS: Drycleaner Facility Listing

Drycleaner sites

Date of Government Version: 02/02/2017 Date Data Arrived at EDR: 06/01/2017 Date Made Active in Reports: 05/11/2018

Number of Days to Update: 344

Source: Department of Environmental Quality

Telephone: 307-777-6105 Last EDR Contact: 11/30/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

Financial Assurance: Financial Assurance Information listing

Information for underground storage tanks. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated

facility is unable or unwilling to pay.

Date of Government Version: 05/23/2008 Date Data Arrived at EDR: 06/17/2008 Date Made Active in Reports: 07/24/2008

Number of Days to Update: 37

Source: Department of Environmental Quality

Telephone: 307-777-7095 Last EDR Contact: 12/20/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Annually

MINES: Mine Locations Listing

Coal mine locations and production; commodity mine locations; mining lease boundaries for the Powder River Basin;

Mine permit boundaries for the BLM Rawlins Field Office.

Date of Government Version: 04/09/2018 Date Data Arrived at EDR: 06/28/2018 Date Made Active in Reports: 07/27/2018

Number of Days to Update: 29

Source: Wyoming Geographic Information Science Center

Telephone: 307-766-2532 Last EDR Contact: 12/26/2018

Next Scheduled EDR Contact: 04/08/2019 Data Release Frequency: Varies

UIC: UIC Well Locations List

A listing of Class I and Class V UIC wells.

Date of Government Version: 08/28/2018 Date Data Arrived at EDR: 08/30/2018 Date Made Active in Reports: 10/09/2018

Number of Days to Update: 40

Source: Department of Environmental Quality

Telephone: 307-777-5623 Last EDR Contact: 11/29/2018

Next Scheduled EDR Contact: 03/11/2019 Data Release Frequency: Varies

NPDES: Wastewater Permit Listing

A listing of facilities with wastewater permits.

Date of Government Version: 06/04/2018 Date Data Arrived at EDR: 06/08/2018 Date Made Active in Reports: 07/27/2018

Number of Days to Update: 49

Source: Department of Environmental Quality

Telephone: 307-777-7570 Last EDR Contact: 12/03/2018

Next Scheduled EDR Contact: 03/18/2019

Data Release Frequency: Varies

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA LF: Recovered Government Archive Solid Waste Facilities List

The EDR Recovered Government Archive Landfill database provides a list of landfills derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Quality in Wyoming.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 01/17/2014
Number of Days to Update: 200

Source: Department of Environmental Quality Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Quality in Wyoming.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 01/04/2014 Number of Days to Update: 187

Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

Source: Department of Environmental Quality

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

Date of Government Version: 10/01/2018 Date Data Arrived at EDR: 10/31/2018 Date Made Active in Reports: 12/20/2018

Number of Days to Update: 50

Source: Department of Environmental Conservation

Telephone: 518-402-8651 Last EDR Contact: 10/31/2018

Next Scheduled EDR Contact: 02/11/2019
Data Release Frequency: Quarterly

Oil/Gas Pipelines

Source: PennWell Corporation

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Electric Power Transmission Line Data

Source: PennWell Corporation

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are

comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Day Care Provider List Source: Department of Family Services

Telephone: 307-777-6595

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: National Wetlands Inventory

Source: Wyoming Geospatial Hub Telephone: 307-777-4600

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK®-PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

CHEYENNE AASF CHEYENNE AASF FE WARREN AFB, WY 82005

TARGET PROPERTY COORDINATES

Latitude (North): 41.196149 - 41° 11' 46.14" Longitude (West): 104.870486 - 104° 52' 13.75"

Universal Tranverse Mercator: Zone 13 UTM X (Meters): 510860.2 UTM Y (Meters): 4560327.5

Elevation: 6290 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 5645427 CHEYENNE NORTH, WY

Version Date: 2012

West Map: 5649463 ROUND TOP LAKE, WY

Version Date: 2012

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General South

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

56021C1078F FEMA FIRM Flood data

Additional Panels in search area: FEMA Source Type

56021C1059F FEMA FIRM Flood data 56021C1067F FEMA FIRM Flood data 56021C1086F FEMA FIRM Flood data

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

CHEYENNE NORTH

YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION

MAP ID FROM TP GROUNDWATER FLOW

Not Reported

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Cenozoic Category: Continental Deposits

System: Tertiary Series: Pliocene

Code: Tpc (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 5528367.2s

SITE NAME: Cheyenne AASF ADDRESS: Cheyenne AASF Fe Warren AFB WY 82005 LAT/LONG: 41.196149 / 104.870486

CLIENT: AECOM
CONTACT: Brittany Kirchmann
INQUIRY#: 5528367.2s
DATE: January 08, 2019 9:19 am

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: Evanston

Soil Surface Texture: loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information							
	Boundary			Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	
1	0 inches	3 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
2	3 inches	14 inches	clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
3	14 inches	59 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4

Soil Map ID: 2

Soil Component Name: Poposhia

Soil Surface Texture: silt loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

			Soil Layer	r Information			
	Boundary			Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
2	7 inches	25 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
3	25 inches	59 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	FROM TP	
A5	USGS40001334813	1/2 - 1 Mile WSW	
15	USGS40001334980	1/2 - 1 Mile NW	
A17	USGS40001334811	1/2 - 1 Mile WSW	

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
2	WYSE50000143153	1/2 - 1 Mile SSW
3	WYSE50000033225	1/2 - 1 Mile WSW
4	WYSE50000042868	1/2 - 1 Mile WNW
B6	WYSE50000016904	1/2 - 1 Mile SSW
B7	WYSE50000018665	1/2 - 1 Mile SSW
B8	WYSE50000015028	1/2 - 1 Mile SSW
B9	WYSE50000016571	1/2 - 1 Mile SSW
B10	WYSE50000018867	1/2 - 1 Mile SSW
B11	WYSE50000117396	1/2 - 1 Mile SSW
B12	WYSE50000123706	1/2 - 1 Mile SSW
B13	WYSE50000116892	1/2 - 1 Mile SSW
B14	WYSE50000117326	1/2 - 1 Mile SSW
16	WYSE50000040108	1/2 - 1 Mile NE
C18	WYSE50000117119	1/2 - 1 Mile SW
C19	WYSE50000127045	1/2 - 1 Mile SW
D20	WYSE50000142449	1/2 - 1 Mile SSW
D21	WYSE50000113296	1/2 - 1 Mile SSW
D22	WYSE50000117337	1/2 - 1 Mile SSW

PHYSICAL SETTING SOURCE MAP - 5528367.2s

SITE NAME: Cheyenne AASF ADDRESS: Cheyenne AASF Fe Warren AFB WY 82005

LAT/LONG: 41.196149 / 104.870486

CLIENT: AECOM CONTACT: Brittany Kirchmann

INQUIRY #: 5528367.2s

January 08, 2019 9:19 am DATE:

Map ID Direction Distance

Elevation Database EDR ID Number

1 West FRDS PWS 1/2 - 1 Mile

Higher

Epa region: 08 State: WY

Pwsid: WY5600011 Pwsname: CHEYENNE BOARD PUB UTILITIES

Cityserved:Not ReportedStateserved:WYZipserved:Not ReportedFipscounty:56021Status:ActiveRetpopsrvd:58182Pwssvcconn:21800Psource longname:Surface

Surface_water Pwstype: CWS Owner: Local_Govt KAILEY, RON KAILEY, RON Contact: Contactorgname: P.O. Box 1469 Contactphone: 307-635-7693 Contactaddress1: Contactaddress2: Not Reported Contactcity: CHEYENNE

Contactstate: WY Contactzip: 82003 Pwsactivitycode: A

Pwsid: WY5600011 Facid: 15662

Facname: SHERARD WTP Factype: Treatment_plant Facactivitycode: A Trtobjective: disinfection

Trtprocess: chlorine dioxide Factypecode: TP

Pwsid: WY5600011 Facid: 15662

Facname: SHERARD WTP Factype: Treatment_plant

Facactivitycode: A Trtobjective: disinfection

Trtprocess: ozonation, pre Factypecode: TP

Pwsid: WY5600011 Facid: 15662

Facname: SHERARD WTP Factype: Treatment_plant Facactivitycode: A Trtobjective: particulate removal

Facactivitycode: A Trtobjective: particulate removal Trtprocess: coagulation Factypecode: TP

Pwsid: WY5600011 Facid: 15662

Facname: SHERARD WTP Factype: Treatment_plant

Facactivitycode: A Trtobjective: particulate removal Trtprocess: filtration, rapid sand Factypecode: TP

Pwsid: WY5600011 Facid: 15662

Facname: SHERARD WTP Factype: Treatment_plant

Facactivitycode: A Trtobjective: particulate removal Trtprocess: flocculation Factypecode: TP

Pwsid: WY5600011 Facid: 15662

Facname: SHERARD WTP Factype: Treatment_plant
Facactivitycode: A Trtobjective: particulate removal

Facactivitycode: A Trtobjective: part Trtprocess: sedimentation Factypecode: TP

Pwsid:WY5600011Facid:15662Facname:SHERARD WTPFactype:Treatment_plant

Facactivitycode: A Trtobjective: other Trtprocess: fluoridation Factypecode: TP

Pwsid: WY5600011 Facid: 15662

Facname: SHERARD WTP Factype: Treatment_plant

Facactivitycode: A Trtobjective: disinfection

racactivitycode: A Inobjective: disinfection

Trtprocess: gaseous chlorination, post

Factypecode: TP

PWS ID: WY5600011 PWS name: CHEYENNE BOARD PUB UTILITIES

WY5600011

P.O. BOX 1469 Address: Care of: Not Reported City: CHEYENNE State: WY CHEYENNE BOARD PUB UTILITIES Zip: 82003 Owner: Source code: Surface water Population: 54500 PWS ID: WY5600011 PWS type: Not Reported Not Reported PWS name: Not Reported PWS address: PWS city: Not Reported PWS state: Not Reported PWS zip: Not Reported PWS ID: WY5600011 Not Reported Activity status: Active Date system activated: 00064000 Date system deactivated: Not Reported Retail population: System name: CHEYENNE BOARD PUB. UTILITIES System address: Not Reported System address: P.O. BOX 1469 System city: CHEYENNE System state: WY 82003 System zip: Population served: 50,001 - 75,000 Persons Treatment: Not Reported Latitude: 410759 Longitude: 1044900 WY Latitude degrees: State: 41 Latitude minutes: Latitude seconds: 51.0000 Longitude degrees: 105 Longitude minutes: 0 Longitude seconds: 1.0000 State: WY Latitude degrees: 41 4.0000 Latitude minutes: 9 Latitude seconds: 104 Longitude degrees: Longitude minutes: 58 Longitude seconds: 11.0000 WY Latitude degrees: 41 State: Latitude minutes: Latitude seconds: 9.0000 104 Longitude degrees: Longitude minutes: 58 58.0000 Longitude seconds: State: WY Latitude degrees: 41 14.0000 Latitude minutes: 9 Latitude seconds: 104 Longitude degrees: Longitude minutes: 57 Longitude seconds: 25.0000 State: WY Latitude degrees: 41 32.0000 Latitude minutes: 9 Latitude seconds: 105 Longitude degrees: Longitude minutes: 10 10.0000 Longitude seconds: State: WY Latitude degrees: 41 Latitude minutes: 9 Latitude seconds: 55.0000 104 Longitude degrees: Longitude minutes: 56 Longitude seconds: 56.0000 WY State: Latitude degrees: 41 56.0000 Latitude minutes: 9 Latitude seconds: Longitude degrees: 104 Longitude minutes: 55 20.0000 Longitude seconds: WY State: Latitude degrees: 41 15.0000 Latitude minutes: 10 Latitude seconds:

Longitude minutes:

Latitude degrees:

Latitude seconds:

Longitude degrees:

Longitude seconds:

Latitude minutes:

State:

105

WY

10

39.0000

14

41

26.0000

Longitude degrees: Longitude seconds:	104 3.0000	Longitude minutes:	56
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 10 104 57.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 28.0000 48
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 10 104 14.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 46.0000 35
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 11 104 32.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 2.0000 57
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 11 104 45.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 3.0000 55
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 11 104 29.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 11.0000 54
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 11 104 5.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 14.0000 56
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 11 104 18.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 25.0000 58
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 11 104 56.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 26.0000 55
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 11 104 53.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 52.0000 52
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 12 104 46.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 11.0000 52
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 12 106 2.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 29.0000 17
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 12 104 58.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 40.0000 50

State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 12 105 57.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 57.0000 12
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 12 105 40.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 58.0000 12
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 14 105 22.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 14.0000 5
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 14 105 16.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 25.0000 5
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 14 105 27.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 35.0000 4
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 14 105 22.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 49.0000 6
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 15 105 56.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 17.0000 5
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 15 105 35.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 34.0000 1
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 17 105 50.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 29.0000 1
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 19 105 53.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 16.0000 3
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 8 106 15.0000	Latitude degrees: Latitude seconds: Longitude minutes:	31 45.0000 16
State: Latitude minutes: Longitude degrees: Longitude seconds:	WY 4 104 37.0000	Latitude degrees: Latitude seconds: Longitude minutes:	41 12.0000 58
State: Latitude minutes:	WY 5	Latitude degrees: Latitude seconds:	41 25.0000

Longitude degrees: Longitude seconds:	104 29.0000	Longitude minutes:	55		
State:	WY	Latitude degrees:	41		
Latitude minutes:	5	Latitude seconds:	26.0000		
Longitude degrees:	104	Longitude minutes:	55		
Longitude seconds:	50.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	5	Latitude seconds:	46.0000		
Longitude degrees:	104	Longitude minutes:	57		
Longitude seconds:	37.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	5	Latitude seconds:	47.0000		
Longitude degrees:	104	Longitude minutes:	59		
Longitude seconds:	57.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	6	Latitude seconds:	21.0000		
Longitude degrees:	104	Longitude minutes:	57		
Longitude seconds:	57.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	7	Latitude seconds:	55.0000		
Longitude degrees:	104	Longitude minutes:	57		
Longitude seconds:	59.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	8	Latitude seconds:	2.0000		
Longitude degrees:	104	Longitude minutes:	58		
Longitude seconds:	16.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	8	Latitude seconds:	16.0000		
Longitude degrees:	105	Longitude minutes:	0		
Longitude seconds:	7.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	8	Latitude seconds:	22.0000		
Longitude degrees:	104	Longitude minutes:	57		
Longitude seconds:	35.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	8	Latitude seconds:	24.0000		
Longitude degrees:	104	Longitude minutes:	56		
Longitude seconds:	52.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	8	Latitude seconds:	25.0000		
Longitude degrees:	104	Longitude minutes:	58		
Longitude seconds:	7.0000				
State:	WY	Latitude degrees:	41		
Latitude minutes:	8	Latitude seconds:	35.0000		
Longitude degrees:	105	Longitude minutes:	0		
Longitude seconds:	13.0000				
PWS currently has or had major violation(s) or enforcement:Yes					
Violation ID:	9300006	Violation source ID:	Not Reported		
PWS telephone:	Not Reported	Contaminant:	Turbidity		

020193 Violation type: Monitoring, Regular Violation start date: Violation end date: 022893 Violation period (months): 001 Violation awareness date: Not Reported Major violator: No Maximum contaminant level: Not Reported Number of required samples: 028

Number of samples taken: 025

Analysis result: Not Reported

PWS currently has or had major violation(s) or enforcement:Yes

Violation ID:9400008Violation source ID:Not ReportedPWS telephone:Not ReportedContaminant:COLIFORM (TCR)

Analysis method:

Enforcement Date:

Not Reported

Violation type: Monitoring, Routine Minor (TCR)

Violation start date: 100193 Violation end date: 103193 Violation period (months): 001 Violation awareness date: Not Reported Not Reported Major violator: Maximum contaminant level: Nο Number of required samples: Not Reported Number of samples taken: Not Reported Analysis method: Not Reported Analysis result: Not Reported

PWS currently has or had major violation(s) or enforcement:Yes

Violation ID: 9400001 Violation source ID: Not Reported

PWS telephone: Not Reported Contaminant: LEAD & COPPER RULE

Violation type: Initial Tap Sampling for Pb and Cu

Violation start date: 010194 Violation end date: 063094 Violation period (months): Not Reported 006 Violation awareness date: Major violator: Not Reported Maximum contaminant level: Not Reported Number of required samples: Not Reported Number of samples taken: Not Reported Analysis method: Not Reported Analysis result: Not Reported

PWS currently has or had major violation(s) or enforcement. Yes

Violation ID:9400009Violation source ID:Not ReportedPWS telephone:Not ReportedContaminant:COLIFORM (TCR)

Violation type: Monitoring, Routine Minor (TCR)

Violation start date: 030194 Violation end date: 033194 Violation period (months): 001 Violation awareness date: Not Reported Major violator: No Maximum contaminant level: Not Reported Number of required samples: Not Reported Number of samples taken: Not Reported Analysis method: Not Reported Analysis result: Not Reported

System Name: CHEYENNE BOARD PUB UTILITI

Violation Type:51Contaminant:5000Compliance Begin:1994-01-01Compliance End:2015-12-31

Enforcement Action: EOX

Violation ID:

System Name: CHEYENNE BOARD PUB UTILITI

9400001

Violation Type:51Contaminant:5000Compliance Begin:1994-01-01Compliance End:1994-06-30Violation ID:9400001Enforcement Date:Not Reported

Enforcement Action: Not Reported

System Name: CHEYENNE BOARD PUB UTILITIE

Violation Type:51Contaminant:5000Compliance Begin:1994-01-01Compliance End:2015-12-31Violation ID:9400001Enforcement Date:Not Reported

Enforcement Action: Not Reported

System Name: CHEYENNE BOARD PUB UTILITI

Violation Type:24Contaminant:3100Compliance Begin:1994-03-01Compliance End:1994-03-31Violation ID:9400009Enforcement Date:Not Reported

1999-04-13

Enforcement Action: Not Reported

System Name: CHEYENNE BOARD PUB UTILITI

Violation Type:24Contaminant:3100Compliance Begin:1995-07-01Compliance End:1995-07-31Violation ID:9500001Enforcement Date:Not Reported

Enforcement Action: Not Reported

1/2 - 1 Mile Lower

Permit #: P81716.0W Permit Issue Date: 29-JAN-90

Status: Complete Well Applicant: USDI, GEOLOGICAL SURVEY

Facility Name: P 33 Uses: Monitoring Yield (Gal/Min): 0 Static Depth (ft): 10

Well Depth: 20 Depth to top of Main Water Zone: -1

Depth to bottom of Main Water Zone: -1

Well Log: NULL

Chemical Analysis on File: No

3
WSW
WY WELLS WYSE50000033225
1/2 - 1 Mile

Lower

Permit #: P13246.0P Permit Issue Date: 31-DEC-29

Status: Complete

Well Applicant: WICKHAM ORRIS L. & ALICE B.

Facility Name: WICKHAM #13 Uses: Domestic_GW; Stock

Yield (Gal/Min):24.5Static Depth (ft):24Well Depth:72Depth to top of Main Water Zone:-1Depth to bottom of Main Water Zone:-1Well Log:NULL

Chemical Analysis on File: Yes

4 WNW WY WELLS WYSE50000042868

1/2 - 1 Mile Higher

Permit #: P10116.0P Permit Issue Date: 08-OCT-91

Status: Complete Well Applicant: HUNNICUTT DELL C.

Facility Name: **HUNNICUTT #2** Uses: Stock Yield (Gal/Min): 4 Static Depth (ft): 180 Well Depth: 200 Depth to top of Main Water Zone: -1 Depth to bottom of Main Water Zone: **NULL** -1 Well Log:

Chemical Analysis on File: No

A5
WSW FED USGS USGS40001334813

1/2 - 1 Mile Lower

Organization ID: USGS-WY Organization Name: USGS Wyoming Water Science Center

Monitor Location: 14-067-10ccc02 Type: Well

HUC: Description: Not Reported 10190009 Drainage Area: Not Reported **Drainage Area Units:** Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: High Plains aquifer Formation Type: Ogallala Formation Construction Date: Aquifer Type: Not Reported Not Reported

Well Hole Depth Units:

Not Reported

Well Depth: Well Depth Units: Well Hole Depth:

Not Reported

Ground water levels, Number of Measurements: 51 1951-12-31 Level reading date:

Feet below surface: 19.80 Feet to sea level: Not Reported Not Reported Note:

Level reading date: 1950-02-27 Feet below surface: 14.19

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1945-08-29 Feet below surface: Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1945-02-14 Feet below surface: 14.76

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1944-05-10 Feet below surface: 14.09

Feet to sea level: Not Reported Not Reported Note:

Level reading date: 1944-01-29 Feet below surface: 15.42

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-12-27 Feet below surface: 14.67

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-11-16 Feet below surface: 15.07

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-10-04 Feet below surface: 15.64

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-09-09 Feet below surface: 15.33

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-08-12 Feet below surface: 14.42

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-07-12 Feet below surface: 13.70

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-06-08 Feet below surface: 13.60

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-05-27 Feet below surface: 16.79

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-05-10 Feet below surface: 13.97

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-04-14 Feet below surface: 14.44

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-03-08 Feet below surface: 14.83

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1943-02-04 Feet below surface: 14.61

Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-12-23	Feet below surface:	14.83
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-11-27	Feet below surface:	14.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-10-25	Feet below surface:	15.47
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-09-22	Feet below surface:	15.86
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-08-24	Feet below surface:	15.64
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-08-12	Feet below surface:	15.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-08-05	Feet below surface:	16.20
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-07-29	Feet below surface:	16.13
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-07-22	Feet below surface:	16.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-07-15	Feet below surface:	15.90
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-07-08	Feet below surface:	15.84
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-07-01	Feet below surface:	16.26
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-06-24	Feet below surface:	16.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-06-17	Feet below surface:	16.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-06-10	Feet below surface:	16.76
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-06-03	Feet below surface:	17.02
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-05-27	Feet below surface:	16.79
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-05-22	Feet below surface:	17.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-05-13	Feet below surface:	17.33
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1942-04-29	Feet below surface:	18.28
Feet to sea level:	Not Reported	Note:	Not Reported

Feet below surface:

Feet below surface:

Feet below surface:

Feet below surface:

Note:

Note:

Note:

Note:

19.12

19.71

20.17

20.27

Not Reported

Not Reported

Not Reported

Not Reported

1942-04-15

1941-12-11

1941-11-13

1941-10-30

Not Reported

Not Reported

Not Reported

Not Reported

Level reading date: 1942-04-08 Feet below surface: 19.28 Feet to sea level: Not Reported Not Reported Note: Level reading date: 1942-04-01 Feet below surface: 19.55 Feet to sea level: Not Reported Note: Not Reported 1942-03-25 19.63 Level reading date: Feet below surface: Feet to sea level: Not Reported Note: Not Reported Level reading date: 1942-03-04 Feet below surface: 20.30 Feet to sea level: Not Reported Not Reported Note: Level reading date: 1942-02-18 Feet below surface: 20.09 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1942-02-11 Feet below surface: 19.89 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1942-01-21 Feet below surface: 20.34 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1941-12-31 Feet below surface: 19.80 Feet to sea level: Not Reported Note: Not Reported 1941-12-18 Level reading date: Feet below surface: 19.89 Feet to sea level: Not Reported Note: Not Reported

B6 SSW WY WELLS WYSE50000016904

SSW 1/2 - 1 Mile Lower

Level reading date:

Level reading date:

Level reading date:

Feet to sea level:

Feet to sea level:

Feet to sea level:

Level reading date:

Feet to sea level:

Permit #: P82221.0W Permit Issue Date: 16-APR-90

Status: Complete Well Applicant: U. S. GEOLOGICAL SURVEY

Facility Name: Uses: Monitoring 155 Yield (Gal/Min): 0 Static Depth (ft): 20 Well Depth: 33.5 Depth to top of Main Water Zone: -1 **NULL** Depth to bottom of Main Water Zone: -1 Well Log:

Chemical Analysis on File: No

B7 SSW WY WELLS WYSE50000018665

1/2 - 1 Mile Lower

Permit #: P82219.0W Permit Issue Date: 16-APR-90

Status: Complete Well Applicant: U. S. GEOLOGICAL SURVEY

Facility Name: 153 Monitoring Uses: Yield (Gal/Min): 0 Static Depth (ft): 28 Well Depth: 40 Depth to top of Main Water Zone: -1 Depth to bottom of Main Water Zone: -1 Well Log: NULL Chemical Analysis on File:

No

No

B8 SSW WY WELLS WYSE50000015028 1/2 - 1 Mile Lower

P81714.0W Permit #: Permit Issue Date: 29-JAN-90

USDI, GEOLOGICAL SURVEY Well Applicant: Status: Complete

Facility Name: P 31 Uses: Monitoring

Yield (Gal/Min): 0 Static Depth (ft): 26 Well Depth: Depth to top of Main Water Zone: 40 -1 Depth to bottom of Main Water Zone: **NULL** -1 Well Log:

Chemical Analysis on File:

SSW **WY WELLS** WYSE50000016571

1/2 - 1 Mile Lower

Lower

Permit #: P82218.0W Permit Issue Date: 16-APR-90

U. S. GEOLOGICAL SURVEY Well Applicant: Status: Complete

Facility Name: 152 Uses: Monitoring Yield (Gal/Min): 0 Static Depth (ft): 23 Depth to top of Main Water Zone: 39 Well Depth: -1 Depth to bottom of Main Water Zone: Well Log: NULL -1

Chemical Analysis on File: No

B10 WY WELLS WYSE50000018867

SSW 1/2 - 1 Mile

No

P82220.0W Permit Issue Date: Permit #: 16-APR-90

Status: Well Applicant: U. S. GEOLOGICAL SURVEY Complete

Facility Name: 154 Uses: Monitoring Yield (Gal/Min): 0 Static Depth (ft): 25 Well Depth: Depth to top of Main Water Zone: 43 -1 Depth to bottom of Main Water Zone: -1 Well Log: **NULL**

B11 WY WELLS WYSE50000117396 1/2 - 1 Mile

Lower

Chemical Analysis on File:

Permit #: P97126.0W Permit Issue Date: 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 601R Monitoring Uses:

Yield (Gal/Min): 0 Static Depth (ft): 30

Well Depth: 39 Depth to top of Main Water Zone: -1
Depth to bottom of Main Water Zone: -1 Well Log: NULL

Chemical Analysis on File: No

1/2 - 1 Mile Lower

Permit #: P97123.0W Permit Issue Date: 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 604 Uses: Monitoring

Yield (Gal/Min):0Static Depth (ft):34Well Depth:46Depth to top of Main Water Zone:-1Depth to bottom of Main Water Zone:-1Well Log:NULL

Chemical Analysis on File: No

B13
SSW WY WELLS WYSE50000116892
1/2 - 1 Mile

Lower

Permit #: P97124.0W Permit Issue Date: 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 603 Uses: Monitoring Yield (Gal/Min): 0 Static Depth (ft): 37 Well Depth: 44 Depth to top of Main Water Zone: -1 Depth to bottom of Main Water Zone: -1 Well Log: **NULL**

Chemical Analysis on File: No

1/2 - 1 Mile Lower

Permit #: P97120.0W Permit Issue Date: 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 607R Uses: Monitoring
Yield (Gal/Min): 0 Static Depth (ft): 31
Well Depth: 40 Depth to top of Main Water Zone: -1
Depth to bottom of Main Water Zone: -1 Well Log: NULL

Chemical Analysis on File: No

15 NW FED USGS USGS40001334980

1/2 - 1 Mile Higher

Organization ID: USGS-WY Organization Name: USGS Wyoming Water Science Center

Monitor Location: 14-067-10bbb01 Type: Well Description: Not Reported HUC: 10190009 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Not Reported Aquifer: High Plains aquifer Formation Type: Ogallala Formation

TC5528367.2s Page A-21

Aquifer Type:Not ReportedConstruction Date:Not ReportedWell Depth:Not ReportedWell Depth Units:Not ReportedWell Hole Depth:Not ReportedWell Hole Depth Units:Not Reported

NE WY WELLS WYSE5000040108

1/2 - 1 Mile Lower

Permit #: P39960.0W Permit Issue Date: 19-SEP-77

Status: Complete
Well Applicant: LARAMIE COUNTY SCHOOL DISTRICT #1
Facility Name: LARAMIE COUNTY SCHOOL DISTRICT #1

Uses: Domestic_GW; Stock

Yield (Gal/Min):8Static Depth (ft):135Well Depth:315Depth to top of Main Water Zone:255Depth to bottom of Main Water Zone:315Well Log:NULL

Chemical Analysis on File: No

A17
WSW
FED USGS USGS40001334811
1/2 - 1 Mile

Lower

Lower

Organization ID: USGS-WY Organization Name: USGS Wyoming Water Science Center

Monitor Location: 14-067-10ccc01 Type: Well Description: Not Reported HUC: 10190009 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area Unts: Contrib Drainage Area: Not Reported Not Reported High Plains aquifer Formation Type: Ogallala Formation Aquifer: Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 77 Well Depth Units: ft

Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

Ground water levels, Number of Measurements: 1 Level reading date: 1941-10-01 Feet below surface: 20.00 Feet to sea level: Not Reported

Note: Not Reported

C18 SW 1/2 - 1 Mile

Permit #: P97128.0W Permit Issue Date: 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 310 Uses: Monitoring Yield (Gal/Min): 0 Static Depth (ft): 11 Well Depth: Depth to top of Main Water Zone: 21 -1 Depth to bottom of Main Water Zone: -1 Well Log: **NULL**

Chemical Analysis on File: No

WY WELLS

WYSE50000117119

Map ID Direction Distance

Elevation Database EDR ID Number

C19 SW

WY WELLS WYSE50000127045

1/2 - 1 Mile Lower

Permit #: P97125.0W Permit Issue Date: 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 602 Uses: Monitoring Yield (Gal/Min): 0 Static Depth (ft): 37

Well Depth: 46 Depth to top of Main Water Zone: -1
Depth to bottom of Main Water Zone: -1 Well Log: NULL

Chemical Analysis on File: No

D20 SSW 1/2 - 1 Mile

WY WELLS WYSE50000142449

Lower

 Permit #:
 P81717.0W
 Permit Issue Date:
 29-JAN-90

Status: Complete Well Applicant: USDI, GEOLOGICAL SURVEY

Facility Name: P 34 Uses: Monitoring

Yield (Gal/Min):

Vield (Gal/M

Chemical Analysis on File: No

D21 SSW 1/2 - 1 Mile

 Lower
 Permit #:
 P97127.0W
 Permit Issue Date:
 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 600R Uses: Monitoring

Yield (Gal/Min):0Static Depth (ft):27Well Depth:36.5Depth to top of Main Water Zone:-1Depth to bottom of Main Water Zone:-1Well Log:NULL

Chemical Analysis on File: No

D22 SSW WY WELLS WYSE50000117337 1/2 - 1 Mile

Lower

Permit #: P97122.0W Permit Issue Date: 09-SEP-94

Status: Complete Well Applicant: U.S. Geological Survey

Facility Name: 605R Uses: Monitoring
Yield (Gal/Min): 0 Static Depth (ft): 27
Well Depth: 29.5 Depth to top of Main Water Zone: -1

Well Depth: 29.5 Depth to top of Main Water Zone: -1
Depth to bottom of Main Water Zone: -1
Chemical Analysis on File: No

WY WELLS

WYSE50000113296

AREA RADON INFORMATION

State Database: WY Radon

Radon Test Results

% Elev.	Total kits	# tests 4-10 pCi/L	# tests 10-20 pCi/L	# Tests>20 pCi/L
22%	2358	396	89	42

Federal EPA Radon Zone for LARAMIE County: 1

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for LARAMIE COUNTY, WY

Number of sites tested: 55

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor Living Area - 2nd Floor	1.750 pCi/L Not Reported	100% Not Reported	0% Not Reported	0% Not Reported
Basement	3.020 pCi/L	75%	24%	2%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: National Wetlands Inventory

Source: Wyoming Geospatial Hub Telephone: 307-777-4600

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Wyoming Well Permits

Source: Wyoming State Engineer's Office

Telephone: 307-777-6148

Wyoming well permit locations on file with the Wyoming State Engineer's Office.

OTHER STATE DATABASE INFORMATION

Oil and Gas Well Location Information

Source: Oil and Gas Conservation Commission

Telephone: 307-234-7147

RADON

State Database: WY Radon Source: Department of Health Telephone: 307-777-6015 Wyoming Radon Project

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Cheyenne AASF

Cheyenne AASF Fe Warren AFB, WY 82005

Inquiry Number: 5528367.2s

January 08, 2019

EDR Summary Radius Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map	2
Detail Map.	3
Map Findings Summary.	4
Map Findings	8
Orphan Summary	9
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map.	A-5
Physical Setting Source Map.	A-8
Physical Setting Source Map Findings.	A-10
Physical Setting Source Records Searched	PSGR.

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

CHEYENNE AASF FE WARREN AFB, WY 82005

COORDINATES

Latitude (North): 41.1961490 - 41° 11' 46.13" Longitude (West): 104.8704860 - 104° 52' 13.74"

Universal Tranverse Mercator: Zone 13 UTM X (Meters): 510860.2 UTM Y (Meters): 4560327.5

Elevation: 6290 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property: TF

Source: U.S. Geological Survey

Target Property: W

Source: U.S. Geological Survey

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20150620 Source: USDA

MAPPED SITES SUMMARY

Target Property Address: CHEYENNE AASF FE WARREN AFB, WY 82005

Click on Map ID to see full detail.

MAP				RELATIVE	DIST (ft. & mi.)
ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	ELEVATION	DIRECTION
Reg	FRANCIS E. WARREN AI		DOD	Same	1 ft.
1	HUNNICUTT OFF-BASE P		UXO	Higher	1529, 0.290, West

EXECUTIVE SUMMARY

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

DOD: A review of the DOD list, as provided by EDR, and dated 12/31/2005 has revealed that there is 1 DOD site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
FRANCIS E. WARREN AI		0 - 1/8 (0.000 mi.)	0	8

UXO: A review of the UXO list, as provided by EDR, and dated 09/30/2017 has revealed that there is 1 UXO site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
HUNNICUTT OFF-BASE P		W 1/4 - 1/2 (0.290 mi.)	1	8

Zip Database(s)	VCP RGA LUST
Site Address	ADJACENT TO SW CORNER OF CHEYE ON CHEYENNE AIRPORT
Site Name	106862002 NIELSEN TRUST PROPERTY 116439392 CHEYENNE ATCT
EDR ID	S106862 S116439
City	CHEYENNE

ORPHAN SUMMARY

Count: 2 records.

OVERVIEW MAP - 5528367.2S

SITE NAME: Cheyenne AASF ADDRESS: Cheyenne AASF Fe Warren AFB WY 82005 CLIENT: CONTACT: INQUIRY#: 5528367.2s LAT/LONG: 41.196149 / 104.870486

January 08, 2019 9:18 am DATE:

DETAIL MAP - 5528367.2S

SITE NAME: Cheyenne AASF ADDRESS:

Cheyenne AASF Fe Warren AFB WY 82005 41.196149 / 104.870486 LAT/LONG:

CLIENT: CONTACT: AECOM Brittany Kirchmann

INQUIRY#: 5528367.2s

January 08, 2019 9:19 am DATE:

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted		
STANDARD ENVIRONMENT	STANDARD ENVIRONMENTAL RECORDS									
Federal NPL site list										
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0		
Federal Delisted NPL sit	te list									
Delisted NPL	1.000		0	0	0	0	NR	0		
Federal CERCLIS list										
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0		
Federal CERCLIS NFRA	P site list									
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0		
Federal RCRA CORRAC	TS facilities li	st								
CORRACTS	1.000		0	0	0	0	NR	0		
Federal RCRA non-COR	RACTS TSD f	acilities list								
RCRA-TSDF	0.500		0	0	0	NR	NR	0		
Federal RCRA generator	rs list									
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0		
Federal institutional con engineering controls re										
LUCIS US ENG CONTROLS US INST CONTROL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0		
Federal ERNS list										
ERNS	TP		NR	NR	NR	NR	NR	0		
State- and tribal - equiva	alent CERCLIS	6								
SHWS	N/A		N/A	N/A	N/A	N/A	N/A	N/A		
State and tribal landfill a solid waste disposal site										
SWF/LF SHWF	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0		
State and tribal leaking	storage tank l	ists								
INDIAN LUST LTANKS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0		
State and tribal registere	ed storage tar	ık lists								
FEMA UST	0.250		0	0	NR	NR	NR	0		

Database		Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST AST INDIAN UST TANKS	0.250 0.250 0.250 0.250		0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal institutio control / engineering cor								
ENG CONTROLS INST CONTROL	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal voluntary	y cleanup sites							
INDIAN VCP VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal Brownfie	elds sites							
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	TAL RECORDS							
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / S Waste Disposal Sites	Solid							
SWRCY INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500		0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0
Local Lists of Hazardous Contaminated Sites	s waste /							
US HIST CDL CDL US CDL	TP TP TP		NR NR NR	NR NR NR	NR NR NR	NR NR NR	NR NR NR	0 0 0
Local Land Records								
LIENS 2	TP		NR	NR	NR	NR	NR	0
Records of Emergency R	Release Reports	5						
HMIRS SPILLS	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Other Ascertainable Rec	ords							
RCRA NonGen / NLR FUDS DOD SCRD DRYCLEANERS US FIN ASSUR EPA WATCH LIST	0.250 1.000 1.000 0.500 TP TP		0 0 1 0 NR NR	0 0 0 0 NR NR	NR 0 0 0 NR NR	NR 0 0 NR NR NR	NR NR NR NR NR	0 0 1 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	TP		NR	NŘ	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	Ö
SSTS	TP		NR	NR	NR	NR	NR	Ö
ROD	1.000		0	0	0	0	NR	Ö
RMP	TP		NR	NR	NR	NR	NR	0
RAATS	TP		NR	NR	NR	NR	NR	0
PRP	TP		NR	NR	NR	NR	NR	0
PADS	TP		NR	NR	NR	NR	NR	0
ICIS	TP		NR	NR	NR	NR	NR	0
FTTS	TP		NR	NR	NR	NR	NR	0
MLTS	TP		NR	NR	NR	NR	NR	0
COAL ASH DOE	TP		NR	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	0
HIST FTTS	TP		NR	NR	NR	NR	NR	0
DOT OPS	TP		NR	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0 0	NR	0
FUSRAP UMTRA	1.000 0.500		0 0	0 0	0 0	NR	NR NR	0 0
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	0
US AIRS	TP		NR	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.250		0	ő	NR	NR	NR	0
FINDS	TP		NR	NR	NR	NR	NR	Ö
ECHO	TP		NR	NR	NR	NR	NR	Ö
UXO	1.000		0	0	1	0	NR	1
DOCKET HWC	TP		NR	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
EMI	TP		NR	NR	NR	NR	NR	0
ASBESTOS	TP		NR	NR	NR	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
Financial Assurance	TP		NR	NR	NR	NR	NR	0
MINES	0.250		0	0	NR	NR	NR	0
UIC	TP		NR	NR	NR	NR	NR	0
NPDES	TP		NR	NR	NR	NR	NR	0
EDR HIGH RISK HISTORIC	AL RECORDS							
EDR Exclusive Records	;							
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		Ō	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOVER	NMENT ARCHI	/ES						
Exclusive Recovered G	ovt. Archives							
RGA LF	TP		NR	NR	NR	NR	NR	0
 .	••							Ü

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
RGA LUST	TP		NR	NR	NR	NR	NR	0
- Totals		0	1	0	1	0	0	2

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

N/A = This State does not maintain a SHWS list. See the Federal CERCLIS list.

Map ID Direction Distance Elevation	MAP FINDINGS Site	Database(s)	EDR ID Number EPA ID Number
DOD Region < 1/8 1 ft.	FRANCIS E. WARREN AIR FORCE BASE FRANCIS E. WARREN AIR FOR (County), WY Click here for full text details	DOD	CUSA122479 N/A
1 West 1/4-1/2 0.290 mi. 1529 ft. Relative: Higher	HUNNICUTT OFF-BASE PROPERTY F. E. WARREN AFB, WY Click here for full text details	uxo	1018153746 N/A

WY AIRS Air Quality Permit Listing Department of Environmental Quality 68,272,011 68,272,021 69,272,021 69,272,021 69,272,021 69,272,021 69,272,021 69,272,021 69,272,021 69,272,021 69,272,021 69,772,0	St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
WY AST Wyoming Aboveground Storage Tanks Department of Environmental Quality 0522,22008 0774/2008 0874/3209 WY BROWINFELDS Brownfield Sites Listing Department of Environmental Quality 05/01/2018 06/08/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2018 07/42/2019 07/42/2018 07/42/201	WY	AIRS	Air Quality Permit Listing	Department of Environmental Quality	08/27/2018	08/29/2018	11/01/2018
March Marc	WY	ASBESTOS	Asbestos Notification Listing	Department of Environmental Quality	06/13/2018	06/15/2018	07/27/2018
WY CDL Clandestine Drug Lab Site Locations Department of Health 5051/2018 6051/2018 6058/2018 6072/71/2018 WY PXY CLEANERS Dryclasener Facility Listing Department of Environmental Quality 11/19/2018	WY	AST	Wyoming Aboveground Storage Tanks	Department of Environmental Quality	05/23/2008	07/24/2008	08/13/2008
WY BNY CONTROLS Dyclasaner Facility Listing Department of Environmental Quality 2008/2017 6611/2019 6611/2019 WY Financial Assurance G6723/2008 6671/2018 07/14/2018 07/14/2018 07/14/2018 07/14/2019 WI MIME Mime Locations Listing Department of Environmental Quality 07/13/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/	WY	BROWNFIELDS	Brownfields Sites Listing	Department of Environmental Quality	11/19/2018	11/19/2018	01/04/2019
WY ENG CONTROLS Engineering Controls Site Listing Department of Environmental Quality 11/19/2018 11/19/2018 01/04/2018 WY Financial Assurance Information Issting Department of Environmental Quality 11/19/2018 01/04/2019 WY LTANKS Known Contaminated Sines Department of Environmental Quality 07/03/2018 07/13/2018 09/13/2018	WY	CDL	Clandestine Drug Lab Site Locations	Department of Health	05/01/2018	06/08/2018	07/27/2018
WY ENG CONTROLS Engineering Controls Site Listing Department of Environmental Quality 11/19/2018 11/19/2018 01/04/2018 WY Financial Assurance Information Issting Department of Environmental Quality 11/19/2018 01/04/2019 WY LTANKS Known Contaminated Sines Department of Environmental Quality 07/03/2018 07/13/2018 09/13/2018	WY	DRYCLEANERS	Drycleaner Facility Listing	Department of Environmental Quality	02/02/2017	06/01/2017	05/11/2018
WY Financial Assurance Financial Assurance Financial Favorance Information listing Department of Environmental Quality 05/23/2008 60/17/2008 07/24/2008 WY INST CONTROL Sites with Institutional Controls Department of Environmental Quality 07/09/2018 07/13/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 08/28/2017 07/27/2018 08/28/2017 07/27/2018 08/28/2017 07/27/2018 08/28/2017 07/27/2018 08/28/2017 07/27/2018 08/28/2017 07/27/2018 08/28/2018 07/27/2018 08/28/2018 07/27/2018 07/27/2018 08/28/2018 08/28/2018 07/27/2018 08/28/2018 08/28/2018 08/28/2018 07/27/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018	WY	ENG CONTROLS		•	11/19/2018	11/19/2018	01/04/2019
W. INST CONTROL Sites with Institutional Controls Department of Environmental Quality 17/18/2018 17/18/2018 08/28/2018 W. INST CONTROL W. MINES Mine Locations Listing W. MINES Wastewater Permit Listing Department of Environmental Quality 06/04/2018 08/28/2018 07/27/2018 W. P. MINES Recovered Government Archive Leaking Underground Storage Tan Department of Environmental Quality 07/01/2013 07/17/2014 W. SHWF Solid & Hazardous Waste Facility Database Department of Environmental Quality Department of Environmental Qualit	WY	Financial Assurance		Department of Environmental Quality	05/23/2008	06/17/2008	07/24/2008
VF LTANKS	WY	INST CONTROL		•	11/19/2018	11/19/2018	01/04/2019
WM NINES Mine Locations Listing Wyoming Geographic Information Science Center 04/09/2018 06/32/2018 07/27/2018 WY RGA LF Recovered Government Archive Leaking Underground Storage Tan WY SHWF Recovered Government Archive Leaking Underground Storage Tan WY SHWF Department of Environmental Quality 07/01/2013 01/04/2014 07/01/2014 <td< td=""><td>WY</td><td>LTANKS</td><td>Known Contaminated Sites</td><td>•</td><td></td><td>07/13/2018</td><td>08/28/2018</td></td<>	WY	LTANKS	Known Contaminated Sites	•		07/13/2018	08/28/2018
WY ROLES	WY	MINES		•	04/09/2018	06/28/2018	07/27/2018
WY RGA LUST Recovered Government Archive Solid Waste Facilities List Department of Environmental Quality 07/01/2013 01/17/2014 WY SHWF Solid & Hazardous Waste Facility Database Egapartment of Environmental Quality 01/04/2014 09/02/2017 WY SHWS This state does not maintain a SHWS list. See the Federal CE Egapartment of Environmental Quality 01/02/2014 09/02/2017 WY SWEVEL Solid Waste Facility Database Department of Environmental Quality 07/03/2018 08/10/2018 09/08/2017 WY SWRCY Recycling Facilities Department of Environmental Quality 09/09/2019 11/02/2009							
WY SHVF	WY	RGA LF	· · · · · · · · · · · · · · · · · · ·	·			01/17/2014
WY SHWF Solid & Hazardous Waste Facility Database Department of Environmental Quality 01/26/2017 03/12/2017 08/28/2017 WY SPILLS SPILL Database Department of Environmental Quality 77/32/2018 08/10/2018 08/00/2018 08/00/2018 08/00/2018 08/00/2018 08/00/2018 08/00/2019 08/00/2018 08/00/2018 08/00/2019 <td>WY</td> <td>RGA LUST</td> <td>Recovered Government Archive Leaking Underground Storage Tan</td> <td>•</td> <td></td> <td>07/01/2013</td> <td>01/04/2014</td>	WY	RGA LUST	Recovered Government Archive Leaking Underground Storage Tan	•		07/01/2013	01/04/2014
WY SHUS This state does not maintain a SHWS list. See the Federal CE Department of Environmental Quality 07/03/2018 08/06/2018 99/06/2018 W/S PLLS SPIL Database Department of Environmental Quality 07/03/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2019 08/20/2019 08/20/2019 08/20/2019 08/20/2019 08/20/2019 08/20/2019 08/20/2018	WY	SHWF		·	01/26/2017	03/01/2017	08/29/2017
WY SPILL Database Department of Environmental Quality 07/03/2018 08/06/2018 WY SWRCY Solid Waste Facility Database Department of Environmental Quality 01/28/2017 70/30/2009 11/28/2019 08/06/2018 WY SWRCY Recycling Facilities Department of Environmental Quality 09/09/2018 10/22/2009 11/25/2009 WY UIC UIC Well Locations List Department of Environmental Quality 07/09/2018 07/13/2018 08/28/2018 08/20/2018 08/20/2018 08/20/2018 10/20/2018	WY	SHWS	•	•			
WY SWFLF Solid Waste Facility Database Department of Environmental Quality 01/26/2017 30/30/2019 70/22/2009 WY SWRCY Recycling Facilities Department of Environmental Quality 09/30/2009 11/02/2009				·	07/03/2018	08/10/2018	09/06/2018
WY SWRCY Recycling Facilities Department of Environmental Quality 09/30/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2009 11/2/2008 09/2018 09/30/2019 09/30/2018 09/30/2018	WY						
WY TANKS Storage Tank Listing Department of Environmental Quality 07/08/2018 07/18/2018 08/28/2018 WY UIC UIC Well Locations List Department of Environmental Quality 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 08/28/2018 07/24/2008 08/28/2018 <td< td=""><td></td><td></td><td>•</td><td>•</td><td></td><td></td><td></td></td<>			•	•			
WY UIC UIC deground Storage Tanks Department of Environmental Quality 08/28/2018 08/30/2018 01/09/2018 WY VCP Underground Storage Tanks Department of Environmental Quality 01/20208 08/20/2018 08/30/2018	WY						
WY UST Underground Storage Tanks Department of Environmental Quality 05/23/2008 07/24/2008 08/12/2008 WY VCP List of Voluntary Remediation Program Sites Department of Environmental Quality 11/19/2018 11/19/2018 11/19/2018 11/19/2018 10/10/2018 US 2020 COR ACTION 2020 Corrective Action Program List Environmental Protection Agency 09/30/2017 05/08/2018 07/20/2018 US ABANDONED MINES Abandoned Mines Department of Interior 09/10/2018 09/11/2019 09/11/2019 09/11/2019 09/11/2019 09/11/2019 09/11/2019 09/11/2019 09/11/2019 09/11/2019	WY	UIC		·		08/30/2018	10/09/2018
WY CP List of Voluntary Remediation Program Sites Department of Environmental Quality 11/19/2018 11/19/2018 01/04/2019 US 2020 COR ACTION 2020 Corrective Action Program List Environmental Protection Agency 09/30/2017 05/08/2018 07/20/2018 US ABANDONED MINES Abandoned Mines Department of Interior 09/10/2018 09/11/2018 09/10/2014 09/10/2014 09/10/2014 09/10/2014 09/10/2014 10/20/2014 09/10/2014 10/20/2014 09/10/2014 10/20/2014 09/10/2014 10/20/2014 09/10/2014 09/10/2014 10/20/2014 09/10/2014 09/10/2014 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
US 2020 COR ACTION 2020 Corrective Action Program List Environmental Protection Agency 09/30/2017 05/08/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2018 09/11/2019							
US ABANDONED MINES Abandoned Mines Department of Interior 09/10/2018 09/11/2018 09/14/2018 US BRS Biennial Reporting System EPA/NTIS 12/31/2005 08/07/2009 10/22/2009 US COAL ASH DOE Steam-Electric Plant Operation Data Department of Energy 12/31/2005 08/07/2009 10/22/2009 US COAL ASH EPA Coal Combustion Residues Surface Impoundments List Environmental Protection Agency 07/01/2014 09/10/2014 10/20/2014 US CORRACTS Corrective Action Report EPA 03/01/2018 03/01/2018 10/12/2018 12/01/2018 12/01/2018 12/01/2018 12/01/2018 10/01/2014 10/01/	US	2020 COR ACTION	2020 Corrective Action Program List				
US BRS Biennial Reporting System EPA/NTIS 12/31/2015 02/22/2017 09/28/2017 US COAL ASH DOE Steam-Electric Plant Operation Data Department of Energy 12/31/2005 08/07/2009 10/22/2009 US COAL ASH EPA Coal Combustion Residues Surface Impoundments List Environmental Protection Agency 07/01/2014 09/02/2014 10/20/2004 US CONSENT Superfund (CERCLA) Consent Decrees Department of Justice, Consent Decree Library 09/30/2018 10/12/2018 12/07/2018 US CORRACTS Corrective Action Report EPA 03/01/2018 03/28/2018 06/22/2018 US DEBRIS REGION 9 Torres Martinez Reservation Illegal Dump Site Locations EPA, Region 9 01/12/2009 05/07/2009 09/21/2009 US DCDCKET HWC Hazardous Waste Compliance Docket Listing Environmental Protection Agency 05/31/2018 07/26/2018 10/05/2018 US DCD OP Department of Defense Sites USGS USGS 12/31/2005 11/10/2006 01/11/2001 US DCT OPS Incident and Acciden	US			ů ,			
US COAL ASH DOE Steam-Electric Plant Operation Data Department of Energy 12/31/2005 08/07/2009 10/22/2009 US COAL ASH EPA Coal Combustion Residues Surface Impoundments List Environmental Protection Agency 07/01/2014 09/10/2014 10/20/2018 10/20/2018	US	BRS		•			
US COAL ASH EPA Coal Combustion Residues Surface Impoundments List Environmental Protection Agency 07/01/2014 09/10/2014 10/20/2014 US CONSENT Superfund (CERCLA) Consent Decrees Department of Justice, Consent Decree Library 09/30/2018 10/20/2018 12/207/2018 US CORRACTS Corrective Action Report EPA Consent Decree Library 03/01/2018 03/01/2018 06/22/2018 06/22/2018 US DEBRIS REGION 9 Torres Martinez Reservation Illegal Dump Site Locations EPA, Region 9 01/12/2009 05/07/2009 09/21/2009 US DOCKET HWC Hazardous Waste Compliance Docket Listing Environmental Protection Agency 05/31/2018 07/26/2018 10/05/2018 US DOT OPS Incident and Accident Data Department of Transporation, Office of Pipeli 07/31/2012 08/07/2012 09/18/2012 US Delisted NPL National Priority List Deletions EPA EPA 11/14/2018 11/27/2018 12/07/2018 US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/05/2018 09/05/201			, , ,				
US CONSENT Superfund (CERCLA) Consent Decrees Department of Justice, Consent Decree Library 09/30/2018 10/12/2018 12/07/2018 US CORRACTS Corrective Action Report EPA 03/01/2018 03/28/2018 06/22/2018 <td< td=""><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td></td<>			·				
US CORRACTS Corrective Action Report EPA 03/01/2018 03/28/2018 06/22/2018 US DEBRIS REGION 9 Torres Martinez Reservation Illegal Dump Site Locations EPA, Region 9 01/12/2009 05/07/2009 09/21/2009 US DOCKET HWC Hazardous Waste Compliance Docket Listing Environmental Protection Agency 05/31/2018 07/26/2018 10/05/2018 US DOD Department of Defense Sites USGS 12/31/2005 11/10/2006 01/11/2007 US DOT OPS Incident and Accident Data Department of Transporation, Office of Pipeli 07/31/2012 08/07/2012 09/18/2012 US Delisted NPL National Priority List Deletions EPA 11/14/2018 11/27/2018 12/07/2018 US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/02/2018 09/05/2018 09/14/2018 US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. EDR, Inc. US EDR, Inc. US EDR, Inc. US EDR, Inc. US 08/30/2013			·	ŭ ,			
US DEBRIS REGION 9 Torres Martinez Reservation Illegal Dump Site Locations EPA, Region 9 01/12/2009 05/07/2009 09/21/2009 US DOCKET HWC Hazardous Waste Compliance Docket Listing Environmental Protection Agency 05/31/2018 07/26/2018 10/05/2018 US DOD Department of Defense Sites USGS 12/31/2005 11/10/2006 01/11/2007 US DOT OPS Incident and Accident Data Department of Transporation, Office of Pipeli 07/31/2012 08/07/2012 09/07/2018 US Delisted NPL National Priority List Deletions EPA 11/14/2018 11/27/2018 12/07/2018 US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/02/2018 09/05/2018 09/14/2018 US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. EDR, Inc. EDR, Inc. US EDR MGP EDR Exclusive Historical Cleaners EDR, Inc. EDR, Inc. 09/03/2013 03/21/2014 06/17/2014 US EPA WATCH LIST EPA WATCH LIST Environmental	US	CORRACTS	· · · · · · · · · · · · · · · · · · ·	•			
US DOCKET HWC Hazardous Waste Compliance Docket Listing Environmental Protection Agency 05/31/2018 07/26/2018 10/05/2018 US DOD Department of Defense Sites USGS 12/31/2005 11/10/2006 01/11/2007 US DOT OPS Incident and Accident Data Department of Transporation, Office of Pipeli 07/31/2012 08/07/2012 09/12/2018 12/07/2018 US Delisted NPL National Priority List Deletions EPA 11/14/2018 11/27/2018 12/07/2018 US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/02/2018 09/05/2018 09/14/2018 US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. EDR, Inc. EDR, Inc. US EDR, Inc. EDR, Inc. US US EDR, Inc. US EDR, Inc. US US EDR, Inc. US US US US US US US US <td< td=""><td>US</td><td>DEBRIS REGION 9</td><td></td><td>EPA. Region 9</td><td>01/12/2009</td><td>05/07/2009</td><td>09/21/2009</td></td<>	US	DEBRIS REGION 9		EPA. Region 9	01/12/2009	05/07/2009	09/21/2009
US DOD Department of Defense Sites USGS 12/31/2005 11/10/2006 01/11/2007 US DOT OPS Incident and Accident Data Department of Transporation, Office of Pipeli 07/31/2012 08/07/2012 09/18/2012 US Delisted NPL National Priority List Deletions EPA 11/14/2018 11/27/2018 12/07/2018 US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/02/2018 09/05/2018 09/14/2018 US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. US EDR MGP EDR Proprietary Manufactured Gas Plants EDR, Inc. US EPA WATCH LIST EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDLAND Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US	US	DOCKET HWC			05/31/2018	07/26/2018	10/05/2018
US DOT OPS Incident and Accident Data Department of Transporation, Office of Pipeli 07/31/2012 08/07/2012 09/18/2012 US Delisted NPL National Priority List Deletions EPA 11/14/2018 11/27/2018 11/27/2018 11/27/2018 US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/02/2018 09/05/2018 09/05/2018 09/05/2018 US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. US EDR Hist Cleaner EDR Exclusive Historical Cleaners EDR, Inc. US EDR MGP EDR Proprietary Manufactured Gas Plants EDR, Inc. US EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA UST Underground Storage Tank Listing EPA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009			·				
US Delisted NPL National Priority List Deletions EPA 11/14/2018 11/27/2018 12/07/2018 US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/02/2018 09/05/2018 09/14/2018 US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. US EDR Hist Cleaner EDR Exclusive Historical Cleaners EDR, Inc. US EDR MGP EDR Proprietary Manufactured Gas Plants EDR, Inc. US EPA WATCH LIST EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/13/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009			•	Department of Transporation, Office of Pipeli			
US ECHO Enforcement & Compliance History Information Environmental Protection Agency 09/02/2018 09/05/2018 09/14/2018 US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. US EDR Hist Cleaner EDR Exclusive Historical Cleaners EDR, Inc. US EDR MGP EDR Proprietary Manufactured Gas Plants EDR, Inc. US EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 0	US	Delisted NPL	National Priority List Deletions	·	11/14/2018	11/27/2018	12/07/2018
US EDR Hist Auto EDR Exclusive Historical Auto Stations EDR, Inc. US EDR Hist Cleaner EDR Exclusive Historical Cleaners EDR, Inc. US EDR MGP EDR Proprietary Manufactured Gas Plants EDR, Inc. US EPA WATCH LIST EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/13/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009	US	ECHO	•	Environmental Protection Agency	09/02/2018	09/05/2018	09/14/2018
US EDR Hist Cleaner EDR Exclusive Historical Cleaners EDR, Inc. US EDR MGP EDR Proprietary Manufactured Gas Plants EDR, Inc. US EPA WATCH LIST EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/13/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009	US	EDR Hist Auto	, ,	9 ,			
US EDR MGP EDR Proprietary Manufactured Gas Plants EDR, Inc. US EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/3/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009	US	EDR Hist Cleaner	EDR Exclusive Historical Cleaners	· · · · · · · · · · · · · · · · · · ·			
US EPA WATCH LIST EPA WATCH LIST Environmental Protection Agency 08/30/2013 03/21/2014 06/17/2014 US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/3/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009	US			·			
US ERNS Emergency Response Notification System National Response Center, United States Coast 09/24/2018 09/25/2018 11/09/2018 US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/3/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009	US	EPA WATCH LIST			08/30/2013	03/21/2014	06/17/2014
US FEDERAL FACILITY Federal Facility Site Information listing Environmental Protection Agency 11/07/2016 01/05/2017 04/07/2017 US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/3/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009	US	ERNS	Emergency Response Notification System		09/24/2018	09/25/2018	11/09/2018
US FEDLAND Federal and Indian Lands U.S. Geological Survey 12/31/2005 02/06/2006 01/11/2007 US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/13/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009		_	- · ·				
US FEMA UST Underground Storage Tank Listing FEMA 05/15/2017 05/30/2017 10/13/2017 US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009		_	,				
US FINDS Facility Index System/Facility Registry System EPA 08/07/2018 09/05/2018 10/05/2018 US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009							
US FTTS FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fu EPA/Office of Prevention, Pesticides and Toxi 04/09/2009 04/16/2009 05/11/2009							
		_					
	US	FTTS INSP		EPA	04/09/2009	04/16/2009	05/11/2009

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
US	FUDS	Formerly Used Defense Sites	U.S. Army Corps of Engineers	01/31/2015	07/08/2015	10/13/2015
US	FUELS PROGRAM	EPA Fuels Program Registered Listing	EPA	08/22/2018	08/22/2018	10/05/2018
	FUSRAP	Formerly Utilized Sites Remedial Action Program	Department of Energy	08/08/2017	09/11/2018	09/14/2018
US	HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HIST FTTS INSP	FIFRA/TSCA Tracking System Inspection & Enforcement Case Lis	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HMIRS	Hazardous Materials Information Reporting System	U.S. Department of Transportation	03/26/2018	03/27/2018	06/08/2018
US	ICIS	Integrated Compliance Information System	Environmental Protection Agency	11/18/2016	11/23/2016	02/10/2017
US	IHS OPEN DUMPS	Open Dumps on Indian Land	Department of Health & Human Serivces, Indian	04/01/2014	08/06/2014	01/29/2015
US	INDIAN LUST R1	Leaking Underground Storage Tanks on Indian Land	EPA Region 1	04/13/2018	05/18/2018	07/20/2018
US	INDIAN LUST R10	Leaking Underground Storage Tanks on Indian Land	EPA Region 10	04/12/2018	05/18/2018	07/20/2018
US	INDIAN LUST R4	Leaking Underground Storage Tanks on Indian Land	EPA Region 4	05/08/2018	05/18/2018	07/20/2018
US	INDIAN LUST R5	Leaking Underground Storage Tanks on Indian Land	EPA, Region 5	04/12/2018	05/18/2018	07/20/2018
US	INDIAN LUST R6	Leaking Underground Storage Tanks on Indian Land	EPA Region 6	04/01/2018	05/18/2018	07/20/2018
US	INDIAN LUST R7	Leaking Underground Storage Tanks on Indian Land	EPA Region 7	04/24/2018	05/18/2018	07/20/2018
US	INDIAN LUST R8	Leaking Underground Storage Tanks on Indian Land	EPA Region 8	04/25/2018	05/18/2018	07/20/2018
US	INDIAN LUST R9	Leaking Underground Storage Tanks on Indian Land	Environmental Protection Agency	04/10/2018	05/18/2018	07/20/2018
US	INDIAN ODI	Report on the Status of Open Dumps on Indian Lands	Environmental Protection Agency	12/31/1998	12/03/2007	01/24/2008
US	INDIAN RESERV	Indian Reservations	USGS	12/31/2014	07/14/2015	01/10/2017
US	INDIAN UST R1	Underground Storage Tanks on Indian Land	EPA, Region 1	04/13/2018	05/18/2018	07/20/2018
US	INDIAN UST R10	Underground Storage Tanks on Indian Land	EPA Region 10	04/12/2018	05/18/2018	07/20/2018
US	INDIAN UST R4	Underground Storage Tanks on Indian Land	EPA Region 4	05/08/2018	05/18/2018	07/20/2018
US	INDIAN UST R5	Underground Storage Tanks on Indian Land	EPA Region 5	04/12/2018	05/18/2018	07/20/2018
US	INDIAN UST R6	Underground Storage Tanks on Indian Land	EPA Region 6	04/01/2018	05/18/2018	07/20/2018
US	INDIAN UST R7	Underground Storage Tanks on Indian Land	EPA Region 7	04/24/2018	05/18/2018	07/20/2018
US	INDIAN UST R8	Underground Storage Tanks on Indian Land	EPA Region 8	04/25/2018	05/18/2018	07/20/2018
US	INDIAN UST R9	Underground Storage Tanks on Indian Land	EPA Region 9	04/10/2018	05/18/2018	07/20/2018
US	INDIAN VCP R1	Voluntary Cleanup Priority Listing	EPA, Region 1	07/27/2015	09/29/2015	02/18/2016
US	INDIAN VCP R7	Voluntary Cleanup Priority Lisiting	EPA, Region 7	03/20/2008	04/22/2008	05/19/2008
US	LEAD SMELTER 1	Lead Smelter Sites	Environmental Protection Agency	08/13/2018	10/04/2018	11/16/2018
US	LEAD SMELTER 2	Lead Smelter Sites	American Journal of Public Health	04/05/2001	10/27/2010	12/02/2010
US	LIENS 2	CERCLA Lien Information	Environmental Protection Agency	08/13/2018	10/04/2018	11/16/2018
US	LUCIS	Land Use Control Information System	Department of the Navy	10/17/2018	10/25/2018	12/07/2018
US	MLTS	Material Licensing Tracking System	Nuclear Regulatory Commission	08/30/2016	09/08/2016	10/21/2016
US	NPL	National Priority List	EPA	11/14/2018	11/27/2018	12/07/2018
US	NPL LIENS	Federal Superfund Liens	EPA	10/15/1991	02/02/1994	03/30/1994
US	ODI	Open Dump Inventory	Environmental Protection Agency	06/30/1985	08/09/2004	09/17/2004
US	PADS	PCB Activity Database System	EPA	09/14/2018	10/11/2018	12/07/2018
US	PCB TRANSFORMER	PCB Transformer Registration Database	Environmental Protection Agency	05/24/2017	11/30/2017	12/15/2017
US	PRP	Potentially Responsible Parties	EPA	08/13/2018	10/04/2018	11/09/2018
US	Proposed NPL	Proposed National Priority List Sites	EPA	11/14/2018	11/27/2018	12/07/2018
US	RAATS	RCRA Administrative Action Tracking System	EPA	04/17/1995	07/03/1995	08/07/1995
US	RADINFO	Radiation Information Database	Environmental Protection Agency	10/02/2018	10/03/2018	11/09/2018
US	RCRA NonGen / NLR	RCRA - Non Generators / No Longer Regulated	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generators	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-LQG	RCRA - Large Quantity Generators	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-SQG	RCRA - Small Quantity Generators	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
US	RCRA-TSDF	RCRA - Treatment, Storage and Disposal	Environmental Protection Agency	03/01/2018	03/28/2018	06/22/2018
		•	· ,			

St	Acronym Full Name		Government Agency	Gov Date	Arvl. Date	Active Date
US	RMP	Risk Management Plans	Environmental Protection Agency	08/01/2018	08/22/2018	10/05/2018
US	ROD	Records Of Decision	EPA	08/13/2018	10/04/2018	11/16/2018
US	SCRD DRYCLEANERS	State Coalition for Remediation of Drycleaners Listing	Environmental Protection Agency	01/01/2017	02/03/2017	04/07/2017
US	SEMS	Superfund Enterprise Management System	EPA	11/14/2018	11/27/2018	12/07/2018
US	SEMS-ARCHIVE	Superfund Enterprise Management System Archive	EPA	11/14/2018	11/28/2018	12/07/2018
US	SSTS	Section 7 Tracking Systems	EPA	12/31/2009	12/10/2010	02/25/2011
US	TRIS	Toxic Chemical Release Inventory System	EPA	12/31/2016	01/10/2018	01/12/2018
US	TSCA	Toxic Substances Control Act	EPA	12/31/2016	06/21/2017	01/05/2018
US	UMTRA	Uranium Mill Tailings Sites	Department of Energy	06/23/2017	10/11/2017	11/03/2017
US	US AIRS (AFS)	Aerometric Information Retrieval System Facility Subsystem (EPA	10/12/2016	10/26/2016	02/03/2017
US	US AIRS MINOR	Air Facility System Data	EPA	10/12/2016	10/26/2016	02/03/2017
US	US BROWNFIELDS	A Listing of Brownfields Sites	Environmental Protection Agency	09/18/2018	09/18/2018	11/09/2018
US	US CDL	Clandestine Drug Labs	Drug Enforcement Administration	09/21/2018	09/21/2018	11/09/2018
US	US ENG CONTROLS	Engineering Controls Sites List	Environmental Protection Agency	07/31/2018	08/28/2018	09/14/2018
US	US FIN ASSUR	Financial Assurance Information	Environmental Protection Agency	08/31/2018	09/25/2018	11/09/2018
US	US HIST CDL	National Clandestine Laboratory Register	Drug Enforcement Administration	09/21/2018	09/21/2018	11/09/2018
US	US INST CONTROL	Sites with Institutional Controls	Environmental Protection Agency	07/31/2018	08/28/2018	09/14/2018
US	US MINES	Mines Master Index File	Department of Labor, Mine Safety and Health A	08/01/2018	08/29/2018	10/05/2018
US	US MINES 2	Ferrous and Nonferrous Metal Mines Database Listing	USGS	12/05/2005	02/29/2008	04/18/2008
US	US MINES 3	Active Mines & Mineral Plants Database Listing	USGS	04/14/2011	06/08/2011	09/13/2011
US	UXO	Unexploded Ordnance Sites	Department of Defense	09/30/2017	06/19/2018	09/14/2018
NY	NY MANIFEST	Facility and Manifest Data	Department of Environmental Conservation	10/01/2018	10/31/2018	12/20/2018
		•	·			
US	AHA Hospitals	Sensitive Receptor: AHA Hospitals	American Hospital Association, Inc.			
US	Medical Centers	Sensitive Receptor: Medical Centers	Centers for Medicare & Medicaid Services			
US	Nursing Homes	Sensitive Receptor: Nursing Homes	National Institutes of Health			
US	Public Schools	Sensitive Receptor: Public Schools	National Center for Education Statistics			
US	Private Schools	Sensitive Receptor: Private Schools	National Center for Education Statistics			
WY	Daycare Centers	Sensitive Receptor: Day Care Provider List	Department of Family Services			
US	Flood Zones	100-year and 500-year flood zones	Emergency Management Agency (FEMA)			
US	NWI	National Wetlands Inventory	U.S. Fish and Wildlife Service			
WY	State Wetlands	National Wetlands Inventory	Wyoming Geospatial Hub			
US	Topographic Map	radional violando involtory	U.S. Geological Survey			
US	Oil/Gas Pipelines		PennWell Corporation			
US	Electric Power Transmission Line D	nata	PennWell Corporation			
US	License i Ower Transmission Line L	γαια	1 Chilivion Corporation			

St Acronym Full Name Government Agency Gov Date Arvl. Date Active Date

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK®-PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

CHEYENNE AASF CHEYENNE AASF FE WARREN AFB, WY 82005

TARGET PROPERTY COORDINATES

Latitude (North): 41.196149 - 41° 11' 46.14" Longitude (West): 104.870486 - 104° 52' 13.75"

Universal Tranverse Mercator: Zone 13 UTM X (Meters): 510860.2 UTM Y (Meters): 4560327.5

Elevation: 6290 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 5645427 CHEYENNE NORTH, WY

Version Date: 2012

West Map: 5649463 ROUND TOP LAKE, WY

Version Date: 2012

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General South

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

56021C1078F FEMA FIRM Flood data

Additional Panels in search area: FEMA Source Type

56021C1059F FEMA FIRM Flood data 56021C1067F FEMA FIRM Flood data 56021C1086F FEMA FIRM Flood data

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

CHEYENNE NORTH

YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION

MAP ID FROM TP GROUNDWATER FLOW

Not Reported

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Cenozoic Category: Continental Deposits

System: Tertiary Series: Pliocene

Code: Tpc (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 5528367.2s

SITE NAME: Cheyenne AASF ADDRESS: Cheyenne AASF Fe Warren AFB WY 82005 LAT/LONG: 41.196149 / 104.870486

CLIENT: AECOM
CONTACT: Brittany Kirchmann
INQUIRY#: 5528367.2s
DATE: January 08, 2019 9:19 am

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: Evanston

Soil Surface Texture: loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information							
	Boundary Upper Lower			Classification		Saturated hydraulic	
Layer			Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	
1	0 inches	3 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
2	3 inches	14 inches	clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4
3	14 inches	59 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.4

Soil Map ID: 2

Soil Component Name: Poposhia

Soil Surface Texture: silt loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information							
	Boundary			Classification		Saturated hydraulic	
Layer	Upper Lower		Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Oon Noadhon
1	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
2	7 inches	25 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9
3	25 inches	59 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.233	Max: 8.4 Min: 7.9

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	FROM TP	
A5	USGS40001334813	1/2 - 1 Mile WSW	
15	USGS40001334980	1/2 - 1 Mile NW	
A17	USGS40001334811	1/2 - 1 Mile WSW	

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
2	WYSE50000143153	1/2 - 1 Mile SSW
3	WYSE50000033225	1/2 - 1 Mile WSW
4	WYSE50000042868	1/2 - 1 Mile WNW
B6	WYSE50000016904	1/2 - 1 Mile SSW
B7	WYSE50000018665	1/2 - 1 Mile SSW
B8	WYSE50000015028	1/2 - 1 Mile SSW
B9	WYSE50000016571	1/2 - 1 Mile SSW
B10	WYSE50000018867	1/2 - 1 Mile SSW
B11	WYSE50000117396	1/2 - 1 Mile SSW
B12	WYSE50000123706	1/2 - 1 Mile SSW
B13	WYSE50000116892	1/2 - 1 Mile SSW
B14	WYSE50000117326	1/2 - 1 Mile SSW
16	WYSE50000040108	1/2 - 1 Mile NE
C18	WYSE50000117119	1/2 - 1 Mile SW
C19	WYSE50000127045	1/2 - 1 Mile SW
D20	WYSE50000142449	1/2 - 1 Mile SSW
D21	WYSE50000113296	1/2 - 1 Mile SSW
D22	WYSE50000117337	1/2 - 1 Mile SSW

PHYSICAL SETTING SOURCE MAP - 5528367.2s

SITE NAME: Cheyenne AASF ADDRESS: Cheyenne AASF Fe Warren AFB WY 82005

LAT/LONG: 41.196149 / 104.870486

CLIENT: AECOM CONTACT: Brittany Kirchmann

INQUIRY #: 5528367.2s

January 08, 2019 9:19 am DATE:

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
1 West 1/2 - 1 Mile Higher	Click here for full text details	FRDS PWS	WY5600011
2 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000143153
3 WSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000033225
4 WNW 1/2 - 1 Mile Higher	Click here for full text details	WY WELLS	WYSE50000042868
A5 WSW 1/2 - 1 Mile Lower	Click here for full text details	FED USGS	USGS40001334813
B6 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000016904
B7 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000018665
B8 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000015028
B9 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000016571

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
B10 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000018867
B11 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117396
B12 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000123706
B13 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000116892
B14 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117326
15 NW 1/2 - 1 Mile Higher	Click here for full text details	FED USGS	USGS40001334980
16 NE 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000040108
A17 WSW 1/2 - 1 Mile Lower	Click here for full text details	FED USGS	USGS40001334811
C18 SW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117119

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
C19 SW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000127045
D20 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000142449
D21 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000113296
D22 SSW 1/2 - 1 Mile Lower	Click here for full text details	WY WELLS	WYSE50000117337

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

State Database: WY Radon

Radon Test Results

% Elev.	Total kits	# tests 4-10 pCi/L	# tests 10-20 pCi/L	# Tests>20 pCi/L
22%	2358	396	89	42

Federal EPA Radon Zone for LARAMIE County: 1

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for LARAMIE COUNTY, WY

Number of sites tested: 55

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor Living Area - 2nd Floor	1.750 pCi/L Not Reported	100% Not Reported	0% Not Reported	0% Not Reported
Basement	3.020 pCi/L	75%	24%	2%

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: National Wetlands Inventory

Source: Wyoming Geospatial Hub Telephone: 307-777-4600

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Wyoming Well Permits

Source: Wyoming State Engineer's Office

Telephone: 307-777-6148

Wyoming well permit locations on file with the Wyoming State Engineer's Office.

OTHER STATE DATABASE INFORMATION

Oil and Gas Well Location Information

Source: Oil and Gas Conservation Commission

Telephone: 307-234-7147

RADON

State Database: WY Radon Source: Department of Health Telephone: 307-777-6015 Wyoming Radon Project

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Appendix B Preliminary Assessment Documentation

Appendix B.1 Interview Record

On 11 June 2011 at 1448, the fire alarm went off in the AASF. I left my office to check the fire alarm panel and it indicated the HEF system. I proceeded to the HEF room and as I approached the east hangar I observed the HEF dumping in the east hangar which had no aircraft. After a quick confirmation of no fire I proceeded to the HEF room to block in the foam and water. I blocked in the foam discharge first, water supply to the foam tank second and then blocked in the risers. I then called Warren Fire Department to notify them of the false alarm and notified of the event. There was approximately 5' of foam in the east hangar. Bay 5 and 8 doors were opened by during the event because he realized there was no fire and was trying to minimize the effects of the foam.

The Warren Fire Department responded and investigated why the HEF activated. The HEF fire panel indicated that L1M07 Hangar 2 North Pull was activated.

Upon investigation, it was found that L1M07 pull (located by egress door SE corner of hangar 2) was not activated, nor were any other pulls. Of note, the L1M04 glass pull indicator was missing but suspect that it was never replaced after commissioning test(s). L1M07 indication on the fire panel disappeared approximately 1 hour after the event. Witnesses being one of them) who were in bay 8 near the fire pull said the fire alarm just went off and foam started dispensing.

Clean up of the hangar was started with the supervision of the fire department. This involved individuals of C. Co. 5-159 and subordinates who were conducting AT. After a review of the MSDS, a roster of those exposed to the foam and potential damages to equipment was started. 1SG indicated that when the alarm went off, there was an organized evacuation with good accountability.

Base environmental (and a second) responded and coordinated with Wyoming Guard environmental (and a second). They notified the city utility office of the release into the oil water separator which would eventually migrate to the public sewer system. No foam was observed in the ramp storm water system.

notified Westfire of the event and coordinated for them to come out on the following morning.

arrived at the AASF at approximately 0830 and was notified that the L1M07 alarm had cleared itself. Here is what found:

I went ahead and had Westfire come out on Sunday at 8:00 to repair and investigate the pull that was shown as the reason for the foam going off. Otherwise we had the panel showing as alarm and the fire dept would not have known if a real situation came about. West fire could not identify a problem with the pull and its components so he will get us new parts. Temporarily we are without a pull but have put a notice with it. We will show just a trouble alarm because the pull is missing but everything else will work if needed. The only thing he thought is that the components got wet. The inside of the box was wet today but not sure if that was due to the foam. I have Western States coming tomorrow to refill the foam bladder. Until then we would only get water not foam in the hangar if something would happen, but again the fire dept will now know to respond for emergency action.

So for now this is all the info I have but will let you know more as I get more feedback.

Interviewee:	Can your name/role be used in the PA Report? Y or N	
<u>-</u>	Can you recommend anyone we can interview?	
Title: <u>AASF WYARG</u>	Y or N	
Phone Number: (307) 772-5981		
Email:		
Roles or activities with the Facility/Years work	ing at the Facility:	
AASF maintenance and facility personnel		
PFAS Use: Identify accidental/intentional release storage container size (maintenance, fire training, builts), fueling stations, crash sites, pest management waterproofing). How are materials ordered/purcha	firefighting, buildings with suppression, recreational, dining facilities, m	ion systems (as
AFFF used in AASF fire suppression system.		Known Uses
Material ordered as part of facility construction. N 2010.	o additional material ordered since	Use
3 releases: 2 April 2010 (facility commissioning);	11 June and 8 Aug 2011	Procurement
		Disposition
		Storage (Mixed)
		Storage (Solution)
		Inventory, Off-Spec
		Containment
		SOP on Filling
		Leaking Vehicles
		Nozzle and Suppression System Testing
		Dining Facilities
		Vehicle Washing
		Ramp Washing
		Fuel Spill Washing and Fueling Stations
		Chrome Plating or Waterproofing

Appendix B.2 Visual Site Inspection Checklists

Visual Site Inspection Checklist

rming VSI:				
ecorded by:				
G Contact:				
e and Time: 8 May 2010/0830				
, adjacent): Walking				
YARNG AASF				
acres				
'A				
ASF				
n active AFB (F.E. Warren)				
1. Was PFAS used (or spilled) at the site/area? 1a. If yes, document how PFAS was used and usage time (e.g., fire fighting training 2001 to 2014):				
Hanger fire suppression system. 2. Has usage been documented? 2a. If yes, keep a record (place electronic files on a disk):				
Yes 3. What types of businesses are located near the site? None 3a. Indicate what businesses are located near the site				
iption of the airport/flightline tenants:				

Visual Survey Inspection Log

Other Significant Site	e Features:
1. Does the facility hav	ve a fire suppression system?
	1a. If yes, indicate which type of AFFF has been used: Jet-X (23/4% concentrate)
	1b. If yes, describe maintenance schedule/leaks:
	1c. If yes, how often is the AFFF replaced:
	TWI Jes, now ottom is the First replaced.
	After each release
	1d. If yes, does the facility have floor drains and where do they lead? Can we obtain an as built drawing?
	Yes
Transport / Pathw	ay Information
Migration Potential:	
1. Does site/area drain	age flow off installation?
	1a. If so, note observation and location:
2. Is there channelized	flow within the site/area?
	2a. If so, please note observation and location:
3. Are monitoring or d	rinking water wells located near the site?
=	3a. If so, please note the location:
4 Are surface water in	ntakes located near the site?
The surface water in	4a. If so, please note the location:
	· · · · · · · · · · · · · · · · · · ·
5 Can wind dispersion	n information be obtained?
3. Can wind dispersion	5a. If so, please note and observe the location.
	Can it so, preaso note and some to the forestion.
(D	ADNO DEAG
6. Does an adjacent no	on-ARNG PFAS source exist? N
	6a. If so, please note the source and location.
	6b. Will off-site reconnaissance be conducted? Y/N

Visual Survey Inspection Log

Significant Topograp	hical Features:		
1. Has the infrastructur	re changed at the site/area?		
<u>-</u>	1a. If so, please describe change (ex. Structures no longer exist):		
2. Is the site/area veget	ated? Y		
_	2a. If not vegetated, briefly describe the site/area composition:		
-	, , , , , , , , , , , , , , , , , , ,		
2.D. 41.4	1'1', '1 C ' 0 N		
	exhibit evidence of erosion? N 20. If you describe the location and autom of the erosion.		
-	3a. If yes, describe the location and extent of the erosion:		
<u>-</u>			
	chibit any areas of ponding or standing water?	N	
	4a. If yes, describe the location and extent of the ponding:		
- T. C.			
Receptor Informat			
1. Is access to the site r		4 ED	
-	1a. If so, please note to what extent: Facility located on F.E. Wa	arren AFB	
_			
2. Who can access the			
-	2a. Circle all that apply, note any not covered above:		
3. Are residential areas	located near the site?	N	
_	3a. If so, please note the location/distance:		
A Are any schools/day	care centers located near the site?	N	
•	4a. If so, please note the location/distance/type:	11	
-	4a. If so, piease note the focation/distance/type.		
-			Т
5. Are any wetlands loo		N	
-	5a. If so, please note the location/distance/type:		

Visual Survey Inspection Log

Additional Notes		
Photographic Log		
Photo ID/Name	Date & Location	Photograph Description

Appendix B.3 Conceptual Site Model Information

Preliminary Assessment – Conceptual Site Model Information

Site Name: WYARNG AASF
Why has this location been identified as a site? Use/storage of AFFF
Are there any other activities nearby that could also impact this location? Located on F.E. Warren
AFB, which also has AOIs.
Training Events
Have any training events with AFFF occurred at this site? No
If so, how often?
How much material was used? Is it documented?
Identify Potential Pathways: Do we have enough information to fully understand over land surface water flow, groundwater flow, and geological formations on and around the facility? Any direct pathways to larger water bodies?
Surface Water:
Surface water flow direction? Northeast
Average rainfall? 13.62"
Any flooding during rainy season? UNK
Direct or indirect pathway to ditches? Yes
Direct or indirect pathway to larger bodies of water? No
Does surface water pond any place on site? No
Any impoundment areas or retention ponds? Yes
Any NPDES location points near the site? UNK
How does surface water drain on and around the flight line?

Preliminary Assessment – Conceptual Site Model Information

Groundwater: Groundwater flow direction? Northeast Depth to groundwater? variable Uses (agricultural, drinking water, irrigation)? UNK Any groundwater treatment systems? No Any groundwater monitoring well locations near the site? No Is groundwater used for drinking water? No Are there drinking water supply wells on installation? No Do they serve off-post populations? No Are there off-post drinking water wells downgradient No **Waste Water Treatment Plant:** Has the installation ever had a WWTP, past or present? UNK If so, do we understand the process and which water is/was treated at the plant? Do we understand the fate of sludge waste? Is surface water from potential contaminated sites treated? **Equipment Rinse Water** 1. Is firefighting equipment washed? Where does the rinse water go? 2. Are nozzles tested? How often are nozzles tested? Where are nozzles tested? Are nozzles cleaned after use? Where does the rinse water flow after cleaning nozzles? 3. Other?

Preliminary Assessment – Conceptual Site Model Information

Identify Potential Receptors:

Site Worker Yes Construction Worker Yes Recreational User No Residential No Child No Ecological No Note what is located near by the site (e.g. daycare, schools, hospitals, churches, agricultural, livestock)? Documentation Ask for Engineering drawings (if applicable). Has there been a reconstruction or changes to the drainage system? When did that occur?

Appendix C Photographic Log

Army National Guard, Preliminary Assessment for PFAS WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 1

Description:

Oil water separator entrance

Photograph No. 2

Description:

Swall

Army National Guard, Preliminary Assessment for PFAS WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 3

Description:

Helicopter sitting on tarmac

Photograph No. 4

Description:

Facility bay doors

Army National Guard, Preliminary Assessment for PFAS WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 5

Description:

Airfield. Looking west.

Photograph No. 6

Description:

Drainage running length of facility

Army National Guard, Preliminary Assessment for PFAS WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 7

Description:

AFFF tank

Photograph No. 8

Description:

Stock of AFFF

Army National Guard, Preliminary Assessment for PFAS WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 9

Description:

Pump system

Photograph No. 10

Description:

Only shutoff valve (is not located in bay)

Army National Guard, Preliminary Assessment for PFAS WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 11

Description:

Pre-filter unit

Photograph No. 12

Description:

Runoff

Army National Guard, Preliminary Assessment for PFAS WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 13

Description:

Retention pond

Photograph No. 13

Description:

Spill prevention corrective action taken: palletized

Army National Guard, Preliminary Assessment for PFAS

WYARNG Army Aviation Support Facility

Cheyenne, WY

Photograph No. 145

Description:

Release 11 June 2011

